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Abstract
This paper presents a three–dimensional linear numerical model for the dynamic and seis-
mic analysis of pile-supported structures that allows to represent simultaneously the struc-
tures, pile foundations, soil profile and incident seismic waves and that, therefore, takes 
directly into account structure–pile–soil interaction. The use of advanced Green’s functions 
to model the dynamic behaviour of layered soils, not only leads to a very compact repre-
sentation of the problem and a simplification in the preparation of the data files (no meshes 
are needed for the soil), but also allows to take into account arbitrarily complex soil pro-
files and problems with large numbers of elements. The seismic excitation is implemented 
as incident planar body waves (P or S) propagating through the layered soil from an infi-
nitely–distant source and impinging on the site with any generic angle of incidence. The 
response of the system is evaluated in the frequency domain, and seismic results in time 
domain are then obtained using the frequency–domain method through the use of the Fast 
Fourier Transform. An application example using a pile-supported structure is presented 
in order to illustrate the capabilities of the model. Piles and columns are modelled through 
Timoshenko beam elements, and slabs, pile caps and shear walls are modelled using shell 
finite elements, so that the real flexibility of all elements can be rigorously taken into 
account. This example is also used to explore the influence of soil profile and angle of inci-
dence on different variables of interest in earthquake engineering.

Keywords Structure–soil–foundation interaction · Piles · Pile-supported structures · Finite 
elements · Structural dynamics · Earthquake engineering

 * Guillermo M. Álamo 
 guillermo.alamo@ulpgc.es

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5975-7145
http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-021-01287-7&domain=pdf


 Bulletin of Earthquake Engineering

1 3

1 Introduction

The dynamic response of pile foundations and pile-supported structures has been an impor-
tant subject of study during several decades (see e.g. Kaynia (1982); Kaynia and Kausel 
(1991); Miura et al. (1994); Mylonakis and Gazetas (1999); Blaney and El Naggar (2000); 
Nikolaou et al. (2001); Maeso et al. (2005); Escoffier et al. (2008); Rovithis et al. (2013); 
Goit et al. (2013); Dowling et al. (2016); Li et al. (2016); Carbonari et al. (April 2019); Ha 
et al. (2019) Chatterjee et al. (2019); Correia and Pecker (2021)) due to the widespread use 
of deep foundations and the influence that the dynamic soil–pile–structure interaction (SSI) 
phenomena can exert on the dynamic and seismic response of the structures (see e.g. Velet-
sos and Meek (1974); Mylonakis and Nikolaou (1997); Gazetas and Mylonakis (1998); 
Mylonakis and Gazetas (2000); Stewart et  al. (1999a, 1999b); Gerolymos et  al. (2008); 
Medina et al. (2013); Di Laora and de Sanctis (2013); Pitilakis et al. (2014); Medina et al. 
(2015); de Sanctis et al. (2015); Sun and Xie (2019)).

An adequate modelling of the wave propagation phenomena through the soil and of the 
pile–soil–pile interaction effects is needed when studying the dynamic and seismic behav-
iours of pile foundations and of pile-supported structures. Moreover, it is also of interest to 
be able to model in detail the variability of the soil properties with depth and the incoming 
seismic waves (that are also affected by the soil profile). However, in many cases, taking 
into account all these elements might imply the need of building complex models, or might 
even prove to be too costly in computational terms, leading to simplified models. This idea 
justifies the efforts in the line of developing a rigorous numerical model for this problem 
allowing the study of configurations with large number of foundation elements and com-
plex soil profiles with reasonable low computational requirements

Among the different numerical methods that can be used for the analysis of the inter-
action between piles and soil, the boundary element (BE) method is one that stands out 
for its capability to treat the radiation of energy through the unbounded media implicitly 
in its formulation. However, the significant increase in terms of computational effort and 
memory usage needed to model a large number of layers, or the difficulty to represent con-
tinuously varying soil properties, are significant disadvantages that limit the applicability 
of the boundary element method to some problems, unless specific advanced fundamental 
solutions are employed to model layered soils without the need of discretizing the layer 
interfaces.

For this reason, Álamo et al. (2016) proposed a numerical model for pile foundations in 
which, by employing advanced Green’s functions for modelling the dynamic response of 
the layered unbounded viscoelastic soil medium together with a Timoshenko beam formu-
lation for modelling the dynamic response of piles, the integral equations that describe the 
dynamic behaviour of the soil-foundation system are significantly simplified and produce a 
very compact numerical approach for the problem. No meshes are needed to represent the 
geometry of the soil or its profile, and only few degrees of freedom are required to repre-
sent the piles, so that problems with complex soil profiles and large number of pile founda-
tions can be studied in detail and including all media, with a limited number of degrees of 
freedom.

In the work at hand, this soil–pile integral model previously presented by Álamo et al. 
(2016) is further developed by coupling the pile foundations with finite element struc-
tures, as well as including seismic and superficial excitations. Thus, the proposed model 
can be used both for a direct approach of the soil–pile–structure problem, and for study-
ing the behaviour of pile foundations in order to use this information in substructuring 
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procedures. The hypotheses and formulation of each part of the model are detailed in 
Sect. 2. Then, results are compared to the ones of a previous BE-FE model in Sect. 5.2, 
followed by Sect. 5.3 in which an example problem is analysed in order to highlight the 
capabilities of the proposed tool in earthquake engineering. Finally, Sect. 6 summarizes 
the main conclusions of the work.

