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Abstract: Overlapping solutions occur when more than one solution in the space of decisions maps to 

the same solution in the space of objectives. This situation threatens the exploration capacity of Multi-

Objective Evolutionary Algorithms (MOEAs), preventing them from having a good diversity in their 

population. The influence of overlapping solutions is intensified on multi-objective combinatorial 

problems with a low number of objectives. This paper presents a hybrid MOEA for handling 

overlapping solutions that combines the classic NSGA-II with a strategy based on Objective Space 

Division (OSD). Basically, in each generation of the algorithm, the objective space is divided into 

several regions using the nadir solution calculated from the current generation solutions. Furthermore, 

the solutions in each region are classified into non-dominated fronts using different optimization 

strategies in each of them. This significantly enhances the achieved diversity of the approximate front 

of non-dominated solutions. The proposed algorithm (called NSGA-II/OSD) is tested on a classic 

Operations Research problem: the Multi-Objective Knapsack Problem (0-1 MOKP) with two 

objectives. Classic NSGA-II, MOEA/D and Global WASF-GA are used to compare the performance 

of NSGA-II/OSD. In the case of MOEA/D two different versions are implemented, each of them with 

a different strategy for specifying the reference point. These MOEA/D reference point strategies are 

thoroughly studied and new insights are provided. This paper analyses in depth the impact of 

overlapping solutions on MOEAs, studying the number of overlapping solutions, the number of 

solution repairs, the hypervolume metric, the attainment surfaces and the approximation to the real 

Pareto front, for different sizes of 0-1 MOKPs with two objectives. The proposed method offers very 

good performance when compared to the classic NSGA-II, MOEA/D and Global WASF-GA 

algorithms, all of them well-known in the literature.  
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1. Introduction  

A multi-objective optimization problem (MOP) can be defined as a problem corresponding to a 

certain reality, where a decision-maker wishes to optimize several objectives simultaneously, usually 

in conflict with each other. When solving a MOP of hard complexity, metaheuristic methods are very 

appropriate. These methods do not guarantee obtaining the exact front of non-dominated solutions, but 

an approximate set. 

The second generation of Multi-Objective Evolutionary Algorithms (MOEAs) has been shown to 

achieve excellent results solving MOP [1−4]. Stochastic in nature, MOEAs are based on the concept 

of population of solutions, which gives them great skill in finding multiple non-dominated solutions 

in solution spaces of diverse nature. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [5], 

the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [6] and the Global 

Weighting Achievement Scalarizing Function Genetic Algorithm (Global WASF-GA) [7], among 

others, are well-known in the literature. NSGA-II is based mainly on two mechanisms: Pareto 

dominance as a criterion to converge to the Pareto Optimal Front (POF) and crowding-distance 

operator as augmenting diversification in the population. MOEA/D explicitly decomposes the MOP 

into a number of scalar optimization sub-problems which are solved simultaneously through the 

evolution of a population of solutions. Global WASF-GA, similarly to NSGA-II, uses Pareto 

dominance as a criterion to converge to the POF but based on the Achievement Scalarizing Function 

(ASF) proposed by Wierzbicki [8]. However, the diversity is enhanced by the use of a set of well-

spread projection directions, and by not allowing repeating solutions in the same front. Both MOEA/D 

and Global WASF-GA use a scalarizing function as fitness function and simultaneously employ several 

predefined weight vectors for searching new solutions (aggregation methods). Moreover, Global 

WASF-GA uses two reference points (the nadir and the utopian points) simultaneously in the 

scalarizing function and most versions of MOEA/D just consider one reference point (the ideal point). 

Some papers discuss the reference point specification in MOEA/D [7,9−11]. 

In MOEAs, diversity maintenance plays an important role in pushing the population towards the 

POF, but also in avoiding overlapping solutions. In [12] it is shown that there is a large number of 

overlapping objective vectors in each population when MOEAs are applied to multi-objective 

combinatorial optimization problems with few objectives while this is not the case in the application 

to MOPs with continuous decision variables and/or many objectives. 

In the past, but more recently, papers have been published that apply the Objective Space Division 

(OSD) to improve MOEAs in the sense of increasing diversity and generate well-distributed solutions 

along the entire Pareto front [13−19]. All of them applied to test problems with continuous decision 

variables and/or three or more objectives. 

The Multi-Objective Knapsack Problem (0-1 MOKP) is a well-known and widely studied 

combinatorial optimization problem, which has been attempted to be solved by a considerable number 

of exact and metaheuristic methods [6,20−26]. It should be noted that the appearance of overlapping 

solutions when the bi-objective 0-1 MOKP is solved with a MOEA has a significant negative impact 

on the diversity of the final approximate front of non-dominated solutions found [12]. 
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A hybrid of NSGA-II is proposed in this paper, which divides the objective space into several 

regions using the nadir solution that is updated at each generation of the algorithm. In addition, a 

different objective function optimization strategy is used in each region. The underlying idea is to 

increase the diversity of solutions of the approximate POF reached, allowing that, in each generation 

of the algorithm, solutions dominated by the extremes of the POF reached can be included in the 

population of non-dominated ones. Since the proposed algorithm is built from NSGA-II, it cannot be 

inferred that the proposed methodology is a general solution for EAs, but only for those that have a 

similar behavior to NSGA-II: concentrated approximate Pareto front with solutions far from the 

extreme values of the true Pareto front. Preliminary results were presented at the International 

Conference of Production Research, Americas 2020 [27]. 

This article is structured as follows. The next section briefly explains some multi-objective basic 

concepts that will make easier to understand the work presented here. Section 3 details the proposed 

methodology. Section 4 details the experiments carried out to determine the parameters to be used in 

Section 5 where the results obtained with NSGA-II, MOEA/D, Global WASF-GA and the proposed 

algorithm are compared. Lastly, Section 6 contains the conclusions. 

