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Abstract. A shift from traditional power grids to future smart grids
requires a different approach to the analysis of power grid systems. In the
smart grid conception, the system is analysed in a dis-aggregated manner
through simulations. Many objects and relationships must be considered
for a complex system to be eventually modelled and simulated. Usually,
the simulation is performed by synchronising calculations associated with
objects. The main problem of this approach is that every calculation has
to be executed at the same speed in spite of objects not requiring an
update with the same frequency. So, lots of unnecessary calculations are
done, making performance worse. With the objective of improving the
simulation performance, in this paper a new approach for simulating
power grids based on asynchronous timing is presented. This approach
is orientated towards allowing calculations to be executed at their own
pace.
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1 Introduction

The climate change and liberalisation of markets are pushing the energy sector
towards a new paradigm known as the smart grid. This paradigm is characterised
by the introduction in the power grids of renewable energy sources (RES), new
technologies such as storage mechanisms, massive integration of sensors and
decision makers distributed along the grid. There is also a trend towards the
introduction of a communication layer for the management and control of these
technologies. The smart grid paradigm is also based on the use of the Demand
Side Management (DSM) whose objectives include the minimisation of the peak
demand and the system operation and planning improvement [10]. The system
complexity is therefore increased and new tools are needed for the analysis and
design of smart grids.

Traditionally, simulators have been an essential tool for analysing and de-
signing power grid systems. Many simulation tools have been developed for this



purpose: UWPFLOW [8], TEFTS [6], MatPower [18], VST [15], PSAT [13], In-
terPSS [17], AMES [1], DCOPFJ [2], Pylon [4], and OpenDSS [3]. However, these
tools are limited to simulating smart grids specific issues, like a communication
system integrated in a large-scale simulation. GridSim [7] was developed to deal
with these problems. GridSim is a modified version of TSAT [5] (an industry-
proven transient stability simulator) which addresses the electro-mechanic work-
ing mode of the power grid system. GridSim is a real-time simulator adapted to
integrate sensing with a high data rate. The modelling approach of these tools
manage the production and demand in an aggregated manner.

However, smart grid simulations require the representation of both demand
and production in a dis-aggregated manner. Tafat is a tool able to simulate
smart grids that enables a bottom-up representation which includes, not only
a technical system description, but also a sociological description of people in-
teracting with the system [9]. With this representation, it is possible to design,
implement and test smart grid simulations. All these tools execute the simula-
tion with a synchronised approach. Synchronous simulations have the advantage
of simple time management as all objects of the modelled system are running in
the same time instant. It forces objects to always perform calculations, in every
time step. Sometimes these calculations are unnecessary due to the fact they
cannot provide new results. For example, a washing machine is usually waiting
for an agent to be turned on, considering this as an event. Later on, it develops
some washing cycles where the power may vary along the time. Whenever the
washing machine state does not change, calculations could be avoided.

In this paper, it is proposed that an asynchronous simulation approach is
included in Tafat which would allow objects to develop their own time as de-
sired. They could behave both event and time-based according to their nature.
Furthermore, they could use variable steps from one calculation to another.
For example, in an asynchronous simulation where the power consumption of a
washing machine is analysed, calculations would be done only when the washing
machine state changes. The advantage with respect to a synchronous simulation
is clear since in the synchronised case, calculations are done every time step.

In the context of discrete event simulation the asynchronous concept has
dual connotation. One of them consists in variable time-increment procedures as
opposed to a “synchronous” or fixed time-increment procedures for simulation
control. This connotation is related to the known concept Distributed Discrete
Event Simulations (DDES) [12, 14]. For instance, Simula [16], a simulation-
oriented programming language, is based on this asynchrony concept where the
time-management is mainly event-based. This kind of asynchrony was already
considered in Tafat through using different time steps for each mode of behaviour
[9]. On the other hand, the asynchrony can be understood as a non-sequential
processing where simulation parts may not be executed in the proper temporal
order. That is to say, later parts of the simulation may be executed before pre-
vious ones [11]. The last connotation is the one to which we subscribe in this
paper. The objective is to apply the time-management to each model element
allowing them to be in different time instants.



