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Abstract. The aim of this work is to propose a model for computing
the optical flow in a sequence of images. We introduce a new temporal
regularizer that is suitable for large displacements. We propose to de-
couple the spatial and temporal regularizations to avoid an incongruous
formulation. For the spatial regularization we use the Nagel–Enkelmann
operator and a newly designed temporal regularization. Our model is
based on an energy functional that yields a partial differential equation
(PDE). This PDE is embedded into a multipyramidal strategy to recover
large displacements. A gradient descent technique is applied at each scale
to reach the minimum.

1 Introduction

In this paper we consider the problem of estimating the optical flow assuming
that the objects may undergo large displacements. The difference with respect
to other related approaches is that we exploit the temporal dimension of the
sequence. Most of the better known methods only deal with the problem of esti-
mating the optical flow between two frames, ignoring that the sequence comprises
several images which are all related. We show in this paper that it is possible to
integrate the temporal information to improve the results.

We propose a variational technique in where an energy functional is minimized
yielding a diffusion–reaction PDE. These kind of energy–based approaches have
been largely used in optical flow estimation. Horn and Schunck [8], for instance,
propose to minimize the so–called optical flow constraint equation (OFC) to-
gether with a smoothing term depending on the optical flow gradient. Later
some authors have proposed several improvements to overcome the shortcom-
ings of this method like in [3], [6], [11], [7].

In order to compute large displacements a common strategy is to use a multi–
pyramidal decomposition like in [3] in where each scale is represented by de-
creasing size of images.

The first works on spatio–temporal methods are due to Nagel [10] and Black
and Anandan [4]. More recently in [13] and [5] the authors propose similar con-
tinuous models for the spatio–temporal smoothness constraint.
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In this work we propose a novel temporal regularizing term which is explicitly
designed to support for large displacements. The previous mentioned spatio–
temporal methods treat the spatial and temporal dimensions in the same way.
We show here that when large displacements are present, it is not suitable to use
temporal derivatives. It is more convenient to separate the temporal smoothing
term. We also show that the major contributions of spatio–temporal smooth-
ness are given by more stable and accurate results. This is clearly stated in the
experimental results in where some comparisons with its corresponding spatial
method is carried out on synthetic and real sequences.

In Sect. 2 we give an overview on related optical flow methods and a study
on the generalization of spatial optical flows and justify the use of temporal
regularizers. In Sect. 3 we derive the numerical scheme for the energy proposed
in the previous section and in Sect. 4 we demonstrate the performance of our
method by using synthetic and real sequences and compare with spatial methods.
Finally in Sect. 5 the conclusions.

2 The Method

The optical flow, h(x) = (u(x), v(x))T , is the apparent motion of pixels in a
sequence of images. One of the first in introducing a variational formulation for
the computation of the optical flow was Horn and Schunck [8]. They proposed
the so–called optical flow constraint equation dI(x,t)

dt = ∇I · h + It = 0, which
states that the image intensity remains constant through the sequence –known
as the Lambertian assumption–.

This equation is valid when the object displacements in the scene are contin-
uous. This is not the case in our approach since the objects may undergo large
displacements. A different formulation which is the corresponding to the optical
flow constraint equation in the discontinuous case is I1(x) − I2(x + h(x)) = 0.
Other approaches different from the quadratic form are commonly used (see for
instance [9] and [12]).

Typically, the data term is accompanied by a smoothness term depending
on the gradient of the flow. Horn and Schunck [8], for instance, proposed to
minimize the square norm of the optical flow gradient ‖∇h‖2 = ‖∇u‖2 + ‖∇v‖2

which provides smooth solutions and yields an isotropic diffusion equation at
the PDE. This model has been improved during the last years and some authors
has introduced some different approaches in order to respect the image or flow
discontinuities. A well–known approach is that of Nagel–Enkelmann [11] that
introduce an operator depending on the image gradient that enables anisotropic
diffusion in order to respect the object contours. Other improvements are given
by the methods explained in [2], [6] and [7].