2. Basic concepts 

In terms of maximization, a general MOP can be defined as follows: 

                          

max{��(�), ��(�), … , ��(�)}

subject to:

ℎ�(�) = 0, � = 1,2, … , �

��(�) ≤ 0, � = 1,2, … , �

 (2.1) 

where � ≥ 2 is the number of objective functions to be maximized simultaneously, � and � are the 

number of equations and inequations, respectively, that define the feasible space � ⊆ ��. Thus, � =

(��, ��, … , ��)� ∈ � is a decision vector of � variables. 

The set of images of each achievable or feasible solution in the decision space forms the set of 

achievable or feasible solutions in the objective space � = �(�) defined as: 

� = {� = (��, ��, … , ��)� ∈ ��: �� = ��(�), ∀� = 1,2, … , �, for some � ∈ �}. 

A solution �� = (��
�, ��

�, … , ��
� )� ∈ �  dominate a solution �� = (��

�, ��
�, … , ��

�)� ∈ �  if the 

following conditions are satisfied: 

��
� ≥ ��

�, ∀� ∈ {1,2, … , �}, 

∃� ∈ {1,2, … , �} such that ��
� > ��

�. 

The set of all non-dominated solutions � ∈  � in the objective space is referred to as Pareto 

Optimal Front (POF) (see Figure 1). 

The ideal solution �� of a MOP is a solution vector �� = (��
�, ��

� , … , ��
� )�, constructed with the 

best objective function values of all the solutions of the objective space (see Figure 1). This solution 

is generally unfeasible or unattainable. 

Meanwhile, the nadir solution ��  of a MOP is a solution vector �� = (��
�, ��

�, … , ��
�)� , 

constructed with the worst objective function values of all the solutions of the Pareto front (see 

Figure 1). This solution can be feasible or unfeasible. 
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Figure 1. Ideal (��) and nadir (��) solutions, and Pareto optimal front (POF). 

2.1. MOEA/D with Zhang’s specification of the reference point 

Basically, MOEA/D explicitly decomposes the MOP into a number of scalar (mono-objective) 

optimization sub-problems which are solved simultaneously through the evolution of a population of 

solutions. Some approaches for reducing a MOP into a set of scalar sub-problems are discussed in [6]. 

One such approach is that of Tchebycheff, which can be formulated as follows: 

                       
min ���(�|�, �∗) = max

�����
{����(�) − ��

∗}

subject to � ∈ �
, (2.2) 

where �∗ = (��
∗, ��

∗, … , ��
∗ )� is the reference point that satisfy, for � ≥ 1: 

                         ��
∗ = � max{��(�)/� ∈ �} , ∀� ∈ {1,2, … , �}. (2.3) 

This version of MOEA/D will be referred to as MOEA/D Zhangte or simply Zhangte. 

2.2. MOEA/D with Ishibuchi’s specification of the reference point 

For the maximization problem, Ishibuchi et al. [9] proposed some innovations to MOEA/D. 

Namely, they propose to replace Eq (2.2) with a dynamic strategy for specifying the reference point. 

This strategy is defined as follows: 

                                �� = �∗ + ����∗ − �����. (2.4) 

where �∗ = (��
∗, ��

∗, … , ��
∗ )� and ���� = ���

���, ��
���, … , ��

����
�

, being ��
∗ and ��

���, respectively, 

the maximum and minimum values reached by the objective function � in the current generation �, 

and �� is a parameter that decreases in each generation of the algorithm. It follows from Eq (2.4) that 

�� = �∗ when �� = 0. 

Also, in order to make the �� value gradually approaches the value of the reference point �∗ 

during the execution of the algorithm, the �� value is modified at each generation according to: 
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                          �� = �� (���� − �) (���� − 1)⁄ . (2.5) 

where �� is the initial value of �, ���� is the maximum number of generations (of the algorithm) 

and � is the current generation. Note that the �� value in the last generation is zero, i.e., �� tends to 

�∗ during the execution of the algorithm. 

This version of MOEA/D will be referred to as MOEA/D Ishibuchite or simply Ishibuchite. 

2.3. NSGA-II 

Of recognized efficiency, the general operation of NSGA-II [5] is as follows: 

1) Define the initial parameters: � (population size), ���� (maximum number of generations), 

Pcr (crossover probability), Pmut (mutation probability). 

2) Randomly generate an initial population �� of size �. 

3) Assign � =  0 and �� = ��. 

4) Apply selection by tournament (best rank and crowding) and crossover and mutation operators to 

create a population of descendants �� of size �. 

5) Form a combined population �� = �� ∪ ��. 

6) Classify �� on non-dominated fronts: ���
��

���
. 

7) Add each front, in increasing order until a front ��
�  cannot be fully integrated into the new 

population ���� of size �, then classifying the ��
� front by crowding-distance to add solutions until 

the size of ���� equals �. 

8) Assign � = � + 1 and �� = ����. 

9) If the stop criterion is not met, go to step 4. 

3. Proposed method: NSGA-II/OSD 

The classical NSGA-II -presented in the previous section- fails to approximate the whole POF 

when addressing combinatorial problems with a low number of objectives. Generally, it only converges 

to the central part of the POF, leaving large uncovered areas at the borders. This behavior prevents 

obtaining solutions far away from the center of the POF, which may be interesting for decision-makers. 

The reason for this behavior is the existence of overlapping solutions, which severely affect the 

diversity of the population in the objective space. In order to solve this issue, this paper proposes a 

new algorithm, called NSGA-II/OSD, which hybridizes NSGA-II with an OSD strategy that increases 

the capabilities of NSGA-II to also reach areas further away from the center of the POF. Specifically, 

when there are two objectives, the objective space is divided into three regions that are defined by the 

nadir solution of the current population (see Figure 2), and the individuals in each of these regions are 

independently classified into Pareto fronts, with a region-specific Pareto optimal criterion. This 

particular feature allows solutions, that with the classical NSGA-II would have very poor ranking 

positions, to obtain a better ranking index with NSGA-II/OSD. The final effect of this “decomposed” 

Pareto ranking is that the diversity of the population is maintained, the presence of overlapping 

solutions is minimized and the exploration capability of the algorithm is improved. This decomposition 

strategy is illustrated in Figure 3. 
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Figure 2. Proposed objective space division based on the updated nadir solution at 

generation �, ��
�. POFt is the approximated POF at generation �. 