2 Tafat asynchronous simulation

In initial Tafat framework releases, the simulation of power grids was done fol-
lowing a synchronous timing approach. This paper examines a new approach to
achieve asynchronous simulations with Tafat. This section introduces the con-
cepts and constructions that Tafat architecture includes to model power grids.
Theses constructions are focused on dependencies between objects that are mas-
sive and very relevant in a complex system simulation. In order to properly
handle an asynchronous simulation, it is important to understand the dynamics
of coupled objects. For the sake of clarity, a traced execution of objects interac-
tion during an asynchronous simulation is demonstrated.

2.1 Tafat system modelling

Modelling in Tafat is done by developing two views: an object oriented descrip-
tion of the scenario, and a behavioural specification of these objects. The first
view is the static representation of the real world objects, where each single
object is described with features (static attributes) and variables (dynamic at-
tributes). This representation also includes the specification of object relations.
The second view focuses on objects’ dynamic : that is, how objects should behave,
emulating the way they act in the real world (behaviour). A single object can
be associated with several behaviours. These associated behaviours are respon-
sible for modifying the model object variables along the time. Object variables
are encapsulated and can be only accessed and modified by their associated
behaviours.

The solution of separating objects from their behaviours, makes it straight-
forward to change the method for calculating variables. In this way, it is possible
to simulate different behavioural aspects with the same representation.

For example, a washing machine representation contains:

1. Static View
— The description of their features such as capacity, installed power and
energy labelling, and their variables such as mode (on, off), active pro-
gramme (temperature, cycle, timeout...), and active power.
— The topological relation to the electrical installation in a household
2. Dynamic View
— The specification of the washing machine-operating mode. The behaviour
is then associated with this model object.

Normally, a behaviour is coupled with other objects, both for querying their
states or sending messages in order to change their states. In the Tafat model
representation, defining behaviour which interacts with other objects is allowed.

This representation approach consists of interfaces that should be defined in
the object which could be externally accessed. In Tafat, there are two types of
interfaces:
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Fig. 1. The operational behaviour of a Washing Machine is associated with the Washing
Machine object description

1. event interfaces that handle messages and are responsible for modifying the
object internal variables as requested, and

2. data interfaces that handle queries and provide the value of requested at-
tributes

An example of these types of interfaces is shown in the figure 2. On the
one hand, the thermal behaviour within a household has a data dependence
with the temperature of the surrounding Outdoor. In this case, the Outdoor
temperature data is requested by the associated object through the outdoor data
interface. On the other hand, an agent sociological behaviour wants to turn on
the washing machine. Then, this sociological agent must use the washing machine
event interface to achieve this task. The washing machine event interface would
change the washing machine mode to "ON". The washing machine operational
behaviour would calculate the proper power consumption based on this mode.
Later on, when the cycles end, the operational behaviour turns off the washing
machine.

2.2 A power grid simulation case

In order to consider the main issues that involve asynchronous simulation a sim-
ulation case is proposed to show how objects interact when working in different
times (Figure: 3).

The objects within this simulation case are an Outdoor, a Household, a Wash-
ing Machine and a Radiator.

— The Outdoor is the object that represents environmental conditions, in this
case, the temperature. The Outdoor temperature behaviour is responsible
for setting the temperature which can be loaded from an external database.

— The Household works as a container of the appliances of a household, a
Washing Machine and Radiator in this case. The Household Behaviour is
concerned with the thermal dynamics inside the household.

— The Electrical devices inside the Household are a Radiator and a Washing
Machine. These devices are handled by an Agent.

— Finally, the Agent represents the people living in the Household and the
associated behaviour defines the actions that these people are performing.
For example: a person turning on the Washing Machine.
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Fig. 2. Dependencies examples between objects

The coupling in this model is represented by the dotted lines in the figure
3. This coupling is always defined from behaviours to interfaces. The Agent
depends on the Washing Machine to change the operation mode of this device.
The Radiator depends on the Household temperature, since the heat radiation is
calculated based on the gap between the Radiator reference temperature and the
Household temperature. The Household has two dependencies: with the Outdoor
temperature and with the Radiator power, since the Household temperature is
calculated by a numerical solution of a differential equation which includes these
two variables. Note that, in this case, there is a cyclic dependence between the
Household and the Radiator.

