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To my family

The fundamental cause of the trouble is that in the modern world
the stupid are cocksure while the intelligent are full of doubt.

The Triumph of Stupidity
Bertrand Russell
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4.3 Evitación de Obstáculos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Seguimiento de Trayectorias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Planificación Multi-glider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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4.5 Seguimiento de Estructuras Oceánicas Móviles . . . . . . . . . . . . . . . . . . . . . . . . . . 18



List of Tables

2.1 Force balance motion model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Optimization method. Travel time for different kernels . . . . . . . . . . . . . . . . . . . . . 91
4.2 Optimization method. Computing time for different kernels . . . . . . . . . . . . . . . . . . . 91

5.1 Minimal time path cost for ABS CTS-A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2 Computing time for ABS CTS-A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Summary of minimal time path cost for ABS CTS-A* . . . . . . . . . . . . . . . . . . . . . . 122
5.4 MWW test for ABS CTS-A* wrt CTS-A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Path cost for the Minimal Time Path comparison . . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 Effective velocity for the Minimal Time Path comparison . . . . . . . . . . . . . . . . . . . . 126
5.7 Computing time for the Minimal Time Path comparison . . . . . . . . . . . . . . . . . . . . . 126
5.8 Minimal Distance to the Target. Average distance difference wrt DtG . . . . . . . . . . . . . 132
5.9 Obstacle Avoidance. Static scenarios, fast speed. Average travel time . . . . . . . . . . . . . 135
5.10 Obstacle Avoidance. Static scenarios, slow speed. Average travel time . . . . . . . . . . . . . 135
5.11 Obstacle Avoidance. Static scenarios. Effective speed . . . . . . . . . . . . . . . . . . . . . . 135
5.12 Obstacle Avoidance. Static scenarios. Computing time . . . . . . . . . . . . . . . . . . . . . 136
5.13 Obstacle Avoidance. Dynamic Scenarios, fast. Remaining distance . . . . . . . . . . . . . . . 139
5.14 Obstacle Avoidance. Dynamic Scenarios, slow. Remaining distance . . . . . . . . . . . . . . . 139

5.1 Coste del camino para la comparación del Camino de Mı́nimo Tiempo . . . . . . . . . . . . . xlvi
5.2 Mı́nima Distancia Restante al Destino. Promedio de diferencia con el DtG . . . . . . . . . . . xlvii
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Abstract

Path or Motion Planning is a Robotics discipline that deals with the search of feasible or optimal paths.

For most vehicles and environments, it is not a trivial problem and therefore we find a great diversity of

algorithms to solve it, not only in Robotics and Artificial Intelligence, but also as part of the Optimization

literature, with Numerical Methods and Bio-inspired Algorithms, like Genetic Algorithms and Ant Colony

Optimization.

The particular case of variable cost scenarios is considerably difficult to address because the environment

where the vehicle moves varies over time. The present thesis work studies this problem and proposes a

number of practical solutions for Underwater Robotics applications. The thesis focuses on Autonomous

Underwater Glider (AUG) Path Planning, considering its motion model and the effect of ocean currents.

Gliders are a type of Autonomous Underwater Vehicle (AUV) that moves with a relatively slow nominal

speed when compared with ocean currents. For this reason, they conform an interesting research field from

the perspective of path planning. Ocean current maps provide the snapshot of this physical parameter at

different time instants, which along with other physical parameters, are computed with Ocean Models.

In those zones close to the coastline they exhibit a high temporal variability, so we have to perform path

planning in a variable cost environment, where the cost function is also asymmetric.

This work attacks the problem using different approaches. Starting with classical path planning algorithms

adapted to the problem, like A*, up to optimization techniques, Genetic Algorithms, Probabilistic Sampling

methods, among others. The thesis also provides a number of proposals to solve this particular problem.

For instance, some variants of A* combined with probabilistic sampling techniques and several proposals

of optimization algorithms within the configuration space of the feasible bearings the vehicle can follow

from each surfacing point, are described and analyzed. A thorough comparison of these techniques is

covered by this document, with the intention of assessing which ones are more suitable for the given

problem, as well as analyzing their computational cost. Finally, the work explores sampling strategies for

movable ocean structures.





Resumen

La Planificación de Rutas o Caminos es un disciplina de Robótica que trata la búsqueda de caminos

factibles u óptimos. Para la mayoŕıa de veh́ıculos y entornos, no es un problema trivial y por tanto

nos encontramos con un gran diversidad de algoritmos para resolverlo, no sólo en Robótica e Inteligencia

Artificial, sino también como parte de la literatura de Optimización, con Métodos Numéricos y Algoritmos

Bio-inspirados, como Algoritmos Genéticos y el Algoritmo de la Colonia de Hormigas.

El caso particular de escenarios de costes variables es considerablemente dif́ıcil de abordar porque el entorno

en el que se mueve el veh́ıculo cambia con el tiempo. El presente trabajo de tesis estudia este problema

y propone varias soluciones prácticas para aplicaciones de Robótica Submarina. La tesis está enfocada

en la Planificación de Rutas para Planeadores Autónomos Submarinos —Autonomous Underwater Gliders

(AUGs) en inglés—, considerando su modelo de movimiento y el efecto de las corrientes oceánicas. Los

planeadores son un tipo de Veh́ıculo Submarino Autónomo —Autonomous Underwater Vehicle (AUV) en

inglés— que se desplaza con un velocidad nominal relativamente baja en comparación con las corrientes

oceánicas. Por este motivo, constituyen un interesante campo de investigación desde la perspectiva

de la planificación de caminos. Los mapas de corrientes oceánicas proporcionan una captura de estos

parámetros f́ısicos en diferentes instantes de tiempo, que juntos con otros, son computados por Modelos

Oceánicos. En aquellas zonas cercanas a la costa exhiben una alta variabilidad temporal, de modo que

tenemos que realizar la planificación de caminos en un entorno de costes variables, donde la función de

coste es además asimétrica.

Este trabajo aborda el problema usando diferentes aproximaciones. Empezando por algoritmos de

planificación de caminos clásicos adaptados al problema, como el A*, hasta técnicas de optimización,

Algoritmos Genéticos, métodos de Muestreo Probabiĺıstico, entre otros. La tesis también ofrece varias

propuestas para resolver este problema particular. De hecho, varias variantes del A* combinadas con

técnicas de muestreo probabiĺıstico y varias propuestas de algoritmos de optimización en el espacio de

configuración de los rumbos de aguja factibles que el veh́ıculo puede seguir desde cada punto de emersión,

son descritos y analizados. Este documento recoge una amplia comparativa de estas técnicas, con la

intención de valorar cuáles son las más apropiadas para un problema dado, aśı como analizar su coste

computacional. Finalmente, el trabajo explora estrategias de muestreo para estructuras oceánicas móviles.
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a renglón seguido empecé con el Máster del Instituto Universitario de Sistemas Inteligentes y
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Aquello fue un empujón en un momento propicio. Me hab́ıan concedido la beca de posgrado de
la ULPGC, a la que agradezco que haya hecho posible que me dedique a investigar, dándome
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desfrutar dos dias de folga. Muito obrigado, Nuno.

A més a més, en Nuno em va presentar les seves amistats i em va ajudar a conèixer Girona
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Notation

g(ni) Accumulated cost from nstart to ni node.

α Angle of Attack (AoA).

A Aspect Ratio A = b2

S .

ψg Glider bearing angle.

|B| Number of bearings (cardinality of B).

B Bearings set that defines the path P.

∇Vbp Buoyancy change due to the buoyancy engine.

O ( · ) Complexity in big-O notation.

ε Compressibility of the hull.

c(ni, ni+1) Cost of going from node ni to ni+1.

CD Drag coefficient.

xn−1 Ending location.

f(ni) f-cost for node ni.

γ Glide angle γ = θ + α.

U Glider velocity through water along the glide path.

ψe Glider heading (or course) angle.

ψ̂e Heading error.

h(ni) Heuristic value for node ni.

CD1,h
Induced drag for the hull.

CD1,w
Induced drag for the wings.

CL Lift coefficient.
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ah Lift slope coefficient for the hull.

aw Lift slope coefficient for the wings.

mg Glider mass.

‖· ‖ Euclidean norm, usually used as a distance.

CD0,h
Parasite drag for the hull.

CD0,w
Parasite drag for the wings.

P Path.

Pd Desired path, for the path following problem.

θ Pitch angle in the BODY frame.

T0 Reference temperature for αT .

φ Roll angle in the BODY frame.

e Span efficiency parameter e ≈ 0.8.

SR Speed ratio.

x0 Start location.

nstart Start node.

xi Surfacing location.

ts Surfacing time, between consecutive stints.

tt Travel time, from x0 to xgoal.

xgoal Target waypoint location.

ngoal Target (or goal) node.

αT Thermal expansion coefficient.

Uc Ocean current speed.

Ue Glider effective speed Ue = Ug + Uc.

Ug Glider nominal surge speed Ug = U cos γ.

Vg Glider volume at atmospheric pressure.

b Wingspan.

S Wing surface area.

Ω Wing sweep angle (at 1/4 chord line).

ψ Yaw angle in the BODY frame.



Chapter 1

Introduction

We will begin justifying this work by describing one of the main scopes of application of its contributions and
results. It is the vast scientific discipline called Oceanography. Also known as Marine Science, it is the science
that studies the ocean. It was in 1872 when the departure of the H.M.S. Challenger (see Figure 1.1) from
England on the historic four-year global expedition of exploration established the science of Oceanography
(Earle, 2012). Given the complexity of the world ocean system, Oceanography actually covers a wide range of
topics, including ocean currents, waves, and geophysical fluid dynamics; plate tectonics and the geology of the
sea floor; marine organisms and ecosystem dynamics; and fluxes of various chemical substances and physical
properties within the ocean and across its boundaries. Although we will later see that the contributions of
the present work can assist several sectors in the industry and also the navy, here we will focus on which is
probably the sector most favored from the improvements in marine technology and engineering.

1.1 Ocean Research
Probably, one of the most interesting oceanographic phenomena to study is Climate Change, since it affects
globally both the ocean itself and the life it supports. The factors that cause Climate Change include oceanic
processes, variations in solar radiation received by Earth, plate tectonics and volcanic eruptions, and human-
induced alterations of the natural world. Clearly, dissimilar agents that are complex and difficult to measure
and study. In the glossary of the National Snow and Ice Data Center (NSIDC), Climate Change is defined as
the study dealing with variations in climate on many different time scales from decades to millions of years,
and the possible causes of such variations. In order to study these processes to find statistical evidence of
Climate Change for a particular period of time and validate hypotheses like the correlation of Global Warming
and anthropogenic activities, a global monitoring and sampling network is required. Only with accurate
temporal series of physical, chemical and biological data, it is possible to improve climate models, and the
models of the subsystems they rely on (Bindoff et al., 2007). The more confident and predictable the state
of the atmosphere and the oceans are, the greater the chance to monitor and sample processes that happen
in the environment adequately —e.g. at the exact location, for their whole lifespan, with a higher or adaptive
sampling resolution, etc. Otherwise, we will not be able to adapt our monitoring or sampling strategy until
the phenomenon has reached a mature state in which it can be observed from the surface, and hence we miss
all the previous subprocesses that take place underwater.

