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Abstract We present in this paper a variational approach

to accurately estimate simultaneously the velocity field and

its derivatives directly from PIV image sequences. Our

method differs from other techniques that have been pre-

sented in the literature in the fact that the energy

minimization used to estimate the particles motion depends

on a second order Taylor development of the flow. In this

way, we are not only able to compute the motion vector

field, but we also obtain an accurate estimation of their

derivatives. Hence, we avoid the use of numerical schemes

to compute the derivatives from the estimated flow that

usually yield to numerical amplification of the inherent

uncertainty on the estimated flow. The performance of our

approach is illustrated with the estimation of the motion

vector field and the vorticity on both synthetic and real PIV

datasets.

1 Introduction

Particle image velocimetry (PIV) is a relatively new

technique widely used to study the temporal evolution of

all kinds of flows. From the initial work by Adrian (1988),

where the theoretical framework for PIV was set, this

technique has been a continuous research topic (Thomas

et al. 2005). The basic idea behind this technique is to

make visible fluid motion by adding small tracer particles

to the fluid and infer the flow velocity field from the images

of the position of these particles at two instances of time

(Westerweel 1997). The interested reader is referred to the

work of Keane and Adrian (1990), where the experimental

design rules are detailed.

In the context of PIV research, the standard procedure to

infer the flow velocity field from the image pairs is to

compute the cross-correlation function between local

interrogation windows of consecutive frames (Keane and

Adrian 1992). In this way, the local maximum of that

function determines the displacement of the pixel values.

Hierarchical and iterative schemes have been developed to

overcome the limitations of correlation techniques. In this

sense, a lot of work has been done since the pioneering

work of Soria et al. (1996) and it is still an interesting

research topic Westerweel et al. (1997), Scarano (2002),

Ruhnau et al. (2005b), and Nogueira et al. (2005).

Recently, variational motion estimation approaches

widely used in computer vision or image processing

domains have been proposed for PIV (Corpetti et al. 2002;

Ruhnau et al. 2005b; Corpetti et al. 2006). Encouraging
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results have also been obtained with these approaches,

although some limitations have also to be overcome. For

instance, variational methods are usually based on the

assumption that light conditions do not change from frame

to frame. However, real fluid images usually suffer from

temporal intensity distortions, yielding to wrong results. In

this sense, more robust methods with respect to light con-

ditions have been proposed by Corpetti et al. (2002) based

on an integrated version of the continuity equation of fluid

mechanics.

In any case, either with correlation-based methods or

variational approaches, there is still a certain level of noise

inherent to the estimation method (Foucaut and Stanislas

2002). This noise may introduce a significant error on the

flow components, but it is even more important for the

computation of the derivatives of the motion field due to

numerical error amplification. Since flow derivatives are a

great source of information in fluid dynamics (they appear

in the Navier–Stokes equations and important parameters

such as divergence, vorticity, the strain rate tensor and

dissipation rate), it is particularly important to obtain an

accurate estimation of flow derivatives.

Usually the computation of the flow derivatives is a two

steps procedure: First we compute a flow estimation using

any method we want and second we compute flow deriv-

atives using some kind of finite difference scheme. In this

paper we present a variational method to compute simul-

taneously the flow and its derivatives directly from the

image sequence. The proposed method is based in an

energy minimization and a second order Taylor develop-

ment of the flow.

We illustrate the behavior of our approach by the esti-

mation of the out-of-plane vorticity, which is an interesting

measure to detect and to study the evolution of vortices in the

flow (Hunt 1987). Several approaches have been proposed in

the literature to achieve this task. On the one hand, discrete

differential operators based on different numerical schemes

are directly applied to the estimated velocity vector field. In

general, their accuracy depends on the initial uncertainty

inherent to the vector field, the sampling rate, neighborhood

correlation, etc. (Etebari and Vlachos 2005; Luff et al. 1999;

Raffel et al. 1998; Kim and Lee. 1996). A second technique

was proposed by Fouras and Soria (1998) which consists on

analytical derivation of the estimated vector field, once it has

been fitted to a base of second order polynomials by means of

a v2 fitting procedure. A third technique is presented by

Raffel et al. (1998) and Abrahamson and Lonnes (1995)

based on the computation on the circulation around an

enclosed area, which is related to the vorticity by the Stokes

theorem. The latter two methods are detailed in Sect. 3.

The paper is organized as follows. In Sect. 2, we

describe the details of our variational approach and the way

we have adapted the energy function to be minimized in

order to directly estimate significative fluid parameters

such as vorticity and strain rate tensor components. Next,

in Sect. 3 we present an overview of standard techniques

from the literature to compute those quantities. In Sect. 4

we present numerical experiments on synthetic and real

data and we analyze the accuracy of the proposed method

in comparison with the standard techniques described in

Sect. 3, as well as we characterize the sensitivity of our

method with respect to the main parameters. Finally in

Sect. 5 we present the main conclusions of the paper.