2  Model description

The model proposed herein (see Fig.  1) is a three-dimensional, linear numerical model 
formulated in the frequency-domain for the study of the response of pile foundations 
and pile-supported structures through a direct approach. The system can be subjected 
to planar wave-fronts (type P or S) propagating with a generic direction within the soil. 
The seismic response in time domain under a specific earthquake is obtained using the 
frequency–domain method  (Chopra 2017) through the use of the Fast Fourier Trans-
form. Other types of loads, such as prescribed displacements or forces acting at different 
points of the structures/piles, or loads acting on the free-surface of the soil domain, can 
also be considered. Material damping of hysteretic type is adopted through the defini-
tion of hysteretic damping coefficients ( � ) and the corresponding complex properties 
(see e.g. Christensen (1982)).

First, the soil dynamic behaviour (Sect.  2.1) is represented by a formulation based 
on the integral reciprocity theorem, the use of advanced fundamental solutions and 
the treatment of piles as load lines acting within the soil. Then, the way in which the 
piles are introduced in the model through beam finite elements is discussed in Sect. 2.2. 
Superstructures (Sect. 2.3) are modelled through FE with the combination of beam and 
plates elements. The coupling between the superstructure and pile elements is made by 
imposing compatibility (in terms of nodal displacements and rotations) and equilibrium 
(through pile-structure coupling forces) conditions, and the solution of the whole cou-
pled system can be found from the resolution of a linear system of equations involving 
only unknowns related to piles and structures (Sect. 2.4).

Fig. 1  Sketch of the proposed model
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2.1  Soil equations

The reciprocity theorem in elastodynamics (see Wheeler and Sternberg (1968)) relates two 
different elastodynamic states denoted as S(uj, �ij, bj;�,Ω) and S∗(u∗

j
, �∗

ij
, b∗

j
;�,Ω) , that sat-

isfy the Navier equations in the domain Ω . Assuming harmonic and zero-initial conditions, 
the integral equation of this theorem can be expressed through Einstein’s notation as:

where uj and u∗
j
 are the displacements at any point of the domain Ω ; pj and p∗

j
 are the trac-

tions acting over the boundary Γ = �Ω that are compatible with the stress tensors �ij and 
�∗
ij
 , respectively; and bj and b∗

j
 are the body forces acting inside the domain Ω , all for each 

of the two states mentioned above.
The unknown state S corresponds to the actual problem to be solved, while the state S∗ 

is a known state corresponding to a point source solution that is usually referred to as fun-
damental solution and whose proper definition can significantly simplify the formulation of 
the problem. All variables related to this known state are denoted by the superindex*. For 
the proposed model, the Green’s functions developed by Pak and Guzina (2002) are used 
as fundamental solution. These Green’s functions represent the response at any point of a 
layered half space to a test harmonic unit point load applied at a certain collocation point 
(let’s denote it as point � : �� ) in each one of the three directions of the space. For this rea-
son, the known displacements, tractions and body forces corresponding to the known state 
S
∗ in Eq. (1) must be now understood as tensors u∗

ij
 , p∗

ij
 and b∗

ij
 , respectively, where index i 

denotes the direction of the unit test load, and where p∗
ij
= 0 at Γ , and b∗

ij
= �(��)�ij , being 

�(��) the Dirac’s delta and �ij is the Kronecker’s delta. Thus, the domain integral of the 
left-hand side of Eq. (1) can be computed as the displacement at such collocation point u�

i
.

These Green’s functions are obtained by solving the Navier’s equations in terms of dis-
placement potentials (see Pak (1987)) in a transformed cylindrical coordinate system that 
uses Fourier and Hankel transforms for the angular and radial coordinates, respectively. 
The formulation includes particular propagation matrices to relate the response of the dif-
ferent layers. These matrices do not contain any unbounded exponential terms in order 
to avoid numerical instabilities. A particular integration procedure, as described by Pak 
and Guzina (2002) and Guzina and Pak (1999, 2001) is employed to evaluate the inverse 
Hankel transform, which has been modified for low-frequencies based on the single layer 
problem (Martínez-Castro and Gallego (2007)). Note that, as these Green’s functions are 
obtained assuming a layered half space domain, the boundary conditions of the free-sur-
face and layer interfaces are intrinsically satisfied by the fundamental solution. Therefore, 
the contour integral of the left-hand side of Eq. (1) vanishes as the fundamental solution 
satisfies the free-surface conditions (i.e., p∗

j
= 0 at Γ).

From the point of view of the soil equations, the effect of the piles is modelled through 
load lines Γp acting inside the soil domain. The interaction forces between soil and pile are 
reduced to a distributed force qj along a line located at the axes of the piles and represent-
ing the resultant of the tractions acting over the soil at the soil-pile interface (pile shaft) as 
a function of depth and direction j.

In the absence of external forces acting over the free-surface in the unknown state S , the 
contour integral of the right-hand side of Eq. (1) would also vanish ( pj = 0 at Γ ). On the 
other hand, the body forces of this unknown state are limited to the distributed tractions qi 
acting over the soil due to the soil–pile interaction along the soil–pile interfaces Γp , which 

(1)∫
Γ

p∗
j
uj dΓ + ∫

Ω

b∗
j
uj dΩ = ∫

Γ

pju
∗

j
dΓ + ∫

Ω

bju
∗

j
dΩ
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allows to simplify the domain integral of the right-hand side of Eq. (1) to a line integral 
along Γp.