 

Figure 3. Combination of fronts ���
���

���,�,�
 obtained in the three regions at generation t. 

��
� is the updated nadir solution at generation �. The red points inside the ellipses (right) 

are incorporated into the approximate POF obtained in the generation �. Similarly, the 

combination of the fronts ���
���

���,�,�
 for � > 1 is carried out. 
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Figure 4. Flow chart of NSGA-II/OSD. 
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Thus, the hybrid MOEA based on OSD for handling overlapping solutions proposed in this paper 

is a modified version of the bi-objective NSGA-II that includes an extra parameter � (0 ≤ � ≤ 1), 

which allows the convergence/diversity balance to be adjusted. The general flow chart of this proposed 

algorithm (see Figure 4) consists of the following steps: 

1) Define the initial parameters: �, ����, �, Pcr, Pmut. 

2) Randomly generate an initial population �� of size �. 

3) Assign � = 0 and �� = ��. 

4) Apply selection by tournament (best rank and crowding) and crossover and mutation operators to 

create a population of descendants �� of size �. 

5) Form a combined population �� = �� ∪ ��. 

6) Identify the nadir solution in the population �� by some method: ��
� = (��

�, ��
�)�.  

7) Classify �� on non-dominated fronts: ���
��

���
. 

8) If the stop condition is met (� + 1 = ����) go to step 15, else continue. 

9) If � > ����� go to step 13, else continue. 

10) Based on the current nadir solution, the objective space is divided into three disjoint regions ��, 

�� and �� as follows (see Figure 2): 

�� = ����(�), ��(�)�
�

� ∈ ��, (��(�) ≤ ���
�  ⋀ ��(�) ≤ ���

� )� ⋁(��(�) > ���
�  ⋀ ��(�) > ���

� )� 

�� = ����(�), ��(�)�
�

� ∈ ��, (��(�) > ���
�  ⋀ ��(�) ≤ ���

� )� � 

�� = ����(�), ��(�)�
�

� ∈ ��, (��(�) ≤ ���
�  ⋀ ��(�) > ���

� )� � 

11) Solutions from each region ��  ( � = 1,2,3 ) are classified independently on different non-

dominated fronts: ���
���

���
. For the ranking of the solutions, different optimization criteria are used 

for the objective functions �� and ��: 

(a) Region ��: both objective functions, �� and ��, are always maximized. 

(b) Region ��: the objective function �� is always maximized. The function �� is maximized 

if � > ����� is verified, otherwise �� is minimized. 

(c) Region ��: the objective function �� is always maximized. The function �� is maximized 

if � > ����� is verified, otherwise �� is minimized. 

12) Combine the fronts obtained in the three regions: ���
��

���
with ��

� = ⋃ ��
���

���  (see Figure 3). 

13) Add each front, in increasing order until a front ��
�  cannot be fully integrated into the new 

population ���� of size �, then classifying the ��
� front by crowding-distance to add solutions until 

the size of ���� equals �. 

14) Assign � = � + 1 and �� = ����, and go to step 4. 

15) Add each front, in increasing order until a front ��
������

 cannot be fully integrated into the new 

population �����   of size � , then classifying the ��
������

  front by crowding-distance to add 

solutions until the size of �����  equals �. 

16) End. 
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It should be noted that when the number �  of objectives increases, the number of objective 

solution space divisions is 2� − 1. That is, in the case of � = 3, we would have 7 disjoint regions. 

However, in the case of 0-1 MOKP, the increase in the number of objectives leads to a significant 

decrease in the number of overlapping objective vectors in each population when moving from two to 

three or more objectives [12]. 

The computational complexity of NSGA-II/OSD is the same as that of NSGA-II. Note that in the 

case � = 0, NSGA-II/OSD is actually NSGA-II. 

4. Experiments 

The implementations of NSGA-II and MOEA/D have been carried out according to [5,6], 

respectively. All algorithms were applied on the 0-1 MOKP with two objectives and with 500 items 

(MOKP-2.500). The data of the problem and its respective POF can be downloaded from 

https://sop.tik.ee.ethz.ch/download/supplementary/testProblemSuite. 

As mentioned in the Introduction section, there exist a large number of overlapping objective 

vectors in each population when EMO algorithms are applied to multi-objective combinatorial 

optimization problems with only a few objectives [12]. In particular, in the case of 0-1 MOKP, the 

increase in the number of objectives leads to a significant decrease in the number of overlapping 

objective vectors in each population when moving from two to three or more objectives. For this reason, 

the 0-1 MOKP with two knapsacks represents an ideal test-bed for analyzing the influence of 

overlapping solutions. 

4.1. Multi-objective knapsack problem 

The multi-objective binary knapsack problem (0-1 MOKP) is a classic Operations Research 

problem that consists of a series of objects or items and a set of knapsacks. Each object has a weight 

and a profit associated with it, and the knapsacks has a maximum storage capacity associated with 

them. The issue is then to assign objects to each knapsack in such a way that the total profit yielded by 

the assigned objects is maximized, meanwhile the knapsack capacity cannot be exceeded by the total 

weight of the objects. The problem is of NP-hard complexity and can be used to model any real 

application that fits the model described in Eq (4.1).  

Given a set of � items and a set of � knapsacks, the 0-1 MOKP can be stated as 

                         

max ���(�) = ∑ �����
�
��� �

���

�

�. �.  ∑ �����
�
��� ≤ ��, � = 1,2, … , �

� = (��, ��, … , ��)� ∈ {0,1}�

 (4.1) 

where ��� ≥ 0 is the profit of item � in knapsack �, ��� ≥ 0 is the weight of item � in knapsack �, 

and �� is the capacity of knapsack �. �� = 1 means that item � is selected and put in all the knapsacks. 

