THE FIBONACCI QUARTERLY

H-862 Proposed by Ángel Plaza, Gran Canaria, Spain

Let $(F_{k,n})_{n\in\mathbb{Z}}$ and $(L_{k,n})_{n\in\mathbb{Z}}$ denote the k-Fibonacci and k-Lucas numbers given by $F_{k,n+1} = kF_{k,n} + F_{k,n-1}$, $L_{k,n+1} = kL_{k,n} + L_{k,n-1}$ for $n \ge 1$ with $F_{k,0} = 0$, $F_{k,1} = 1$, $L_{k,0} = 2$, $L_{k,1} = k$. Prove that for integers $m \ge 1$ and $j \ge 0$ we have

(i)
$$\sum_{n=1}^{m} F_{k,n\pm j} L_{k,n\mp j} = \frac{F_{k,2m+1} - 1}{k} + \begin{cases} 0, & \text{if } m \equiv 0 \pmod{2}; \\ (-1)^{j} F_{k,\pm 2j}, & \text{if } m \equiv 1 \pmod{2}. \end{cases}$$

(ii)
$$\sum_{n=1}^{m} F_{k,n+j} F_{k,n-j} L_{k,n+j} L_{k,n-j} = \frac{F_{k,4m+2}/k - 1 - mL_{k,4j}}{k^2 + 4}.$$

SOLUTIONS

A circular inequality

<u>H-825</u> Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu, Buzău, Romania (Vol. 56, No. 3, August 2018)

If a, b, c > 0 and n is a positive integer, prove that

$$2\left(\left(\frac{a}{bF_n + F_{n+1}c}\right)^3 + \left(\frac{b}{F_nc + F_{n+1}a}\right)^3 + \left(\frac{c}{F_na + F_{n+1}b}\right)^3\right) + 3\frac{abc}{(F_na + F_{n+1}b)(F_nb + F_{n+1}c)(F_nc + F_{n+1}a)} \ge \frac{9}{F_{n+2}^3}.$$

Solution by Wei-Kai Lai, University of South Carolina Salkehatchie, Walterboro, SC

Let

$$x = \frac{a}{bF_n + F_{n+1}c}, \quad y = \frac{b}{cF_n + aF_{n+1}}, \quad z = \frac{c}{aF_n + bF_{n+1}}.$$

According to Surányi's inequality ([1], Theorem 4.4):

$$2(x^3 + y^3 + z^3) + 3xyz \ge (x + y + z)(x^2 + y^2 + z^2).$$

Because the quadratic mean is greater than or equal to the arithmetic mean, it is easy to check that

$$x^{2} + y^{2} + z^{2} \ge \frac{1}{3}(x + y + z)^{2}.$$

So, we only need to prove that

$$\frac{1}{3}(x+y+z)^3 \ge \frac{9}{F_{n+2}^3},$$

or equivalently

$$x + y + z \ge \frac{3}{F_{n+2}}.$$

According to Radon's inequality,

$$\begin{split} x+y+z &= \frac{a^2}{F_nab+F_{n+1}ac} + \frac{b^2}{F_nbc+F_{n+1}ab} + \frac{c^2}{F_nac+F_{n+1}bc} \\ &\geq \frac{(a+b+c)^2}{(F_nab+F_{n+1}ac) + (F_nbc+F_{n+1}ab) + (F_nac+F_{n+1}bc)} \\ &= \frac{(a+b+c)^2}{(F_n+F_{n+1})(ab+ac+bc)} \geq \frac{3(ab+ac+bc)}{F_{n+2}(ab+ac+bc)} = \frac{3}{F_{n+2}}, \end{split}$$

hence proving the claimed inequality. The equality holds when a = b = c.

[1] Z. Cvetkovski, *Inequalities, Theorems, Techniques and Selected Problems*, Springer, New York, 2012, p. 35.

Also solved by Brian Bradie, Dmitry Fleischman, Ángel Plaza, Nicuşor Zlota, and the proposers.

Powers of 2 and powers of 3

<u>H-826</u> Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 56, No. 3, August 2018)

For an integer $n \geq 0$, prove that

$$\sum_{\substack{a+b=n\\a,b>0}} \frac{1}{L_{2^a3^b} F_{2^a3^{b+1}}} = \frac{F_{3^{n+1}-2^{n+1}}}{F_{3^{n+1}} F_{2^{n+1}}}.$$

Solution by the proposer

We use the identities

- (1) $F_{s-t} = (-1)^t (F_{t+1}F_s F_t F_{s+1})$ (see [1] (9));
- (2) $F_{2s} = F_s L_s$ (see [1] (13)).

We have

$$\frac{F_{2^{a+1}3^{b}+1}}{F_{2^{a+1}3^{b}}} - \frac{F_{2^{a}3^{b+1}+1}}{F_{2^{a}3^{b+1}}} = \frac{F_{2^{a+1}3^{b}+1}F_{2^{a}3^{b+1}} - F_{2^{a+1}3^{b}}F_{2^{a}3^{b+1}+1}}{F_{2^{a+1}3^{b}}F_{2^{a}3^{b+1}}}$$

$$= \frac{F_{2^{a}3^{b+1}-2^{a+1}3^{b}}}{F_{2^{a+1}3^{b}}F_{2^{a}3^{b+1}}} (\text{by (1)}) = \frac{F_{2^{a}3^{b}}}{F_{2^{a+1}3^{b}}F_{2^{a}3^{b+1}}} = \frac{1}{L_{2^{a}3^{b}}F_{2^{a}3^{b+1}}} (\text{by (2)}).$$

Therefore, we have

$$\begin{split} \sum_{\substack{a+b=n\\a,b\geq 0}} \frac{1}{L_{2^a3^b} F_{2^a3^{b+1}}} &= \sum_{\substack{a+b=n\\a,b\geq 0}} \left(\frac{F_{2^{a+1}3^b+1}}{F_{2^{a+1}3^b}} - \frac{F_{2^a3^{b+1}+1}}{F_{2^a3^{b+1}}}\right) \\ &= \sum_{a=0}^n \left(\frac{F_{2^{a+1}3^{n-a}+1}}{F_{2^{a+1}3^{n-a}}} - \frac{F_{2^a3^{n-a+1}+1}}{F_{2^a3^{n-a+1}}}\right) = \frac{F_{2^{n+1}+1}}{F_{2^{n+1}}} - \frac{F_{3^{n+1}+1}}{F_{3^{n+1}}} \\ &= \frac{F_{2^{n+1}+1}F_{3^{n+1}} - F_{2^{n+1}}F_{3^{n+1}+1}}{F_{2^{n+1}}F_{3^{n+1}}} = \frac{F_{3^{n+1}-2^{n+1}}}{F_{2^{n+1}}F_{3^{n+1}}} \text{ (by (1))}. \end{split}$$

[1] S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Dover, 2008.

Also solved by Brian Bradie and Dmitry Fleischman.

AUGUST 2020 283