Thus, the integral equation that could be used to model the soil response in the absence 
of incident seismic waves and external actions over the free surfaces would be the follow-
ing compact expression:

which involves only the pile–soil interaction tractions, the displacements along the piles 
axes, the fundamental solution in terms of displacements and line integrals to be evalu-
ated only along the piles axes. Due to the characteristics of the fundamental solution, this 
integral becomes singular when the collocation point belongs to the integration element. In 
order to avoid this singularity, a non-nodal collocation strategy as described in Álamo et al. 
(2016) and Álamo (2018) is adopted.

On the other hand, the seismic excitation can be considered through the classic decom-
position of the total field into the incident and scattered fields and rewriting the integral 
equation of the soil in terms of the variables of the scattered field (see e.g.Domínguez 
(1993) and Padrón et  al. (2008)). The travelling wavefronts determine the incident field 
of displacements uI j and stresses �I ij at each point of the layered half space domain. The 
incident field can be analytically obtained through the resolution of wave propagation prob-
lems corresponding to different types of waves (Section 4 briefly presents their expressions 
for the wave types that can be considered in the proposed model). In this case, in which the 
soil profile is already taken into account when computing the incident field, the scattered 
fields arise from the presence of the piles in the soil. The stiffness of the piles makes them 
oppose the motion of the soil, creating this additional field that propagates from the piles 
to the surrounding soil. The dynamic response of pile foundations and superstructure will 
also generate part of this field.

Therefore, when the system is excited by an incident field, Eq. (2) and its variables have 
only meaning for the field scattered by the piles (and the superstructures), and it should be 
rewritten in terms of the total field as:

where u�
i
 here represents the (unknown) total displacement constituted by the superposition 

of the incident and scattered fields at the collocation point; while uI�i  is the (known) inci-
dent field displacement at the same point, formulated in the absence of piles and structure 
and incorporating the boundary conditions of free surface and layer interfaces of soil (see 
Sect. 4).

After pile discretization, and by applying Eq. (3) at every pile node, the system of equa-
tions corresponding to the soil can be written as:

where �̄ and �̄ are the vectors of nodal displacements and soil-pile interaction tractions, �̄� 
is the vector containing the incident field displacements evaluated at the pile nodes, and � 
is the influence matrix, that encapsulates the dynamic response of the soil and includes its 
material and radiation damping. This influence matrix is obtained by numerical integration 
of the fundamental solution times the shape functions of the interaction tractions. Details 

(2)u�
i
= ∫

Γp

qju
∗

ij
dΓp

(3)u�
i
− uI

�

i
= ∫

Γp

qju
∗

ij
dΓp

(4)�̄ −��̄ = �̄�
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about the discretization (elements and shape functions) and numerical evaluation of the 
integrals are given in Sect. 3.

Once the system response is known, in a post-processing stage Eq. (3) can be applied at 
any internal point � of the soil domain in order to compute its displacement vector �� as:

where the superindex � in the influence matrix indicates that the collocation point is the 
point � , while ��

�
 are the incident field displacements evaluated at this point of the soil.

2.2  Pile equations

Beam finite elements are used to model pile lateral and axial behaviour. On the contrary, the 
torsional mode of piles is neglected as the soil-pile model does not contemplate any interac-
tion mechanism for it. Following the typical assembly procedure, the finite element system of 
equations corresponding to the piles can be written as:

where �̄�𝐩 is the vector of pile nodal displacements and rotations, �̃ = � − 𝜔2� contains 
the global stiffness (including hysteretic damping) � = Re[�](1 + 2i�) and mass � matri-
ces of the piles, and the right-hand side of the equation contains the forces acting over the 
piles. These forces are divided into two components. The vector 𝐟𝐩 contains the forces (and 
moments) acting at the pile head, which are assembled into the correct equations of the 
global system through index matrix ��

�
 . The distributed soil-pile interaction tractions acting 

along the pile shaft are defined trough their nodal values �̄�𝐩 and converted to nodal loads 
through the global matrix � (see Álamo 2018 for details). In the general scenario, where 
the pile head forces are produced by the coupling with the superstructure, all of the afore-
mentioned vector variables are unknowns of the problem. Thus, the pile system of equa-
tions should be written as:

Any pile caps would be modelled as structural shell elements, as described below. This 
way, the flexibility of these elements of the foundation can also be taken into account.

2.3  Structure equations

The analysis of the superstructures is conducted by a FE representation with unidimensional 
elements (beams) and bidimensional elements (shells) that can be freely combined. The only 
restriction of the structure model is that the different elements are connected through their 
nodes. In addition to these elements, the existence of punctual masses or moments of inertia 
on the structural nodes is also allowed through their inclusion into the corresponding terms of 
the structural mass matrix.

