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1  |  INTRODUC TION

In aquatic environments, bacteria have been recognized as potential 
regulators of the algal metabolism and behavior, including growth, 
bloom initiation, maintenance, and decline (Amin et al., 2015; 
Gonzalez & Bashan, 2000; Kim et al., 2014; Seyedsayamdost et al., 
2011). Although algal–bacterial interactions are viewed as discrete 

events depending upon environmental factors, many studies report 
the recurrent co-presence of algae and bacteria in the same micro-
environments (e.g., phycosphere, corals, and lichens) where complex 
mutualistic (Croft et al., 2005), commensal, competitive (Bratbak & 
Thingstad, 1985), and parasitic relationships (Sachs & Wilcox, 2006) 
can occur. The interactions between bacteria and algae are essential 
in regulating algal accumulation and degradation of organic matter 
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Abstract
Our study focuses on bacterial communities associated with two benthic, epiphytic 
dinoflagellates, Gambierdiscus australes and Ostreopsis cf. ovata, isolated from coastal 
waters of Las Palmas, Gran Canaria, and grown in clonal cultures. The goal was to 
characterize the stable bacterial consortia found within the phycosphere of each dino-
flagellate species and establish into which functional group they fell. High-throughput 
sequencing (HTS) results highlighted a higher bacterial diversity in O.  ovata com-
pared with G. australes. Alphaproteobacteria dominated in both dinoflagellates with 
Marivita and Labrenzia as the most represented OTUs in Ostreopsis and Gambierdiscus, 
respectively, and Thalassospira and Oceanicaulis well represented in both species. 
Based on SIMPER analyses, Labrenzia and the Phycispherales SM1A02, dominant in 
Gambierdiscus and Ostreopsis, respectively, accounted for the most significant differ-
ence between the two microbiomes. The microbiomes described here differed from 
those described for the same dinoflagellate species in other studies, which could 
depend on differences in environmental conditions, macroalgal substrate, and/or 
growth stage or bloom phase of the microalgal hosts. The distinct bacterial communi-
ties associated with the two potentially toxic dinoflagellates, isolated from the same 
site and sampling event and cultivated under the same conditions, suggest different 
modalities of interaction and interexchange between bacteria and their hosts.
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(Cole et al., 1988; Fuentes et al., 2016). Moreover, bacterial com-
munities hosted by dinoflagellates have been associated with their 
growth through the production of vitamins, iron chelators (sidero-
phores), and cytokinins (Jasti et al., 2005).

Bacteria associated with toxic algae have earned an increasing 
interest due to their possible influence on the algal toxicity expres-
sion. Marine biotoxins produced by microalgae, including dinoflagel-
lates, are known to accumulate through the food chain, with a heavy 
impact on human health, marine organisms, and aquaculture activity. 
The phylum Dinophyta includes many species able to produce dif-
ferent toxins, agents of human illnesses. Several planktonic species 
are responsible for syndromes such as paralytic shellfish poisoning 
(PSP), neurotoxic shellfish poisoning (NSP), and diarrhetic shellfish 
poisoning (DSP). Among benthic dinoflagellates, Ostreopsis spp., 
produce isobaric palytoxin (PLTX) and ovatoxins (OVTXs) which 
are associated with human respiratory illness by exposure to toxic 
aerosol (García-Altares et al., 2014; Tibiriçá et al., 2019), whereas 
Gambierdiscus spp. and Fukuyoa spp. are responsible for ciguatera 
fish poisoning (CFP) (Murray et al., 2020; Wang, 2008). The last 
disorder is a serious problem affecting public health and fishing in-
dustries in tropical and sub-tropical regions, and an emerging risk 
in temperate areas, such as European seas (Aligizaki et al., 2008; 
Bravo et al., 2015; Kaufmann & Böhm-Beck, 2013; Laza-Martínez 
et al., 2016; Zingone et al., 2021). In the last decade, ciguatera out-
breaks took place in the Canaries and affected ≈100 people fol-
lowing the consumption of local fish (Bravo et al., 2015). In autumn 
2016, a bloom of Gambierdiscus spp. dominated by G. caribaeus was 
observed in the protected marine reserve El Hierro, the smallest 
Canarian island, whereas ciguatoxic fish species (up to 62.5%) were 
found in the area in December of the same year (Acosta et al., 2018).

Interestingly, bacterial communities associated with toxic dino-
flagellates seem to have a function on the regulation of algal toxin 

production (Orr et al., 2013). For instance, a threshold number or crit-
ical consortium of Proteobacteria are needed to promote PSP-toxin 
production by Gymnodinium catenatum, possibly through the supply 
of sufficient amounts of cofactors or precursors needed in the pro-
cess (Green et al., 2004). In cultures of Ostreopsis and Gambierdiscus, 
bacterial diversity patterns on cell surfaces and in the associated ex-
tracellular matrices have been reported to vary with growth phase 
(Tosteson et al., 1989) whereas in Ostreopsis, the degree of toxicity 
has also been attributed to the composition of the bacterial assem-
blage (Pérez-Guzmán et al., 2008). Recent co-culturing experiments 
have highlighted how associated bacteria can influence both growth 
and toxin production in three Pacific Gambierdiscus strains (Wang 
et al., 2018). Bacterial diversity also varies in Ostreopsis cf. ovata be-
tween different phases of the blooms and over the course of growth 
cycle (Guidi et al., 2018; Vanucci et al., 2016). Nevertheless, the kind 
of physiological interaction in dinoflagellates–bacteria associations, 
as well as the specificity of the associations and the role of environ-
mental conditions, is still unclear.

