THE FIBONACCI QUARTERLY

Questions:

- (1) What is the range of g(n)? For example, it appears that neither 14 nor 24 is in the range.
- (2) What is the asymptotic behavior of g(n)? Is g(n) asymptotic to $c \log_2(F_n)$ for some constant c as n approaches infinity?
- (3) What is the limit of g(n)/n as n approaches infinity? Does it equal $c \log_2(\alpha)$?
- (4) Can we determine an explicit formula for g(n)?

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

We use a theorem by Pillai [1] stating that if R(n) is the least integer r for which the rth iterate of the Euler totient function evaluated at n equals 1, then

$$R(n) \le \left| \frac{\log n}{\log 2} \right| + 1.$$

Clearly, $R(F_1) = R(1) = 1$. If $n \ge 2$, then by Pillai's theorem and that $F_n \le 2^{n-1}$,

$$R(F_n) \le \left| \frac{\log F_n}{\log 2} \right| + 1 \le \left| \frac{\log 2^{n-1}}{\log 2} \right| + 1 = n,$$

and we are done.

Editor's Note: Fedak observed that if $\frac{m}{2^{n-1}} \leq 2$, then $\phi^n(m) = 1$. This leads to the desired result immediately because $F_n < 2^n$. Park proved that if $\phi^{k-2}(a) \geq 3$, then $\phi^k(a) \leq \frac{1}{2^{k-1}}a$, which completes the proof because $F_n \leq 2^{n-1}$.

References

[1] S. S. Pillai, On a function connected with $\varphi(n)$, Bull. Amer. Math. Soc., **35** (1929), 837–841.

Also solved by Saunak Bhattacharjee (undergraduate), I. V. Fedak, Heng Gao, Ho Park, Raphael Schumacher (graduate student), and David Terr.

A Consequence of the Minkowski Inequality

B-1281 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine. (Vol. 59.1, February 2021)

For all positive integers n and m, prove that

$$L_1 + \sqrt[n]{\sum_{k=1}^m L_k^n} \le \sqrt[n]{\sum_{k=1}^m F_{k+1}^n} + F_{m+1}.$$

Solution by Ángel Plaza, Universidad de Las Palmos de Gran Canaria, Gran Canaria, Spain.

Because $L_1 = 1$, $L_k = F_{k-1} + F_{k+1}$, and $\sum_{k=1}^{m-1} F_k = F_{m+1} - 1$, the proposed inequality may be written equivalently as

$$\sqrt[n]{\sum_{k=1}^{m} (F_{k-1} + F_{k+1})^n} \le \sqrt[n]{\sum_{k=1}^{m} F_{k+1}^n} + \sum_{k=1}^{m} F_{k-1}.$$

Now, because $\sqrt[n]{\sum_{k=1}^m F_{k-1}^n} \leq \sum_{k=1}^m F_{k-1}$, it is enough to prove that

$$\sqrt[n]{\sum_{k=1}^{m} (F_{k-1} + F_{k+1})^n} \le \sqrt[n]{\sum_{k=1}^{m} F_{k+1}^n} + \sqrt[n]{\sum_{k=1}^{m} F_{k-1}^n},$$

which is the Minkowski inequality.

Also solved by Dmitry Fleischman, Haydn Gwyn (undergraduate), Hideyuki Ohtsuka, Albert Stadler, and the proposer.

Both Summations Are Telescopic

<u>B-1282</u> Proposed by Hideyuki Ohtsuka, Saitama, Japan. (Vol. 59.1, February 2021)

For any positive integer n, find closed form expressions for the sums

$$\sum_{k=1}^{n} F_{3k} F_{3k+1}, \quad \text{and} \quad \sum_{k=1}^{n} F_{2F_{3k}} F_{2F_{3k+1}}.$$

Solution by Raphael Schumacher (graduate student), ETH Zurich, Switzerland.

We have for all $k \in \mathbb{N}$ the identities

$$\frac{F_{3k+2}^2 - F_{3k-1}^2}{4} = \frac{(F_{3k+1} + F_{3k})^2 - (F_{3k+1} - F_{3k})^2}{4} = F_{3k}F_{3k+1},$$

$$F_{2F_{3k}}F_{2F_{3k+1}} = F_{F_{3k+1}+F_{3k}}^2 - F_{F_{3k+1}-F_{3k}}^2 = F_{F_{3k+2}}^2 - F_{F_{3k-1}}^2.$$

In the second identity, we have used for $a \geq b$ the identity

$$F_{2a}F_{2b} = F_{a+b}^2 - F_{a-b}^2,$$

which can be derived from the Binet's formula, the Catalan's identity, or the product formula $5F_sF_t = L_{s+t} - (-1)^t L_{s-t}$. By telescoping, it follows from the above two identities with $F_2 = 1$

$$\sum_{k=1}^{n} F_{3k} F_{3k+1} = \sum_{k=1}^{n} \frac{F_{3k+2}^2 - F_{3k-1}^2}{4} = \frac{F_{3n+2}^2 - 1}{4},$$

$$\sum_{k=1}^{n} F_{2F_{3k}} F_{2F_{3k+1}} = \sum_{k=1}^{n} \left(F_{F_{3k+2}}^2 - F_{F_{3k-1}}^2 \right) = F_{F_{3n+2}}^2 - 1.$$

Editor's Note: Several solvers used the Binet's formulas to set up a summation of arithmetic progressions in α and β , thereby obtaining $\sum_{k=1}^n F_{3k}F_{3k+1} = \frac{1}{20} \left(L_{6n+4} - 5 - 2(-1)^n\right)$. Gwyn, using a slightly different set up, showed that $\sum_{k=1}^n F_{3k}F_{3k+1} = \frac{1}{4} \left(2F_{3n+2}F_{3n+3} - F_{6n+4} - 1\right)$. Meanwhile, many solvers used the identity $F_{2F_{3k}}F_{2F_{3k+1}} = \frac{1}{5} \left(L_{2F_{3k+2}} - L_{2F_{3k-1}}\right)$ to derive the result $\sum_{k=1}^n F_{2F_{3k}}F_{2F_{3k+1}} = \frac{1}{5} \left(L_{2F_{3n+2}} - 3\right)$.

FEBRUARY 2022 85