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Abstract— Many diseases can be diagnosed by blood sample 

tests using automated analyzers. Novel imaging techniques, like 

Hyperspectral (HS) Imaging (HSI), are arising as potential tools 

for this purpose, offering quick and cost-effective approaches. 

In this paper, a methodology to use HS microscopic data of 

blood plasma samples to identify potential spectral biomarkers 

(SBs) and then quantify them in HS macroscopic data is 

presented. This quantification was performed using spectral 

unmixing algorithms. Finally, the abundance of each potential 

SB was correlated with each one of the blood test variable levels 

with and without removing outliers. Results found several 

statistically significant correlations (� − ����� < 	. 	�) and a 

highly significant correlation ( � − ����� < 	. 	� ) with the 

creatinine variable. These preliminary results show the potential 

of HSI sensors for performing quick and cost-effective blood 

sample tests.  

Keywords—Hyperspectral Imaging; Spectral Unmixing; 

Blood tests; Spectral Biomarkers; Hyperspectral Microscopy.  

I. INTRODUCTION 

Blood sample tests  are one of the most common types of 
medical tests, having many applications, such as assessing the 
general state of health of a subject, checking for infections, 
evaluating certain organs functioning (liver, kidney,…), or 
screening for certain genetic conditions and diseases [1]. 
Commonly, a blood test is conformed of three main tests: a 
complete blood count (CBC), a basic metabolic panel (BMP), 

and a lipoprotein panel.  

The CBC has the main goal of measuring the volume of 
blood cells (white blood cells, red blood cells and platelets) 
and their characteristics, allowing the evaluation of the 
overall health as well as checking for blood diseases and 
disorders, such as anemia, infections, clotting problems, 
blood cancers, or immune systems disorders [2]. The BMP, 
also called blood chemistry test, is in charge of measuring 
different chemicals in the blood (usually in plasma), such as 
glucose levels, calcium, and electrolyte balance, including 
also the liver and kidney function [2]. The lipoprotein panel 
is a blood test that provides information about the different 
types of triglycerides (fats) and cholesterol in blood, helping 
to evaluate the risk of coronary heart disease and other 

medical diseases [2]. 

Currently, automated hematology analyzers are employed 
to perform this analysis. However, nowadays, imaging 
technologies and processing algorithms are being investigated 
to provide rapid and cost-effective analysis of blood samples. 
In this sense, hyperspectral (HS) imaging (HSI) is arising as a 
promising alternative to conventional RGB (red, green, and 
blue) imaging modality for this purpose. HSI is a non-invasive 
and label-free technique that combines spectroscopy and 
conventional imaging methods to obtain both spatial and 

spectral information of the recorded scene [3]. Conventional 
RGB imaging captures three diffuse Gaussian spectral 
channels within the visible spectrum (~400–700 nm). On the 
contrary, HSI is able to capture spectral information within and 
beyond the human eye capabilities, measuring the reflected or 
absorbed radiance of light at specific wavelength of the 
material being recorded. HS sensors capture a large number of 
continuous spectral channels, conforming in each pixel of the 
image a vector of radiance values, the so-called spectral 

signature [3].  

HSI has been investigated during many years in different 
fields [4]. In the medical field, HSI has been studied in the 
literature for several different applications like oncology [5], 
[6], gastroenterology [7], computational pathology [8], 
dermatology [6], [9], and many others [10]. Particularly, for the 
analysis of blood samples, Li et al. explored the feasibility of 
using HS microscopy in the 550-1000 nm spectral range for 
red blood cell counting, employing the combined spatial and 
spectral information [11]. The same group also employed HSI 
for the identification and extraction of the morphological 
features of leukocytes in blood smear samples [12]. 
Additionally, Verebes et al. proposed a method to identify red 
blood cells, white blood cells and neutrophils without 
performing a prior sample preparation using stains and HSI in 
the 400-1000 nm spectral range  [13]. The use of unstained 
samples could lead to cost and time reduction in the blood 
sample preparations. Other studies have employed Raman 
spectroscopy for analyzing erythrocytes, leucocytes, platelets, 
plasma, and whole blood [14]. Additionally, NIR (near-
infrared) spectroscopy have been studied  for the analysis 
blood [15]. Particularly, Henn et al. used infrared spectroscopy 
in the range between 1000 to 2500 nm targeting hemodialysis 
monitoring, measuring glucose, lactate, phosphate and 
creatinine [16]. These studies reveal the potential of 
spectroscopy for measuring blood components. However, to 
the best of our knowledge, there are no studies in the literature 
that uses HSI in the VNIR (visual and near-infrared) range 