One of the most visible proofs of ocean warming and acidification is the growth in the frequency and
intensity of bloom episodes. An algal bloom is a rapid increase or accumulation in the population of algae in
an aquatic system. Also, the particular case of Harmful Algal Blooms (HABs) constitutes a remarkable problem
for the ecosystem and human society. Ocean calcification and the impact on ocean calcifying organisms, is a
similar and related process as well, with significant consequences on the biological and chemical characteristics

1



2 1 Introduction

Figure 1.1: H.M.S. Challenger, a steam-assisted Royal Navy Pearl-class corvette launched on 13 February
1858 at the Woolwich Dockyard, that undertook the first global marine research expedition: the Challenger
expedition (1872–1876). Picture taken from The NOAA Photo Library.

of the region. It turns out to be of extreme interest for the scientists to establish which are the physical,
chemical and biological processes that originate HABs. It is also critical to observe the evolution of these
structures, quantify the concentration of nutrients, classify the chemicals and organisms of the food chain
that form the ecosystem of blooms, etc. The greatest difficulty lies in the fact that most of these processes
happen beneath the surface, and might originate far beyond several days or weeks before their consequences
are observable from the surface, as in the red tide shown in Figure 1.2. Since blooms depend on vertical
transport, their spring exhibits a tight relation with upwelling zones.

Upwelling is a phenomenon in which a vertical wind-driven motion of dense, cooler, and usually nutrient-
rich water goes towards the ocean surface, replacing the warmer, usually nutrient-depleted surface water.
During upwelling episodes or in upwelling regions, the contribution of nutrient-rich water stimulates the
growth of primary producers like phytoplankton. This is the basis for a food chain that supports some of
the most productive fisheries in the world. Clearly, the study of this ecosystem demands methods that can
monitor and take samples underwater. Furthermore, in those places where the episodes are sporadic, and
generally unpredictable, large areas must be continuously sampled at different depths in order to detect the
phenomenon since it begins. Vertical transport also happens in the other direction, going from the surface
to the ocean’s interior. In oceanic biogeochemistry there is a process known as the Biological Pump, or also
Vertical Pump, which is illustrated in the diagram of Figure 1.3. Organic carbon is transported primarily by
sinking particulate material —e.g. dead organisms or fecal pellets—, while Dissolved Organic Carbon (DOC)
reaches the deep ocean by physical transport processes like downwelling. Also, inorganic carbon such as
calcium carbonate (CaCO3), a component of calcifying organisms, reaches the deep ocean by these means.
This vertical pump takes CO2 from the atmosphere and plays an important role in marine primary production.
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Figure 1.2: Red Algal Bloom. Photo by Miriam Godfrey.

It is thought that Climate Change may affect the biological pump in the future, so it turns to be an important
process to study as an indicator (Orr et al., 2005).

A key requirement for the study of any process and its temporal evolution in the ocean, is the knowledge
or estimation of how the water masses move. That is exactly what Ocean Models are designed for, since
they solve the oceanic primitives equations in order to obtain the ocean currents. The earliest class of
Ocean Model, and still the most widely applied, was pioneered by Kirk Bryan using low-order finite difference
techniques (Bryan and Cox, 2011). Since 1970, the computational methods have evolved and, in recent
years, the usage of terrain-following coordinates (sigma, hybrid) Ocean Models has led to improvements of
the numerical algorithms for time-stepping, advection, pressure gradient, and subgrid-scale parameterizations.
Nowadays we can find Regional Oceanic Models (ROMs), which are based on models that can be adapted to
relatively small areas. A good number of oceanographic institutions use these models to predict the ocean
conditions. In order to run the models adequately, they must be correctly parameterized, tunned and, above
all, initialized with the current conditions/state of the ocean system. This is far from being a trivial task,
and for that reason ROMs are usually state-of-the-art ocean models tuned for a particular area, which turns
to be a complex task in practice; see, as a ROM product example, the ocean currents map of Figure 1.4. A
great and heterogeneous number of expensive technologies is required to achieve a proper tunning that allows
to obtain sufficient accuracy in the forecast simulations. Such technologies comprises both observation or
monitoring, and in situ sampling, e.g. satellites, HF radar, oceanographic buoys, among others.

Apart from the main world ocean currents, shown in Figure 1.5, the Ocean Model’s solution must recover
the existence of common ocean current structures. The world ocean currents might dominate the net flow in
a particular region, but we also find a composition of eddies in general. Such eddies range in diameter from
centimeters to hundreds of kilometers, and they may last a few seconds for the former, while the latter may
persist several months. In oceanography, those eddies of large diameter and a persistence of days to months
are known as Mesoscale eddies. In Figure 1.4 we can see several Mesoscale eddies resolved by the operational
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Figure 1.3: Biological and Physical (vertical) pumps of carbon dioxide, that operate in the ocean. Diagram
by Hannes Grobe, from the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.

Iberian-Biscay-Ireland (IBI) ROM in the region of the Canary Islands. Also, in order to obtain an accurate
modeling of ocean currents and conditions, river and fresh water discharges must be covered as well. River
discharges produce plumes in the coastal ocean waters and provide a high contribution of sediments. Hence,
both eddies and plumes must be accurately modeled in order to study a number of associated processes in
the oceans.

Data Assimilation is the process by which observations or measurements are incorporated into a computer
model of a real system. This process is critical to obtain a good estimation of the ocean state, and hence it
improves the accuracy of the forecast outputs. In brief, observations of the current —and also past— state
of a system are combined with the forecast to produce an analysis, which is considered as the best estimate
of the current state of the system. Essentially, this analysis step tries to balance the uncertainty in the data
and in the forecast. The model is then advanced in time and its result becomes the forecast in the next
analysis cycle. In weather forecasting there are two main types of data assimilation (Ide et al., 1997). The
first data assimilation methods where 3 dimensional (3DDA), in which only those observations available at
the time of analysis are used. The other type of data assimilation is 4 dimensional (4DDA), in which the
future observations are included, i.e. the time dimension is added. Consequently, several institutions offer
products that approximate with relatively high accuracy the present and future state of the ocean, i.e. the
nowcast and forecasts. This topic constitutes a core task in ocean research, usually known as Operational
Research. It is also a capacitating element for other studies like path planning for marine vehicles, tracking
evolving structures like eddies, transport and diffusion of contaminants, etc.
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Figure 1.4: Ocean Currents forecast in the region of the Canary Islands, computed with the Regional Ocean
Model (ROM) of MyOcean project for the Iberian-Biscay-Ireland (IBI) region. We can observer the presence
of Mesoscale ocean eddies at the South of the islands.

1.2 Ocean Monitoring and Sampling
Consequently, in order to study and model the ocean from the surface to the seafloor, monitoring and sampling
techniques are required. Since the successful launch on 27 June 1978 of SEASAT satellite by NASA’s Jet
Propulsion Laboratory (JPL), satellite monitoring have been an extremely powerful technique to observe the
state of the Earth, and in particular the ocean. SEASAT was the first Earth-orbiting satellite designed for
remote sensing of the Earth’s oceans (Fu and Holt, 1982). As many modern oceanographic satellites, it
was equipped with a RADAR altimeter, a microwave scatterometer, a multichannel microwave radiometer,
a visible and infrared radiometer and a Synthetic-Aperture RADAR (SAR), as shown in Figure 1.6. Such
instruments allow to remotely sense several oceanographic phenomena. For instance, the Sea Surface Height
(SSH) or ocean surface topography, which is the height above the sea surface, is measured with the RADAR
altimeter; the microwave scatterometer allows to measure the sea surface winds; the microwave radiometer
can measure the Sea Surface Temperature (SST), as Figure 1.7 illustrates; meanwhile the visible and infrared
radiometer identifies clouds, land and water features; and finally, the SAR can measure wave heights and sea
ice conditions.

Among the most common instruments on board, most Earth-observing satellites are equipped with devices
that rely on spectrophotometry and interferometry. The Moderate-Resolution Imaging Spectroradiometer
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Figure 1.5: World Ocean Currents. Image made by Dr. Michael Pidwirny.

(MODIS) instrument, which is on board TERRA satellite, observes up to 36 spectral bands, including the
visible spectrum as shown in Figure 1.8. These instruments allows to detect —after some calibration using
data samples from the monitored area— visible objects or elements like oil spills, biological organisms or
chemicals properties like phytoplankton, chlorophyll A, among others, as with the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) instrument on board the SeaStar satellite launched in 1997. These instruments
are not only used in spacecraft systems, but also go on board aircrafts. Although a geo-localization and
an Attitude Heading Reference System (AHRS) are required to retrieve the aircraft position and attitude
accurately, it is possible to use higher resolution instruments because we can get much closer to the water
surface; for instance, these vehicles usually carry spectrometers that sample a greater number of frequency
bands than satellites. Last but not least, the Coastal Ocean Dynamics Applications RADAR (CODAR) is a
type of High Frequency (HF) RADAR that permits to measure surface ocean currents in coastal waters in
almost real time, as well as waves heights and estimate local wind direction. Developed between 1973 and
1983 at NOAA’s Wave Propagation Laboratory (Barrick et al., 1977), modern CODAR can measure out to
100–200km offshore with a rough resolution of 3–12km, but its main advantage over spacecraft and aircraft
is that using high frequencies, it achieves resolutions as fine as 200–500m —at the expense of shorten range
around 15–20km—, always in real time.

However, all the techniques based on remote sensing, as the ones discussed so far, have an important
drawback. They cannot observe the state of the ocean and the life it supports beneath the surface; at most,
they can see only a few meters depth with good visibility conditions. Both the water itself and Suspended
Particulate Matter (SPM) are responsible of that fact. First, most of the sensors on board a spacecraft or an
aircraft cannot penetrate more than a few meters (∼ 20m) in the water column, due to the high attenuation of
electromagnetic signals in water; this happens because of water’s high permitivity and electrical conductivity,
so plane wave attenuation is higher than in the air (Rhodes, 2006). Secondly, particles suspended in the water
reflects the signal and does not allow it to go deeper; this phenomenon is known as backscattering, and it
produces a diffuse reflection of the signal, which consequently goes back to the source. Also, some physical,
biological or chemical properties of the ocean are not observable with remote sensing instruments, or at least
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they are difficult to observe directly, like salinity, dissolved O2, etc. Similarly, in many cases such instruments
required a calibration phase using samples taken from the observed region; typically because they estimate the
property indirectly, they perform an average or simply as a consequence of the noise introduced by the several
atmosphere layers. Consequently, in situ data sampling is required to study water processes along the vertical,
i.e. under the surface —in particular, at relatively large depths. The importance of sampling at different
depths, beyond the ocean surface, resides on the fact that it is crucial to understand and characterize a
great and important number of oceanographic processes. Most of these processes have been briefly discussed
previously, which can be physical like upwelling, mesoscale ocean eddies, plumes produced by river discharges,
or biological like the vertical pump of CO2, stratification of the ecosystem, study of phytoplankton and vertical
transport of organisms and organic components, among others.

In Figure 1.9 we have most usual classical sampling technologies. They range from arrays of sensors
known as rosettes to weather buoys equipped with several sensors and even Research Vessels (R/Vs) that can
carry large and extremely accurate instruments. An important advantage of sampling over remote sensing is
the higher resolution and the better quality of the measurements; indeed, instruments on board a spacecraft
are calibrated using samples taken from the monitored region. Apart from the old techniques used for data
sampling in the oceans —as hemp ropes with a weight to measure the depth, or bottles with papers to
estimate the ocean currents—, the first known proposal for surface weather observations at sea occurred in
connection with aviation in 1927, with the deployment of weather stations along the ocean to assist seaplanes
flights (Lee Dowd Jr., 1927). Nowadays, we can find many types of buoys used to measure a great variety
of properties of the ocean surface. Basically, we have moorings, of large size and equipped with accurate

Figure 1.6: SEASAT bus and payload configuration. Image taken from Fu and Holt (1982).
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Figure 1.7: Sea Surface Temperature (SST) in the region of the Canary Islands, obtained with satellite
monitoring systems for the 21 October 2011. SST image generated by the Division of Robotics and Operational
Oceanography (DROC).

instruments, and (Lagrangian) drifters of smaller size and lower cost, which move with the ocean currents.
Oceanographic buoys are like weather stations: they measure atmosphere properties like air temperature,
barometric pressure, and wind speed and direction, as well as water properties like its temperature and salinity,
wave height and dominant period, etc. Some drifters can also submerge and take samples underwater, which
are later communicated when the buoy wakes at the surface again. ARGO, a global array of 35661 free-drifting
profiling floats that measures the temperature and salinity of the upper 2000m of the ocean, constitutes a
good application example. It allows continuous monitoring of the ocean that helps to study Climate Change
and its regional impacts. The main advantages of buoys are the large autonomy and the relatively low cost.
On the other hand, the most remarkable disadvantage is that they cannot move, so they only drift with
the ocean currents, as well as the fact that most of them only sample the surface, and sensors are less
accurate than the ones carried on R/Vs. On the contrary, a R/V can move to any given point and carry
extremely accurate instruments —usually very heavy, large and expensive—, and also resources or vehicles to
explore the depths. However, R/V campaigns are extremely expensive; for instance a single day of formation
or research with the R/V “Sarmiento de Gamboa”, property of the Spanish research center CSIC (Centro
Superior de Investigaciones Cient́ıficas), costs approximately 20000e. Many institutions and governments
invest on improving these technologies to obtain more efficient, accurate and cheaper devices, because of the
pressing need to monitor the ocean, not only for Oceanography but also for military and civil applications, as
ship transport.