By assembling the elemental stiffness and mass matrices of all of the structural compo-
nents, the FE system of equations corresponding to the structures can be written as:

(5)�𝜄 = �𝜄�̄ + �𝜄
�

(6)�̃��̄�𝐩 = 𝐐�̄�𝐩 + 𝐈
𝐩

𝐡
𝐟𝐩

(7)�̃��̄�𝐩 −𝐐�̄�𝐩 − 𝐈
𝐩

𝐡
𝐟𝐩 = 𝟎

(8)�̃�𝐬�̄�𝐬 = 𝐟 𝐬 + 𝐈𝐬
𝐡
𝐟𝐩𝐬
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where �̄�𝐬 is the vector of structural nodal displacements and rotations, �̃� = �� − 𝜔2�� 
contains the global stiffness (including hysteretic damping) �� = Re[��](1 + 2i�s) and 
mass �� matrices of the structural elements, 𝐟 𝐬 is the vector of prescribed nodal forces and 
moments acting over the structures, and 𝐟𝐩𝐬 is the vector of forces and moments acting over 
the structures due to the coupling with the pile heads. These coupling forces are correctly 
introduced into the corresponding equilibrium equations with the aid of indexing matrix ��

�
.

Rearranging Eq. (8) in order to separate the known and unknown variables, the sys-
tem of equations corresponding to the structural elements results in:

2.4  Coupling equations

The coupling between soil and pile variables is made by imposing compatibility and 
equilibrium conditions in terms of displacements and interaction tractions, respectively, 
at the soil-pile interface. This assumption implies that no sliding or gaping phenomena 
can be directly considered in the analyses, although their effects can be approximated 
through equivalent linear models (González et al. 2020). However, the considered full-
contact assumption is able to reproduce the foundation response under small amplitude 
vibrations and also the physical mechanisms of the interplay between piles and soil free-
field response. For easing the coupling, the same discretization is used for the pile ele-
ments and soil load lines. Thus, soil-pile coupling equations can be simply written as:

where � is an auxiliary matrix that extracts the displacement terms of the pile displace-
ments and rotation vector and that is also needed for non-nodal collocation strategies 
(see Álamo (2018)).

On the other side, piles and structures are assumed to be coupled at the pile heads. 
In the proposed model, the coupling is directly made between the pile head nodes and 
the structural nodes located at the same point of space. Compatibility between the cor-
responding nodal displacements and rotations, and equilibrium between the pile head 
forces and structure-foundation forces can be expressed trough:

where �� and �� are the matrices defining the compatibility equations between the cor-
responding nodes of structures and piles. No direct contact has been considered between 
the structure and the soil, i.e, the interaction with the soil can only be modelled through 
the piles, and any structural element defined over the free-surface is assumed to be not in 
contact with it.

Introducing the coupling equations from (10) to (13) into the governing equations of 
soil (4), piles (7), and structures (9); the global system of equations can be written as:

(9)�̃�𝐬�̄�𝐬 − 𝐈𝐬
𝐡
𝐟𝐩𝐬 = 𝐟 𝐬

(10)�̄� = 𝚼�̄�𝐩

(11)�̄� = −�̄�𝐩

(12)𝐂𝐬�̄�𝐬 = 𝐂𝐩�̄�𝐩

(13)𝐟𝐩𝐬 = −𝐟𝐩
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which is a system of equation written in terms of variables of pile and structure only, with-
out specific unknowns of the soil.

2.5  Loads on free‑surface

Apart from the seismic loads considered above, prescribed distributed harmonic forces 
can be imposed over a portion of the free-surface. Let pext

j
 be the load acting, in the 

direction j, over a part Γext of the soil boundary Γ , i.e. free-surface. For generality’s 
sake, pext

j
 can represent different load types, such as a point, line or surface load. The 

contour integral of the left-side of Eq. (1) does not longer vanish but can be reduced to 
Γext:

Thus, the integral equation of the soil with the inclusion of the external load at the free-
surface results in:

where two- and four-noded elements (see Fig. 2) are used for discretizing the line and sur-
face loads, respectively, in order to evaluate the numerical integral which, in the case of a 
point load, simplifies to a single multiplication.

Considering the pile and the external load discretizations and applying Eq. (16) to 
all pile nodes, the soil system of equations including the loads on the free-surface is 
obtained as:

where �̄ext is the vector containing the nodal values that defines the external load on the 
free-surface and �ext is the influence matrix obtained from the numerical integration of 
the fundamental solution times the proper shape functions used to define the external load 
inside each load element. Note that the vector �ext�̄ext is known and forms part of the right-
hand side once the equations are rearranged into the final system of Eq. (14).

(14)

⎡
⎢⎢⎢⎣

𝚼 𝐆 𝟎 𝟎

�̃� −𝐐 − 𝐈
𝐩

𝐡
𝟎

𝟎 𝟎 𝐈𝐬
𝐡

�̃�𝐬

𝐂𝐩 𝟎 𝟎 𝐂𝐬

⎤
⎥⎥⎥⎦

⎧
⎪⎨⎪⎩

�̄�𝐩

�̄�𝐩

𝐟𝐩

�̄�𝐬

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

�̄�𝐈
𝟎

𝐟 𝐬

𝟎

⎫
⎪⎬⎪⎭

(15)∫
Γ

pju
∗

ij
dΓ = ∫

Γext

pext
j
u∗
ij
dΓext

(16)u�
i
= ∫

Γp

qju
∗

ij
dΓp + ∫

Γext

pext
j
u∗
ij
dΓext

(17)�̄ = ��̄ +�ext�̄ext

Fig. 2  Discretization of the external forces acting over the free-surface. Point (left), line (centre) and sur-
face (right) loads. Only the vertical component of the excitation is shown.
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3  Numerical details

3.1  Speed‑up procedure for the computation of influence matrices

The accurate computation of the terms of the soil influence matrix requires a large number of 
evaluations of the fundamental solution. This process is computationally very time consuming 
due to the iterative and complicated nature of the used Green’s functions for the layered half 
space. Of course, this issue becomes more important as the number of piles or their discretiza-
tion increase and, also, for high frequencies or complex soil profiles.