(400-1000 nm) to analyze blood plasma samples.  

In this work, the use of HSI is evaluated for demonstrating 
its potential to perform quick and cost-effective blood sample 
tests, particularly in blood plasma. Previous works of this group 
have employed HSI microscopy to develop a methodology for 
identifying potential spectral biomarkers (SBs) in blood plasma 
samples for Alzheimer’s disease detection [17]. In this case, the 
collected blood plasma samples are employed to perform a 
correlation analysis between the possible SBs, found in a subset 
of 10 HS microscopic images, and their abundances in the 
remaining 74 HS macroscopic images, and the different variable 
levels of the blood tests performed to the subjects included in the 
study, especially in the BMP and the lipoprotein panel.  
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II. MATERIALS AND METHODS 

This section will present in detail the materials employed 
to generate the HSI datasets of blood plasma samples, as well 
as the methods followed to extract the potential SBs and 
performing the correlation with the blood test variables. Fig. 
1 shows the block diagram of the proposed methodology that 

will be explained in the next subsections.  

 
Fig. 1. Block diagram of the proposed methodology followed in this work. 

A. Participant Recruitment and Sample Collection  

Originally, the participants involved in the study were 
divided into two groups (control and case subjects), where the 
control group involved healthy subjects and the case group 
involved subjects with Alzheimer’s disease [18]. In this 
study, all the participants have been included in the same 
group since the aim is to find a correlation between the 
spectral properties of the blood plasma HS images and the 

results of their respective blood tests.   

Eighty-four subjects over 65 years old were recruited at 
the Hospital Insular de Lanzarote (Canary Islands, Spain), 
the Asociación de Alzheimer Gran Canaria (Canary Islands, 
Spain) and the Peritia et Doctrina program (university 
program for students over 55 years) of the University of Las 
Palmas de Gran Canaria (ULPGC, Canary Islands, Spain). 
The study protocol and consent procedures were approved by 
the Comité de Bioética of the Hospital Universitario de Gran 

Canaria Doctor Negrin (2019-054-1). The data acquisition 
campaign was carried out from March 2019 to October 2019. 
The average age of the participants was 79.8±8.4, and 26.2% 
were men.  

A fasting blood test was requested for all subjects, and 
sampling was avoided in acute situations, such as infections. 
Table I shows the mean and standard deviation values of all 
the variables measured in the blood tests and their 
corresponding missing values. Variables are divided 
depending on the blood test from which they were obtained. 
The blood sample for the later data acquisition was drawn 
into a tube that contained sodium citrate as anticoagulant. 
Centrifugation was performed to separate plasma from blood 
cells, and plasma was transferred to another tube and frozen 
at -21 ºC for transport to the HS data acquisition laboratory. 

More details about the procedure can be found at [17]. 

TABLE I. Average and standard deviation (SD) of the 
analytical variables of the study participants. 