1.3 Unmanned Underwater Vehicles
In recent decades, given the limitations of satellites, remote sensing instruments in general, and oceanographic
buoys, the technological advances and the know-how learned have led to the development of Unmanned
Underwater Vehicles (UUVs), which can move and take samples underwater with certain autonomy. Although

1Number of ARGO floats that have delivered data within the last 30 days, for March 10th, 2013.
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Figure 1.8: Visible band image of the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument
on board TERRA satellite for the region of the Canary Islands on 14 October 2011.

there is a number of different types of UUVs depending on the target application and depth, for the sake of
clarity here we mention the two main categories only; later, in Section 2.1 we will provide a more detailed
taxonomy. First, we have Remotely Operated Vehicles (ROVs), which are tethered underwater vehicles linked
to a ship by an umbilical cable, highly maneuverable and operated by a person aboard a vessel. Secondly,
Autonomous Underwater Vehicles (AUVs) travel underwater without requiring input from an operator.

In the 1950s the Royal Navy used the ROV “Cutlet”, shown in Figure 1.10, to recover practice torpedoes.
Since this first ROV, a number of military and science applications have begun to be done more efficiently
with this kind of vehicle. The US Navy uses ROVs for rescue operations and mainly as a mine countermeasure
capability. On the other hand, the science community use ROVs to study the ocean. The main application is
high quality video images retrieval, although additional sampling devices may be on board as well. ROVs rate
from micro and mini vehicles to light or heavy workclass, which a propulsion of up to 220HP, the ability to
carry several manipulators and a ∼ 3500m depth rating. All of them are deployed from a surface vessel and
remote controlled by a trained pilot. They allow to perform complex tasks underwater, so they can be used
in place of professional divers in most scenarios. Such a capability allows for a large number of operations
that are not possible using the classical sampling technologies seen so far. However, ROVs are still attached
to a vessel and the pilot, so in this sense they are more a tool than a vehicle itself, which in the case of Ocean
Research are used during R/V campaigns.

On the contrary, with AUVs we no longer need a remote operator —the ROV pilot— and a vessel for the
deployment and recovery is usually unnecessary —or a cheap rubber boat may be enough. The first AUV was
developed at the Applied Physics Laboratory at the University of Washington as early as 1957 (Widditsch,
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(a) CTD-Rosette with CTD sensors and
Niskin bottles.

(b) Buoy developed to calibrate the
Soil Moisture and Ocean Salinity
(SMOS) mission of the European
Space Agency (ESA).

(c) Cutaway drawing of the R/V Hesperides, from the UTM-CSIC.

Figure 1.9: Classical Sampling Technologies, comprising: (a) rosettes with Conductivity Temperature Depth
(CTD) sensors along with Niskin bottles to take samples of seawater; (b) weather (or oceanographic) buoys
of any kind (moorings, floats, drifters); and (c) operations from a Research Vessel (R/V), like the deployment
of CTD-rosettes, and data sampling with a great variety of accurate sensors. The buoy in (b) was built —with
our collaboration on the remote and embedded control software— in 2008 at the ULPGC for the MIDAS-4
National Project to measure temperature and salinity with a SeaBird SBE 37-SIP, attached at the bottom of
the buoy (partly shown in the figure).

1973). This pioneer AUV named Special Purpose Underwater Research Vehicle (SPURV) was used to study
diffusion, acoustic transmission, and submarine wakes (see Figure 1.11). Now, the vehicle moves completely
autonomously while it executes the mission, programmed and configured on surface before the deployment,
until the recovery, which are the two only stages that required external intervention —from an human operator
or another vehicle. It is also possible to communicate with the vehicle, specially when it surfaces, allowing to
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Figure 1.10: The pioneer Cutlet ROV developed by the Royal Navy (the principal naval warfare service branch
of the British Armed Forces) and first used in the 1950s to retrieve practice torpedos and mines.

Figure 1.11: Self-Propelled Underwater Research Vehicle (SPURV) AUV. Cutaway drawing taken from
Widditsch (1973).

retrieve mission data, check the system status, and even change the mission to some extent. Applications of
AUVs are found in the oil and gas industry, military missions and ocean research. A survey of the seabed with
an AUV is nowadays the most efficient way to obtain a map of the place where oil platforms or infrastructure
is to be built; military missions with AUVs include underwater mine detection, inspection of protected areas
and anti-submarine warfare; scientists used AUVs equipped with many sensors to study the ocean and the
sea floor. However, with these moving and autonomous vehicles arises a number of issues that demand an
intelligent management on the resources on board. There are three important problems that engineers try
to alleviate or cope with: the autonomy, specially in comparison with buoys, which depends on the battery
hotel and sensor payload, and does not last more than a day in the best cases; the difficulty to communicate
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underwater using acoustic modems, which only allow for a low bandwidth and short distance, apart from other
limitations; and localization, since the sensors on board are not precise enough for long term dead reckoning
and an underwater acoustic positioning system like the Ultra-Short BaseLine (USBL) incurs an additional
cost and the presence of a vessel at surface. On the other hand, the advantage of AUVs is that they cost
much less than renting a R/V for a single day, and still can carry multiple sensors, although they may be less
accurate and have lower resolution. ROVs and AUVs can move along the whole volume of water and perform
complex maneuvers and tasks, and are far safer and cheaper than a bathyscaphe with a pilot or scientist on
board, or even professional and scientific divers.

1.3.1 Autonomous Underwater Gliders
It was in 1978 when the first idea and applicability of a vehicle that steer to move slow consuming low power was
envisioned by Doug Webb for SOund Fixing And Ranging (SOFAR) floats at small speeds such as 10km/day,
in a Woods Hole Oceanographic Institution (WHOI) memo (Regier and Stommel, 1978). Later, in November
1991, an advanced, autopilot-controlled glider was designed and successfully tested at Seneca Lake (New
York); it was the precursor of the modern SLOCUM gliders of Teledyne Webb Research and Bluefin’s Spray
gliders, as well as others like the Seaglider of iRobot, all of them shown together in Figure 1.12. The second
original prototype used a hydraulic pump to inflate an external bladder as the means of changing buoyancy
for ascent/descent, gliding along a saw-tooth trajectory underwater (Simonetti, 1992). In this second test,
the average horizontal glide speed was improved to 0.20m/s, as well as the turn radius, which was of 7 –
13m. Small changes in its buoyancy and the center of mass, in conjunction with the wings allow gliders to
convert vertical motion into horizontal, so they navigate gliding forward with zero power consumption. The
idea of a flexible bladder to change the vehicle buoyancy resembles the swim bladder of lungfish (Hass, 1994)
(see Figure 1.13). This system reduces dramatically the power consumption required for moving, since the
pump that changes the buoyancy only has to be actuated a reduced number of times, at the inflexion points
in the yo-yo profile performed by the glider. The yo-yo stands for the up-down vertical movement produced
by the buoyancy change. This provides gliders with a large autonomy —in the order of months, depending
on the scientific equipment—, and it is for this reason they have been extensively applied to Ocean Research
in recent years (Rudnick et al., 2004).

Along with the designed and field tests of the original gliders in 1991 by Stommel, also the specification
of a 5-year endurance, 0.28m/s (> 1km/h) horizontal speed ocean glider with and ocean thermocline-driven
buoyancy change engine was presented (Simonetti, 1992). Nowadays, although thermal gliders have been
developed, most common gliders use an electrical engine. The first commercial sale of a glider happened
relatively recently, in October 2001, at WHOI (Donaldson, 2007). They have become a very efficient way to
obtain depth profiles of temperature, salinity or other ocean properties for long periods of time and around a
given region or path. The large autonomy of ocean gliders beat AUVs, but they navigate at low speed and with
less maneuverability. Consequently, the effect of the ocean currents turns to be considerable in the resulting
trajectory followed by the glider; ocean currents range from 0 to 1 – 2m/s generally, so they are usually
close to the glider’s horizontal speed or even faster. They produce a drift in the trajectory, which introduce a
significant uncertainty on the glider’s location while underwater. Only when the glider surfaces and obtains a
Global Positioning System (GPS) fix —or from any other Global Navigation Satellite System (GNSS)—, it is
able to establish its actual location —and the average ocean current for the last stint (underwater flight) as
well.

1.4 Autonomous Underwater Glider Piloting and Path Planning
Three main tasks have to be done by human operators during a glider mission. In chronological order:
deployment, piloting and recovery. The deployment and recovery are isolated procedures, which are done only
once in a mission, when it starts and at the end, respectively. All the operations required to put a glider
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Figure 1.12: Spray from Bluefin Robotics (front), SLOCUM from Teledyne Webb Research (middle) and
Seaglider from iRobot (back), at the Gliders Laboratory in the installations of the Oceanic Platform of the
Canary Islands (PLOCAN). Courtesy of PLOCAN. Please note that wings are removable to facilitate shipping
and maintenance, and for that reason they have been removed from the hull in the vehicles shown here.

on the water, and all the checks to verify it is working properly, are part of the deployment. Similarly, the
recovery comprises the operations to retrieve the vehicle from the water. Both are physically done from the
surface using a vessel or a rubber boat. During the mission, however, the glider operates autonomously, but
still requires some sort of piloting. The reason falls on the fact that ocean currents may be faster than the
glider’s. Hence, it can get trapped in a region of strong currents while trying to reach the current target
waypoint. The basic control algorithm running in the glider’s processor —a low power Persistor in the case of
SLOCUM gliders, with low computational power— is not enough to find a path to the target in a reasonable
time; it computes the dead reckoning using the depth and attitude (pitch and roll) sensors and incorporates
a module for ocean current estimation to correct the vehicle bearing. Therefore, a glider pilot can change the
current target waypoint temporarily to avoid strong opposite currents and then go to the desired location.
In this thesis we will refer to manual piloting when a human communicates with the vehicle to change the
mission parameters, in particular for the navigation subsystem, and manipulates the waypoints list to reach
a given region or follow a certain trajectory, in accordance with the ocean currents that may interfere on the
glider’s motion. The SLOCUM Coastal Electric glider is commanded with user-generated missions executed
from the glider shell named GliderDOS —a subset of picoDOS, which itself is a subset of the Disk Operating
System (DOS). Mission files are composed of behaviors —with arguments— and sensor values. In SLOCUM,
the goto list behavior establishes the list of waypoints to reach and how to traverse it (see Kerfoot and
Aragon, 2010). If required, the pilot can change the waypoint list and some arguments in a mafile —a file
with the waypoints specification for the mission—, and re-compile the mission without exiting it. At the time
of writing, the pilots have to apply these changes and re-compile the mission manually, from the Dockserver
terminal that allows to communicate with the SLOCUM glider. Also, it is the pilot itself who analyzes the
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(a) Bow nose of the SLOCUM glider with the bladder, of black rubber,
partly empty.