In this study, we investigated the bacterial microbiomes as-
sociated with two potentially toxic, epibenthic dinoflagellates, 
Gambierdiscus australes (GA) and Ostreopsis cf. ovata (OO), iso-
lated from the Canary Islands (NE Atlantic Ocean) and maintained 
in culture under the same conditions. Specifically, one GA and 
one OO isolates obtained from macrophyte hosts collected si-
multaneously at the same location were cultured under the same 
conditions and their microbiomes were analyzed by 16S rDNA 
high-throughput sequencing (HTS). We aimed at comparing the 
microbiome composition between the two species and, through 
a literature search, assessing whether the bacterial phycosphere 
composition of those isolates was unique or overlapped with that 
observed in the same species from elsewhere and in other dino-
flagellate species.

F I G U R E  1 Location of the Canary 
Islands in the Atlantic Ocean (a) and 
sampling stations along the Gran Canaria 
coast (b). Details are provided on the 
northern area of sampling, Playa di Las 
Canteras in Las Palmas (c)
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2  |  MATERIAL AND METHODS

2.1  |  Sampling and dinoflagellate culturing

Samples were collected in the framework of the EU project MIMAR 
(INTERREG MAC 2014–2020), aimed at the monitoring, control, 
and mitigation of changes in the marine ecosystems within the 
Macaronesian region. The Canaries are the largest and most easterly 
archipelago of this region, close to the African coasts, and are char-
acterized by volcanic origin, contrasting landscapes and gentle cli-
mate. The sampling was conducted in Gran Canaria, which is subject 
to the influence of trade winds tempering the heat along the coasts 
during summer; these winds blow more intensely in the afternoon, 
when they are often moderate or even quite strong.

The cultures of the two potentially toxic, epibenthic dinoflagel-
lates (Gambierdiscus and Ostreopsis species) were obtained from sea-
weed samples including more than one macroalgal species, collected 
in September 2015 at two coastal sites of Playa de Las Canteras 
(Las Palmas, Gran Canaria): Station 1, close to the Alfredo Kraus 
Conference Center (28°07’51.6’’ N, 15°26’49.7’’ W) and Station 2, at 
La Cicer beach (28°07’54.6’’ N, 15°26’42.5’’ W; Figure 1). Additional 
macroalgal samples were collected in September and October 
2016, that is, in the months of reported Gambierdiscus occurrence 
(Tudò et al., 2020), at the two stations and at another station of the 
same beach, La Puntilla, as well as in other localities along the Gran 
Canaria coast: Playa Ojos de Garza, Melenara, Maspalomas beach, 
Playa de Puerto Rico, Arguineguín, and Playa de Mogán. At all sta-
tions, at a depth of about 0.5-1m, portions of seaweed thalli of 10 to 
15 g fresh weight were collected with the surrounding water in 250-
ml plastic bottles that were capped under water, according to the 
European protocol for Ostreopsis sampling (ENPI, M3_HABs, 2015). 
Sampling bottles were shaken for a few seconds, and macrophytes 
were rinsed several times with seawater to dislodge epiphytic cells. 
For each sample, all the seawater resulting from these operations 
was passed through a 20  µm-meshed filter to concentrate epi-
phytic cells. The concentrated material was stored in 50-ml tubes. 
Subsamples were fixed with Lugol's solution for cell counts, which 
was performed following the Uthermöhl method (1958) or using a 
Sedgewick Rafter chamber, depending on cell density. Unfixed sam-
ples were kept within steel thermos at 22–24°C, according to the 
water temperature of the sampling site, and brought to CNR IRBIM 
laboratory in Messina (Italy) in 48 h. There, the samples were ob-
served using an inverted microscope (Axiovert 200 Zeiss), under 
which individual cells of Gambierdiscus or Ostreopsis were isolated 
with a micropipette, washed in sterile medium droplets several 
times, and finally placed in sterile polystyrene 24-well culture plates 
kept under the following conditions: 24  ±  1°C, irradiance 60–80 
µmole photons m−2 sec−1, and light:dark period 14:10 h. Isolates were 
then transferred into 6-well culture plates and finally, one month 
after sampling, to 50 ml culture bottles. Growth media used were 
K2 Keller or F4 Guillard in sterile seawater diluted at 32 ppt. All cul-
tures were handled aseptically to prevent bacterial contamination 
and cross-contamination among cultures.

For morphological analyses, culture samples were stained with 
Calcofluor White M2R according to Fritz and Triemer (1985), which 
allows to observe the thecal plate pattern.