However, as the value of the displacements of the Green’s functions only depends on 
the relative distance between the collocation and observation point and on their depths with 
respect to the free-surface, some terms of the influence matrix are duplicated or, at least, 
equivalent through an in-plane rotation. As the nodes of each pile are located at different 
depths, the equivalence between different sub-matrices is established at a pile scale.

Let �p�
po

 be the sub-matrix of the influence matrix that is obtained when collocating at all 
nodes of pile p� and integrating along all elements of pile po . Then, the sub-matrices of two 
pairs of collocation-observation piles {p� , po} and {p̄𝜅 , p̄o} are said to be equivalent if the fol-
lowing conditions are satisfied: 

1. The geometries and discretizations of piles p� and p̄𝜅 coincide, as well as the ones of 
piles po and p̄o.

2. The radial distance |��o| between piles p� and po coincides with the radial distance |�̄𝜅o| 
between piles p̄𝜅 and p̄o . The angle formed by the two distance vectors is referred to as 
�r (see Fig. 3a).

3. For the case of inclined piles, the angle �inc
�

 between the in-plane projections of the 
director vectors of piles p� and p̄𝜅 and the angle �inc

o
 between the ones of piles po and p̄o 

coincide with the angle �r (see Fig. 3b).

If the aforementioned conditions are met, the influence sub-matrix corresponding to the collo-
cation - observation pair {p� , po} can be directly obtained from the rotation of the sub-matrix 
corresponding to their equivalent pair {p̄𝜅 , p̄o}:

where the rotation matrix � is a band matrix formed by the in-plane rotation matrix �e:

(18)�p𝜅
po

= �T �
p̄𝜅
p̄o

�

(a) (b)

Fig. 3  Definition of the variables needed to stablish the equivalence between the collocation-observation 
pile pairs. a Relative distance and in-plane rotation angle. b Additional conditions for battered piles
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The reduction in computational effort and time can be very significant in the case of regular 
pile groups, and increases with the number of piles in the group. In square regular groups 
of N × N piles, the reduction in computational time obtained with this strategy has been 
found to be above 40%, 70%, 80%, 90% and 95% for N = 2, 3, 4, 6 and 10, respectively.

3.2  Element types

The unidimensional elements are modelled by using 2-noded beam elements. Structural 
elements (e.g., columns) present 6 degrees of freedom per node (3 displacements and 3 
rotations), while pile elements have 5 degrees of freedom per node (3 displacements and 
2 rotations) as their torsional mode is neglected. Cubic and quadratic shape functions, as 
described by Friedman and Kosmatka (1993), that satisfy the static governing equation 
of the Timoshenko’s beam, are used in order to define the lateral displacements and rota-
tions of the element, respectively. Linear shape functions are used to represent the axial 
variables.

On the other hand, building slabs and pile caps are modelled through the Mixed Inter-
polation of Tensorial Components (MITC) shell elements (see Bucalem and Bathe (1993); 
Dvorkin and Bathe (1984)). These elements, based on the degenerated solid approach (see 
Ahmad et al. (1970)), are chosen due to its predictive capacity and robustness, as their for-
mulation avoids the typical issues of locking or spurious modes (see Yang et al. (2000)) of 
shell elements. In particular, 4-noded and 9-noded quadrilateral elements are considered. 
Each node has 6 degrees of freedom corresponding to the three displacements and three 
rotations in space. The choice of the 6 (three global rotations) degrees of freedom over 
the 5 (two local rotations) ones is made in order to ease the coupling between the different 
structural elements.

4  Expressions for the computation of the incident fields

The seismic excitation is modelled as a wavefront of body waves originated by an infi-
nitely-distant source. This wavefront is assumed to propagate through the half space layer 
inside the x − z plane with a known (yet arbitrary) angle of propagation. Once this inci-
dent wavefront reaches the first layer interface, reflection and transmission phenomena take 
place, producing different waves that either propagates upwards to the free-surface or are 
reflected back to the unbounded media. Figure 4 shows a sketch of the problem, together 
with the layer numbering and coordinate system of reference that is used along this section 
in order to obtain the expressions of the incident fields. Here, hn is the layer n thickness; 
cn
s
 and cn

p
 are their Shear and Primary wave propagation velocities; �n is its shear elastic 

constant; and �n
SH

 , �n
SV

 and �n
P
 are the angles of propagation of each wave type. In the fol-

lowing, only the main aspects of the procedure are presented, for a step-by-step explanation 
see (Wolf 1985).

The trigonometric functions of each angle of propagation �n
W

 corresponding to the 
waves of type W in the layer n will be denoted as: 

(19)�e =

⎡
⎢⎢⎣

cos �r sin �r 0

− sin �r cos �r 0

0 0 1

⎤
⎥⎥⎦
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being i =
√
−1 the imaginary unity. This definition of tn

W
 results in the correct sign for 

the case of SV waves with an angle of propagation below the critical one (see e.g. Wolf 
(1985)).