(b) Swim bladder of a Rudd fish.

Figure 1.13: Analogy of the bio-inspired bladder that controls the glider buoyancy.

ocean currents maps, which may include forecasts computed with the Ocean Models discussed so far, and
intelligently finds the list of waypoints required to reach a particular region, despite of the ocean currents. The
RU27 glider was piloted this way in the trans-Atlantic mission, which final trajectory is shown in Figure 1.14.

A good glider pilot must have some knowledge of the ocean behavior, its structure and dynamics, apart
from the technical details of the glider navigation and control system. Therefore, in order to analyze ocean
currents forecasts appropriately, some oceanographic background is demanded. But not only that, since the
temporal variability of ocean currents is high, particularly near the coast and at sub-mesoscale level, it is
possible to exploit such information, as we explore in this thesis. However, for a pilot this task becomes quite
complex under such conditions, because of the great volume of data and the great difficulty to establish the
optimal path when currents vary drastically in short periods of time —e.g. in hours. In any case, a path
planner applied to pilot gliders using dynamic ocean currents maps produced by Ocean Models, is always
useful because it allows to automate the piloting. Also, in those regions of high variability and complexity,
path planning algorithms can find a feasible path to the target waypoint, with the warranty of optimality, or



1.4 Autonomous Underwater Glider Piloting and Path Planning 15

Figure 1.14: Path followed by the RU27 Scarlet Knight (SLOCUM) glider in the trans-Atlantic mission,
accomplished in 2010. Mission headed by the Rutgers University, with the collaboration of the Division of
Robotics and Computational Oceanography (DROC), SIANI.

at least it will be close to the optimal. In sum, the main advantages of glider path planning with respect to
traditional manual piloting are the ability to consider all the high temporal dynamics of the ocean currents
—as computed in Ocean Models forecasts— to obtain feasible and nearly optimal paths to the target waypoint
automatically.

Path planning techniques applied to glider piloting have a great potential for various reasons. First, it
is a key element for true automatic, intelligent and efficient piloting. In the case of SLOCUM gliders, some
sort of automatic waypoint modification is required, since the current software does not support it, and still
requires the intervention of the pilot. The integration of such tools and a path planner would allow for
less human-assisted and more autonomous glider missions to be accomplished at the ocean. Secondly, when
tracking evolving features or structures like eddies, path planning techniques can incorporate the logic to
obtain adaptive sampling paths that help to characterize the phenomenon. Such path planner would take into
account the temporal evolution and variability or dynamics of the structure, which is very difficult to manage
manually by a glider pilot. And last but not least, gliders can be considered Lagrangian driven drifters that
can contribute data samples to improve Ocean Models by means of data assimilation.

This thesis covers several problems —with a number of associated applications— that can be solved with
path planning techniques. The most basic problem tries to find the optimal path from a start waypoint A to a
target one B, which is classical path or motion planning problem in Robotics. The classical solution is the A*
algorithm (Hart et al., 1968) that, based on Dijkstra’s algorithm (Dijkstra, 1959), obtain better performance
by means of using heuristics. It also allows for obstacle avoidance and there are many variants that deal with
extensions of the original problem. However, even for the basic problem, when applied to ocean gliders, even
the basic A* must be adapted to accommodate the particularities of glider path planning: in brief, the glider
navigation scheme, and the effect of the ocean currents, which are function of the space (x, y, z) and time
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t. In this dissertation, apart from the basic path planning problem, we also cover path planning for multiple
vehicles with coordination constraints, path following and moving targets or evolving ocean structures like
ocean eddies. Several state-of-the-art techniques have been extended to support glider path planning and
novel approaches are also proposed to capture the particularities of glider’s navigation. The algorithms
analyzed range from graph-based techniques as A*, to probabilistic sampling methods like Rapidly-Exploring
Random Trees (RRTs) (Lavalle, 1998), and optimization approaches like Genetic Algorithms (GA), Simulated
Annealing (SA) and Iterative Optimization. We have tried to design and implement all the algorithms in this
work with the glider navigation pattern in mind, because here we focus on contributions to the particular field
of glider path planning. However, some proposals may be applicable to similar planning problems, which lie
under a category that can be defined as path planning in variable asymmetric cost environments, although
still with some peculiarities, as we will later discuss.

1.5 Thesis Hypothesis
This PhD work delves in the following thesis statement:

Novel Path Planning algorithms designed for the problem of Autonomous Underwater Gliders
(AUGs) navigation bring the possibility of computing (sub-)optimal paths automatically, and hence
improve, simplify and, in some cases, enable missions in zones with strong ocean currents that
exhibit a complex distribution or a high temporal variability.

Put differently, our hypothesis is that the current way of piloting ocean gliders can benefit from path
planning algorithms. Such benefits will be evident and remarkable in certain scenarios, which are those of
high temporal variability and strong ocean currents. Although the automation of glider piloting is of interest
per se, a path planner can also help in the task of finding the optimal trajectory to reach a point, stay at a given
position, among others tasks. Therefore, it can improve many factors of the mission —e.g. time, autonomy,
safety, etc.— and what is best, it might turn into feasible some kind of missions that were particularly difficult
to perform formerly.

Our intention is also to show that classical path planning techniques, and some of the concepts they
are based on, can be exploited to adapt them or design novel approaches for ocean gliders. Indeed, we will
introduce several methods that are inspired in graph-based methods, probabilistic search and optimization.
This dissertation tries to show that these techniques manage the problem properly, since they consider the
peculiarities of the problem, and hence are susceptible of being incorporated in real missions/conditions. Also,
the experiments will allow to categorize the methods depending on the complexity of the scenario —obstacles,
strong currents, high temporal dynamics, etc. Finally, a special effort is made to reduce the computational
time of our techniques, so they can be run during the short time intervals the gliders are at surface to localize
themselves and communicate. The path planners are therefore able to find a path within this time, and the
resulting bearing command can be uploaded to the vehicle before it submerges again.

Similarly, we explore the applicability of these techniques to concomitant problems. This is the case of
multi-glider coordination, obstacle avoidance, navigation under constraints, path following, area surveillance,
tracking evolving ocean structures like ocean eddies, among others. Then, we discuss how these methods can
be extended to support other problems, and further generalization concerns.

1.6 Limitations and Scope
In this thesis we try to answer the following questions, which together define the scope and extension of the
present work.
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• In the field of Robotics, the Path Planning literature gathers an important number of algorithms that
are generally used to solve the problem of finding the (quasi-)optimal sequence of state configurations
that allows a robot to move from one pose or position to another. It is of great interest to study whether
these methods are applicable in the field of gliders path planning or not. For instance, is A* search
applicable? Can it be adapted to deal with the problem? or is there some particularity that prevents it
to be done, or does it turn to be an inefficient approach?

• We will see that classical or common path planning methods are not directly applicable to the problem
at hand, unless they are adapted —sometimes significantly. At this point, we will try to answer which
are the particularities of path planning for Autonomous Underwater Gliders (AUGs) that justify such
need for adaptation. Consequently, it will be possible to give some insight to the following questions:

– Which are the differences with respect to other problems that are solved with classical path
planners? Here, we refer to problems like path planning in mazes, cost maps —e.g. relief maps—,
etc.

– What reasons explain why classical techniques are not applicable or useful in this case? Or what
impede them to manage the problem efficiently?

• The study of the literature and the state-of-the-art should allow us to find out which kind of problem
we are trying to solve, i.e. within which category is taxonomically classified by other authors, or at least
to establish the most similar.

• From a more pragmatic point of view, we want to investigate and engineer several methods to address
the problem. In the present work we will implement several novel techniques to give some evaluative
assessment for a representative sample of glider path planning scenarios. This assessment will be twofold.
First, evaluate the optimality of the solution or how far from the optimum is it —or how much does
it improve other state-of-the-art methods. Secondly, the computation time and the usage of memory
resources.

• In connection with the previous question, we will be able to compare our results with other approaches
that might already exist in the literature of this topic. We could answer then, how other authors deal
with the problem and which simplifications and assumptions do they make. And hence, we will try to
see whether the algorithms designed for glider path planning scale and are generalizable or not, i.e. if
they can be apply to more general path planning problems.

• Regarding the dimensionality of the problem, we will see that the ocean modeled processes have 4
dimensions from the point of view of glider path planning, neglecting the vehicle configuration and
dynamics. Being underwater vehicles, gliders navigate through the three-dimensional water mass, which
also moves significantly over time. Also, we could consider, or just neglect, some characteristics of the
vehicle dynamics and the navigation, as the gliding angle, the minimum and maximum depths of the
yo-yo profiles, the nominal speed, and so on. How to manage all this complexity and high dimensionality
of the problem efficiently is also a concern of the present work. Similarly, we want to see whether it
is possible to ensure the optimality of the solution found, or just to some extent and under certain
assumptions. And also, analyze in which cases is more difficult to ensure such optimality.

• From the implementation and evaluation of different techniques we will obtain some intuition of which
ones are more suitable for certain conditions or scenarios. Some categorization of the scenarios will
reveal as well, e.g. clutter areas that demand obstacle avoidance logic, high temporal variability zones,
strong currents, etc.

The questions above define the scope of the present thesis, since it tries to answer each of them. But it
is also important to put clear the limitations or assumptions made in this work, which are there to reduce the
complexity of the problem and tackle it adequately.
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• Regarding the high dimensionality of the problem, we will have to reduce it to some extent. For this
reason, we will assume a simplified motion model for the glider. Also, in some cases path planning will
be done considering 2D surface currents, hourly spaced in time, while in others we will take the 3D
ocean currents, although they will be daily means. We will see that this reduction in the dimensions of
the problem is often acceptable, while it reduces the complexity substantially.

• Some of the particularities of typical glider missions and piloting are neglected often. In some cases it is
not possible to observe some phenomena, like biofouling, which affects the glider speed and trimming.
As a consequence, the glide angle, and even roll change, and it might produce some bias in the heading.
Similarly, the weight, the mass center and the glider’s buoyancy varies, with an important reduction on
the glider nominal speed. In others we can only estimate with some error a certain parameter, like the
time the vehicle stays at surface. Also, sometimes we do not model such aspects because we want to
analyze the rest of the system, ignoring their effect. Indeed, we have implemented simple models for
them, although it is still difficult to obtain the real values of a given mission in advance, before path
planning.

• The embedded systems and software that state-of-the-art gliders have on board is still very restricted
in capabilities. Hence, in practice, automatic piloting is not straightforward. Although not strictly
a limitation, we have covered this fact in our simulations. Similarly, since the quality of the dead-
reckoning is quite bad, communications are not possible, and the drift produced by ocean currents is
not observable while submerged, a path planning approach with discrete commands widely separated
on time is required. If that not were the case, we could formulate a different path planning scheme,
in which we could vary the vehicle heading —or even other navigation parameters— more frequently.
However, even in that case, the current vehicles would not be able toi have the ocean currents maps
on board to update its heading accordingly, neither the computational power to handle them. Path
planning would be of interest even in such case, hence.

1.7 Thesis Outline
Before we describe the outline of this dissertation, it is worth mentioning that this thesis is not about developing
the differential equations of ocean models, neither the initialization and resolution of them. Here we simply
take their results as inputs. We will call such results ocean model products, and we will describe the most
common ones, what they represent, and what are they useful for, as well as their connection with path
planning methods later in Appendix A. In brief, it will give an introductory overview of ocean modeling and
data assimilation. Also, the discretization resolution of the output is relevant when doing path planning, so
we will introduce an ocean model taxonomy based on their scale, and will discuss the importance of Regional
Ocean Models (ROMs) in coastal zones.

The present document is composed of three main chapters that explain and explore the field of Ocean
Research with Autonomous Underwater Gliders, along with the results and contributions of this thesis to the
area. The first two chapters begin with a review of the state-of-the-art at the time of writing this dissertation.
Then, a thorough analysis of some techniques suitable for the problem is included and validated with extensive
simulations and experiments, as well as field trials.