2 A variational approach for second order motion

estimation

To estimate the optic flow of a given sequence we propose

a variational approach based on the minimization of an

energy function Eð~uÞ defined for each point x0 with the

special fact that it depends not only on the displacement

vector components u = (u,v)T, but also on their partial

derivatives ~u ¼ ðu; v; ux; uy; vx; vyÞT; as shown in the fol-

lowing equation:

Eð~uÞ ¼ Eðu; v; ux; uy; vx; vyÞ

¼
Z

Xðx0Þ

Krðx� x0Þ I1ðxÞ � I2ðxþ ðu; vÞT
�

þ
ux uy

vx vy

� �
ðx� x0ÞÞ

�2

dx ð1Þ

where I1(x) is the first image of the sequence and I2(x) is the

following frame, where the time increment from frame to

frame is assumed to be normalized (Dt = 1), Kr (x – x0) is a

Gaussian kernel with standard deviation r which weighs the

pixels in the domain X(x0) centered at point x0. Hence, the

goal is to find the components of vector ~u; that is, the dis-

placement and its partial derivatives such that minimize the

error between I1(x) and I2(x) displaced by the unknown flow.

At a first glance, the dependence on the partial deriva-

tives (ux, uy, vx, vy) might seem a redundant operation since

they can be computed from the obtained motion vector

field. However, it can be shown that numerical differenti-

ation of the estimated motion vector field yields to

inaccurate results mainly due to undesired numerical error

amplification (Raffel et al. 1998). The partial derivatives of

the motion vector field are the components of the velocity

gradient tensor, also called the rate of deformation tensor,

D = du/dx given by:

D ¼ du

dx
¼ ux uy

vx vy

� �
ð2Þ

This tensor provides quantitative information of the

unitary deformation rate of the flow. In a general context,
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this tensor is not a symmetric matrix and it has four

independent components. In the context of fluid flow

analysis, this deformation rate tensor is usually

decomposed into meaningful components related to

physical phenomena. A common decomposition method

is to divide the tensor into a symmetric and an

antisymmetric matrix, as shown in Eq. 3.

du

dx
¼

ux
1
2

uy þ vx

� �
1
2

vx þ uy

� �
vy

" #

þ
0 1

2
uy � vx

� �
1
2

vx � uy

� �
0

" # ð3Þ

This decomposition is uniquely determined for any

matrix A, where the symmetric part is given by AþAT

2
and

represents the strain rate tensor with the elongational

strains on the diagonal and the shearing strains on the off-

diagonal, whereas the antisymmetric part is given by A�AT

2
;

which is the rate of rotation tensor, whose non-zero

elements are the vorticity components.

Since vorticity and the strain rate tensor have a more

relevant physical meaning in the context of fluid analysis

than just the flow gradient it is possible to reformulate

Eq. 1 as a function of the vorticity x and the strain rate

tensor components e1,1, e1,2, e2,2 performing the following

change of variables:

ux ¼ e1;1 uy ¼ xþ e1;2

vx ¼ e1;2 � x vy ¼ e2;2

�
ð4Þ

and now the expression of the energy we want to minimize

is:

Eð~uÞ¼Eðu;v;x;e1;1;e1;2;e2;2Þ¼
Z

Xðx0Þ

Krðx�x0Þ

I1ðxÞ�I2ðxþðu;vÞTþ
e1;1 e1;2þx

e1;2�x e2;2

� �
ðx�x0ÞÞ

� �2

dx

ð5Þ

2.1 Energy minimization

In order to be able to obtain the six components vector of

unknowns ~u ¼ ðu; v;x; e1;1; e1;2; e2;2ÞT that minimize Eq. 5

we formulate the solution at step n + 1 as a function of the

solution at step n and the six components vector of resid-

uals ~h ¼ ðhu; hv; hx; he1;1
; he1;2

; he2;2
ÞT computed at each step,

as shows the following expression:

~unþ1 ¼ ~un þ ~h ð6Þ

Then, introducing Eq. 6 in Eq 5 we are able to obtain an

iterative operator towards the local minimum of the energy

function similar to a gradient descent algorithm Fletcher

and Reeves (1964). But first, the following approximations

are still necessary to simplify the term that depends on I2(x)

in order to obtain our iterative operator:

I2

 
xþ ðunþ1; vnþ1ÞT

þ
enþ1

1;1 enþ1
1;2 þ xnþ1

enþ1
1;2 � xnþ1 enþ1

2;2

 !
ðx� x0Þ

!