Variable 

[Total without missing values/Total] 
Mean SD 

CBC 

Hemoglobin (g/dL) [79/84] 12.85 1.91 

MCV (fL) [79/84] 91.15 4.32 

MCH (pg) [79/84] 30.13 1.84 

Platelets (103 µL) [80/84] 235.50 68.22 

Leukocytes (103 µL) [80/84] 6.79 1.86 

Neutrophils (103 µL) [80/84] 4.04 1.55 

Lymphocytes (103 µL) [80/84] 1.91 0.79 

Monocytes (103 µL) [80/84] 0.61 0.28 

BMP 

Glucose (mg/dL) [81/84] 109.91 28.81 

Creatinine (mg/dL) [78/84] 0.98 0.36 

GF (CKD-EPI) (mL/min) [72/84] 64.80 20.21 

Sodium (mEq/L) [77/84] 141.31 3.51 

Potassium (mEq/L) [77/84] 5.03 4.75 

ALT (IU/L) [76/84] 18.17 21.46 

Lipoprotein Panel 

Cholesterol (total) (mg/dL) [72/84] 176.79 40.85 

LDL Cholesterol (mg/dL) [64/84] 98.02 36.32 
MCV: Mean Corpuscular Volume; MCH:  Mean Corpuscular Hemoglobin; 
CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration; GF: 
Glomerular Filtration ALT: Alanine Aminotransferase; LDL: Low Density 
Lipoproteins. 

B. Hyperspectral Data Acquisition 

HS data was captured employing two different acquisition 

systems for microscopic and macroscopic data recording.  

The microscopic system was composed by a pushbroom 
HS camera (Hyperspec® VNIR A-Series from HeadWall 
Photonics, Fitchburg, MA, USA) coupled to an Olympus BX-
53 microscope (Olympus, Tokyo, Japan) with a motorized 
scanning platform (Scanning Stage SCAN 130×85, 
Märzhäuser). This system captured spectral information in 
transmittance mode from 400 to 1000 nm with a spectral 
resolution of 2.8 nm and a spatial resolution of 1004 × 400 
pixels, generating 826 spectral channels. At 20× 
magnification the pixel size was of 370 nm.  This system has 
been employed in related previous works [17], [19].  Fig. 2.a 
and c show the setup employed for the microscopic data 
capturing, and a gray-scale representation of the captured HS 

image of the plasma drop, respectively. 

The macroscopic system was formed by a Hyperspec® 
VNIR A-Series from HeadWall Photonics (Fitchburg, MA, 
USA). This camera can capture spectral information within 
the range 400-100 nm with a spectral resolution of 2.5 nm 
and a spatial resolution of 1600 pixels, generating 923 
spectral channels. This system employs a scanning platform 
to obtain the second spatial dimension of the HS image. This 
system was able to record spectral information in 
transmittance mode by using a fiber optic backlight 
illuminator (QVABL 4x3, Dolan-Jenner, Boxborough, MA, 
USA) coupled to an halogen-based illumination system (MI-
150 Fiber-Lite®, Dolan-Jenner, Boxborough, MA, USA) able 
to emit in the spectral rage from 400 to 2200 nm. HS images 
of the drop plasma samples captured with this system had a 
spatial resolution of 440 × 440 pixels. Fig. 2.b shows the 
setup employed for the macroscopic data capturing and Fig. 
2.d shows the synthetic RGB representation of the HS image 
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of the plasma drop captured using this system and after 
performing a manual segmentation (black pixels correspond 

to the background of the drop mask). 

Prior to the HS data acquisition, samples were defrosted 
at room temperature (~23 ºC) for 1 hour. A drop of plasma 
(~0.05 ml) was deposited on a microscope glass slide and 
dried during 24 hours at room temperature. Then, 10 of the 
samples were captured using the microscopic system, while 
the remaining 74 samples were captured using the 

macroscopic system.  

  
(A) (B) 

 
(C) (D) 

Fig. 2. Acquisition setups and example HS images employed in this work. 
(A) HS microscopic setup. (B) HS macroscopic setup. (C) Gray-scale 
representation of the HS image of the plasma drop obtained using the HS 
microscopic setup at 20× magnification. (D) RGB representation of the 
masked HS image of the plasma drop captured using the HS macroscopic 
setup. 