2.2  |  DNA extraction and molecular 
characterization of dinoflagellates

For definitive species identification, culture samples were collected 
after 15–20  days of growth for 18S-molecular analyses and pro-
cessed as reported below. Approximately 10 ml of each exponentially 
growing cultures of the two strains (CNR GA-LP and CNR OO-LP B1) 
was harvested by centrifugation (4000 rpm, 5 min). Total genomic 
DNA was extracted using DNeasy Plant Kit (Qiagen), according to 
Penna and Magnani (1999) and the manufacturer's instructions. The 
extracted genomic DNA was used as template for PCR amplification 
of 18S rDNA region using the NS1 and NS8 universal primers (White 
et al., 1990). The PCR was performed in a final reaction volume of 
50 μl containing 2.5 μl of 1X solution Q (Qiagen), 5 μl of 1× Qiagen re-
action buffer, 1 μl of each forward and reverse primer (10 μM stock), 
1 μl of dNTPs (10 µM stock) (Gibco, Invitrogen Co), 50 ng of DNA, 
2.0 U of Qiagen Taq Polymerase (Qiagen), and nuclease-free water 
up to 50 μl. The PCR amplification was performed in GeneAmp 5700 
(PE Applied Biosystems) using the following profile: 3 min hot-start 
at 95°C; 30 cycles at 1 min 94°C, 1 min 50°C, 2 min 72°C, and a final 
10-min extension at 72 °C. PCR products were analyzed by hori-
zontal 1% (w/v) agarose gel electrophoresis (100 V, 1 h) in TAE 1X 
(Tris 0.04 M, EDTA 0.001 M, pH 8) electrophoresis buffer, to which 
1  µl (10000x) of SYBR Safe (Invitrogen) was added. A 1  kb DNA 
ladder (Bio-Rad) was included as a molecular weight marker. After 
electrophoretic separation, PCR products were visualized using a 
UV transilluminator (Bio-Rad). Positive products were purified and 
sequenced by Macrogen (Amsterdam, The Netherlands) using NS1 
and NS8 universal primers.

Fragment sequences were checked by BLAST search in the 
GenBank database (http://www.ncbi.nml.nih.gov). An 18S phylo-
genetic tree was obtained from sequences aligned using the latest 
SILVA databases for ARB (release 138.1 (Nov 02, 2020) SSURef 
NR99, http://www.arb-silva.de). The neighbor-joining algorithm and 
the Jukes–Cantor distance matrix within the ARB package were 
used to generate the phylogenetic tree based on distance analysis. 
One thousand bootstrap re-samplings were performed to estimate 
the robustness of the tree using the same distance model.

2.3  |  Analysis of bacteria associated with 
dinoflagellates: DNA extraction and bacterial 
community composition

In order to analyze the composition of associated bacterial communi-
ties in Gambierdiscus australes and Ostreopsis cf. ovata, 10 ml of the 
cultures of the first strains isolated at Playa Las Canteras-Kraus in 
September 2015 (CNR GA-LP and CNR OO-LP B1) was harvested by 
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centrifugation (11,000×g for 5 min. according to Pérez-Guzmán et al., 
2008). Total genomic DNA was extracted using MasterPure Complete 
DNA and RNA Purification Kit (Epicentre) following the manufacturer's 
instructions. The V3-V4 hypervariable regions of the prokaryotic SSU 
rRNA gene (Forward =5'TCGTCGGCAGCGTCAGATGTGTATAAGAG 
ACAGCCTACGGGNGGCWGCAG Reverse =5'GTCTCGTGGG​
CTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC, 
Klindworth et al., 2013) were PCR-amplified, and the amplicons were 
sequenced on the Illumina MiSeq platform by a commercial com-
pany (FISABIO, Valencia, Spain) (http://fisab​io.san.gva.es/en/servi​
cios). Library preparations followed by Illumina sequencing were 
performed according to standard protocols (Caporaso et al., 2012). 
Sequences were trimmed to remove barcodes and primers, then those 
<150  bp, with ambiguous base calls or homopolymer runs exceed-
ing 6 bp were removed. Pre-processed sequences were analyzed by 
the NGS analysis pipeline of the SILVA rRNA gene database project 
(SILVAngs 1.3) (Quast et al., 2013). Each sequence was aligned using 
the SILVA Incremental Aligner (SINA v1.2.10) for ARB SVN (Pruesse 
et al., 2012) against the SILVA SSU rRNA SEED and quality controlled 
database (Quast et al., 2013). After quality control, sequences were 
subject to dereplication on a per sample basis. Identical reads were 
identified, and the unique reads were clustered (OTUs 98% similarity) 
using cd-hit-est (version 3.1.2; http://www.bioin​forma​tics.org/cd-hit) 
(Li & Godzik, 2006). The reference read of each OTU was classified 
by a local nucleotide BLAST search against the non-redundant ver-
sion of the SILVA SSU Ref dataset (release 132, Dec 13, 2017; http://
www.arb-silva.de) using blastn (version 2.2.30+; http://blast.ncbi.
nlm.nih.gov/Blast.cgi) with default settings (Camacho et al., 2009). 
For the phylogenetic tree, filtered reads and close relatives were 
initially aligned using the SILVA alignment tool (Pruesse et al., 2007) 
and manually inserted in ARB (Ludwig et al., 2004). The sequences 
were aligned using the latest SILVA databases for ARB (release 138.1 
(Nov 02, 2020) SSURef NR99, http://www.arb-silva.de). The neighbor-
joining algorithm and the Jukes–Cantor distance matrix of the ARB 
package were used to generate the phylogenetic trees based on dis-
tance analysis for 16S rRNA. One thousand bootstrap re-samplings 
were performed to estimate the robustness of the tree using the same 
distance model. The Newick format of the tree was imported in iTOL 
(https://itol.embl.de/) and edited to obtain the tree shown in Figure 4. 
See legend for more details.