¼ I2 xþ ðun; vnÞT þ
en

1;1 en
1;2 þ xn

en
1;2 � xn en

2;2

� �
ðx� x0Þ

�

þðhu; hvÞT þ
he1;1

he1;2
þ hx

he1;2
� hx he2;2

� �
ðx� x0Þ

�

ð7Þ

To simplify notation, let us define I2
n as:

In
2ðxÞ ¼ I2

 
xþ ðun; vnÞT

þ
en

1;1 en
1;2 þ xn

en
1;2 � xn en

2;2

 !
x� x0

y� y0

� �! ð8Þ

where the vector x – x0 has been decomposed into their

components (x – x0,y – y0)T. The partial derivatives are

denoted as:

In
2;xðxÞ ¼

oI2

ox

 
xþ ðun; vnÞT

þ
en

1;1 en
1;2 þ xn

en
1;2 � xn en

2;2

 !
x� x0

y� y0

� �! ð9Þ

In
2;yðxÞ ¼

oI2

oy

 
xþ ðun; vnÞT

þ
en

1;1 en
1;2 þ xn

en
1;2 � xn en

2;2

 !
x� x0

y� y0

� �! ð10Þ

Then, using the new notation, the solution at step n + 1

can be approximated by its Taylor expansion over ~un to

provide:

Inþ1
2 ðxÞ’ In

2ðxÞþ
 
ðhu;hvÞT

þ
he1;1

he1;2
þhx

he1;2
�hx he2;2

 !
x�x0

y�y0

� �!T
In
2;xðxÞ

In
2;yðxÞ

 !

ð11Þ

Finally, by using vectorial notation I2(x)n+1 can be

expressed as:
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Inþ1
2 ðxÞ ’ In

2ðxÞ þ Î
n

2ðxÞ
T � ~h ð12Þ

where

Î
n

2ðxÞ ¼ ðIn
2;xðxÞ; In

2;yðxÞ; ðy� y0ÞIn
2;xðxÞ � ðx� x0ÞIn

2;yðxÞ;
� ðx� x0ÞIn

2;xðxÞ; ðx� x0ÞIn
2;yðxÞ þ ðy� y0ÞIn

2;xðxÞ;
� ðy� y0ÞIn

2;yðxÞÞ
T ð13Þ

Hence, introducing Eq. 12 in Eq. 5 we obtain the

approximation for the energy function shown in Eq. 14,

where, in addition, we introduce a second term in the

energy function weighted by the parameter a. The role of

this regularization term is to provide at every point a

smooth vector field, by means of an additional constraint

on the norm of the vector ~h; which is forced to be small. In

this sense, the parameter a determines the importance of

this additional constraint on the vector field.

~Eð~hÞ ¼
Z

Xðx0Þ

Krðx� x0Þ I1ðxÞ � In
2ðxÞ � Î

n

2ðxÞ
T � ~h

� 	2

dx

þ a
Z

Xðx0Þ

k ~h k2 dx ð14Þ

This formulation allow us to easily obtain an analytical

expression to compute the local minimum of the energy as

a function of ~h :

r ~Eð~hÞ ¼ �2

Z

Xðx0Þ

Krðx� x0Þ I1ðxÞ � In
2ðxÞ � Î

n

2ðxÞ
T � ~h

� 	

� Î
n

2ðxÞdxþ 2a
Z

Xðx0Þ

~hdx ¼ 0 ð15Þ

which is equivalent to:

Z

Xðx0Þ

Krðx� x0Þ I1ðxÞ � In
2ðxÞ

� �
Î

n

2ðxÞdx

¼
Z

Xðx0Þ

Krðx� x0ÞðÎ
n

2ðxÞ � Î
n

2ðxÞ
TÞ þ aI

� 	
~hdx

ð16Þ

This system of equations can be expressed with the

standard matrix notation Ax = b, where the vector of

unknowns in this case is the vector ~h; while the system

matrix and the independent term can be computed as:

A ¼
Z

Xðx0Þ

Krðx� x0Þð̂I
n

2ðxÞ � Î
n

2ðxÞ
TÞ þ aI

� 	
dx ð17Þ

b ¼
Z

Xðx0Þ

Krðx� x0Þ I1ðxÞ � In
2ðxÞ

� �
Î

n

2ðxÞdx ð18Þ

The solution of the system of equations is given by
~h ¼ A�1b; so we only have to invert the 6 · 6 matrix A or

use any other algorithm to solve the system of equations.

We observe that if a[ 0, matrix A is positive definite and

therefore the system of equations is well posed (it has a

unique solution). It means that the parameter a avoids

instabilities in the solution of the linear system of

equations.

2.2 Numerical implementation

Next, we describe the main steps we followed to derive an

efficient algorithm of the method proposed in Sect. 2,

including the numerical considerations involved on the

computation of integrals and spatial derivatives in the

proposed method.