4.2. Experiments: parameters and metrics configuration 

All experiments used binary coding, uniform crossover with probability 0.8 and mutation 

probability (bit-by-bit) equal to 1/�  with � = 500 . The number of evaluations of the objective 

functions equal to 400,000 was used as the stop condition. Three population sizes were used: � = 50, 
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100 and 200. The values examined for the  parameter, defined in Section 3 for the NSGA-II/OSD 

convergence/diversity balance, were � = 0.1�, and � = 0, 1, 2, . . . , 10. 

In the case of MOEA/D-based algorithms, the tested values of  or � parameter in the calculation 

of the reference point depend on the version considered. For Zhangte defined in Subsection 2.3, the  

values were fixed at  = 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3 , and for Ishibuchite defined in 

Subsection 2.4, the � values were fixed at � = 0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0. It is worth 

mentioning that these two variations in the values of  and �  parameters for these versions of 

MOEA/D represent new results for the literature. 

The hypervolume indicator suggested in [28] is used as a comparison measure between algorithms. 

The reference point considered for the calculation of the hypervolume was (0, 0), which guarantees 

that it is dominated by all the solutions generated during the evolution of the algorithms. In addition, 

the attainment surface concept introduced in [29] is used considering the approach suggested by 

Knowles [30]. You can visit: https://www.cs.bham.ac.uk/~jdk/plot_attainments, if you want to 

download the source code. 

Table 1. NSGA-II/OSD: MOKP-2.500. Mean and standard deviation (in subscript), and 

the best  worst hypervolume (below), respectively, over 30 independent runs. 

 � = 50 � = 100 � = 200 

0.0 3.9833e81.1538e6 

4.0084e8  3.9593e8 

3.9532e81.2998e6 

3.9826e8  3.9322e8 

3.9064e81.5610e6 

3.9284e8  3.8722e8 

0.1 3.9973e89.3916e5 

4.0138e8 − 3.9805e8 

3.9864e81.5436e6 

4.0099e8  3.9534e8 

3.9654e81.3641e6 

3.9918e8  3.9422e8 

0.2 3.9993e89.4990e5 

4 .0197e8 − 3.9784e8 

4.0018e89.0751e5 

4.0247e8  3.9858e8 

3.9796e81.0831e6 

4.0025e8  3.9581e8 

0.3 4.0012e89.0862e5 

4.0163e8 − 3.9772e8 

4.0115e87.2173e5 

4.0263e8  3.9959e8 

3.9967e89.5541e5 

4.0146e8  3.9766e8 

0.4 3.9991e88.8353e5 

4.0172e8 − 3.9789e8 

4.0115e88.0028e5 

4.0283e8  3.9964e8 

4.0001e88.5834e5 

4.0146e8  3.9842e8 

0.5 3.9979e88.7815e5 

4.0134e8 − 3.9804e8 

4.0118e81.0602e6 

4.0292e8  3.9871e8 

4.0036e81.0221e6 

4.0263e8  3.9767e8 

0.6 3.9923e81.0209e6 

4.0193e8 − 3.9731e8 

4.0085e88.7558e5 

4.0216e8  3.9887e8 

4.0049e88.2987e5 

4.0266e8  3.9887e8 

0.7 3.9873e89.4758e5 

4.0079e8 − 3.9676e8 

4.0072e87.0908e5 

4.0201e8  3.9936e8 

4.0011e87.3603e5 

4.0162e8  3.9872e8 

0.8 3.9770e81.0898e6 

4.0011e8 − 3.9597e8 

3.9974e89.0531e5 

4.0121e8  3.9779e8 

3.9996e87.7236e5 

4.0177e8  3.9855e8 

0.9 3.9584e81.0892e6 

3.9814e8 − 3.9328e8 

3.9798e81.0708e6 

4.0032e8  3.9612e8 

3.9876e88.4914e5 

4.0043e8  3.9646e8 

1.0 3.8409e81.9999e6 

3.8772e8 − 3.7991e8 

3.9133e81.4490e6 

3.9480e8  3.8879e8 

3.9555e81.0081e6 

3.9773e8  3.9330e8 

4.3. NSGA-II/OSD pre-analysis 

This subsection analyzes the effect on the convergence and diversity of the solution front reached 
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when varying the  parameter of the proposed NSGA-II/OSD algorithm. 

Figure 5 shows the box-and-whisker plots of the hypervolumes obtained by modifying the values 

of the  parameter, for the three population sizes considered, and the mean hypervolumes obtained in 

each case. It can be seen that the best hypervolume values are obtained for intermediate values of the 

 parameter (for further details see Table 1). Figure 6 shows the box-and-whisker plots of the number 

of solution repairs performed when modifying the values of the  parameter, for the three population 

sizes considered, and the mean number of solution repairs carried out in each case. It can be seen that 

the number of repairs carried out decreases as the parameter  increases. Figure 7 shows the 50% 

attainment surface for � = 200. For a more complete comparison, the true Pareto front is also shown. 

It can be seen that the algorithm gets closer to the true POF when  = 0, which corresponds to NSGA-

II, but obtains a less extensive approximate POF. As  increases, although the approximate POF 

becomes more and more extensive, it loses convergence. 

According to the results shown in Table 1 and Figure 5, in Figure 7 it is confirmed that NSGA-

II/OSD achieves the best 50% attainment surface for the intermediate values of . In fact, for  > 0.8 

the approximate POF obtained is substantially different from the true POF. Not all 50% attainment 

surfaces have been drawn because, for values 0.2 <  < 0.8, the surfaces stick very close to the 

surface corresponding to � = 0.5. However, all the results are shown in Table 1. Therefore, the choice 

of � = 0.5 allows to obtain a good convergence/diversity balance. 

Figure 8 shows the percentage of solutions in the regions �� and �� for � = 200. For � = 0.0, 

which corresponds to the classic NSGA-II, it is observed that the percentage of solutions in these 

regions decreases rapidly to a value lower than 10%, which explains reaching an approximate POF 

less extensive than in the other cases (see Figure 7). However, for � > 0.0 the rapid decrease in the 

percentage of solutions in the regions �� and �� occurs once it is verified that � > �����. That is, 

for � > 0.0 the algorithm initially explores the objective space for a percentage of generations, which 

allows it to obtain a more extensive approximation POF. This is where the correct choice of α allows 

to obtain a balance between the diversity (extension) and convergence of the approximate POF 

obtained. Note that, in the case of � = 1.0, the percentage of solutions in the regions �� and �� 

always remains above 70%; which also helps to explain the greater diversity (and extent) of the 

approximate POF achieved. However, the trade-off is that this approximate POF is further away from 

the true POF (see Figure 7). 