2.4  |  Statistical analyses

PAST PAleontological STatistics V3.25 (https://palaeoelectronica.
org/2001_1/past/issue1_01.htm) was used to generate the Bray–
Curtis similarity matrix obtained from the OTU abundance table and 
calculate diversity index. The same program was used to calculate 
the contribution of single OTUs to the observed difference between 
samples (SIMPER test) (Clarke, 1993). The alpha diversity of each mi-
crobiome was estimated by using two richness estimators: observed 
OTUs (Obs) and FisherAlpha (S = a*ln(1+n/a) where S is the number 
of taxa, n is the number of individuals and a is the Fisher's alpha 
(Fisher et al., 1943), and two diversity indexes: the Shannon H index

where pi  is the proportion of reads belonging to the  ith OTUs in the 
dataset of interest (Spellerberg & Fedor, 2003), and the Simpson index:

where ni is the number of sequences identified in each OTU of i
th type 

and N is the total number of sequences in the dataset (Simpson, 1949).

3  |  RESULTS

3.1  |  Field samples and dinoflagellate isolates

Macrophytes collected at the sampling sites were mostly 
Ochrophyta, such as Halopteris scoparia and Dictyota sp., followed 
by the Rhodophyta Jania sp. The target species of this study, which 
are epiphytic on these seaweeds, were i) Gambierdiscus australes, 
with the typical antero-posteriorly compressed lenticular shape 
(Figure 2A-C) and plate formula matching the species descriptions, 
and ii) Ostreopsis cf. ovata (Figure 2D-F) with the typical tear-drop 
shape and numerous gold-brown chloroplasts. The morphological 
identification of these two taxa was confirmed by the results of the 
molecular analyses showing 99.88% of identity for G. australes with 
strain I080606_3 from Japan (accession number AB764308) and 
98.10% of similarity for O. cf. ovata with strain 1S1D6 from the South 
China Sea (accession number KX129875) respectively (Figure 3). 
The two dinoflagellates species were only found in September 2015 
at Station 1—Kraus and Station 2—La Cícer of Las Canteras beach, 
whereas they were not detected at La Puntilla station nor at the other 
sampling locations southwards along the Gran Canaria coasts. Cell 
densities at the two stations of Las Canteras ranged between 0 and 
100 G. australes cells g−1 macroalga (wet weight, ww) and between 0 
and 500 O. cf. ovata cells g−1 macroalga (ww). Macroalgae also hosted 
other dinoflagellates, such as Coolia, Prorocentrum, Amphidinium, and 
Heterocapsa spp., along with diatoms, mostly Nitzschia, Amphora, and 
Pleurosigma spp. At the sampling stations, water temperature and 
salinity were 24.2–24.6°C and 36.8–36–9 in September 2015 and 
22.5–23.2 °C and 36.7–36.8 in October 2016, respectively.

Ostreopsis cf. ovata showed a growth rate of 0.3–0.5 div. day−1, 
which was higher than that of G. australes (0.10–0.17 div. day−1).

3.2  |  Phylogenetic characterization of bacteria 
associated with G. australes and O. cf. ovata

The bacterial 16S rRNA Illumina sequencing resulted in libraries 
of 31,473  sequences from O. cf. ovata (OO) and 13,375 from G. 
australes (GA) cultures. Operational taxonomic units (OTUs) were 
clustered based on 97% sequence similarity. Alpha-diversity index 
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values were significantly different between the two microbiomes 
(Table 1). The number of observed taxa (OBS) in OO was more than 
double that in GA at all taxonomic levels. The highest diversity value 
was detected at genus level in OO, along with the highest estimated 
value of the taxa richness (Fisher-a), indicating that rare taxa were 
also well represented in the sample. The lowest diversity value cou-
pled to the highest dominance expressed as invSimpson index was 
recorded in GA at phylum level.