As it can be seen in Algorithm 1, our variational

approach starts from an initial estimation of the motion

vector field u0 which can be obtained using any other optic

flow estimation method. Then, we start the iterative pro-

cedure towards the local minimum of the energy function

given in Eq. 5. At each iteration we check the convergence

of our algorithm in order to discard the solutions that do not

provide the optimal response.

This algorithm is then applied for every point in the

image (or a grid at a given scale) to obtain the desired first

and second order flow parameters estimation, using infor-

mation within a neighborhood of that point determined by

the r parameter of the Gaussian kernel.

The influence of the main parameters in this algorithm,

r and a, is detailed in Sect. 4. Concerning other parameters

like Niter, we remark that it should be as big as possible

since it is automatically truncated when convergence is

detected. Finally, the initialization of the energy at the first

step requires the computation of the image derivatives. In

our implementation, we have used central finite differences

because it is a good compromise between an easy imple-

mentation, low time of computation and low error

propagation Raffel et al. (1998).

3 Standard methods for vorticity estimation

In order to obtain an estimation of the vorticity field,

alternatives to finite differencing have also been proposed

to compute such magnitude. In this section we describe two

of these methods that we will use later to compare the
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performance of standard vorticity estimation algorithms

with the performance of our variational approach.

3.1 Circulation method

By definition the vorticity is related to the circulation by

Stokes theorem:

C ¼
I

u � dl ¼
Z
ðr � uÞ � dS ¼

Z
x � dS ð19Þ

where l describes the path of integration around a surface

S. The vorticity for a fluid element is found by reducing the

surface S and with it the path l, to zero:

n̂ � x ¼ n̂ � r � u ¼ lim
S!0

1

S

I
u � dl ð20Þ

where the unit vector n̂ is normal to the surface S. Stokes

theorem can also be applied to the two dimensional vector

field:

ðxZÞi;j ¼
1

A
Ci;j ¼

1

A

I
lðx;yÞ
ðu; vÞ � dl ð21Þ

where ðxZÞi;j reflects the average vorticity within the

enclosed area.

In practice, Eq. 21 is implemented by choosing a small

rectangular contour around which the circulation is calcu-

lated using a standard integration scheme such as the

trapezoidal rule. The local circulation is then divided by the

enclosed area to arrive at an average vorticity, as shows the

following equation which uses a neighborhood of eight

points:
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ðxzÞi;j ffi
Ci;j

4DxDy
ð22Þ

where

Ci;j ¼
1

2
Dxðui�1;j�1 þ 2ui;j�1 þ uiþ1;j�1Þ

þ 1

2
Dyðviþ1;j�1 þ 2viþ1;j þ viþ1;jþ1Þ

� 1

2
Dxðuiþ1;jþ1 þ 2ui;jþ1 þ ui�1;jþ1Þ

� 1

2
Dyðvi�1;jþ1 þ 2vi�1;j þ vi�1;j�1Þ

ð23Þ

3.2 Second order polynomial fit and analytic

differentiation

The second standard method we use to compare our

method with was initially proposed in Fouras and Soria

(1998). For this method, it is necessary to provide an initial

estimation of the motion vector components (ui,j,vi,j) within

a certain neighborhood centered at the point (i0,j0) where

we want to compute the vorticity. Then, the components

(ui,j,vi,j) are separately fitted to a basis of polynomials {Pk

(x,y)} of K-th power using a v2 procedure, as proposed in

Press et al. (1992). The linear combination of the polyno-

mials requires M = (K + 1)2 coefficients. Thus, the number

of data points N in the neighborhood required for the v2

fitting process is N ‡ M.

In other words, the v2 fitting procedure provides the

coefficients uk and vk we need to express our initial motion

estimation vector as a linear combination of the elements

of the basis of polynomials:

ui;j ¼
XM�1

k¼0

ukPkðx; yÞ ð24Þ

vi;j ¼
XM�1

k¼0

vkPkðx; yÞ ð25Þ

Then, it is straightforward to analytically differentiate

the previous expressions. The numerical value of the

vorticity at the current position (i,j) is given by the

following expression evaluated in (x = 0, y = 0):

ðxzÞi;j¼
XM�1

k¼0

vk
oPkðx¼0;y¼0Þ

ox
�uk

oPkðx¼0;y¼0Þ
oy

� �

ð26Þ

In this method, the set of basis functions and the samples

around the point of interest can be seen as parameters of the

method since different possibilities are possible. In our

study, as proposed in Fouras and Soria (1998), we have

chosen the following set of second order polynomials in x

and y as basis functions:

Pðx; yÞ 2 f1; x; x2; y; y2; xy; x2y; xy2; x2y2g ð27Þ

This results in M = 9 coefficients to be fitted in the

decomposition described by Eqs. 24 and 25. Thus, we need

at least 9 samples from a 3 · 3 neighborhood centered at

point (i,j), which is the neighborhood used in our

experiments.