Given the introduction to the field of Ocean Research of this chapter, we will start the next chapter by
discussing the sampling technologies based on underwater vehicles. We connect the dissertation with the field
of Underwater Robotics, and hence with Autonomous Underwater Vehicles (AUVs). Autonomous Underwater
Gliders (AUGs) are briefly described in the first sections, bringing into focus their tight relation with ocean
sampling and the great versatility they incorporate into this topic. This is a consequence of the great autonomy
and the ability to move of these sampling platforms, as a main difference with respect to oceanographic buoys
or propelled AUVs.



1.7 Thesis Outline 19

In Chapter 2 we also delve into the details of AUGs, that we will indistinctly called ocean gliders or just
gliders in the sequel, as well. Since path planning methods have to model the vehicle that is going to navigate
the maps, we must study thoroughly the principles that govern the kinematics and —to some extent— the
dynamics. We will describe how gliders operate on water, the phases of a typical oceanographic mission,
and the communication and navigation mechanisms. Regarding the glider’s dynamic model —which also
depends on the particular vehicle and its setup—, we will show different alternatives that we have considered;
a punctual model, a more elaborated force balance model, and even dynamic models.

At the time of writing this thesis, there exists some remarkable models of gliders that deserve to be
mentioned and discussed in detail. We will dedicate some lines to the description of Teledyne Webb Research’s
SLOCUM glider, Bluefin’s Spray glider2 and iRobot’s Seaglider3. It is also worth mentioning the great interest
on this vehicles, which have boosted up several glider network initiatives, like the European Glider Observatory
(EGO), organizations and universities that are actively working with gliders, like the National Oceanography
Centre Southampton (NOCS), University of Southern California (USC), Queensland University of Technology
(QUT), Balearic Islands Coastal Observing and Forecasting System (SOCIB), Oceanic Platform of the Canary
Islands (PLOCAN), among others.

Ocean gliders are nowadays a successful tool for long-term oceanographic surveys, they are used to retrieve
ocean parameters that help in climate change studies, the industry and the navy are using them for their daily
tasks, and much more. These vehicles have become a proven technology to operate in the sea and a robust,
efficient and relatively low-cost tool for many tasks. We will enumerate some of them and how they are
accomplished. In particular, we will elaborate on the piloting of ocean gliders with the software capabilities
and applications provided by the manufacturers, like SLOCUM’s DockServer. We will introduce the concept
of automatic piloting in this area, what advantages it incorporates to the missions, describing which systems
have still to be developed, and how it turns into feasible some specific types of missions that would not be
possible otherwise.

In Chapter 3 we give a list of glider path planning problems and applications. We will start with different
objective functions, for the two atomic optimization problems we identify in the field of glider path planning,
being the minimal time path and the minimal distance to the target problems. Multiple gliders and constraint
path planning is covered, since it is of great interest to study large ocean structures at several points
simultaneously, or just for a cross-validation of the vehicle sensory suite. Apart from this sort of coordination,
we also include the problems of path following or hold-track, and tracking of evolving ocean structures. An
exhaustive analysis of ocean eddies is included, with their description, techniques to detect and characterize
them, and their relevance and connection with Harmful Algal Blooms (HABs). From the point of view of
glider path planning this introduces a variety of approaches to assist in the process of finding the centroid
and boundary of the eddy over time, which requires a search for the optimal navigation pattern around the
structure.

We will finish these first chapters with the list of the path planning techniques developed and a thorough
description and comparison of them in Chapter 4. At that point, we will start with an introduction to Path
Planning in the area of Robotics and Artificial Intelligence, in order to settle down into the general problem,
and finally cover the specific case of AUGs. The different approaches designed to tackle the problem will be
described in detail. Also, other techniques are explained and reasons are given to show why they are difficult
to adapt for gliders.

The experimental results derived from the application of the techniques developed in this thesis is covered
in Chapter 5. The Regional Oceanic Models (ROMs) used, and the scenarios or zones considered in the
experiments are listed and described in terms of their temporal variability, ocean currents strength, presence
of obstacles or low bathymetry depth, among other relevant features. Similarly, the glider motion model
employed —from the ones available— in the path planners is defined and how the dead-reckoning is computed
inside the planner kernel.

2The Spray glider was originally developed at Scripps Institution of Oceanography (SIO) under Dr. Russ Davis.
3The Seaglider was originally developed at the Applied Physics Laboratory (APL) of the University of Washington.
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The results obtained with several techniques —novel and classic— appear in this document sorted by
problem or application. That is, for each application —e.g. go to a target, path following, obstacle avoidance,
multi-glider coordination, etc.— we show the solution found with different algorithms, which are compared
then. Finally, we also discuss the field tests performed, starting with the mission setup, to later explain the
data acquired and evaluate the path planning methods in real conditions. Also, some sort of validation of our
path planners and the input products —i.e. ocean currents maps— computed by ROMs is included.

Finally, the last chapter of this thesis discusses the contributions, puts clear the conclusions and enumerates
the conference papers and journal publications derived from this work. Also, further work is proposed to
continue the research explored here. In brief, this covers more experiments, including field tests. Apart from
the main matter of this dissertation, a few appendices are included at the end to provide complementary
information and details.



Chapter 2

Ocean Gliders

In the introduction we have justified the great potential of ocean gliders for Ocean Research. They constitute
an effective vehicle to monitor large regions for long periods of time, at a relatively low-cost investment. It
is the particular propulsion system they use what confers on them such a large autonomy to operate at the
oceans. However, it is also the origin of the slow speed they can generate to move underwater. Since the
speed of the ocean currents can be equivalent —or even greater— to such speed, the vehicle drifts while it
moves, and an intelligent and planned strategy is required to reach certain locations at the sea. In the next
chapters we will address this particular task and the problems or applications it can help to solve.

Before we described the most common glider path planning problems and the algorithms developed in
this thesis, we will see here that the motion model of the vehicle plays an important role in the design of the
path planner, particularly in the case of AUGs. For this reason, the next sections give a thorough description
of ocean gliders, the piloting and navigation, and the mathematical formulation of different glider motion
models. Three motion models are presented: a simple, but practical, point model; a force balance motion
model; and references to dynamics motion models that, as we will see, are not required for path planning and,
consequently, are out of the scope of this thesis.

2.1 Autonomous Underwater Gliders
We have already described briefly ocean gliders in the introduction. Here we will give a more detailed
explanation, from the perspective of Underwater Robotics. After a succinct categorization of underwater
robots, we describe the principle of operation of ocean gliders. Later, this will be the basis of the glider
motion models described in Section 2.2. These motion models are an essential element of the glider path
planning algorithms developed in this thesis, since they will integrate the glider motion in order to evaluate
the cost of traveling from one point to another.

In Underwater Robotics, we distinguishe different types of vehicles depending on their autonomy and target
applications. On one side we find Remotely Operated Vehicles (ROVs), which are tele-operated vehicles that
are connected to the surface vessel or pilot with an umbilical. The umbilical cable transmits the commands
sent by the human operator, and sends back the data gathered underwater; it also provides power to the
vehicle. On the other side, we have truly Autonomous Underwater Vehicles (AUVs), which navigate and
perform some tasks autonomously. Both ROVs and AUVs are known as Unmanned Underwater Vehicles
(UUVs), since there is no human on-board, reducing the risk, cost and size of the vessel. Two representative
examples of ROVs and AUVs are shown in Figure 2.1 (a) and (b), respectively.

Depending on the target application, we find different types of AUVs. Generally, they are propelled by
several thrusters, so their autonomy is limited to a few hours —e.g. 100h at 4knot for the Hugin 1000 AUV
(Konsberg, 2013). However, we can distinguish between cruising and intervention vehicles. Torpedo-shape
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(a) AC ROV. (b) SPARUS AUV.

Figure 2.1: Examples of Unmanned Underwater Vehicles (UUVs): (a) AC ROV property of QSTAR, and (b)
SPARUS AUV designed by the Centre d’Investigació en Robòtica Submarina (CIRS). Images taken at (a)
FIMAR 2013 and (b) the 2nd Field Training School in Autonomous Underwater Robotics Intervention.

AUVs operate offshore in long-range cruising or survey missions, while intervention vehicles can also perform
tasks in confined environments and even do some sort of manipulation (Ribas et al., 2012). Autonomous
Underwater Gliders (AUGs) lie within the first category, although they are not propelled vehicles. They
incorporate an efficient propulsion system that allows them consume very low energy to navigate in the ocean,
so the autonomy is increased to several months.

2.1.1 Description
AUGs, or ocean gliders, propel themselves by changing their buoyancy and using wings to produce forward
motion. Here we follow the description of the principle of operation of gliders given in the work of Bishop
(2008). The mechanism of propulsion is known as a buoyancy engine, which in the case of the SLOCUM
glider (see Figure 2.2) can ingress or expel ∆Vbp = 250cc of fluid. In Section 2.2.3 we will see the balance
of forces in the vehicle and the resulting speed for ∆Vbp and other parameters like the pitch θ. In fact, a
primary pitch control is achieved by placing the buoyancy engine in the nose cone of the vehicle. A more
precise tuning of the pitch is given by the movement of the internal batteries.

Figure 2.2: SLOCUM glider designed by Teledyne Webb Research.
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Figure 2.3: Diagram of the yo-yo profile and saw-tooth pattern followed by a glider while it navigates
underwater using the oil bladder and pump. The most common depth interval for an underwater stint
and the time spent at surface are given. Note that in the figure the dimensions are not proportional, and
the pitch angle is exaggerated. The travel distance for a 6 – 12h yo-yo profile is ≈ 10 – 20km, gliding at
Ug = 0.4m/s = 1.44km/h, and the pitch angle is ≈ 35◦. Also, depending on the glider model, the depth
interval can be 20 – 200m or 20 – 1000m, in the most general case nowadays.

Basically, the pitch allows the wings and the hull to produce the hydrodynamic lift required to propel
the glider horizontally, while it dives or climbs as a consequence of the change in buoyancy. As a result, the
vehicle describes a vertical saw-tooth pattern while it moves, as shown in Figure 2.3. Each cycle of consecutive
dive and climb movements is referred as a yo, hence the trajectory underwater is known as a yo-yo profile.
This propulsion system produces an effective but low horizontal speed Ug, usually below Ug ≤ 0.4m/s.
Consequently, gliders are strongly sensitive to ocean currents Uc, so they might have to adapt the bearing ψg
to the ocean current velocity field in order to travel along the desired/commanded heading ψe.1

In terms of power consumption, the glider saw-tooth profile is very efficient, since the gravitational force is
used as the power source for propulsion, that is the most critical task for AUVs persistence. Besides processing
and communication, the batteries are only used intensively during a small fraction of the cycle time to change
the vehicle buoyancy, by means of an electric buoyancy pump; and, much less demanding, to modify the
vehicle attitude and bearing angle ψg while underwater using low consumption actuators. Going one step
further, the thermal gliders replace the electric pump by thermo-active materials that react to the temperature
gradient of the ocean, extending the vehicle range to allow, theoretically, planet circumnavigation.