Bacterial microbiomes were classified into 8 phyla and 15 classes 
in OO and 4 phyla and 7 classes in GA, respectively. The following 
description of microbial community structure is mainly based on the 
relative contribution of the major bacterial signatures, that is, those 
representing more than 1% in at least one sample. The dominant 
bacterial phyla in OO were Proteobacteria (49.7%), Bacteroidetes 
(24.3%), and Planctomycetes (14.9%). The same phyla were de-
tected in GA but with different relative contributions, namely, 
Proteobacteria (93.3%), Bacteroidetes (5%), and Planctomycetes 
(1%). Rare phyla (<1%) such as Verrucomicrobia, Actinobacteria, 
TM6, and SHA-109 detected in O. cf. ovata were not recorded in G. 
australes. Moreover, Cyanobacteria were found only in GA as 0.4% of 
the total retrieved taxa (Figure 4, Table 1). At class level, the bacterial 
microbiome of OO was dominated by Alphaproteobacteria (40.8%), 
whereas the rest of the clades were mainly affiliated to Cytophagia 
(14%), Phycisphaerae (12%), Gammaproteobacteria (6.6%), 
Flavobacterilia (6.4%), Sphingobacteria (4%), Planctomycetacia 
(3%), and Deltaproteobacteria (1.4%). In GA, the dominance of 
Alphaproteobacteria was much more marked (83.5%), whereas 
the remainder 15.2% was covered by Gammaproteobacteria 
(9.2%), Flavobacteria (5%), and Phycisphaerae (1%). At genus 
level, the OO microbiome showed the highest diversity values 
with 21 detected genera. The most abundant clades were affili-
ated to the Phycispherales clade SM1A02 (11.7%), Maricaulis (9%), 
and Oceanicaulis (5.2%). Thalassospira were represented by 6.9% 

of total OTUs. Moreover, 10.29% of OTUs were attributable to 
Cytophagales, mostly including unknown families, among which we 
were able to identify Fabibacter (1.6%) and Reichenbachiella (1.3%). 
The 3.7% of the sequences were attributable to Balneola. Two gen-
era were closely related to the family Rhodobacteraceae, namely, 
Marivita (6.5%) and Roseovarius (4.7%). An unclassified NS11-12 ma-
rine group belonging to the order Sphingobacteriales constituted 
4% of the total relative abundance. The family Bacteriovoracaceae 
represented 1.2% of the total OTUs, which were closely related to 
genus Peredibacter. OTUs closely related to the genus Methylophaga 
constituted 1.2% of the total abundance in OO. Finally, 1.1% of the 
OTUs were unclassified genera attributable to the DB1-14 order 
(Figure 4, Table 2). In GA, 54.5% of total OTUs were affiliated to 
Rhodobacteraceae, namely, 42.2% Labrenzia and 12.3% Stappia. 
Hyphomonadaceae covered 19.3% of the total abundance, with a 
single genus, Oceanicaulis. Thalassospira constituted 5.9% of the 
OTUs representing the family Rhodospirillaceae, together with an 
uncultured genus (3%). Marinobacter and Pseudospirillum were 4.5% 
and 3.4% of the total abundance, respectively (Figure 4, Table 2).

A specific focus on the differences between the two micro-
biomes was applied by means of the SIMPER analysis which re-
vealed a relatively low number of OTUs (14.8%) shared between 
O. cf. ovata and G. australes libraries. Remarkably, shared OTUs in-
cluded almost 50% of those identified in the GA library. These in-
cluded four Alphaproteobacteria (Oceanicaulis, Stappia, uncultured 
Rhodospirillaceae and DB1-14 group) and two Gammaproteobacteria 
(Marinobacter and Pseudospirillum sp.) (Table 2). Moreover, SIMPER 
analysis highlighted three OTUs as the major contributors to the 
difference between the two dinoflagellate microbiomes with 
an Average dissimilarity (Av. dis) >5%: two OTUs belonged to 
Alphaproteobacteria, namely Labrezia (Av. dis 11.44%), detected 
only in GA with 38.35% of total sequences, and Oceanicaulis (Av. 
dis 6.8%), more abundant in GA than OO libraries (19.19% and 

F I G U R E  2 Specimens of Gambierdiscus 
australes (a-c) and Ostreopsis cf. ovata (d-f) 
from Las Palmas, Gran Canaria (Spain). 
Light and epifluorescence micrographs 
with details of epitheca—Po and apical 
plates 4’ (b), 1’ (e)—and hypotheca, with 
antapical plate 2'''’ (c) and posterior 
intercalary plate 1p (f), respectively. Scale 
bars: 20 μm (Gambierdiscus) and 10 μm 
(Ostreopsis)

Po

4’
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1p

2””

(c)(a)

(d) (e) (f)



6 of 13  |     DENARO et al.

1.9% of sequences, respectively). The third OTU belonged to the 
Plantomycetes SM1A02 (Av. dis 8.2%), which was detected only in 
the OO library, where it accounted for 11.73% of sequences (Table 3).

4  |  DISCUSSION

4.1  |  Gambierdiscus and Ostreopsis in Gran 
Canaria

In this study, we have focused on the microbiome associated with 
two different epibenthic species, Gambierdiscus australes and 
Ostreopsis cf. ovata, based on strains obtained during the same sam-
pling event from a locality of the Atlantic Ocean close to Las Palmas 
de Gran Canaria, Las Canteras.

In Las Canteras beach, G. australes and O. cf. ovata were isolated 
from a sample of the ochrophytes Halopteris scoparia and Dictyota 
sp, the same macrophytes hosting Gambierdiscus spp. in other 
Canary Islands, such as El Hierro, with the presence there also of 
Padina pavonica (Soler et al., 2016). Various additional Ochrophyta, 
Rhodophyta, and Chlorophyta were reported from the Macaronesia 
region (Canaries and Cape Verde), hosting both Ostreopsis (predom-
inantly) and Gambierdiscus species (Fernández-Zabala et al., 2019). 
The finding of a single Gambierdiscus species in our samples matches 
previous observations of G. australes as the dominant species of the 
genus in Gran Canaria, with a minor occurrence of G.  excentricus 
(Rodríguez et al., 2017).

