ADVANCED PROBLEMS AND SOLUTIONS
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Lower bounds for some sums involving Lucas numbers

H-853 Proposed by Angel Plaza and Sergio Falcén, Gran Canaria, Spain
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Let L,, be the nth k-Lucas number given by the recurrence L, 2 = kLy,11+ L, for allmn > 0,
with Lo = 2, L1 = k. Prove that
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Solution by the proposers
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The inequalities follow by Jensen’s inequality. Note that the function f(z) = is convex
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because f”(x) = ﬁ > 0. Therefore,
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Binet’s formula for k-Lucas numbers.

, which can be proved by induction or by using the

n
L
Inequality (ii) follows by Jensen’s inequality as before, and using that ZL? = 2l
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