C. Hyperspectral Data Pre-processing  

Spectral data was preprocessed to reduce the 
dimensionality and noise, and to standardize the spectral 
signatures. In the first step, data was calibrated using white 

and dark reference images and computing Eq. 1, where 
�� 

is the calibrated image and ���  the raw image in the 

transmittance mode. The white reference image (���) was 
captured from a blank area of the microscope glass slide 
where no sample was located using the same illumination 
conditions as the sample was captured. The dark reference 

image (���) was obtained turning off the illumination system 
(in the microscopic scenario) or covering the lens of the 
camera (in the macroscopic scenario). After the calibration 
step, data was converted from transmittance to absorbance 

values following Eq. 2, where 
�� is the calibrated image in 

absorbance mode.  


�� �
��� − ���

��� − ���
 (1) 


�� � −log��� 
��� (2) 

Then, in the microscopic scenario, the first 56 bands and 
the last 126 bands were removed due to the low performance 
of the sensor in these spectral channels. Additionally, a 
decimation procedure was performed selecting one band for 
every 5 neighbor bands. This was motivated due to the high 
spectral resolution of the camera that produced high 
redundancy in the spectral information. The final HS cube 
was composed by 128 spectral channels. Due to the 

differences in the HS camera specifications between the 
microscopic and macroscopic scenarios, a procedure to adjust 
the HS data from the macroscopic system to the 128 spectral 
channels selected for the microscopic system was performed. 
In this procedure, the most similar wavelengths (from the 
macroscopic data) to the 128 selected wavelengths (of the 
microscopic data) were selected. At the end, both HS images 
had 128 spectral channels coincident to the first decimal 
value of the wavelength. Finally, noise filtering based on a 
moving average algorithm was applied to the HS data. The 
lowpass filter had a filter coefficient of 5. Additionally, for 
the HS macroscopic dataset, each drop in the image was 
manually segmented as shown in Fig. 2.d.  

D. Spectral Biomarkers Identification and Quantification 

The procedure to extract the SBs from the HS microscopic 
data was previously presented in [17]. The proposed method 
was based on a spectral unmixing (SU) technique, commonly 
used in HSI applications [20]. This technique is based on the 
principle that, in a HS image, each pixel can be modeled as a 
mixture of pure elements that are weighted and combined to 
form the spectral signature of such pixel [20]. Commonly, SU 
performs a blind source separation of pure spectral signatures 
(endmembers) from the mixed spectral signature, also 
computing the proportion (abundance) of each endmember in 

the mixed signature.  

The procedure followed in this work to extract the 
endmembers from the microscopic data and compute their 
abundances in the macroscopic data is as follows. First, the 
HS microscopic dataset (composed by 10 images captured at 
20× magnification from 10 different plasma samples) is 
merged in a single set of pixels. Then, the suitable number of 
endmembers in such set is determined, using the noise-
whitened Harsanyi–Farrand–Chang (NWHFC) method [21], 
and the endmembers are extracted using the N-FINDR 
algorithm [22]. Once the optimal number of endmembers are 
extracted (six in our case) from the HS microscopic dataset, 
the abundances are estimated in each one of the images that 
compose the HS macroscopic dataset. This abundance 
estimation was performed using the  non-negative least 

squares (NNLS) method [23], [24]. 

Finally, the average abundance for each endmember in 
each HS macroscopic image is computed using the drop mask 

previously created (Fig. 2.d). 

E. Statistical Analysis 

Pearson's Linear Correlation Coefficient ( �ℎ�� !"#$% )  

and Spearman’s Rank Correlation Coefficient (�ℎ�#� !"&!%) 

were employed to evaluate the results obtained in this work. 

�ℎ�� !"#$%  was employed when both data vectors to be 

analyzed had a normal distribution, while �ℎ�#� !"&!% was 

employed when at least one of the vectors had a non-normal 
distribution. Data normality was evaluated using the 
Lilliefors test [25]. On the one hand, Eq. 3 shows the formula 

of the �ℎ�� !"#$% , where ' and ( are the two paired sample 

vectors )�'�, (��, … , �'% , (%�,, n is the sample size, and '̅ and 

(. are the sample means as shown in Eq. 4. On the other hand, 

the �ℎ�#� !"&!% is computed as presented in Eq. 5, where / 

is the difference between the ranks of the two paired sample 

vectors (Eq. 6) and 0 is the sample size. 
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The values of the correlation coefficient are in the range 
[-1,1], where -1 and +1 indicate perfect negative and positive 
correlation, respectively, while zero indicates no correlation 
between the data. Moreover, a two-tailed test at the 5% 
significance level was performed to compute the p-values for 
testing the alternative hypothesis that the correlation between 
the two vectors is not zero. Therefore, p-values lower than 

0.05 are considered statistically significant. 