The 18S rDNA gene analysis supported the morphological 
identification of the two dinoflagellate species, showing that the 
Gamberdiscus strain from Las Palmas de Gran Canaria, (Spain) has 
a high similarity with conspecifics from the Pacific Ocean (Japan, 
Australia) and other Atlantic areas (Florida). Ostreopsis cf. ovata was 
placed in a clade with related species from the Pacific Ocean (China 
and Australia), but with a lower similarity. This result was expected 
considering the well-known genetic diversity within this species com-
plex (Penna et al., 2010; 2014; Sato et al., 2011) and also because of 
the absence of reference 18s rDNa sequences of O. cf. ovata strains 
from the Atlantic–Mediterranean region, to which presumably our 
strain belongs. Other studies, based on morphology and/or rDNA 
sequence data from partial nuclear LSU (D1/D2 domains), 5.8S and 
non-coding internal transcribed spacer (ITS) regions, have shown O. 
cf. ovata as distributed throughout the Mediterranean Sea as well, 
whereas G. australes has only recently been found in the Balearic 
Islands (Zingone et al., 2021, and papers cited therein).

The study of the microbiomes associated with the two dino-
flagellates is particularly intriguing because species of these two 
genera have been implicated in different harmful algal blooms. 
Among Gambierdiscus species producing lipophilic ciguatoxins and 
maitotoxins (e.g., Botana, 2014), the species G. australes seems to 
be less toxic, with a very low to no CTX production (Pisapia et al., 
2017). However, G. australes from Canary Islands was described as 
a CTX producer (Estevez et al., 2020) and a potential MTX-producer 
(Reverté et al., 2018).

4.2  |  Associated microbial communities

Bacterial diversity observed in the microbiomes was significantly 
different between the two cultured strains both in terms of biodi-
versity pattern and OTUs richness, which was considerably higher 
in Ostreopsis.

The role of the bacteria inhabiting the phycosphere is difficult 
to define, due to bimodal, synergistic, and/or antagonistic activity 
they can perform, which can frequently vary under the influence of 
two main factors: environmental perturbations and/or the state of 
the host, that is, the growth phase. Moreover, the nature of inter-
changes between algae and associated bacteria is still object of con-
troversy. An example of different roles played by the microbiomes 
in our study is provided by SM1A02 (Phycisphaerales), which have 
frequently been described in macroalgae-associated microbiomes, 
for example, in Caulerpa sp., as the most abundant microbiome com-
ponent in specimens affected by disease (Liu et al., 2019). However, 
SM1A02 were also described as facultative aerobic organisms able 
to metabolize dimethylsulfoniopropionate, an osmolyte produced by 
several microalgae including O. cf. ovata (Vanucci et al., 2016), as well 
as sulfated polysaccharides (Deschaseaux et al., 2018; Rambo et al., 
2020). Another example is provided by the Alphaproteobacteria 
consortium, which was already reported as dominant over all the 
growth phases of O. cf. ovata cultures, where it mainly included 
Rhodobacteraceae and Hyphomonadaceae (Guidi et al., 2018). 
Rhodobacteraceae have been shown to modify their behavior from 
mutualistic to opportunistic in response to signal molecules, for ex-
ample, during algal senescence (Guidi et al., 2018; Seyedsayamdost, 
Carr, et al., 2011; Seyedsayamdost et al., 2011, 2014; Sule & Belas, 
2013).