4 Numerical experiments

In order to show the performance of the proposed

approach, we present here the numerical experiments we

have performed to evaluate the accuracy of the method. We

perform experiments on synthetic and real data. In the case

of synthetic experiments we use flow models with a known

analytic expression, in this way, we are able to compare our

results with the true solution we are looking for, also called

ground truth in the field of computer vision. In this sense

we focus our attention in the flow estimation improvement

we obtain as well as in the vorticity estimation because its

interest in flow analysis. In addition, we compare our

vorticity estimation with the methods detailed in Sect. 3.

In any case, the algorithm proposed in this paper starts

from an initial estimation of the flow which can be obtained

by any desired method. This initialization must be, at least,

a rough approximation of the true motion vector field in

order to the algorithm be able to converge. In our work, we

use two different methods drawn from the state of the art to

achieve such initialization in order to evaluate its influence

on the obtained results.

The first method (PDE) used in our experiments is based

on a classical PDE scheme, presented in Alemán et al.

(2005), composed by a data term that assumes that the

image intensity is equal in two corresponding points and a

regularization term introduced in Anandan (1989) and

studied in Alvarez et al. (2000) which allows discontinu-

ities preservation on the flow. In our implementation, we

use a pyramidal approach in order to speed up the algo-

rithm and to avoid the convergence towards spurious local

minima.

The second method (COR) used in our experiments is

based on the multi-step iterative computation of cross-

correlation measures where the position of the interroga-

tion window is displaced with subpixel precision at each

iteration depending on the precomputed flow, as it is

described in Scarano (2002). To find the peak location in

the correlation map, we use a Gaussian interpolation

scheme based on a 3 · 3 kernel Westerweel (1993),
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whereas a bilinear interpolation scheme to perform the

displacement of the interrogation window with subpixel

precisition.

4.1 Experiment 1: Synthetic vortex flow

In our first experiment, we have built a sequence of two

PIV images of 1,024 · 1,024 pixels. The first image was

synthesized by the research institute CEMAGREF

(Rennes, France) using a uniform random distribution of

the particles over the whole image, with a constant particle

concentration of 256 particles each 32 · 32 window. The

particle size follows a random normal distribution with an

average of 1.25 pixels and a standard deviation of 0.25

pixels. The second image is computed by applying the

synthetic vortex flow modeled in Eq. 28 and shown on the

left side of Fig. 1. In this sense, we are able to obtain the

analytic expression of the vorticity, given in Eq. 29 and

shown on the right side of Fig. 1, which can be used as the

ground truth to evaluate our approach.

uðxÞ ¼
u ¼ �3yffiffiffiffiffiffiffiffiffi

x2þy2
p

v ¼ 3xffiffiffiffiffiffiffiffiffi
x2þy2
p

8<
: ð28Þ

x ¼ vx � uy ¼
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ð29Þ

Table 1 shows some quantitative results that demon-

strate the performance of our method in comparison with

other methods drawn from the state-of-the-art, which were

briefly described at the beginning of this section. In our

experiments, we computed the average angular error and

average Euclidean error of the flow components directly

obtained from the PDE and COR methods. Then, we use

those responses as an initialization of our method, yielding

to a significant improvement of the error measures, as it

can be seen in the table. Finally, to evaluate the noise

introduced in our approach, we initialize our numerical

scheme with the ground truth flow field, yielding to an error

rate of the same order of magnitude as in the previous case.

Figure 2 shows a detail of the results obtained with the

different algorithms under study using a PDE scheme to

compute the initial estimation of the flow. On the left side, we

show the vorticity obtained with our variational method. In

the middle, the vorticity obtained with the circulation

method detailed in Sect. 3.1 is shown, while the image on the

right corresponds to the v2 fitting method with analytic dif-

ferentiation (v2 method, from now on) detailed in Sect. 3.2.

The results show that, in all cases, a data validation step is

required in order to eliminate the outliers that appear on the

images, which mainly appear by the fact that usually not all

the particles are detected correctly in a PIV sequence, as it is

justified in Ruhnau et al. (2005a). Hence, this effect leads to

a bad convergence of the algorithm on spread points over the

whole image. It is important to remember that the proposed

energy minimization is resolved locally for every point of the

image and, since no global regularization term is used to

impose global regularity on the estimated vector field.

Hence, the convergence from the input data may lead to a

local minimum different from the global one. Fortunately,

the noise pattern that appears can be easily removed using a

median filter, as it is described in Senel et al. (2002), as a data

Fig. 1 Left Synthetic vortex

flow generated with Eq. 28.