2.3 Asynchronous simulation dynamics

A system simulation requires time-management to ensure that temporal aspects
are correctly represented and emulated. This temporal representation only exists
during the simulation process and is referred to as “Simulation Time”. Simula-
tion Time is represented as a timestamp, a long integer where a unit corresponds
to a millisecond of real time.

The time-management in a synchronous simulation is centralised while the
time-management in an asynchronous simulation is distributed. That is, an asyn-
chronous simulation involves that every object manages its time, so they could
have different timestamps (Figure: 4).
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Fig. 3. Model composition
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Fig. 4. Synchronous vs Asynchronous simulation

In this simulation paradigm, when an object is not coupled with other objects,
its Simulation Time develops without considering other object Simulation Times.
In this simulation case, the Outdoor is completely independent of other objects.



However, when objects are coupled, the challenge consists of correctly re-
producing temporal relationships. The identified temporal relationships are as
follows:

1. Coupling with a data interface
2. Cyclic coupling with data interfaces
3. Coupling with an event interface

In the following sections these relationships are discussed.

Coupling with a data interface Since an object could access a variable of an
external object which may be in a different time instant, every object must keep
the different states that have been calculated during the simulation execution.
So, when a variable is modified, a state snapshot is created in order to keep the
object state in this time instant.

If an object is querying for a variable value in a time instant t;, there are
two cases: the object Simulation Time is delayed or ahead with respect to the
external object Simulation Time. In the first case, the external object is able to
provide the value by retrieving the last snapshot previous to this time instant
(t;). I n the second case, the dependent object must wait until the external object
reaches this time instant (t;).

:Household :Outdoor

[csta8
data

Data
interface

1 Behaviour

getData(temperature, t;)
data

data

Fig. 5. Household requires the external variable temperature from the Outdoor. Note
that the time is vertically represented

In the figure 5, the first case is shown. The Household Simulation Time is t;
and the Outdoor Simulation Time is t;. Whenever t; is lesser or equal than t;,
the requested data can be delivered since the data has already been calculated
and stored.

However, when the Household Simulation Time (t;) is greater than the Out-
door Simulation Time (t;), the Household behaviour is blocked (Figure: 6) until



t; is greater or equal than t; (Figure: 7) delivering the last Outdoor Temperature
value stored in the last calculated snapshot.

:Household :Outdoor

dat:

Data
— B i o
chatiely interface (

getData(temperature, t;)

Fig. 6. The Household behaviour request is blocked since the Outdoor Simulation Time
is delayed with respect to the Household one
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Fig.7. When the Outdoor Simulation Time reaches the Household one the data is
delivered.

Cyclic coupling with data interfaces The cyclic dependence is a concrete
case of the data dependence. Two objects depending on each other whose Simula-
tion Times are different, is handled with the following rules: the most delayed one
will always retrieve the required data while the most advanced will be blocked
until the delayed reaches its Simulation Time (Figure: 8). The mutual blocking



is not possible since objects retrieve the value for the current Simulation Time
to calculate the next Simulation Time value.
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Fig. 8. Radiator and Household cyclic dependence resolution

In the example shown in the figure 8, the Household requires the power
consumption of the Radiator in order to calculate the new temperature value. On
the other hand, the Radiator behaviour needs the Household temperature value
to modify the Radiator state, since the reference temperature at the Radiator
thermostat serves as a control mechanism.

Coupling with an event interface The event coupling means that an object
receives external messages that contain orders for changing its internal variables.
This is the case of objects which are managed by people that are represented
as Agents in the model. The Agent interacts with these objects by sending
a message using the object event interface. When the message is received by
the object interface, the object Simulation Time is developed and then, a new
snapshot state is created.

It could happen that the agent develops its simulation time without the
intention of sending an order to any object. In this case, the agent behaviour
must send a “"Notification Time Message”to the object. In fact, when the agent
simulation time develops, the agent behaviour must send a Notification Time
Message to all objects the agent is controlling. This notification determines how
long an object can develop its Simulation Time. This type of relationship means
that object’s Simulation Time that is controlled by an agent, will never exceed
the agent Simulation Time.