Among other bacteria identified in our study, Maricaulis (9% of 
OTUs in Ostreospsis) were found as growth-promoter ectosymbionts 
in a hydrocarbon-rich green alga (Denaro et al., 2021; Tanabe et al., 
2015); Oceanicaulis, which we detected in both species and were 
more abundant in Gambierdiscus, were also found in various cultures 
of other marine microalgae, such as Alexandrium tamarense (Strömpl 
et al., 2003), Emiliania huxleyi (Zabeti et al., 2010), Eutreptiella sp. 
(Kuo & Lin, 2013), and Ostreococcus tauri (Abby et al., 2014). In O. cf. 
ovata cultures, Oceanicaulis were found to be abundant in different 
growth phases, and they were associated with the biosynthesis of 
B vitamins and were proposed as candidates to investigate syner-
gic action with O. cf. ovata during toxic blooms (Guidi et al., 2018). 
Bacteroidetes, which we retrieved in high abundance in Ostreopsis, 
possibly have a role in the hydrolysis of biopolymers such as pro-
teins, complex polysaccharides, and glycoproteins (Riedel et al., 
2013). In particular, Flavobacteria and Sphingobacteria have been 
found to be associated with particulate matter/algal detritus contrib-
uting to the mineralization processes. In the microbiome associated 
with G. australes, the most abundant reads (>50%) were attributed to 
Labrenzia, which actually were even more abundant considering that 
the genus Stappia (covering 12.3% of the library) was recently reclas-
sified as Labrenzia. Previously identified in corals and other microal-
gal cultures (Chen et al., 2012; Han et al., 2016; Sandhya et al., 2017), 
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Labrenzia are notable for their ability to produce dimethylsulfonio-
propionate (DMSP) (Curson et al., 2017; Salgado et al., 2014), which 
plays a key role in stress tolerance in dinoflagellates (Sunda et al., 
2002; Williams et al., 2019). They have also been described as aer-
obic anoxygenic photosynthetic bacteria (Biebl et al., 2005, 2007), 
advantaged under light–dark carbon-limited regime (Koblížek, 2015; 
Soora et al., 2015; Wang et al., 2015). Labrenzia show a very active 
metabolic pathway under algal-derived matter remineralization, 
as during the algal stationary phase (Guidi et al., 2018). However, 
host-killing, algicidal and antimicrobial activities also seem to be as-
sociated with Labrenzia (Amiri Moghaddam et al., 2018; Chen et al., 
2017; Fiebig et al., 2013), which could determine their success within 
the microbiome associated with G. australes and possibly be related 
to the considerably lower growth performances of the latter com-
pared with O. cf. ovata in our study. An abundance of signatures 
belonging to Phycisphereae family has recently been highlighted in 
the microbiome of two Gambierdiscus species, and a possible mutual 

interaction has been hypothesized based on in silico predictions 
(Rambo et al., 2020). By contrast, we have detected a relatively high 
abundance of Phycisphereae family only in O. cf. ovata.

Considering the limitations of the method, the bacterial com-
munities revealed in our study may not reflect entirely the original 
microbiome and should be considered with caution, because culture 
conditions over a month may have imposed strong constraints on 
their composition. However, the quite high diversity of bacterial 
species found through molecular analyses, along with the profound 
differences between the microbiomes associated with two spe-
cies handled in the same way, supports the informative value of 
our results and allows some general considerations. Because the 
two dinoflagellates species were isolated from the same location, 
sampling date, and macroalgal samples, the difference between 
their microbiomes would point at species-specific associations at 
least in the environment investigated, supporting the “niche” hy-
pothesis (Hardin, 1960): If one algal species offers defined, stable 

F I G U R E  3 SSU rDNA-based phylogeny 
of Gambierdiscus australes and Ostreopsis 
cf. ovata, strains. Sequences obtained in 
this study are bold-typed in red. Support 
of nodes is based on bootstrap values of 
NJ with 1000 re-samplings. Only values 
greater than 70 are shown. Alexandrium 
was used as out-group

Rank Samples OBSa Shannonb invSimpsonb FisherAlphac

PHYLUM O. cf. ovata 8 1.28 2.96 0.75

G. australes 4 0.29 1.15 0.38

CLASS O. cf. ovata 15 1.88 4.52 1.51

G. australes 7 0.63 1.41 0.71

GENUS O. cf. ovata 68 3.14 16.67 8.24

G. australes 32 1.89 4.17 3.94

anumber of observed taxa (OTU 97%).
bLande (1996).
cFisher et al. (1943).

TA B L E  1 Bacterial alpha diversity 
in the microbiomes associated with 
Ostreopsis cf. ovata and Gambierdiscus 
australes
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TA B L E  2 List of the identified operational taxonomic units (OTUs) found in libraries from Gambierdiscus australes and Ostreopsis cf. ovata 
microbiomes

OTUs Taxonomy
Relative 
abundance (%)

OO GA

slv_79 Bacteria; Actinobacteriota; Actinobacteria; Micrococcales; Microbacteriaceae;DS001 0.29 0.00

slv_121 Bacteria; Cyanobacteria; Cyanobacteriia; Chloroplast 0.00 0.41

slv_0 Bacteria; Planctomycetota; Planctomycetes; Planctomycetales; Gimesiaceae; Gimesia 2.89 0.00

slv_128 Bacteria; Planctomycetota; Phycisphaerae; Phycisphaerales; Phycisphaeraceae;SM1A02 11.73 1.17

slv_36 Bacteria; Bacteroidota; Rhodothermia; Balneolales; Balneolaceae; Balneola 3.69 0.00

slv_76 Bacteria; Bacteroidota; Bacteroidia; Cytophagales; Cyclobacteriaceae; Reichenbachiella 1.34 0.05

slv_4 Bacteria; Bacteroidota; Bacteroidia; Cytophagales; Cyclobacteriaceae; Marinoscillum 0.54 0.00

slv_95 Bacteria; Bacteroidota; Bacteroidia; Sphingobacteriales;NS11-12 marine group 3.99 0.00

slv_16 Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; Crocinitomicaceae; Brumimicrobium 5.97 0.00

slv_107 Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; Cryomorphaceae; Owenweeksia 0.32 4.34

slv_82 Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; Flavobacteriaceae; Muricauda 0.04 0.58

slv_110 Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; Flavobacteriaceae; Robiginitalea 0.00 0.16

slv_130 Bacteria; Bdellovibrionota; Bdellovibrionia; Bacteriovoracales; Bacteriovoracaceae;uncultured 0.12 0.00