Right True Vorticity field

obtained from the analytical

expression (Eq. 29)

Table 1 Angular and Euclidean error computed between the vortex

flow in Eq. 28 and the estimations performed with the different

approaches studied in this paper: PDE, COR and our method, where

the initialization flow is specified in brackets

Error Mean angular

error

Mean Euclidean

error

True, PDE 0.4308 3.1e-2

True, COR 0.2737 1.9e-2

True, Our method (PDE) 0.0328 9.3e-4

True, Our method (COR) 0.0347 9.7e-4

True, Our method (True) 0.0155 2.9e-4
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validation post-processing step. In our experiments, to avoid

the modification of correct signal values, we only substitute

the current value by the median when we detect that it might

be an outlier, since its value is quite different from the

median.

Figure 3 shows the validated results after the data vali-

dation step. Now, it can be seen that the dispersed noise has

successfully been removed improving the quality of the

estimations.

In order to check the influence of the initial flow estima-

tion on the results, we use again the COR scheme as

initialization to compute the vorticity. Figure 4 shows a

detail of the results obtained using the new initial estimation

as input for the vorticity computation algorithms once the

outliers have been removed with the median filter, as it was

done in the last case.

Fig. 2 Estimated vorticity before removing the outliers with a vortex flow model using PDE scheme for initial estimation. Left Results with our

variational approach. Middle Results with the circulation method. Right Results with the v2 method

Fig. 3 Estimated vorticity after removing the outliers with a vortex flow model using PDE scheme for initial estimation. Left Results with our

variational approach. Middle Results with the circulation method. Right Results with the v2 method

Fig. 4 Estimated vorticity after removing the outliers with a vortex flow model using a correlation scheme for initial estimation. Left Results

with our variational approach. Middle Results with the circulation method. Right Results with the v2 method

Table 2 Mean error computed for the different vorticity estimation

methods

Init flow Our method Circulation v2 method

True 3.07e-5 3.45e-6 4.10e-6

PDE 1.35e-4 2.37e-3 2.39e-3

COR 1.38e-4 1.80e-3 1.80e-3

Our method (PDE) N/A 2.50e-4 1.91e-4

Our method (COR) N/A 2.75e-4 2.01e-4
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Finally, in Table 2, we present quantitative error

measurements, following Eq. 30, to evaluate the accuracy

of our approach for vorticity estimation in comparison

with the ground truth model. The first column indicates

the estimated vector field from which the vorticity is

computed with the corresponding schemes described in

Sect. 3. In our experiments, we first compute the vorticity

field from the ground truth vector field. In this case, the

error rate obtained with the circulation and v2 methods

outperforms our results, since those schemes perform the

computation directly from the true field and our method

slightly modifies it. On the other situations, our method

outperforms their results because of the numerical

amplification of the initial error on the estimated flow. In

this sense, even the vorticity given by the circulation or

v2 methods, using the flow provided by our method,

yields to a lower error rate than using the PDE or COR

flows.

Error ¼
PNx

i¼1

PNy

j¼1 jxTRUE
i;j � xest

i;j j
NxNy

ð30Þ

4.2 Experiment 2: Synthetic Lamb–Oseen flow

To validate our algorithm, we have again built a sequence

of two PIV images of 1,024 · 1,024 pixels using the same

procedure detailed in the previous experiment, but fol-

lowing the mathematical flow model shown in Eq. 31, also

known as Lamb–Oseen vortex:

uðxÞ ¼
u ¼ �C0y

2p
ffiffiffiffiffiffiffiffiffi
x2þy2
p 1� expð� x2þy2

4mt Þ
� 	

v ¼ �C0x

2p
ffiffiffiffiffiffiffiffiffi
x2þy2
p 1� expð� x2þy2

4mt Þ
� 	

8><
>: ð31Þ

where m is the cinematic viscosity and C0 is the initial

circulation. In our experiments we used C0 = 0.05 m2/s

and
ffiffiffiffiffiffi
4mt
p

¼ 1
6
; which can be seen as the radius of the

Lamb–Oseen Vortex. Then, Eq. 32 presents the analytic

expression of the vorticity.

x ¼ vx � uy ¼
C0

p4mt
exp � x2 þ y2

4mt

� �
ð32Þ

Figure 5 shows in the left side the synthetic Lamb–

Oseen vortex and in the right side the vorticity computed

with the parameters used in the computation of the flow.

In Table 3 we show some quantitative results that

demonstrate the behavior of our method. As it was done in

the previous experiment, we computed the average angular

error and average Euclidean error of the flow components

directly obtained from the PDE and COR methods. Then,

these flows are used as an initialization of our approach and

again the flow obtained is improved. To emphasize the

behavior of our approach with respect to the noise, we

computed the error rate using the ground truth flow as

initialization. In this case, we obtain a very low error rate,

which shows that the noise introduced by our method is

almost negligible.