Figures 9-12 show an event relationship between a social Agent that turns on
the Washing Machine. In this example, the Washing Machine Simulation Time is
always behind the Agent Simulation Time. In other words, the Agent Simulation
Time sets a restriction for the Washing Machine Simulation Time.
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Fig. 9. The Agent sends a message to turn on the Washing Machine
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Fig. 10. The Washing Machine event interface changes the object mode to on
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Fig. 11. The Agent indicates the Simulation Time in which it is to its controlled objects
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Fig.12. The washing machine receives the message. Now the washing machine can
develop its time until the temporal point indicated in the message

In the case of the Washing Machine, its power consumption would be 0 at
the beginning of the simulation as it’s off. Therefore, a new snapshot is created
when the Agent turns on the Washing Machine. From that moment, the Washing
Machine behaviour will calculate the new power consumption with the restriction
that the calculations development should not exceed the Agent Simulation Time,
in case the agent turns off the Washing Machine.

Scales The dependencies explanation has been focused on the low scale level.
This is due to the fact more complex interactions take place at this level in
the demand simulation of the power grids. Scaling up from the presented case
to power grid levels demonstrates how the time would be developed following a
bottom-up approach. In the figure 13, information flows are shown which indicate
how the demand power is aggregated from the lowest levels to the highest ones
at a concrete time slice. This aggregation is required to calculate the demand at
every scale. Assuming that every element of a level makes the same calculations,
it could be observed that each level may be delayed with respect to the lower one.
This is the typical case since the upper elements are waiting for the information
coming from the lower elements. However, it is possible for all of them are in the
same time instant. It is not possible for upper levels to be ahead of the lower
ones.

2.4 Object time management

In the previous cases, the discussion was focused on objects with a single type of
behaviour. However the time-management of an object with several behaviours
or/and several event interfaces must be dealt with. Every time a type of be-
haviour is executed, it registers the Next Time Execution, that represents when
it should be executed. The object time-manager selects the behaviour with the



12

Fig. 13. Demand simulation in a higher scale

nearest Next Time execution to the current Simulation time. The event inter-
faces are dealt with in the same way, so that the Interface Next Time Execution
corresponds with the time defined in the last message received. Whenever a
received message concerns a variable value modification, the object behaviours
will be executed afterwards allowing a change in their Next Time Execution,
according to the new state. Therefore, objects can dynamically develop their
Simulation Times : that is, their Pace could vary from one Simulation Time to
the next one. To illustrate the internal time-management, the photovoltaic cell
behaviour is studied. This behaviour calculates the generated power, based on
the environmental solar radiation. Therefore, the generation power variable will
vary along the day until the sunset when the production will become 0. Then,
this variable will not change until sunrise. According to this behaviour, three
solutions can be proposed to avoid systematic calculus along the night:

1. When the sunset is reached the behaviour registers the Next Time Execution
in the sunrise time, whenever this data is available.

2. When the sunset is reached the behaviour registers the Next Time Execution
of the previous known sunrise time. This temporal jump may avoid the
first solar radiation when the sunrise time is before the already known one.
Therefore, the Next Time Execution could be the previous known sunrise
time minus ten minutes.

3. The photovoltaic cell outdoors could send messages to the photovoltaic cell
event interface whenever solar radiation changes. Following this, the photo-
voltaic behaviour could register its Next Time Execution to infinite (sleep
mode). Therefore, solar radiation changes are received by the photovoltaic
cell event interface-allowing mode of behaviour to access this information.
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2.5 Implementation

In this section, architectural methods to implement this approach are presented.
This architectural proposal takes into account the previously described require-
ments for simulating a power grid, using an asynchronous approach.

A Tafat Thread represents the execution of a single Model Object and from
this point of view describes the execution state, awake or sleeping, and the
simulation time in which it is (Figure: 14). During the execution of the whole
simulation, Tafat Core request awake Tafat Threads to be executed. After this
execution, a Model Object will have changed its simulation time and/or its state.
In order to improve the performance, Tafat Core keeps a list of the awake threads
and it is listening for state changes in threads to update this list.