In addition, Figure 9 (top) shows the evolution of the mean percentage of overlapping solutions 

in the population for � = 200 and for the different values of  considered. It is observed that this 

percentage increases considerably as soon as it is verified that > �����  , where �  is the current 

generation and ���� the maximum number of generations that are carried out, and then decreases 

again later on. Specifically, it is observed that, for � < 0.8, towards the end of the evolution of the 

algorithm, the mean percentage of overlapping solutions tends to be around 35%. Figure 9 (bottom) 

clearly shows that the lowest percentage of overlapping solutions, throughout the evolution of the 

algorithm, is achieved for � = 1.0 , which explains the greater extension of the approximate POF 

reached (see Figure 7). 

In view of the above and in order to obtain a good convergence/diversity balance, � = 0.5 will 

be set to compare NSGA-II/OSD with other algorithms in Section 5. 
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Figure 5. NSGA-II/OSD: MOKP-2.500. Box-and-whisker plots and mean values based 

on the hypervolume metric when varying the parameter . 
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Figure 6. NSGA-II/OSD: MOKP-2.500. Box-and-whisker plots and mean values based 

on the numbers of repairs when varying the parameter . 
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Figure 7. NSGA-II/OSD: MOKP-2.500 (400,000 evaluations): the 50% attainment surfaces. 

 

Figure 8. NSGA-II/OSD: MOKP-2.500. Percentage of solutions in ��⋃�� when varying 

the parameter . 
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Figure 9. NSGA-II/OSD: MOKP-2.500. Percentage of overlapping solutions when 

varying the parameter . 

4.4. MOEA/D pre-analysis 

The two reference point specifications described in Subsections 2.1 and 2.2 will be compared in 

this subsection. Figure 10 (left) shows the values of the mean hypervolume when varying the value of 

α in Zhangte according to Eq (2.3). It is observed that, for � = 100 and � = 200, the value of the 

mean hypervolume clearly increases up to a maximum value (when � = 1.2) and then decreases again 

for larger values of α (see Table 2). Figure 10 (right) shows the values of the mean hypervolume when 
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varying the value of �� in Ishibuchite according to Eqs (2.4) and (2.5). In this case, it is observed that 

the value of the mean hypervolume grows continuously as long as � < 3 , but for � ≥ 3  the 

hypervolume gets stagnated (see Table 3). Figure 11 shows that, in general, for both versions of 

MOEA/D, the number of repairs carried out decreases as the  parameter increases. This trend is 

clearer when Ishibuchite is used (sea Figure 11 (right)). 

Figures 12 and 13 show the 50% attainment surface for � = 200 yielded by Zhangte and by 

Ishibuchite, respectively. To get a better idea of the performance of the algorithms, the true POF is also 

depicted. On the one hand, according to the results shown in Table 2 and Figure 10 (left), in Figure 12 

it is confirmed that Zhangte achieves the best 50% attainment surface when � = 1.2. On the other 

hand, according to the results shown in Table 3 and Figure 10 (right), in Figure 13 it is confirmed that 

Ishibuchite achieves the best 50% attainment surface when �� ≥ 3.0. 

In addition, Figure 14 shows the evolution of the mean percentage of overlapping solutions in the 

population for � = 200 , when Zhangte (left) and Ishibuchite (right) are used. It can be seen that, 

broadly speaking, as the  value increases, when Zhangte is used, the mean percentage of overlapping 

solutions in the population increases. For example, for � = 1.2 this percentage is slightly higher 

than 50%. Something similar happens with Ishibuchite algorithm, if the �� value is increased (see 

Figure 14 (right)). Thus, for �� = 3.0 this percentage is slightly less than 60%. 

Thus, for MOKP-2.500, it seems advisable to use the value � = 1.2 in MOEA/D when using 

the Tchebycheff scalarization approach and Zhang’s specification of the reference point, and to use the 

value �� = 3.0  in MOEA/D when using the Ishibuchi’s specification of the reference point. 

Furthermore, in both cases, the mean number of repairs is similar (see Figure 11) and of the same order 

of magnitude as that obtained by NSGA-II/OSD (� = 0.4) (see Figure 6 (bottom-right)). Therefore, 

in Section 5, these values of  and �� will be used for comparison purposes. 

Table 2. MOEA/D with Zhang’s specification of the reference point (Zhangte): MOKP-

2.500. Mean and standard deviation (in subscript), and the best  worst hypervolume 

(below), respectively, over 30 independent runs. 

 � = 50 � = 100 � = 200 

1.00 3.8327e81.4928e6 

3.8574e8  3.7945e8 

3.8235e81.4284e6 

3.8569e8  3.8024e8 

3.8116e81.41028e6 

3.8370e8  3.7841e8 

1.05 3.9502e81.8237e6 

3.9759e8  3.9141e8 

3.9584e81.5382e6 

3.9889e8  3.9279e8 

3.9612e81.3089e6 

3.9864e8  3.9392e8 

1.10 3.95938e82.0257e6 

3.9839e8  3.9016e8 

3.9551e82.0107e6 

4.0031e8  3.9148e8 

3.9678e81.3818e6 

3.9928e8  3.9390e8 

1.15 3.9561e82.2457e6 

3.9932e8  3.9082e8 

3.9562e82.3467e6 

3.9994e8  3.9149e8 

3.9560e82.0645e6 

3.9967e8  3.9082e8 

1.20 3.9924e89.2698e5 

4.0100e8  3.9740e8 

4.0024e81.0995e6 

4.0225e8  3.9812e8 

4.0057e88.1517e5 

4.0187e8  3.9872e8 

1.25 3.9936e82.0950e6 

4.0131e8  3.8907e8 

3.9942e83.3767e6 

4.0218e8  3.8601e8 

3.9942e82.9686e6 

4.0164e8  3.8775e8 

1.30 3.9420e84.6808e6 

4.0023e8  3.8609e8 

3.9600e83.5369e6 

4.0206e8  3.9012e8 

3.9523e82.3691e6 

3.9995e8  3.9059e8 
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Figure 10. MOEA/D: MOKP-2.500. Hypervolume mean values when varying the 

parameter  (left) for Zhang’s specification of the reference point (Zhangte), and �� (rigth) 

for Ishibuchi’s specification of the reference point (Ishibuchite). 