1We follow the notation of Keay (1995) for the bearing and heading, where bearing is equivalent to course, being the
orientation of the forward movement of the vehicle.
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2.1.2 Piloting and Navigation
From the perspective of the glider pilot, gliders are semi-autonomous underwater vehicles that navigate
autonomously underwater, but can be commanded when they surface. The navigation behavior of a glider
during a mission is depicted in Figure 2.4. Periodically, the glider surfaces to localize itself using the GPS,
and to communicate the mission data collected underwater via satellite to the ground station. It also stays a
few minutes ≈ 15min at surface waiting for new orders, as the target waypoint xgoal. The figure illustrates
this surfacing interval and the yo-yo profile underwater. The ellipses represent the uncertainty on the vehicle
position underwater. Gliders dead reckon when they navigate underwater in order to maintain the heading
ψe to xgoal. However, the navigation instruments and the processing hardware on board are very modest
—e.g. SLOCUM gliders use a persistor for processing and only an inclinometer to measure the pitch θ and
roll φ, which is used by the Inertial Navigation System (INS) that computes the vehicle dead-reckoning—,
and hence the pose estimate uncertainty grows over time rapidly because of the low precision of the INS. The
main source of uncertainty on the pose estimate comes from the drift caused by the ocean currents, which
cannot be detected by the sensors on board. Since the gliders travel at a slow nominal speed Ug, they drift
significantly from the expected trajectory, and only when they surface again the pose uncertainty collapses to
the actual location with the first GPS fix.

Figure 2.4: Diagram of a glider navigation stint, that comprises: the emersion and localization with the GPS,
the drift produced by ocean currents and wind at surface for ts ≈ 15min, while it also communicates with the
base station; the immersion; and the yo-yo profile during the underwater navigation period, with inflection
points at a given depth interval [zmin, zmax]. On surface, the glider localization is solved using the GPS,
but after the diving point the location is unknown. The ellipses represent the uncertainty of the position
estimate underwater. The main source of uncertainty is the drift caused by the ocean currents. At each
surfacing point such uncertainty collapses with the first GPS fix.

Figure 2.4 represents a cycle which is usually referred as stint. These cycles are repeated typically for 6
– 12h periods, a separated by surfacing intervals of 15 – 20min. During a stint, the glider tries to maintain

http://www.persistor.com
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the bearing ψg that compensates the expected effect of the ocean currents in order to head to xgoal. It sets a
pitch θ that is generally fixed and close to the optimum in terms of the forward propulsion Ug. The pitch θ,
along with the depth interval [zmin, zmax], determine the number of yo-yos during the stint, which is typically
small. Regarding the depth interval, the top level is usually zmin ≈ 20m to avoid the effect of waves and
winds near the surface. The bottom level depends on the mission, but it is also bounded by the maximum
pressure the hull of the vehicle can stand underwater. In the case of SLOCUM gliders the are two models:
one can reach zmax = 200m, while the other can dive up to zmax = 1000m.

At the time of writing this dissertation, ocean gliders are piloted manually. This means that when they
surface, it is a human who connects to the vehicle to change the target waypoint xgoal or any other system
parameter. In fact, in the case of SLOCUM gliders, this is done using the Dockserver and associated tools.
With the potential of glider path planning tools to find the optimal path to the target waypoint xgoal, it comes
the demand of further automation of this process. This software cannot be accessed programmatically, so
the resulting set of bearings B of the path found by the path planner, cannot be easily sent directly to the
vehicle. A great effort is being made at this moment to develop the tools that will allow to integrate glider
path planning algorithm in the loop. This way, the optimum path can be recomputed every time the glider
surfaces, and the updated B can be sent before it dives again —or at least the bearing for the next surfacing
point.

2.1.3 Commercial Models
A good selection of most remarkable glider systems up-to-date is covered by Barker (2012) in a Master Thesis
that evaluates this technology. Here we will described some of them briefly, with special attention to the
SLOCUM gliders, since we have used the glider path planning algorithms developed in this thesis to assist on
their piloting.

Figure 2.5: Folaga hybrid underwater glider in a pool test during the 2nd Co3-AUVs Summer School at Jacobs
University in Bremen.

The SLOCUM gliders are manufactured by Teledyne Webb Research. In the electric SLOCUM an electrical
pump inflates/deflates external bladder to change the vehicle buoyancy. There are two main variants, with
depth ratings of 200m and 1000m. The company was awarded the Littoral Battlespace Sensing Glider contract
from the US Navy, and since them they have became one of the main providers of this technology worldwide
(Barker, 2012). They also develop the thermal SLOCUM glider, with a depth rating of 1200m. The buoyancy
engine is controlled by the change of state of a oil mixture, so no electric power is used. However, it only
operates if the temperature difference at surface and the at the maximum depth allow such change of state,
which must be ≥ 12◦C for the SLOCUM model.

http://robotics.jacobs-university.de/projects/Co3-AUVs/summerschool2011.htm
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We have already shown the electric SLOCUM, along with the Spray and the SeaGlider in Figure 1.12.
On one hand, Bluefin Robotics manufactures the deep-diving Spray glider, originally designed by the Scripps
Institution of Oceanography. On the other hand, there are two variants of the SeaGlider manufactured by
iRobot. A two pump variant for the depth interval [120, 1000]m, and a single pump variant for depths from
the surface to 120m, which consumes less energy than the former.

The three ocean gliders mentioned above are widely used in Ocean Research, particularly the SLOCUM
gliders. However they are also used in military applications, as the ANT glider developed under the sponsorship
of the Office of Navel Research (ONR), and designed to meet the requirements of the US Navy Undersea
Master Plan (Barker, 2012). This glider incorporates novel capabilities for military applications, like mine
detection.

All these previous ocean gliders exhibit large wing-like surfaces to generate the forward motion. However,
there are designs that replace them with horizontal finned appendages at the tail, like the SeaExplorer
manufactured by ASCA-Alcen. Furthermore, the Folaga hybrid underwater glider, manufactured by the
GRAAL Tech, completely eliminates the wings. It still has a buoyancy engine, but it uses electrical thru
hull thrusters embedded in the vehicle to achieve the forward propulsion, and yaw and pitch corrections (see
Figure 2.5).

2.2 Glider Motion Model and Dynamics
Any path planning algorithm requires a vehicle motion model in order to simulate how it moves or navigates
throughout the search or configuration space. There exist three main types of motion models we can consider
for a glider —or any vehicle in general. The point motion model is the simplest one, it represents the
vehicle as an holonomic, moving point, and requires just a few parameters. The other two possible motion
models can be kinematic or dynamic models. A more elaborated kinematic motion model for a glider is
presented here in Section 2.2.3, which models the force balance of the yo-yo navigation profile of the glider.
Finally, dynamic motion models consider the accelerations and more complex parameters that cover the
vehicle hydrodynamic structure. Although more precise, the last two models require much more parameters,
and many of them are usually extremely difficult to identify. Furthermore, for glider path planning, and
particularly for long-term missions, the non-holonomic and differential constraints of the glider dynamics can
be neglected. Consequently, a point model usually suffices to simulate the vehicle motion in glider missions;
at most, it makes sense to use the force balance model —as long as we know how to parameterize it— to
obtain accurate trajectories that include the effect of the temperature and water density, in order to use the
output of the path planner with a real glider.

2.2.1 Notation
Before we explain each of the three types of glider motion models in the next sections, we are going to describe
the notation used. In Marine Engineering, the most accepted notation to represent the pose of the vehicle
is the so called SNAME 1950 notation, which can be consulted in Fossen (2002). The attitude —i.e. the
orientation of the vehicle BODY frame— is generally represented by the following Euler angles. They are
defined as followed, for a rotation with respect to the frame axis:

x-axis: Roll φ, which can be discarded in most motion models for glider path planning. Indeed, it is not
considered by the point and force balance motion models described here. Certainly, the roll can produce
an effect on the motion, but it is generally assumed to be perfectly trimmed to φ = 0◦ and stable during
the motion.

y-axis: Pitch θ, which represents the angle used by the glider to dive and climb in the yo-yo profiles. As a
consequence of the saw-tooth pattern, the pitch takes a constant value during a dive or a climb, but it
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changes sign —and probably its magnitude slightly— at the inflection points of each yo. The pitch θ is
considered positive when it goes down during the dives, and negative when it goes up during the climbs,
so it must be modeled as a piecewise function. As long as the motion model is three-dimensional, it
must consider the pitch θ. Otherwise —as it happens with some two-dimensional, simplified versions of
the point motion models—, the glider nominal horizontal speed Ug accommodates the influence of θ.
Also, the ocean currents are averaged in depth, to reflect their effect on the actual three-dimensional
trajectory followed by the vehicle.

z-axis: Yaw ψ, which is the direction with respect to the North followed by the vehicle —the magnetic
declination at the vehicle location and time is substracted, using the datum for the corresponding
latitude, longitude and date. Note that ψ is part of the vehicle attitude, and is called bearing, rather
than the actual course or heading, which is the angle of the resulting trajectory, affected by the drift
produced by the ocean currents. We assume ψ = 0◦ at the North, growing clockwise, i.e. it is a
north-based azimuth angle in the spherical coordinate system that represents the Earth.

Regarding the navigation frame, for glider missions is common to use the NED (North East Down) frame
(Fossen, 2002) with the geographic coordinates latitude φ, longitude λ and depth z (growing downwards).
Since, every time the glider surfaces, it geo-localizes with the GPS fixes, such position information is easily
available. In the next sections, we adopt a slightly abuse of notation, since we represent the longitude λ
with x, and the latitude φ with y —as in the x and y axes—, for the sake of clarity. Anyway, distances are
computed in the appropriate projection, although some simplified distance metrics —including the Euclidean
distance— are possible depending on the mission length (see Section A.2).

2.2.2 Point Motion Model
In a point model, the whole vehicle is represented by a single point in the space, with location x = (x, y, z),
where x and y represent the longitude λ and latitude φ, respectively, and z is the depth with respect to the
surface. The point motion model of a glider assumes this representation and also considers the attitude of the
vehicle, in order to integrate its position according with the differential equations that model its motion, as
well as the navigation pattern explained thus far (see Section 2.1). In the three-dimensional, general case, we
take the yaw ψ —or bearing ψg— and pitch θ angles into account. However, in 2 dimensions —i.e. projecting
the movement into the surface plane— only the bearing ψg is considered. Finally, the glider constant, nominal
speed Ug is used to compute its location over the time.

We distinguish two different point motion models. First, the unconstrained, free motion model, in which
we simply integrate the differential equations of the model. Secondly, a constrained motion model, where a
given location x1 must be reached, starting from the current location x0. In this second model, the drift
produced by the ocean currents must be compensated by setting the appropriate bearing ψg, so the glider
trajectory follows the heading ψe defined by the angle between x0 and x1. The use of this constrained motion
model is motivated by the search grid used in graph-based path planning methods like the A* algorithm used
in this thesis and explained in Section 4.3. It requires to solve the navigation equations that take the vehicle
from the current location xi to the next xi+1 in the grid, given the ocean currents and Ug.

2.2.2.1 Unconstrained Motion Model

The most simple and intuitive point motion model is the unconstrained, free integration of the differential
equations that model the glider. In this motion model, the ocean currents and the glider velocity vectors are
simply composed to obtain the resulting velocity vector, at every step in the integration process. In order to
highlight the importance of the velocity integration we will start by showing some figures that illustrate the
drift effect produced by the ocean currents. The important point here is that in the presence of ocean currents
we must integrate the point motion model with a sufficiently small integration step ∆t, so we actually capture
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the drifting. This happens for both static and dynamic ocean currents, although the effect is more noticeable
for the latter.
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Figure 2.6: Unconstrained Point glider motion model run for different glider speeds Ug, for a given, constant
heading error of ψ̂e = 30◦N. The model is integrated for a surfacing time ts = 8h. We observe the drift in
the trajectories due to the effect of the ocean currents, from Ug = 0.050m/s to Ug = 0.170m/s —the
ocean currents are not shown for the sake of clarity, because they vary over the time and their effect can be
observed in the drifter trajectory. As Ug reduces, they tend to the drifter trajectory with Ug = 0m/s . On
the contrary, the trajectory with no ocean currents Uc = 0m/s would be straight, as shown with no heading
error and ψ̂e = 30◦ .