A single Model Object has many controllers that can modify the Simula-
tion Time. A controller factor could be either Behaviour or an Event Interface.
These controllers, that implement the Develop Time interface, participate in
the Model Object simulation, each of them proposing different Next Simulation
times. When the Next Simulation Time of any of these controllers is undefined,
the Tafat Thread that represents the Model Object turns into a sleeping mode.
Once, the Next Simulation Time of all the Model Object controllers are defined,
the thread will wake up. Next Simulation Time of Develop Time Controllers
could be set to undefined or a value that should be greater than the current
Model Object Simulation Time. A feasible value for a Next Simulation Time
could be infinite, meaning that Behaviour is suspended, pending an external
event.

TafatThread

TafatCore Htime

D face

awake TheadList[*] —=-» +wakeUp()

+§Ieep() +getData(attributeName,
+isSleep() time, callBackFunction)

+execute() *
% / Eventinterface

ModelObject

*  +getNextTime()
@— +execute()
+sendMessage(attributeName,
value, time) N

Yndﬂme(time) DevelopTime
* +getNextTime()

Behaviour LA *execute()

+execute()

+getNextTime()
+execute()

Fig. 14. Tafat asynchronous simulation architecture

For example, the Next Simulation Time of a Washing Machine Behaviour
can be infinite, so that the washing machine is off and therefore, it is waiting
to be turned on (Figure: 15). On the other hand, the Next Simulation Time
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of this Washing Machine Event Interface is undefined until other Model Object
Behaviours that use it, set the Next Time Simulation. Since the Washing Machine
depends on the Social Agent to be modified, the Social Agent must inform this
device of this. This Current Time is transmitted through a message which arrives
at the Washing Machine Event Interface. When the Social Agent Current Time
arrives, the Washing Machine Event Interface will modify its Next Simulation
Time from an undefined value to the one which has arrived in the message.
Whenever an event for modifying the state of the Washing Machine arrives, the
Washing Machine behaviour will be executed once, allowing to it to calculate its
Next Simulation Time based on this new state.

Social Agent Washing Machine

TafatThread ‘ TafatThread ‘
ModelObject ‘ ModelObject o

[

Behaviour ‘ E face ‘ " " Behavi

v

Fig. 15. The Washing Machine Event Interface Next Simulation Time turns from un-
defined to a defined value when the behaviour of the Social Agent sends its Current
Time. On the other hand, the Washing Machine behaviour Nex t Simulation Time
turns from infinite to a reachable time when its state is changed to ON by the Agent

Another improvement from the performance point of view is based on the
Snapshots removing. A concrete Model Object may have dependences for re-
questing data or set values in external Model Objects. Similarly, other Model
Objects could require this one to be accessed. For this reason, the Model Ob-
ject must keep the snapshots for all the Model Objects which request data. As
this Model Object knows the data requesters, it is able to find out the time
in which the requesters are and, therefore, it could delete the Snapshots which
are previous to the Current Time of the most underdeveloped Model Object
requester.

3 Conclusions and outlook

Going towards asynchronous complex system simulations involves a re-conceptualisation.
This re-conceptualisation affords objects interaction issues which could come

from both data and event dependencies. In a synchronised execution environ-

ment, every object of the system is in the same time slice and the time-management

is usually handled using a single clock. The main advantage of this approach is,

among others, the simplicity when accessing or modifying an object since all of
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them are in the same time slice. However, the main disadvantage of the execu-
tion of object calculations, is that some of them are unnecessary because the
execution is not going to produce any different output.

The use of an asynchronous approach for simulating complex systems pro-
vides flexibility in the object evolution. Objects can freely develop as far as their
dependencies are satisfied. Furthermore, object behaviours can be both event
and time-based which provides the possibility of having sleeping behaviours.
This sleeping behaviour could change their status to active by receiving exter-
nal events. The behaviour step may vary from one execution to the next at a
dynamic speed. Both sleep mode and dynamic speed are important features to
avoid the systematic calculations at fixed steps which produce the same values.
Finally, we think this approach may facilitate the parallel complex simulation
execution.
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