slv_8 Bacteria;NB1-j 0.07 0.00

slv_26 Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales; Magnetospiraceae;uncultured 1.20 3.07

slv_5 Bacteria; Proteobacteria; Alphaproteobacteria;uncultured 0.33 0.12

slv_13 Bacteria; Proteobacteria; Alphaproteobacteria; Thalassobaculales;uncultured 0.13 0.60

slv_85 Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales; Terasakiellaceae;uncultured 0.49 1.45

slv_32 Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales; Thalassospiraceae; Thalassospira 6.90 5.90

slv_81 Bacteria; Proteobacteria; Alphaproteobacteria; Parvibaculales;uncultured 0.00 0.22

slv_91 Bacteria; Proteobacteria; Alphaproteobacteria; Micavibrionales; Micavibrionaceae;uncultured 0.85 0.20

slv_96 Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Stappiaceae; Labrenzia 0.38 42.23

slv_49 Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Stappiaceae; Stappia 0.22 12.30

slv_20 Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Devosiaceae; Pelagibacterium 0.12 0.00

slv_1 Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae; Cohaesibacter 0.25 0.00

slv_63 Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae; Lentilitoribacter 0.00 0.09

slv_31 Bacteria; Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Marivita 6.54 0.00

slv_9 Bacteria; Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Dinoroseobacter 0.07 0.00

slv_113 Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Hyphomonadaceae; Oceanicaulis 5.21 19.9

slv_101 Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Hyphomonadaceae;uncultured 0.03 0.00

slv_83 Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Hyphomonadaceae; Maricaulis 9.05 0.00

slv_40 Bacteria; Proteobacteria; Gammaproteobacteria; Tenderiales; Tenderiaceae; Candidatus Tenderia 0.72 0.49

slv_44 Bacteria; Proteobacteria; Gammaproteobacteria; Salinisphaerales; Salinisphaeraceae; Salinisphaera 0.31 0.34

slv_117 Bacteria; Proteobacteria; Gammaproteobacteria; Salinisphaerales; Solimonadaceae; Polycyclovorans 0.13 0.03

slv_77 Bacteria; Proteobacteria; Gammaproteobacteria; Salinisphaerales; Solimonadaceae; Oceanococcus 0.00 0.24

slv_111 Bacteria; Proteobacteria; Gammaproteobacteria; Nitrosococcales; Methylophagaceae; Methylophaga 1.18 0.00

slv_108 Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Alcanivoracaceae1; Alcanivorax 0.00 0.10

slv_129 Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudohongiellaceae; Pseudohongiella 2.30 2.54

slv_120 Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Marinobacteraceae; Marinobacter 0.10 4.50

slv_10 Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;OM182 clade 0.88 0.00

slv_53 Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Saccharospirillaceae; Saccharospirillum 0.14 0.19

slv_118 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Escherichia-Shigella 0.01 0.29

slv_102 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Idiomarinaceae; Idiomarina 0.02 0.29

slv_15 Bacteria; Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Roseovarius 4.73 0.00
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conditions, the same well-adapted bacterial species will outcompete 
the others when present. Species-specific associations of bacteria 
to algae may depend on various factors such as algal extracellular 
products, toxicity (Jasti et al., 2005; Schäfer et al., 2002; Šimek 
et al., 2011) and surface structures and components (Dang & Lovell, 
2002). However, environmental conditions and/or the state of the 
host could also be responsible for the differences observed. As an 
example, in Alexandrium catenella a shift of bacterial dominance 
occurred from Gammaproteobacteria at the initial bloom stage 
to Alphaproteobacteria during the bloom decline. Therefore, the 
dominance of Alphaproteobacteria in Ostreopsis and even more in 
Gambierdiscus could also be related to a difference in the phase of 

the bloom, which for O. cf. ovata in the western Mediterranean gen-
erally occurs in July and declines in late summer–autumn (Mangialajo 
et al., 2011; Rodríguez et al., 2017).

As discussed above, many of the bacterial taxa have been de-
scribed associated also with other species of dinoflagellates in addi-
tion to Ostreopsis and Gambierdiscus, suggesting a higher relevance 
of local environmental conditions and/or substrates in determining 
community patterns of algae-associated microbiomes compared 
with species–specific interactions (Eigemann et al., 2013). Definitely, 
further experiments, as well as studies on environmental parameters 
and seasonal cycles, need to be performed to identify the underlying 
relationship between dinoflagellates and associated bacteria and to 

F I G U R E  4 Taxonomic composition of the microbiomes associated with Ostreopsis cf. ovata and Gambierdiscus australes based on 
sequence libraries. Phylogenetic tree was obtained as described in methods; only OTUs with more than 50 reads per OTU are presented. 
External color circles represent class affiliation, whereas for every OTUs, the most deepest affiliation up to genus level is reported. Stars 
indicate OTUs with SIMPER value >2, red and blue histograms indicate relative abundance of OTUs identified associated in OO and in GA 
respectively. Figure was edited using iTOL. (https://itol.embl.de/) (Letunic & Bork, 2019)
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understand the main drivers for the differences observed in the mi-
crobiomes of the two species.
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