 

Figure 11. MOEA/D: MOKP-2.500. Average number of repairs when varying the 

parameter  (left) for Zhang’s specification of the reference point (Zhangte), and �� (rigth) 

for Ishibuchi’s specification of the reference point (Ishibuchite). 



3386 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 3369-3401. 

 

Figure 12. MOEA/D Zhangte: MOKP-2.500 (400,000 evaluations): the 50% attainment surface. 

Table 3. MOEA/D with Ishibuchi’s specification of the reference point (Ishibuchite): 

MOKP-2.500. Mean and standard deviation (in subscript), and the best  worst 

hypervolume (below), respectively, over 30 independent runs. 

 � = 50 � = 100 � = 200 

0.0 3.8332e81.5058e6 

3.8653e8  3.8092e8 

3.8250e81.4159e6 

3.8491e8  3.7975e8 

3.8195e81.0642e6 

3.8406e8  3.7984e8 

0.1 3.8730e81.6242e6 

3.9059e8  3.8395e8 

3.8734e81.5125e6 

3.9202e8  3.8397e8 

3.8652e81.4180e6 

3.8932e8  3.8412e8 

0.5 3.9397e81.0573e6 

3.9582e8  3.9134e8 

3.9328e81.1943e6 

3.9528e8  3.9042e8 

3.9335e81.6777e6 

3.9635e8  3.8999e8 

1.0 3.9624e81.4659e6 

3.9961e8  3.9350e8 

3.9593e81.0751e6 

3.9758e8  3.9301e8 

3.9594e81.2950e6 

3.9837e8  3.9338e8 

2.0 3.9805e81.3012e6 

4.0063e8  3.9542e8 

3.9775e81.4586e6 

4.0047e8  3.9541e8 

3.9809e81.1694e6 

3.9983e8  3.9416e8 

3.0 3.9952e81.0997e6 

4.0166e8  3.9754e8 

3.9951e81.0248e6 

4.0166e8  3.9699e8 

3.9918e81.1614e6 

4.0141e8  3.9694e8 

4.0 3.9923e81.2516e6 

4.0171e8  3.9720e8 

3.9955e81.0209e6 

4.0153e8  3.9670e8 

4.0000e81.1256e6 

4.0185e8  3.9584e8 

5.0 3.9958e81.0380e6 

4.0186e8  3.9697e8 

3.9998e81.1783e6 

4.0254e8  3.9725e8 

3.9995e81.0486e6 

4.0188e8  3.9722e8 

10.0 3.9941e81.5086e6 

4.0261e8  3.9646e8 

3.9993e81.3656e6 

4.0256e8  3.9600e8 

3.9926e81.3827e6 

4.0179e8  3.9507e8 
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Figure 13. MOEA/D Ishibuchite: MOKP-2.500 (400,000 evaluations): the 50% attainment surface. 

5. NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA  

This subsection compares the NSGA-II/OSD algorithm proposed in this work with the classical 

NSGA-II, two MOEA/D-based algorithms and the Global WASF-GA. For NSGA-II/OSD and the two 

versions of MOEA/D considered (MOEA/D Zhangte and MOEA/D Ishibuchite) the values of  or �� 

were set according to the experiments described in the previous sections, setting � = 0.5 for NSGA-

II/OSD, � = 1.2 for MOEA/D Zhangte and �� = 3.0 for MOEA/D Ishibuchite. All algorithms were 

applied on the 0-1 MOKP with two objectives and with 250, 500 and 750 items (MOKP-2.250, 

MOKP-2.500 and MOKP-2.750, respectively).  

The data of the problems and its respective POF (of MOKP-2.250 and MOKP-2.500) can be 

downloaded from https://sop.tik.ee.ethz.ch/download/supplementary/testProblemSuite. 

All comparisons used binary coding, uniform crossover of probability 0.8 and mutation 

probability (bit-by-bit) equal to 1/�, where � is the number of items. In addition, the population 

size (� = 200) and the number of generations (� = 2, 000) were fixed. 

Tables 46, and Figures 1526 show a detailed comparison between the five algorithms. 

Figures 15(left), 16(left) and 17(left) show the box-and-whisker plots based on the hypervolume 

approximation metric for MOKP-2.250, MOKP-2.500 and MOKP-2.750, respectively. From these 

figures, it is observed that NSGA-II/OSD obtains the best median and the lowest dispersion for 

MOKP-2.250, and it performs similarly to MOEA/D Zhangte for MOKP-2.500 and MOKP-2.750. This 

is because the number of overlapping solutions of 0-1 MOKPs decreases as the number of items 

considered increases (see Table 5 and Figures 15(right), 16(right) and 17(right)). Moreover, for 

MOKP-2.500 and MOKP-2.750 can be seen that the average percentage of overlapping solutions in 

the population, of practically all generations, is lower with NSGA-II and NSGA-II/OSD. Finally, the 



3388 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 3369-3401. 

best performance of NSGA-II/OSD and MOEAD algorithms over the NSGA-II and Global WASF-

GA algorithms is also shown in Figures 18(left), 19(left) and 20(left), that present the average 

hypervolume evolution per generation for MOKP-2.250, MOKP-2.500 and MOKP-2.750, respectively. 