�ℎ�� !"#$% �
∑ �'2 − '̅��(2 − (.�%

23�

4∑ �'2 − '̅�5%
23�  4∑ �(2 − (.�5%

23�

 (3) 

'̅ � �
%

∑ '2
%
23�  ; (. � �

%
∑ (2

%
23�  (4) 

�ℎ�#� !"&!% � 1 −
6 ∑ /2

5%
23�

0�05 − 1�
 (5) 

/2 � �9�'2� − �9�(2� (6) 

III. EXPERIMENTAL RESULTS 

This section will describe the correlations between the 
abundances of the potential SBs found in the HS macroscopic 

images and the blood test variables of the subjects.  

A. Potential Spectral Biomarkers Identification 

Fig. 3 shows the six endmembers found in the HS 
microscopic dataset. The different potential SBs have 
different characteristics. For example, SB6 has a clear peak 
of absorbance in ~510 nm, while the peak in SB2 is presented 
in ~580 nm. Moreover, SB3 has high absorbance 
contributions in the range between 650 to 900 nm, while SB1 
and SB4 present high absorbance values in the entire spectral 

range. 

B. Correlation Results Without Removing Outliers 

As a first approach, the average abundance for each SB 
was correlated with the complete set of variables available 

from the blood tests. Missing values were not considered in 
the correlation computation. Fig. 4.A shows these 
correlations. Variables and SBs marked with (Ŧ) had non-
normal distributions, so rho values are obtained using the 
Spearman’s method. Results marked with (*) and (¥) were 

found statistically significant (: − ;<=>? < 0.05) and highly 

statistically significant (: − ;<=>? < 0.01), respectively.  

 
Fig. 3. Potential SBs identified in the HS microscopic images using the 
proposed method. 

All the statistically significant results have a weak 

positive (or negative) correlation (0.20 < �ℎ� < 0.39). SB6 

has a positive correlation with hemoglobin ( E�ℎ� �
0.280; : − ;<=>? � 0.020H)  and ALT (E�ℎ� � 0.245; : −
;<=>? � 0.048H), and a negative correlation with neutrophils 

( E�ℎ� � −0.286; : − ;<=>? � 0.016H ) and monocytes 

(E�ℎ� � −0.285; : − ;<=>? � 0.017H). SB5 has a negative 

correlation with neutrophils (E�ℎ� � −0.276; : − ;<=>? �
0.021H ) and monocytes ( E�ℎ� � −0.291; : − ;<=>? �
0.015H). Finally, SB4 has a highly statistically significant 

positive correlation with creatinine ( E�ℎ� � 0.359; : −
;<=>? � 0.003H. 

 
Fig. 4. Correlation results between the average abundances of each potential spectral biomarker and the different blood test variable levels. (A) Results 
obtained before removing outliers in each blood test variable set independently. (B) Results obtained after removing outliers. (Ŧ) Indicates the variables and 
SBs with non-normal distributions, so rho values are obtained using the Spearman’s method. (*) Indicates statistically significant correlation (: − ;<=>? <
0.05�. (¥) Indicates highly statistically significant correlation (: − ;<=>? < 0.01�. Zero rho values represent no correlation, while -1 and +1 represents perfect 
negative and positive correlations, respectively. 
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Fig. 5 shows the scatterplots of the correlation results 
obtained for the previously commented correlations. In some 
cases (especially in the hemoglobin, monocytes, creatinine, 

or ALT variable) there are outliers in the variable levels that 
could bias the results obtained in the correlation analysis. For 
this reason, this analysis was performed again after removing 
outliers in the blood test variable levels independently. 