Variational temporal regularizers have been introduced in some works like in
[4] and [10]. More recently Weickert and Schnörr [13] introduced a method in
where they used the continuous optical flow constraint equation as data term
and a regularizing term of the form R(|∇3u|2+|∇3v|2). In this case the temporal
derivative is treated in the same manner as the spatial derivatives.
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We separate the temporal and spatial derivatives. In the spatial domain we
use the Nagel–Enkelmann operator and for the temporal domain the functional
T (hi,hi+1) = Φ(‖hi − hi+1(x + hi)‖2) + Φ(

∥
∥hi − hi−1(x + h∗

i−1)
∥
∥

2) including
the backward optical flows, h∗ as
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Ω
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2
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where Φ(x2) = 1−γe−
x2
γ . When displacements are very small, hi −hi+1(x+hi)

is an approximation of the temporal derivative.
With the last two integrals we are implicitly assuming a model for the object

velocities. We enforce that the hi functions be similar in magnitude and direc-
tion, so this scheme is more suitable for objects that move with constant velocity
in a permanent direction.

3 Minimizing the Energy

A functional variation of our energy leads to the Euler–Lagrange equations:

0 = − (Ii(x) − Ii+1(x + hi)) ∇Ii+1(x + hi)

−α (div(D (∇hi)∇ui),div(D (∇hi)∇vi))
T

+β Φ′(‖hi − hi+1(x + hi)‖2)

·
(

(hi − hi+1(x + hi))
T (

Id − ∇hT
i+1(x + hi)

))

+βΦ′(
∥
∥hi − hi−1(x + h∗

i−1)
∥
∥

2)

·
(

hi − hi−1(x + h∗
i−1)

)

(2)

We apply a gradient descent technique to reach the solution of the previous
system of equations and embed it into a multi–pyramidal approach to deal with
large displacements. We create a pyramid of scales for the whole sequence with
different size of images and solve the previous system of equations at each level.
Once we obtain a stable solution for a scale we use this as a first estimate for a
finer scale.
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Therefore we have a number of scales s1, s2, . . . sn. At each scale we solve the
previous system of equations for the whole set of unknows {us

i , v
s
i } and then we

use this as a first approximation for the following scale {us1
i , vs1

i } → {us2
i , vs2

i } →
. . . {usn

i , vsn

i }.

4 Experimental Results

The purpose of these experimental results is to show the performance of our novel
method with respect to its spatial counterpart. We are also interested in com-
paring this new method with its simple form given by the forward temporal cost
matching function T (x) = Φ(‖hi − hi+1( + hi)‖2). In the sequel we name the
spatial method as ”Spatial”, the simpler temporal method as ”Temporal” and
the complete temporal method as ”Bi–Temporal” or ”Bidirectional–Temporal”
– Eq. (1) –.

4.1 Translating Square

The first sequence consists of ten frames with a black square moving ten pixels
horizontally forward with a constant velocity over a white background. In Fig.
1 we can see several frames of the sequence and in Fig. 2 we show the angular
error for all the frames using the three methods. In table 1 we show the mean
angular and euclidean errors.

Fig. 1. Frames 0, 4 and 9 of the square sequence

From table 1 and Fig. 2 we can see that the temporal methods are very stable:
the euclidean and angular errors for all the frames are very similar. However,
the ”Spatial” method is clearly unstable.

The improvement of the ”Temporal” method with respect to its spatial coun-
terpart is about 13,79% of the angular error and in the case of the ”Bi–Temporal”
is about 24,14%. The euclidean error for the ”Temporal” method is bigger than
the spatial method. This is justifiable because the last optical flow has a big error
with respect to the rest of frames. The simple temporal method does not improve
the last solution because it does not receive information from other frames. Even
more, when this last estimate is bad, it propagates the bad guests to the rest
of sequence. In the case of the ”Bi–Temporal” method the improvement with
respect to the spatial one is about 31,58%. This method is not affected by the
last optical flow as in the previous case.
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Fig. 2. Angular error for the square sequence

Table 1. Mean angular and euclidean errors for the square sequence: AEμ is the mean
angular error and AEσ its standard deviation; EEμ is the mean euclidean error and
EEσ its standard deviation