For each layer n, the displacements and stresses produced by the incident field can be 
obtained as:

where z̄ is the local vertical coordinate of the layer (see Fig. 4) and k = �∕c is the wave-
number obtained from the corresponding apparent velocity: 

The apparent velocity indicates the speed at which the wave front travels along the hori-
zontal direction and its value is the same for all of the soil layers in order to satisfy the 
compatibility condition in the x direction for each soil interface. Thus, from Eq. () it is 

(20a)cos�n
W
= mn

W

(20b)tan�n
W
= tn

W
= −i

√
1 −

1

mn
W

(20c)sin�n
W
= mn

W
tn
W

(21)
un
Ii
(x, z) = ūn

Ii
(z̄)e−ikx

𝜎n
Iij
(x, z) = �̄�n

Iij
(z̄)e−ikx

(22a)c =
cn
s

mn
SH

(out-of-plane motion)

(22b)c =
cn
s

mn
SV

=
cn
p

mn
P

(in-plane motion)

Fig. 4  Illustration of the incident field problem
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possible to determine the propagation angles of all layers once one of them is fixed (usually 
the one corresponding to the bottom unbounded domain).

For the out-of-plane motion problem, the depth-varying amplitudes for the displace-
ments and stresses at each layer can be obtained from the amplitudes of the incident and 
reflected SH waves following:

where

For the in-plane problem, the expressions between the non-zero displacements and stresses 
and the amplitudes of the upwards and downwards SV and P waves in each layer are:

where: 

The frequency-dependent amplitudes of all waves involved in the problem can be 
computed after solving the linear system of equations obtained by imposing the follow-
ing boundary conditions:

– free-surface conditions: 

– compatibility conditions at each interface n between layers n and n + 1 : 

– incident wave type at the deepest layer N + 1 (half space):

SH waves (out-of-plane motion): AN+1
SH

= 1 , AN+1
SV

= 0 , AN+1
P

= 0

SV waves (in-plane motion): AN+1
SH

= 0 , AN+1
SV

= 1 , AN+1
P

= 0

(23)

[
ūn
Iy
(z̄)

�̄�n
Iyz
(z̄)

]
=

[
1 1

𝛽n𝜇n − 𝛽n𝜇n

][
An
SH

e𝛽
nz̄

Bn
SH

e−𝛽
nz̄

]

(24)�n = iktn
SH

(25)
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P waves (in-plane motion): AN+1
SH

= 0 , AN+1
SV

= 0 , AN+1
P

= 1

Once the wave amplitudes are known, the free-field response of the soil (incident field) can 
be computed by using either Eq. (23) or Eq. (25) depending on the wave type.

5  Results

In order to illustrate the capabilities of the model described above, this section presents 
results corresponding to the seismic response of a pile-supported building founded on a 
stratified soil and subjected to different earthquakes generated by trains of S-waves that 
impinge the site vertically or with a certain angle of incidence � . Section 5.3 analyzes a 
problem that exploits many of the capatibilities of this new model through the analysis 
of a pile-supported structure, subjected to inclined seismic SV waves, and founded in a 
soil deposit with properties that change continuously with depth and that overlays an elas-
tic bedrock. However, before that, the code is validated in Sect. 5.2 through comparison 
against results of a previously published BE–FE model by Padrón et al. (2011) for a sim-
pler base configuration. Firstly, the problem studied in both sections is described below.

5.1  Problem definition

Figure 5 presents a sketch of the problem at hand of a pile-supported building subject to 
seismic SV waves. The structure is founded on a soil deposit overlying a stiff homogene-
ous half-space. Two different profiles will be considered for the soil deposit: a homoge-
neous profile (type A) with a constant Young’s modulus EA = 0.28 GPa ; and a continu-
ously inhomogeneous profile (type B) with a Young’s modulus that increases linearly with 
depth, from EB = 0.1EA at ground surface to EB = 1.9EA at the bottom of the deposit. Both 
deposits present the same mean value of the Young’s modulus. All relevant properties are 
described in Fig. 5. The properties of the five-storey RC building and its square 4 × 4 pile 
foundation are presented in Fig. 6. It is worth noting that the BE–FE code considers rigid 
slabs, with inertial properties lumped at the slab geometrical centres, while the proposed 

Fig. 5  Problem general definition
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model includes the flexible slabs, with distributed inertial properties and a 12 × 12 m flex-
ible slab with a thickness of 0.3 m. Similarly, the former model assumes massless columns, 
while the second model assumes a density for the concrete in the columns coincident with 
that in the piles. 

5.2  Verification results

The implementation of the proposed model is validated through comparison of relevant 
variables against those computed using a previously presented BE–FE code by  Padrón 
et  al. (2011). Soil deposit type A and vertically incident S waves are considered herein. 
For the sake of brevity, only inter-storey drifts for floors 1, 3 and 5, and corner pile head 
bending moments, shear forces and axial forces are compared, although the rest of varia-
bles show also an excellent agreement. Figure 7 presents the comparisons in the frequency 
domain, with the aim of analysing not only the level of agreement but also of being able 
to detect any frequency–dependent discrepancies. Inter-storey drifts are plotted in the left 
plots, and pile head forces (bending moment M, shear force V and axial force N) are rep-
resented on the right. All functions are plotted in the range 0-10 Hz with respect to the 
free field ground motion ( uff  ). The proposed model agrees very closely with the previous 
BE–FE code taken as reference here if the same simplifying assumptions are considered in 
both models (rigid slabs and lumped inertia properties).