 
Fig. 5. Scatterplot of the relevant correlation results without removing 
outliers. (Ŧ) Indicates the variables and SBs with non-normal distributions, 
so rho values are obtained using the Spearman’s method. 

C. Correlation Results After Removing Outliers 

Considering the previous results where outliers can 
produce a bias in the correlation results, a procedure to 
identify and remove the outliers in the blood test variable 
levels was performed. Outliers were detected using the 
Interquartile Range (IQR) methodology. Then, outlier values 

were not employed to compute the correlation. 

Fig. 4.B shows the results of this approach where the 
outliers have been removed from the dataset. It is worth 
noticing that in this case, the SB6 correlation with 
hemoglobin in the previous results are now not included here.  
In this case, SB5 still has a negative correlation with 

neutrophils ( E�ℎ� � −0.260; : − ;<=>? � 0.032H ) and 

monocytes (E�ℎ� � −0.282; : − ;<=>? � 0.018H),  and also 

a positive correlation with ALT ( E�ℎ� � −0.251; : −
;<=>? � 0.049H). SB6 has a negative correlation with total 

leukocytes ( E�ℎ� � −0.271; : − ;<=>? � 0.024H ), 

neutrophils ( E�ℎ� � −0.301; : − ;<=>? � 0.013H ), and 

monocytes ( E�ℎ� � −0.292; : − ;<=>? � 0.015H ). 
Moreover, SB6 has a positive correlation ALT variable 

(E�ℎ� � 0.304; : − ;<=>? � 0.016H).  

 
Fig. 6. Scatterplot of the relevant correlation results after removing outliers. 
(Ŧ) Indicates the variables and SBs with non-normal distributions, so rho 
values are obtained using the Spearman’s method. 

Finally, in these results, SB4 has a highly statistically 

significant positive correlation with creatinine ( E�ℎ� �
0.330; : − ;<=>? � 0.006H ) and a statistically significant 
negative correlation with estimated glomerular filtration rate 

( E�ℎ� � −0.254; : − ;<=>? � 0.048H ). The glomerular 

filtration rate is computed considering the creatinine level 
and other variables of the subject, like the age, sex, or 
ethnicity. Therefore, this could be the reason because there is 
an opposite correlation between these two variables with 
SB4. Fig. 6 represents the scatterplots of the most relevant 

correlation results generated in this experiment. 
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IV. CONCLUSIONS 

This paper presents a preliminary study to assess the 
validity of HSI as a potential tool for blood sample tests. The 
work is based on previous methodology presented in [17] to 
extract potential SBs from HS microscopic images of blood 
plasma samples. Ten plasma samples from ten different 
subjects were used to identify six SBs. Then, these SBs were 
quantified in 74 HS macroscopic HS images of the entire 
blood plasma drop using an abundance estimation algorithm. 
Finally, these abundance values were correlated with the 
different blood test variable levels with and without removing 

outliers in the dataset.  

The proposed methodology shows, as a proof of concept, 
that several SBs have statistically significant correlation with 
some variables. This is particularly relevant in the case of the 
BMP variables (creatinine, glomerular filtration, and ALT) 
that are commonly measured in plasma. However, rho values 

are generally low (−0.35 < �ℎ� < 0.35), indicating a weak 
correlation. Therefore, future work will aim to validate the 
proposed methodology including more subjects and 
performing the analysis not only in blood plasma but also in 
whole blood samples. Moreover, pure samples (e.g., pure 
creatinine) could be captured with the HS microscope to 
obtain its pure spectral signature, which will then be 
quantified in the plasma samples using the proposed 
methodology. These proposed algorithms could be 
implemented onto high performance computing platforms to 
achieve real-time results.  These further experiments will 
evaluate the potential of HSI as a future quick and cost-
effective method for blood tests in the point-of-care setting, 
compared with traditional, more time-consuming, methods, 
which require preparation of the samples, consumables, and 
more expensive and less eco-friendly equipment.  
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