From Table 5 it is extracted that at the end of the evolution, NSGA-II and NSGA-II/OSD have 

similar values of the average percentage of overlapping solutions, although with better hypervolume 

value for NSGA-II/OSD (see Table 4 and Figures 15(left), 16(left) and 17(left)). This is because in the 

first half of the generations, the average percentage of overlapping solutions is much lower for NSGA-

II/OSD than for NSGA-II, which justifies that almost all the time NSGA-II/OSD has better average 

hypervolume value than NSGA-II. 

 

Figure 14. MOEA/D: MOKP-2.500. Percentage of overlapping solutions when varying 

the parameter  (left) for Zhang’s specification of the reference point (Zhangte), and �� 

(rigth) for Ishibuchi’s specification of the reference point (Ishibuchite). 
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Table 4. NSGA-II/OSD vs NSGA-II vs MOEA/D (Zhangte and Ishibuchite) vs Global WASF-

GA (� = 200 and � = 2, 000): summary statistics based on the hypervolume metric. 

 NSGA-II/OSD  

( = 0.5) 

NSGA-II Zhangte 

( = 1.2) 

Ishibuchite 

(� = 3.0) 

Global 

WASF-GA 

MOKP-2.250 

Maximum 9.8206e7 9.6549e7 9.8103e7 9.8096e7 9.4158e7 

75h percentile 9.8006e7 9.6067e7 9.7726e7 9.7726e7 9.3672e7 

Median 9.7891e7 9.5938e7 9.7518e7 9.7525e7 9.3482e7 

25h percentile 6.7884e7 9.5620e7 9.7429e7 9.7389e7 9.3269e7 

Minimum 9.7484e7 9.5194e7 9.7211e7 9.7118e7 9.2795e7 

Mean 9.7897e7 9.5846e7 9.7572e7 9.7546e7 9.3496e7 

Standard deviation 1.5247e5 3.4710e5 2.1493e5 2.3346e5 3.6353e5 

MOKP-2.500 

Maximum 4.0263e8 3.9284e8 4.0187e8 4.0141e8 3.8418e8 

75h percentile 4.0100e8 3.9191e8 4.0124e8 4.0021e8 3.8264e8 

Median 4.0052e8 3.9067e8 4.0054e8 3.9919e8 3.8145e8 

25h percentile 3.9965e8 3.8998e8 4.0010e8 3.9863e8 3.8024e8 

Minimum 3.9767e8 3.8722e8 3.9872e8 3.9694e8 3.7764e8 

Mean 4.003ee8 3.9064e8 4.0057e8 3.9918e8 3.8139e8 

Standard deviation 1.0221e6 1.5610e6 8.1517e5 1.1614e6 1.5931e6 

MOKP-2.750 

Maximum 8.7821e8 8.5073e8 8.8360e8 8.8305e8 8.2668e8 

75h percentile 8.7657e8 8.4578e8 8.8068e8 8.8067e8 8.2130e8 

Median 8.7502e8 8.4404e8 8.7979e8 8.7931e8 8.2017e8 

25h percentile 8.7383e8 8.4159e8 8.7854e8 8.7836e8 8.1790e8 

Minimum 8.7118e8 8.3955e8 8.7561e8 8.7498e8 8.1587e8 

Mean 8.7508e8 8.4395e8 8.7968e8 8.7935e8 8.1976e8 

Standard deviation 1.7893e6 2.6916e6 1.7551e6 1.7642e6 2.6344e6 

Table 5. NSGA-II/OSD vs NSGA-II vs MOEA/D (Zhangte and Ishibuchite) vs Global 

WASF-GA (� = 200 and � = 2, 000): average percentage of overlapping solutions in 

the last population. 

 MOKP-2.250 MOKP-2.500 MOKP-2.750 

NSGA-II/OSD ( = 0.5) 37.88 34.83 27.21 

NSGA-II 39.22 36.70 30.80 

Zhangte ( = 1.2) 54.93 52.15 42.53 

Ishibuchite (� = 3.0) 71.15 58.90 84.90 

Global WASF-GA 55.00 48.00 50.50 

Regarding the number of repairs required by the algorithms, Figures 2123 show that, in 

general, the algorithm that has required the least number of repairs is NSGA-II/OSD, followed by 

both versions of MOEA/D. NSGA-II and Global WASF-GA have required significantly more repairs 

than the other algorithms. 
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Figure 15. MOKP-2.250: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Box-and-whisker plots based on the hypervolume metric (left) and evolution of the average 

percentage of overlapping solutions in the population (right). 
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Figure 16. MOKP-2.500: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Box-and-whisker plots based on the hypervolume metric (left) and evolution of the average 

percentage of overlapping solutions in the population (right). 
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Figure 17. MOKP-2.750: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Box-and-whisker plots based on the hypervolume metric (left) and evolution of the average 

percentage of overlapping solutions in the population (right). 
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Figure 18. MOKP-2.250: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Evolution of mean hypervolume values (left) and hypervolume standard deviations (right). 

 

Figure 19. MOKP-2.500: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Evolution of mean hypervolume values (left) and hypervolume standard deviations (right). 
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Figure 20. MOKP-2.750: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Evolution of mean hypervolume values (left) and hypervolume standard deviations (right). 

 

Figure 21. MOKP-2.250: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Mean number of repairs. 
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Figure 22. MOKP-2.500: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Mean number of repairs. 

 

Figure 23. MOKP-2.750: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

Mean number of repairs. 
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Figure 24. MOKP-2.250: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

The 50% attainment surface. 

 

Figure 25. MOKP-2.500: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

The 50% attainment surface. 
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Figure 26. MOKP-2.750: NSGA-II/OSD vs NSGA-II vs MOEA/D vs Global WASF-GA. 

The 50% attainment surface. 

Figures 2426 show the 50% attainment surfaces. For a more complete comparison, the true 

Pareto front is also shown when is possible (MOKP-2.250 and MOKP-2.500). On the one hand, 

according to the results shown in Table 4 and Figure 15(left), in Figure 24 it is confirmed that NSGA-

II/OSD achieves the best 50% attainment surface for MOKP-2.250. On the other hand, according to 

the results shown in Table 4 and Figures 16(right) and 17(right), in Figures 25 and 26 it is confirmed 

that NSGA-II/OSD achieves wider diversity of solutions in the 50% attainment surfaces, meanwhile 

MOEA/D-based algorithms reach better convergence. 