Figure 6 shows the estimated out-of-plane vorticity

obtained with our approach (image on the left) in com-

parison to the circulation method (in the middle) and the v2

fitting method (on the right) once a median filter has been

used to eliminate the outliers as a data validation post-

processing step.

Fig. 5 Left Synthetic Lamb–

Oseen vortex generated with

Eq. 31. Right True vorticity

field obtained from the

analytical expression (Eq. 32)

Table 3 Angular and Euclidean error computed between the Lamb–

Oseen flow in Eq. 31 and the estimations performed with the different

approaches studied in this paper: PDE, COR and our method, where

the initialization flow is specified in brackets

Error Mean angular

error

Mean Euclidean

error

True, PDE 0.1132 0.0574

True, COR 0.9642 0.4601

True, Our method (PDE) 0.0571 0.0083

True, Our method (COR) 0.8938 0.1968

True, Our method (True) 0.0112 0.0015
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Again, to validate the robustness of our approach, we

use the correlation-based technique previously presented in

the our experiments in order to perform an initial estima-

tion of the flow. Figure 7 shows the results obtained for the

computation of the out-of-plane vorticity after applying the

median filter to eliminate the outliers. From that image, we

can conclude the quality of our variational estimator.

To conclude, we present in Table 4 the mean error

computed following Eq. 30 in order to evaluate the quality

of the estimated vorticity in comparison with the ground

truth model. In the table, the first column indicates the

estimated vector field used to compute the vorticity and the

numerical scheme used is indicated on the first row of the

other columns. As in the previous case, the circulation and

v2 methods outperforms our results, since those schemes

perform the computation directly from the true field and

our method performs computations on a modified flow

field. However, on the other cases, our method outperforms

their results due to numerical amplification of the initial

error. It is interesting to notice that even when the vorticity

is computed with the circulation and v2 method from the

flow given by our variational approach, the error rate is

reduced.

4.3 Experiment 3: Sensitivity to main parameters

The main parameter in our numerical scheme is the stan-

dard deviation of the Gaussian Kernel r. The role of this

parameter is to determine the influence on the estimated

value of every sample within the neighborhood around the

target point. In this sense, the smaller value of sigma, the

smaller is the neighborhood and less important are their

associated weights.

Figure 8 shows the evolution of the error magnitude in

the estimation of the vorticity field (top left) and the

Fig. 6 Estimated vorticity after removing the outliers with a Lamb–Oseen flow model using PDE scheme for initial estimation. Left Results with

our variational approach. Middle Results with the circulation method. Right Results with the v2 method

Fig. 7 Estimated vorticity after removing the outliers with a Lamb–Oseen flow model using a correlation scheme for initial estimation. Left
Results with our variational approach. Middle Results with the circulation method. Right Results with the v2 method

Table 4 Mean error computed for the different vorticity estimation

methods

Init flow Our method Circulation v2 method

True 9.12e-5 1.01e-6 8.11e-7

PDE 4.49e-4 3.88e-3 3.94e-3

COR 1.98e-2 4.57e-2 4.59e-2

Our method (PDE) N/A 6.09e-4 5.77e-4

Our method (COR) N/A 2.45e-2 2.37e-2

300 Exp Fluids (2008) 44:291–304

123



angular (top right) and Euclidean error (bottom) of the

motion vector field. As it can be seen, when r = 0 the error

in all cases is equivalent to the error on the initial esti-

mation, since only one sample is taken to perform the

computation. Then, for r [ (0.5, 1) we obtain the minimum

error independently of the flow used to initialize our

approach. Finally, as long as r increases, the error mag-

nitude also increases due to an overweighting of the

samples in the neighborhood.

The parameter r is the parameter that has more influ-

ence in the computation time of our algorithm, apart from

the image size, of course, since it determines the number of

samples used to perform the estimation for every point. In

this sense, when r is large the neighborhood size is also

large and the computation time increases. On the contrary,

the smaller the sigma, the faster we get the response since

fewer operations have to be carried out. For the optimal r
[ (0.5 , 1) we obtain an average computation time of about

1 min for a 256 · 256 image.

On the other hand, the sensitivity with respect to the

parameter a, which is used to obtain a smooth solution, is

much less important. In other words, there exists a wide

range of values for parameter a that do not affect to the

solution obtained. For instance, in the Experiments 1 and 2

we obtain the results shown in the corresponding tables

using values of a from 1e-6 to 100. For a [100 the error

rate starts increasing, although slowly.