Method AEμ AEσ EEμ EEσ

Spatial 0,029o 3,6E-3o 0,0189 0,013
Temporal 0,025o 3,7E-4o 0,0246 3,8E-4
Bi-Temporal 0,022o 3,0E-5o 0,0132 1,9E-4

4.2 Marble Blocks

We used the Marble Block sequence – Fig. 3 – for the second test.
In Fig. 4 we can see the ground truth and the flows obtained with the spatial

and temporal methods.
If we look at this image we observe that both solutions are similar but there are

some differences: The floor is smoother in the temporal disparity map and the back-
ground is more respected. The right tower that disappears seems more continuous
but, on the other hand, in the middle of the two left–most towers the disparitymaps
seem under–estimated. Globally, the temporal method seems to have better esti-
mated the object discontinuities and the results inside each object are smoother.

In Fig. 5 we show the angular error for every frame of the sequence – for
convenience we only show the central frames –. We may appreciate that the
spatial method provides worse and less stable results. Nearly all the results for
the temporal methods are improved. In all cases, the ”Bi-Temporal” performs
in a similar way as the ”Temporal” but with a smaller magnitude.

As we could expect, the results obtained for this sequence are improved. This
sequence is similar to the translating square in the sense that the objects are
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Fig. 3. Frames 0, 10 and 20 of the Marble Blocks sequence�

Fig. 4. On the left, the true disparity associated with frame 10; in the middle, the
optical flow corresponding to the spatial method; and, on the right, the solution for
the bidirectional temporal method

Fig. 5. Angular error for the Marble Block sequence

� This sequence is composed of 30 frames and is copyright by H.-H. Nagel KOGS/IAKS,
University of Karlsruhe, Germany, at http://i21www.ira.uka.de/image sequences/.
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Table 2. Mean angular and euclidean errors for the Marble Block sequence

Method AEμ AEσ EEμ EEσ

Spatial 6,695o 2,698o 0,2480 0,0963
Temporal 5,402o 1,327o 0,2081 0,0638
Bi-Temporal 4,731o 1,330o 0,1848 0,0661

moving with constant velocity in the same direction. In fact, the average motion
of the sequence is 1,33 – with standard deviation 0,03 – except for frames 4, 8,
13, 18, 23 and 28 in which the average motion is 1,58 – with standard deviation
0,02–. This means that there is a shift on the magnitude of the velocities at
these frames. If we look at Fig. 5 we observe maximum peaks that reduce the
stability of the temporal methods. We suppose that this sequence was captured
with different frame rates at these particular frames.

In table 2 we show the angular and euclidean errors and their standard devia-
tions. The improvement of the ”Temporal” method with respect to the ”Spatial”
one is about 19,31% for the angular error and 12,05% for the euclidean error. The
improvement of the ”Bi-Temporal” is about 29,33% for the angular and 25,48%
for the euclidean error. In both cases the standard deviations are considerably
reduced in a similar magnitude.

5 Conclusions

With this work we have proposed a novel variational method that includes a
temporal smoothness term. We have created a new term that minimizes the
difference of the optical flows that permits large displacements of the objects.

We have shown the necessity of including the backward flow in the energy
functional. All the comparisons show that the bidirectional temporal method
clearly outperforms the simpler temporal method.

As we can observe in the experimental results, the numerical studies show
that this method provides more stable results. We have also shown that when
translating motions are present on the scene then there is an increase of accuracy
in all the frames.

To our knowledge, this is the first approach that considers temporal regular-
izations with large displacements.

References

1. Alvarez, L., Deriche, R., Papadopoulo, T., Sánchez, J.: Symmetrical dense opti-
cal flow estimation with oclussions detection. International Journal of Computer
Vision. Preprint (2006)

2. L. Alvarez, J. Weickert, and J. Sánchez, Reliable Estimation of Dense Optical Flow
Fields with Large Displacements. International Journal of Computer Vision, 391
(2000) 41–56. An extended version maybe be found at Technical Report no2 del
Instituto Universitario de Ciencias y Tecnoloǵıas Cibernéticas
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