Finally, a Wilcoxon rank-sum test [31] has been performed to make pairwise comparisons 

between the algorithms to study the significance of the results obtained. A significance level of 5% has 

been taken and the null hypothesis was “the two algorithms have the same average indicator”, that is, 

the Wilcoxon test was used to determine if the difference between both means was statistically 

significant. If the p-value is less than 0.05, the null hypothesis is rejected and, then, we can conclude 

that the means of the two algorithms are comparable. In this case, a new Wilcoxon rank-sum test with 

one-sided alternative “greater” (or “less”) and the same significance level is performed, that allows us 

to conclude which algorithm obtains better results than the other. The results are shown in Table 6 

where a symbol ∆ indicates that the algorithm in the row has reached a better average hypervolume 

than the algorithm in the column, a symbol  indicates that the algorithm in the row has reached a 

worse average hypervolume than the algorithm in the column, and a symbol  indicates that the 

comparative is not statistically significant. The results obtained indicate that, in general, NSGA-

II/OSD and MOEA/D Zhangte achieve better mean hypervolume than the other algorithms, MOEA/D 

Ishibuchite achieves better mean hypervolume than NSGA-II and Global WASF-GA, and NSGA-II 

achieves better mean hypervolume than Global WASF-GA. However, it should be noted that NSGA-
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II/OSD performs clearly better than MOEA/D Zhangte when solving MOKP-2.250 (p-value = 2.537e-16), 

the difference between the two algorithms is not significant solving MOKP-2.500 (p-value = 0.4853) 

and NSGA-II/OSD performs better than MOEA/D Zhangte when solving MOKP-2.750 (p-value = 

0.007124). These results are in consonance with the above interpretations of Figures 1517. 

Table 6. NSGA-II/OSD vs NSGA-II vs MOEA/D (Zhangte and Ishibuchite) vs Global 

WASF-GA. Wilcoxon rank-sum test to compare the hypervolume indicator: MOKP-2.250, 

MOKP-2.500 and MOKP-2.750 (all with N = 200 and G = 2, 000). 

 NSGA-II/OSD 

( = 0.5) 

NSGA-II Zhangte 

( = 1.2) 

Ishibuchite 

(� = 3.0) 

Global 

WASF-GA 

NSGA-II/OSD ( = 0.5)  ∆ ∆ ∆ ∆  ∆ ∆ ∆ ∆ ∆ ∆ ∆ 

NSGA-II           ∆ ∆ ∆ 

Zhangte ( = 1.2)    ∆ ∆ ∆  ∆ ∆ ∆ ∆ ∆ ∆ 

Ishibuchite (� = 3.0)    ∆ ∆ ∆     ∆ ∆ ∆ 

6. Conclusions 

A hybrid MOEA implemented from the NSGA-II and based on objective space division for 

handling overlapping solutions, called NSGA-II/OSD, is presented. A parameter � ∈ [0, 1] allows to 

balance between convergence and diversity of the front of non-dominated solutions achieved. 

A preliminary study over the 0-1 MOKP-2.500 and using two quality indicators: the hypervolume 

metric measure and the attainment surface concept, allows us to establish that NSGA-II/OSD obtains 

the best mean hypervolumes for α values around 0.5. Clearly, for 0.2 < � < 0.8  the proposed 

algorithm obtains very good performance and better results when compared to NSGA-II. Note that in 

the case � = 0, NSGA-II/OSD is actually NSGA-II. 

A similar preliminary study was carried out to analyze performance of MOEA/D with the 

Tchebycheff scalarization approach, with both Zhang’s specification of the reference point (Zhangte) 

and Ishibuchi’s specification of the reference point (Ishibuchite), over the 0-1 MOKP-2.500. In the first 

case, it was concluded that � = 1.2 is a good choice. In the second case, �� ≥ 3.0 performs well. 

In this case, for the comparisons, we set �� = 3.0 because the mean number of repairs of the solutions, 

in order to manage unfeasible solutions, is similar to Zhangte with � = 1.2. 

Finally, the NSGA-II/OSD algorithm proposed in this work (with � = 0.5) was compared with 

NSGA-II, MOEA/D Zhangte (� = 1.2), MOEA/D Ishibuchite (�� = 3.0) and Global WASF-GA using 

the number of evaluations of the objective functions as stop criterion in all algorithms. In general, 

NSGA-II/OSD and MOEA/D Zhangte achieve better mean hypervolume than the other algorithms, 

MOEA/D Ishibuchite achieves better mean hypervolume than NSGA-II and Global WASF-GA, and 

NSGA-II achieves better mean hypervolume than Global WASF-GA. However, it should be noted that 

NSGA-II/OSD performs clearly better than MOEA/D Zhangte when solving MOKP-2.250, the 

difference between the two algorithms is not significant solving MOKP-2.500 and NSGA-II/OSD 

performs better than MOEA/D Zhangte when solving MOKP-2.750.  

Moreover, NSGA-II/OSD achieves the best 50% attainment surface for MOKP-2.250 and, for 

MOKP-2.500 and MOKP-2.750, it achieves a greater diversity of solutions in the 50% attainment 

surfaces, while the MOEA/D-based algorithms achieve better convergence to the true POF. This 

decrease in the performance of NSGA-II/OSD compared to MOEA/D-based algorithms, in terms of 
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convergence, when the number of variables increases, can be attributed to the fact that, in general, 

when the number of variables increases, the number of overlapping solutions generated by MOEAs 

decreases, and their impact on the diversity of the approximate final front of non-dominated solutions 

found decreases as well. 

NSGA-II/OSD has been proved to perform well with a well-known multi-objective 

combinatorial optimization problem that generates a large number of overlapping solutions when 

solved with MOEAs. As a future work, we pretend to study its behavior with other multi-objective 

combinatorial optimization problems that behave similarly in terms of overlapping solutions. 

Another interesting line of future work could be to compare the proposed algorithm with other 

diversity maintenance strategies.  
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