It is worth remembering here that such BE–FE code requires a much larger number of 
degrees of freedom to analyse a problem like this due to the need of discretizing the ground 
surface and any soil interfaces. For this reason, computing times and memory requirements 
are reduced when using the proposed model, and the analysis of problems with large num-
bers of interfaces becomes prohibitive with the former BE–FE code which, at the same 

Fig. 6  Two-dimensional sketch of considered pile–supported structures
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time, is not able to represent layers with continuously varying elastic properties. All these 
issues were the incentive for the development of the present model.

On the other hand, the proposed model allows to study how the dynamic response 
of the system changes when the slab flexibility and distributed inertia properties are 
assumed. As shown in Fig.  7, the shell behaviour of the structural slabs significantly 
reduces the stiffness of the system, shifting the peaks corresponding to its natural fre-
quencies to lower values, and, in general, reducing the amplitude of the inter-storey 
drifts. The shell behaviour of the slabs and the variations in the soil-structure system 
natural frequencies are illustrated by Fig.  8, where the structural deformation is pre-
sented at the first three natural frequencies. A colour scale is used in order to highlight 
the distribution of the vertical displacements through the slabs. Regarding to the effects 
on the corner pile head forces, the axial and shear forces are reduced, while its bend-
ing moment is, at small frequencies, amplified if the slab shell behaviour is considered. 
These phenomena are strongly influenced by the significant flexibility assumed for the 
pile cap in this illustrative example. If a rigid cap is considered instead, the pile head 
bending moment becomes clearly proportional to the pile head shear force (as explained 

Fig. 7  Comparison against results by previous BE–FE code  Padrón et  al. (2011) in terms of frequency 
response functions for inter-storey drifts and forces at pile head. Soil profile A, � = 90o
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in Di Laora and Rovithis (2021)), with a significant decrease in the magnitude of the 
head bending moments and an increase in the magnitude of the head shear forces.

5.3  Application results

Finally, the results obtained for the problem described in Sect. 5.1 considering both types 
of soil deposit and inclined SV incindent seismic waves are presented here assuming that 
the site is impinged by five different earthquakes. The accelerograms are extracted from 

Fig. 8  Structural deformation at the first three natural frequencies (imaginary part of the frequency 
response function). Colour-scale defined by the vertical displacement. Comparison between the rigid and 
flexible slabs assumptions in the proposed model for the soil-structure system. Soil profile A, � = 90o

Table 1  Information about the accelerograms used as excitation in the analyses. Source: PEER Ground 
Motion Database PEER (2021)

RSN Component Event name Year Station name Vs, 30 (m/s) PGA (unscaled)

169 262
o Imperial Valley-06 1979 Delta 242 0.24 g 

331 270
o Coalinga-01 1983 Parkfield - Cholame 5W 237 0.14 g

737 0
o Loma Prieta 1989 Agnews State Hospital 240 0.17 g

967 180
o Northridge-01 1994 Downey - Birchdale 245 0.16 g

1203 0
o Chi-Chi Taiwan 1999 CHY036 233 0.20 g
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the PEER Ground Motion Database PEER (2021), and correspond to seismic events meas-
ured in stations located over soils with mean shear wave velocities Vs,30 close to 240 m/s. 
For reproducibility’s sake, Table 1 identifies the used accelerograms, indicating the Record 
Sequence Number (RSN) of the database and the horizontal component used for the 
analyses, as well as information about the earthquake event and measuring station. These 
acceleration signals are assumed to correspond to the free-field motion at surface level, 
independently of the angle of incidence or soil profile. This assumption is made in order 
to illustrate how much the uncertainties about soil and wave propagation mechanisms can 
alter the structural response even if the free-field motion at surface level is known. In order 
to compare the results of all signals, they have been scaled in order to present the same 
maximum ground acceleration (0.2 g). Figure 9 presents the normalized acceleration spec-
tra of the selected accelerograms.

Figure 10 presents the envelopes of seismic bending moments along the piles for three 
different angles of incident of the SV waves: � = 50 , 75 and 90o , corresponding � = 90o to 
vertical incidence. Results are presented for selected piles in the group, as illustrated in the 
plots. The direction of propagation of the waves is also depicted in the sketches. Results 
corresponding to soil deposit types A and B are plotted in black and red curves, respec-
tively, with dashed lines used for the envelopes obtained for each individual earthquake, 
and solid lines for the average envelope. The expected local peak bending at the interface 
(see e.g. Dezi et al. (2010); Sica et al. (2011); Di Laora et al. (2012)) is observed, with a 
more significant value in the case of the homogeneous soil deposit (case in which the stiff-
ness contrast at the interface is largest). The dispersion among different accelerograms is 
small, with the exception of the response around the pile head, especially for the corner 
piles and � = 50o . These corner piles present a significantly higher bending moment than 
the central ones, denoting a higher contribution of the inertial-induced moments.