4.4 Experiment 4: Real PIV data

Finally, we present the results we obtained with our approach

using real PIV data, which were provided by the research

institute CEMAGREF (Rennes, France). The experimental

image sequence was carried out in a wind tunnel using a PIV

technique in order to study the wake behind a circular cyl-

inder, as detailed in Parnaudeau et al. (2006). An initial

estimation of the motion vector field is shown in Fig. 9. The

main control parameters of this experiment are the Reynolds

number Re = 3,900, which is based on the free stream

velocity (Ue = 4.8 m/s for this experiment), the cinematic

viscosity m = 15e-6 m2/s, the diameter of the circular cylin-

der D = 12 mm and the time interval between the two

images of each pair Dt = 25 ls, but the time between pairs is
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Fig. 8 Evolution of the error with respect to the parameter r and the

initialization method (PDE in red, COR in blue) for the vortex flow

(solid line) and Lamb–Oseen flow (dashed line). Top left Error

magnitude on the vorticity field. Top right Angular error on the flow

field. Bottom Euclidean error on the flow field
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much larger so there is no time correlation between any two

of them.

In real PIV images, the intensity pattern changes a lot

from an image to the next one due to technological limi-

tations of the camera and illumination procedures. Since

variational methods are based on the assumption that pixel

intensity does not change from the initial to the final

position, it is necessary to preprocess the input images in

order to normalize them with respect to light conditions. To

do that, we compute the mean m1 of the image I1(x,y) and

define the normalized images Î1ðx; yÞ and Î2ðx; yÞ by:

Î1ðx; yÞ ¼ m1 þ I1ðx; yÞ � Gr � I1ðx; yÞ

Î2ðx; yÞ ¼ m1 þ I2ðx; yÞ � Gr � I2ðx; yÞ

where Gr is a Gaussian kernel with standard deviation r,

which is supposed to be quite big (r = 32 in the numerical

experiments). In this way, normalization is achieved by the

subtraction to the original image of an average of the image

in a large neighborhood. Then, the constant m1 is added to

obtain two images with a similar range to that of I1. Of

course, this normalization will not work for usual images,

but with PIV images we can assume that the information of

the particle displacement depend just on the local intensity

variation and it is independent of the local intensity aver-

age, which is what we remove with this normalization.

On Fig. 10 we compare the regularized flow given by

our approach with the initial flow estimation obtained from

the normalized input sequence with the same variational

approach used in the synthetic experiments. The first row in

that figure shows on the left the u component and on the

right the v component of the initial motion vector field. In

Fig. 9 Experimental motion vector field of the wake behind a

circular cylinder

Fig. 10 Comparison of the

initial estimation of the motion

vector field and the regularized

response from our variational

approach. Top Row: Initial

estimated flow (Left u
component of the flow. Right v
component of the flow). Bottom
row Regularized flow obtained

with our variational approach

(Left u component of the flow.

Right v component of the flow)
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an analogous way, the second row shows on the left the u

component and on the right the v component of the regu-

larized motion vector field. In the images, some isocontour

lines have been represented in order to make easier the

comparison of the given results. In this sense, it can be seen

that the components of the flow are smoother in the

response of our variational approach.

Figure 11 shows the vorticity estimated with our

approach in comparison with the results from the other

methods described in this paper. Again, for an easier

interpretation of the results, some contour lines have been

represented for the same vorticity values obtained with the

different methods. From the images, it can be seen that the

vorticity field obtained with our variational approach is

smoother than the field provided by the other methods.

Moreover, a certain continuity on the derivatives is

observed, while the response of the other methods contains

abrupt changes in the vorticity field.

5 Conclusions

In this paper, we have presented a new variational method

to estimate simultaneously the flow in a PIV sequence and

second order motion magnitudes such as the out-of-plane

vorticity and the strain rate tensor directly from the image

sequence since they are directly related to the derivatives

of the motion vector field.

In this sense, our variational method not only improves

the quality of the motion vector field provided by the

methods we use in our study, but also the estimation of the

out-of-plane vorticity and strain rate tensor components is

improved by means of an energy function that depends on

the partial derivatives of the motion vector field. Our

quantitative results show that the vorticity average error is

at least an order of magnitude lower in comparison to the

average error obtained with other standard procedures to

compute the vorticity found in the literature. At the same

time, error measurements also indicate that the quality of

the initial flow estimation is improved up to an order of

magnitude.

The robustness of our method is evaluated using two

different initial flow estimations as input for our scheme,

one of them a PDE-based approach and the other one a

correlation-based technique. In any case, a data validation

step is needed in order to eliminate some outliers inherent

to the response of our approach, mainly due to the con-

vergence towards a local minimum different from the

absolute one, since no global regularization is imposed to

the response of our approach. These outliers can be easily

removed by means of a median filter since they appear at

sparse locations all around the images.

For real data, we have also obtained encouraging results

that demonstrate a good performance of our approach. In

this case, it is required a normalization of the light condi-

tions as a preprocessing step.
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