In real glider missions it is common to observe small errors or some uncertainty associated with the
expected heading ψe and nominal speed Ug. Therefore, it seems reasonable to evaluate the impact of small
errors on these quantities. After all, they are the parameters or inputs of the unconstrained point motion
model in 2 dimensions —in 3 dimensions we also have the pitch θ. Additionally, those errors degrade/grow
systematically throughout the mission due to biofouling —e.g. during the final part of RU27 trans-Atlantic
flight Ug reduced significantly —≈ 0.15m/s, for a theoretical maximum of 0.4m/s.
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Figure 2.7: Unconstrained Point glider motion model run for different heading error angles ψ̂e, for a given,
constant glider speeds Ug = 0.15m/s. The model is integrated for a surfacing time ts = 8h. We observe
the drift in the trajectories due to the effect of the ocean currents, for ψ̂e = {−10, 0, 10}◦ . The drifter
trajectory with Ug = 0m/s and no heading error ψ̂e = 0◦ is shown for comparison. On the contrary, the
trajectory with no ocean currents Uc = 0m/s would be straight, as shown with no heading error .

The heading error ψ̂e is a measure of the deviation from the theoretically expected heading ψe, probably
induced by several coupled, nonlinear or unpredictable factors. Both ψ̂e and Ug have a high impact in the
resulting trajectory followed by the glider, as shown in Figure 2.6 and 2.7. For instance, there exists a strong
influence of the ocean current field over time and a tight dependence on the heading error that affects the
glider motion. The resulting trajectories are also affected by the glider nominal speed, since it determines
whether the glider can beat the ocean currents or not. However, if we compare Figure 2.6 and 2.7, we observe
that the effect of the heading error is clearly more significant. Thus, if ψ̂e were known, it will be possible to
estimate the actual glider speed Ug using the surfacing locations xi, as shown in Figure 2.8 for the RU27
surfacing points during the trans-Atlantic mission headed by the Rutgers University.

In Figure 2.6 and 2.7 we observe that for certain heading angles ψe is not possible to navigate within
them because of the effect of the ocean currents Uc. This effect is clearer when the glider nominal speed Ug

http://marine.rutgers.edu
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Figure 2.8: Unconstrained Point motion model applied to a series of trajectories varying Ug from 0.01m/s
to 0.40m/s with 0.01m/s increments . Given the heading error ψ̂ei

for each stint i, we may
analyze the effect of Ug for different surfacing points of the RU27 glider path (ground truth) xi . The
trajectories for Uc = 0m/s , Uc = 0m/s and ψ̂e = 0◦ , and a drifter (Ug = 0m/s) are shown too.

is small, as shown in the first figure. As we will later show formally for the constrained motion model, if we
impose the vehicle to follow a given heading ψe, in many cases that will be unfeasible because of the ocean
currents. In the presence of strong ocean currents, this will lead to situations in which many trajectories
are simply discarded because the heading cannot be followed. On the contrary, here with the unconstrained
motion model we just compute the effective speed Ue, regardless of the resulting trajectory and heading
followed, which will probably be non-constant, as in the figures.

The effective speed Ue is computed for the unconstrained motion model using

Ue = Ug + Uc (2.1)

where Ug is the glider nominal speed and Uc is the speed of the ocean current through the path P described
by the glider. Here, the speeds are in vector form, and correspond to the two-dimensional case, in which the
overall effect of underwater ocean currents is projected onto the surface.

Since Uc is different at each point in the environment, we must integrate the velocity through P. Hence,
we have

Ue = Ug +
∫ xi

xi−1

Uc(x) dx (2.2)

for a path P starting at xi−1 and ending at xi locations, that will correspond to surfacing points.
The integral along the path P is typically discretized and integrated numerically for a fixed time ts between

surfacings. Such integration allows to obtain the glider trajectory under the ocean current field conditions.
Therefore, we implement the following recursion

Ue(t) = Ug + Uc(x(t), t) (2.3)
x(t+ 1) = x(t) + Ue(t) · ∆t (2.4)
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Algorithm 2.1 Trajectory integration.
Require: Surfacing time ts and integration step dt. Glider nominal speed Ug, ocean currents velocity field

Uc(x) for all locations x, and initial location x0.
Ensure: Final location xts after integrating the trajectory for ts time.
Algorithm: trajectory(ts, dt, Ug, Uc(x), x0) return xts

1: x = x0 . Initial location
2: for all t = 0 to ts with step dt do
3: Ue = Ug + Uc(x)
4: x = x + Ue · dt
5: end for
6: return x

where ∆t is the integration step and x(0) is initialized with the initial location of the vehicle. The integration
algorithm is summarized in Algorithm 2.1. The time t is discretized according with ∆t, and the position of
the glider is integrated until we reach the surfacing time ts. We actually do not have to select ∆t, since
this Ordinary Differential Equation (ODE) can be solved numerically using fourth and fifth order Runge-
Kutta formulas (Dormand and Prince, 1980). In this process, we generally need to interpolate the ocean
currents Uc(x(t), t) at every location x(t) of the trajectory, and time t. Although we can simply use the
Nearest Neighbor ocean current, a decent simulation of the glider trajectory requires at least some linear
interpolation, in 2, 3 or 4 dimensions —including the time t, for dynamic ocean currents. If more accurate
results are required, we can use more precise techniques like the tricubic interpolation in 3 dimensions of Lekien
and Marsden (2005), which addresses the precise interpolation of ocean currents measured with CODAR.

It is straightforward to extend the unconstrained motion model to the 3 spatial dimensions, i.e. including
the depth motion. In 3 dimensions the model also requires the pitch angle θ as an input. Therefore, a glider
modeled as a moving point follows these differential equations

ẋ = u+ Ug cos θ cosψ (2.5)
ẏ = v + Ug cos θ sinψ (2.6)
ż = w + Ug sin θ (2.7)

where Ug, ψ and θ are the glider’s nominal surge speed, heading and pitch, and where u, v and w are
the x, y and z components of the ocean current speed at a given location (x, y, z) and time t. As usual,
(x, y, z) represents the longitude, latitude and depth, respectively. The pitch θ can take any angle in the
range [−π/2, π/2], where positive values indicate a dive, and negative indicate a climb, in the yo-yo profile.
Although the ż differential equation above accommodates any θ, the pitch is actually a function of the time t.
Indeed, it changes at the minimum zmin and maximum zmax depth points in which the glider’s pump actuates
on the oil bladder. At these points, the pitch changes its sign. Hence, we have a piecewise function

θ = fθ(t) =
{
θdive if diving
θclimb if climbing

(2.8)

Consequently, we must integrate each piece separately, and to do so we must know the integration time
T for each piece —i.e. for each dive or climb. Although θ ∈ [−π/2, π/2], it is easier to assume that we have
a flag to indicate whether the glider is diving or climbing, and we always have θ ∈ [0, π/2], i.e. |θ|. This trick
allows as to obtain T , but now the differential equations above are only valid when the vehicle goes down.
On the contrary, when it goes up, (2.7) changes sign; meanwhile (2.5) and (2.6) remains the same, since the
pitch θ only affects the depth z component.

ż = w − Ug sin θ (2.9)
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We still have piecewise differential equations, for each ż, so we must compute the integration time T for
each, taken the solution of the previous as initial value. The integration time T is computed from the depth
interval, which is

T = ∆z
ż

= z(t0 + T )− z(t0)
w ± Ug sin θ (2.10)

We assume null vertical ocean currents w = 0, which is generally the case, so

T = z(t0 + T )− z(t0)
±Ug sin θ (2.11)

Hence, according with the yo-yo profile, the depth interval can only take two different values:

∆z =
{

∆zout = zmax for (outer) first and last yos
∆zin = zmax − zmin for inner yos, if any

(2.12)

Now we can take the absolute value of the depth speed ż, and hence the integration interval is simply

T = ∆z
Ug sin θ (2.13)

Also, in order to ensure that the vehicle is at surface when the stint is done, the following equation must
be used to compute the time Tu underwater, given the number n of yos and the depth interval [zmin, zmax],
assuming that we start at z = 0 and finish at the surface as well.

Tu = 2 (∆zout + (n− 1)∆zin)
Ug sin θ (2.14)

We can also estimate the position at surface given the time drifting td there, in order to simulate with
more precision the trajectory of a glider during a real mission. In this case we use the equations of a drifter
at surface, i.e. we set ż = 0 in place of (2.7). This is exactly a bi-dimensional unconstrained motion model
with Ug = 0m/s, that can be included in the path planning algorithm to take into account the td ≈ 15min
the glider spend at surface.

2.2.2.2 Constrained Motion Model

A constrained point motion model works radically different from the unconstrained one described in the
previous section. Now we basically solve the navigation problem of going from a start location x0 to an
ending location x1. The angle between x0 and x1 defines a heading ψe that we want the vehicle to follow.
Therefore, given the ocean currents vector Uc and the glider nominal horizontal speed Ug, the navigation
problem consists on finding the bearing angle ψg required to move in ψe, if possible. Indeed, when the ocean
currents are stronger than Ug, there exists a range of heading angles ψe which are infeasible, i.e. there is not
bearing ψg that allows the vehicle to reach x1 heading in ψe.

Given the glider nominal speed Ug, the desired course or heading ψe, and the ocean current speed Uc and
direction ψc, we can compute the drift correction that the glider must apply to keep such heading. Thus, we
obtain the bearing ψg with

ψg =
{
ψe + arcsin s if |s| ≤ 1
@ otherwise

(2.15)

and the resulting speed Ue with

Ue =
{
Ug
√

1− s2 + Uc cosψec if |s| ≤ 1
0 otherwise

(2.16)
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where
s = Uc

Ug
sinψec (2.17)

and ψec = ψe − ψc. Regardless of the angle difference ψec, we can defined the speed ratio SR as

SR = Uc
Ug

(2.18)

which allows to categorize ocean currents as strong or weak, depending on whether SR > 1 or SR < 1,
respectively.

Consequently, if Ug > Uc the set of feasible heading angles ψe is unbounded. Otherwise, this set is
delimited by a so called accessibility cone with an arc angle ψr given by

ψr = 2 arcsin Ug
Uc

(2.19)

For the special case of Ug = Uc we have ψr = π
2 . Thus, a heading ψe is physically feasible if and only if it

falls in ψe ∈ [−ψr

2 ,
ψr

2 ].
Note that in the particular case of Ug = Uc the condition |s| ≤ 1 is always true, since s = sinψec.

Operating, (2.15) and (2.16) are reduced to

ψg =
{

2ψe − ψc if |ψec| ≤
π

2
@ otherwise

(2.20)

and

Ue =
{

2Ug cosψec if |ψec| ≤
π

2
0 otherwise

(2.21)

respectively, satisfying Ue ≥ 0.

UcUg

Ue

x
ψc

ψeψg

Figure 2.9: Vector composition for drift correction. A bearing ψg must be commanded to obtain a heading or
course ψe that can beat a current of direction ψc. The resulting effective velocity Ue depends on the glider
speed Ug and the ocean current speed Uc.

In Figure 2.9 is depicted the vector composition of the drift correction process. Notice that all this
velocities U· are not vectors, but magnitudes ‖U?‖. We assume Ue = 0 when it is not possible to keep a
particular heading ψe. This is usually a consequence of a low glider speed Ug relative to the ocean current
speed Uc, which forces the glider to navigate following the ocean current direction ψc.