In order to analyse this effect, Fig. 11 compares the obtained average maximum bend-
ing moments along the piles (solid lines) with the results obtained for the kinematic only 
problem (dashed lines), i.e. pile foundation without the structure and assuming a mass-
less flexible cap. The comparison clearly shows that the pile bending moment is deter-
mined by the kinematic problem once a certain depth is reached. Near the pile head, 
the combination of inertial and kinematic loads (being not necessarily in phase) modify 
the kinematic response of the foundation, being this effect more important at the cor-
ner piles. The bending profiles of piles affected by the oscillation of the superstructure 

Fig. 9  Response spectra of the used seismic signals
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are larger for profile B (variable properties) than for profile A (homogeneous). This 
fact qualitatively agrees with the pile active lengths corresponding to the studied pro-
files (Karatzia and Mylonakis 2016): 5.4 m (profile A) and 6.1 m (profile B). On the 
other hand, the influence of the angle of incidence in the maximum kinematic bending 
moments is not significant, with the exception of the corner pile at surface level. For 
these piles, as the angle of incidence gets lower, higher bending is produced at several 
meters below the surface. Comparing the kinematic-only results for the two studied pile 
positions, a noticeable group effect near the pile head is found, which increases as the 
angle of incidence of the waves becomes smaller. It is worth highlighting that this group 
effect is mainly due to the presence of the flexible massless pile cap that is considered in 
the kinematic only case.

The influence of the angle of incidence of the SV waves on the response of the soil-
foundation-structural system is closely studied in Fig. 12, which presents the evolution 
of the average maximum seismic pile head bending moments with the angle of inci-
dence for all piles in the group in the range � = 50o to 90o . The greatest variations are 
found for the rear central and external piles in a homogeneous deposit (solid blue curves 
in top left and bottom left plots, respectively) with the maximum seismic head bending 
moments increasing by 65% from � = 90o to � = 50o . In the rear corner piles (right bot-
tom plot), where the absolute maximum pile bending moments are found, the bending 
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Fig. 10  Envelopes of bending moments along the piles for different angles of the incident seismic waves
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decreases by around 7% in that case. In the foundations embedded in the inhomogene-
ous soil deposit, bending moments tend to be larger (except for the corner piles) but the 
influence of the angle of incidence is smaller (probably because in this case, the waves 
tend to the vertical direction due to the variation in the soil properties).

On the other hand, maximum inter-storey drifts are presented in Fig. 13 for � = 50 , 75 
and 90o . The height of the five slabs at z = 4 , 8, 12, 16 and 20 m is indicated in the plots. 
As usual, the maximum drift is found for the first floor. The influence of the angle of inci-
dence on this variable is generally not large, with average differences with � below 10%, 
although the maximum difference can be found in the inter-storey drift at the first floor, 
with an increase of 40% from � = 50o (19.44 mm) to � = 75o (27.26 mm) in the case of the 
average response for the soil deposit type B (and with similar values for type A).

6  Conclusions

A new model for the dynamic and seismic analysis of pile-supported buildings including 
structure–foundation–soil interaction, seismic incident waves and the possibility of model-
ling complex soil profiles without an excessive increase in computational effort has been 
presented in this paper. Thus, this model allows the direct analysis of the coupled problem 
(including structures, foundations, soil and seismic action) without the need of substructur-
ing methodologies and with no further simplifications of the problem beyond the implicit 
simplifying assumptions of linear–elastic behaviour of soils and structural elements, and 
bonded contact conditions between piles and soil. The model is formulated in the fre-
quency domain, and seismic response in time domain for a certain accelerogram is then 
obtained using the frequency–domain method through the use of the Fast Fourier Trans-
form. In order to maximise the flexibility of the code, piles and columns are modelled using 
Timoshenko beam finite elements, while structural slabs, pile caps and shear walls are 
modelled using shell finite elements. The more significant advantages or the model are its 
flexibility, the possibility of modelling complex problems with large numbers of elements, 
and the low effort required to prepare the data files, as no meshes are needed to define the 
soil surface or interfaces. Furthermore, the use of a direct approach of the problem instead 
of, e.g., a substructuring methodology, allows a much straightforward and complete study 
of systems with several non-connected foundations, and allows incorporating the flexibility 

0 10 20 30
Inter Storey Drift (mm)

20

16

12

8 

4 

0 

z 
(m

)

=50º

profile A
profile B

0 10 20 30
Inter Storey Drift (mm)

20

16

12

8 

4 

0 
z 

(m
)

=75º

0 10 20 30
Inter Storey Drift (mm)

20

16

12

8 

4 

0 

z 
(m

)

=90º

Fig. 13  Inter-storey drifts for different angles of the incident seismic waves



Bulletin of Earthquake Engineering 

1 3

of the foundation in the kinematic problem or analysing the soil response due to the vibra-
tion of the superstructure.

The starting point of this proposal is the pile–soil interaction model presented in Álamo 
et al. (2016) where advanced Green’s function were used to model layered soils and build 
an efficient model for the dynamic analysis of pile foundations. That paper also validated 
the model and the code for the problem of computing impedance functions. In the pre-
sent paper, this idea has been completed and expanded to the seismic structure–founda-
tion–soil problem by integrating the presence of a generic structure (modelled by beam and 
shell finite elements) and incident planar seismic waves with any angle of incidence. The 
proposed model is first satisfactorily validated against a previous BE–FE code for a base 
problem, highlighting the effects of considering the flexibility of the slabs on the structural 
response. Then, an application example of a pile-supported building structure founded on 
an inhomogeneous soil deposit on an elastic bedrock is considered. Besides the elements 
included in the application example, it is worth noting that the model can also represent, in 
its present state, additional features such as shear walls, inclined piles and any number and 
configuration of buildings, piles and foundations. The application example illustrates how 
the soil profile or the angle of incidence can affect significantly variables such as maximum 
efforts at pile heads, while other results, such as inter–storey drifts are dominated by the 
structural configuration.
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