Soulignac et al. (2008) develop an alternative deduction of this motion model in his work, which does not
use trigonometric functions. The resulting expressions are completely equivalent to the ones shown thus far,
but are faster to compute in general.
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According to Soulignac et al. (2008) the temporal cost t of the movement d verifies d = (Ug + Uc) · t.
Projecting this equality on x and y axis yields{

dx = (Ugx
+ Ucx

)t
dy = (Ugy

+ Ucy
)t

=⇒
{
dx − Ucx

t = Ugx
t

dy − Ucy
t = Ugy

t
(2.22)

The relation U2
g = U2

gx
+ U2

gy
allows us to eliminate Ugx

and Ugy
in (2.22), leading the relation

(dx − Ucx
t)2 + (dy − Ucy

t)2 = U2
g t

2 (2.23)

that rearranging for t yields
(U2

g − U2
c )t2 + 2〈d · Uc〉t− d2 = 0 (2.24)

where d2 = d2
x + d2

y.
Solving this second degree equation of (2.24), we have

t =


√

∆− 〈d · Uc〉
U2
g − U2

c

if ∆ ≥ 0

∞ otherwise
(2.25)

where ∆ = U2
g d

2 − (Ucx
dy − Ucy

dx)2 and 〈· 〉 is the scalar product. Note that t is defined only if ∆ ≥ 0,
in order to satisfied that t ≥ 0.

Here, in the particular case of Ug = Uc the second degree equation of (2.24) becomes the one degree
equation

2〈d · Uc〉t− d2 = 0 (2.26)
and solving, we simply have

t = d2

2〈d · Uc〉
(2.27)

The main application of this constrained motion model is concerned with the implementation of graph-
based path planning algorithms. This type of methods uses a grid search space which must be explored for
the optimal solution. In order to move from one node ni —that represents a surfacing point— to its neighbor
nodes ni+1 in the grid, we must apply the constrained motion model described here; see the A* algorithm in
Section 4.3 for instance. It is possible to extend the motion model to 3 dimensions, but for gliders it is not
really required because underwater they move non-holonomically following the saw-tooth pattern that restricts
the vehicle maneuverability considerably. That is, we only need to look into the search space defined by the
surfacing points. Anyway, in order to obtain a good simulation of the glider motion while underwater, we
must average the ocean currents from ni to ni+1. In practice, if the search space grid resolution is sufficiently
precise, the ocean currents are similar in the region around ni and ni+1, so even a single value may suffice,
i.e. it is considered constant. Therefore, we can take the ocean current vector Uc at ni, or the depth average
from ni to ni+1 in order to represent the fact that the gliders are actually affected by the underwater ocean
currents while they navigate performing yo-yo profiles.

2.2.3 Force Balance Motion Model
A more elaborated —but still kinematic— motion model is the one proposed by Merckelbach et al. (2010).
It is based on the equilibrium of the forces actuating in a glider while it dives or climbs. Figure 2.10 depicts
these forces and the angles that describe the motion and the vehicle attitude in the xz plane for a climb
motion. As we will see in the equations below, this model depends on a number of parameters associated
with the vehicle shape and the navigation system, i.e. the buoyancy pump and the wings. With this model
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we have a good approximation of the glider vertical and surge speed, which allow for a better dead-reckoning
than the simple point model. However, the main drawback of this model is that we must identify a great
number of parameters that depends on each vehicle and are usually unavailable. The constraints imposed
by the surfacing points and vertical speed estimated from the depth measurements of the pressure sensor,
help in such identification, but it is usually not enough, and flow simulations or water tank tests are generally
required. Anyway, here we develop the equations of this force balance model and show some results that
evaluate the model characteristics and dependence with respect to the most remarkable parameters, like the
buoyancy change and the pitch angle.

x

z

y sea surface

γ
θ

α

γ

GC

FD

FL

FB

Fg

Figure 2.10: Force balance diagram that represents a glider moving in the xz vertical plane along with the
forces involved and the definition of angles. This diagram follows the one in (Merckelbach et al., 2010).

The forces working on a glider vehicle are the buoyancy FB , which goes up to the surface; the gravity
Fg, which goes down in opposite direction to FB ; the lift FL, which goes perpendicular to the movement,
and consequently points down or up, when the glider climbs or dives, respectively; and the drag FD, which
goes backwards, against the movement. The lift is responsible of generating the forward movement of the
vehicle, as long as it is enough to compensate for the drag force FD. The pitch angle θ represents the angle
of the vehicle’s horizontal axis with respect to the horizontal plane. The glide angle γ represents the angle
of the climb/dive plane with respect to the horizontal plane, and it includes the angle of attack α, which is
produced by the wings and the hull design dynamics. Hence, the difference between the glide angle γ and
the pitch θ is the angle of attack α.

According with the diagram of Figure 2.10, the vertical and horizontal force balances are

FB − cos γFL − sin γFD − Fg = 0 (2.28)
− cos γFD + sin γFL = 0 (2.29)

respectively, where FB is the (net) buoyancy force, Fg is the force due to gravity, FL is the lift force, FD is
the drag force and γ is the glide angle, defined as the sum of the pitch angle θ and the angle of attack α, i.e.
γ = θ + α.

The force due to gravity is given by
Fg = gmg (2.30)

where mg is the mass of the glider and g is the acceleration due to gravity.
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The net buoyancy force is given by

FB = gρ(Vg(1− εP + αT (T − T0)) + ∆Vbp) (2.31)

where ρ is the in-situ density, Vg is the glider volume at atmospheric pressure, ε is the compressibility of the
hull, P is the water pressure, αT is the thermal expansion coefficient, T is the water temperature, T0 is a
reference water temperature and ∆Vbp is the buoyancy change produced by the buoyancy engine.

The drag and lift forces are given by

FD = 1
2ρCDSU

2 (2.32)

FL = 1
2ρCLSU

2 (2.33)

where CD and CL are the drag and lift coefficients, respectively, S is the wing surface area and U is the
glider velocity through water along the glide path.

The total drag is the combined effect of the parasite drag and the induced drag, and can be parameterized
as

CD = CD0 + CD1α
2 (2.34)

where CD0 is the parasite drag and CD1 a coefficient determining the induced drag. Decomposing the
total drag into drag due to the hull and wings, respectively, we write CD0 = CD0,h

+ CD0,w
and CD1 =

CD1,h
+ CD1,w

.
The induced drag due to the wings can be parameterized as

CD1,w
= a2

w

πAe
(2.35)

where e ≈ 0.8 is the span efficiency parameter. The other drag coefficients can be measured directly.
The total lift is modeled as the sum of the lift generated by the hull and the lift generated by the wings.

However, under normal flight conditions the angle of attack is generally small, so the lift coefficient can be
parameterized as

CL = (ah + aw)α (2.36)

where ah and aw are the lift slope coefficients for the hull and wings, respectively.
A semi-empirical formula for the lift slope coefficient for the wings, accounting for the lift reduction due

to the wing sweep angle Ω and the aspect-ratio A, simplifies to

aw = 2πA
2 +

√
A2(1 + tan2 Ω) + 4

(2.37)

On the other hand, the slope coefficient for the hull ah can be measured directly.
Substituting (2.34) and (2.36) into (2.32) and (2.33), respectively, yields

FD = 1
2ρ(CD0 + CD1α

2)SU2 (2.38)

FL = 1
2ρ(ah + aw)αSU2 (2.39)

An implicit expression for the angle of attack is found by substituting (2.38) and (2.39) into the horizontal
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force balance (2.29) and solving for α,

− cos γFD + sin γFL = 0

− cos γ 1
2ρ(CD0 + CD1α

2)SU2

+ sin γ 1
2ρ(ah + aw)αSU2 = 0

α =
cos γ 1

2ρ(CD0 + CD1α
2)SU2

sin γ 1
2ρ(ah + aw)SU2

α = cos γ(CD0 + CD1α
2)

sin γ(ah + aw)

that yields the implicit equation
α = CD0 + CD1α

2

(ah + aw) tan (θ + α) (2.40)

from which α can be solved numerically.
Combining (2.28), (2.38), (2.39) and (2.40) gives

FB − Fg − cos γFL − sin γFD = 0

FB − Fg − cos γ 1
2ρ(ah + aw) CD0 + CD1α

2

(ah + aw) tan γ SU
2

− sin γ 1
2ρ(CD0 + CD1α

2)SU2 = 0

FB − Fg −
1
2ρ(CD0 + CD1α

2)SU2
(

cos γ
tan γ + sin γ

)
= 0

FB − Fg −
1
2ρ(CD0 + CD1α

2)SU2
(

cos2 γ + sin2 γ

sin γ

)
= 0

that yields
FB − Fg −

ρSU2(CD0 + CD1α
2)

2 sin γ = 0 (2.41)

from which, once α is solved, U can be evaluated with

U =

√
2 sin γ(FB − Fg)
ρS(CD0 + CD1α

2) (2.42)

Given the glider heading ψe, as we had for the point motion model in Section 2.2.2, the horizontal and
vertical components of the velocity vector follow from

ug = U cos γ cosψe (2.43)
vg = U cos γ sinψe (2.44)
wg = U sin γ (2.45)

respectively, where γ = θ + α. The speed ug corresponds to the x-axis or longitude, and vg maps to the
y-axis or latitude. Also note that the glider surge speed Ug is just the compound of the horizontal speeds ug
and vg, which yields

Ug = U cos γ (2.46)
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With this expression of the glider speed, the highest surge speed Ug is obtained at θ ≈ 35◦. The
maximization is not trivial because of the dependence of α in the drag coefficient CD, but we can compute
it numerically to obtain a more precise approximation of θ.

Given α, the pitch θ can be computed with

CD0 + CD1α
2 = α(ah + aw) tan (θ + α) (2.47)

tan (θ + α) = CD0 + CD1α
2

α(ah + aw) (2.48)

θ = arctan
(
CD0 + CD1α

2

α(ah + aw)

)
− α (2.49)

Table 2.1: Parameters required by the glider force balance motion model.

Parameter Description
γ Glide angle γ = θ + α
θ Pitch angle in BODY frame, usually measured with an IMU
α Angle of Attack (AoA)
Vg Glider volume at atmospheric pressure
mg Glider mass
ε Compressibility of the hull
αT Thermal expansion coefficient
T0 Reference temperature for αT
∇Vbp Buoyancy change due to the buoyancy engine
CD Drag coefficient (2.34)
CL Lift coefficient (2.36)
S Wing surface area
U Glider velocity through water along the glide path
ah Lift slope coefficient for the hull
aw Lift slope coefficient for the wings (2.37)
Ω Wing sweep angle (at 1/4 chord line)
A Aspect Ratio A = b2

S
b Wingspan

CD0,h
Parasite drag for the hull

CD0,w Parasite drag for the wings
CD1,h

Induced drag for the hull
CD1,w

Induced drag for the wings (2.35)
e Span efficiency parameter e ≈ 0.8

The three-dimensional speed vector defined by ug, vg and wg must be compound with the ocean
current speed at each point and time to obtain the actual vehicle speed underwater. Such computation is
straightforward and follows the unconstrained three-dimensional point motion model explained in Section 2.2.2.
Nevertheless, contrary to the point models, the force balance models requires much more parameters to be
configured adequately, which are summarized in Table 2.1.

It is possible to create an spider plot for the force balance motion model, as shown in Figure 2.11 and
2.12 for the diving and climbing states, respectively. These glider plots —also known as glide polar plots—
represent the horizontal surge speed Ug against the vertical speed wg for several changes of buoyancy ∆Vbp of
the bladder. Interestingly, along with the curves for different ∆Vbp we obtain iso-lines of same angle of attack
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Figure 2.11: Spider plot for the force balance motion model during a dive. It shows the surge Ug vs. vertical
wg speeds of the glider for different changes of buoyancy ∆Vbp —typically the bladder or buoyancy pump
capacity. The values above the Ug > |wg| line corresponds to the highest surge speeds Ug, and the most
common values of pitch θ are picked up from that side. In fact, the greatest Ug is obtained at θ ≈ −35◦,
that yields Ug ≈ 0.5m/s for ∆Vbp = −200cc, which is in agreement with the usual gliding speed of SLOCUM
gliders, for such pitch and buoyancy pump configuration.

α. Furthermore, we can also obtain the pitch θ using the fact that λ = θ+α. In both figures we have ug and
vg for ∆Vbp ∈ [50, 300]cc —which is negative during the dives. A typical common value of ∆Vbp = ±200cc
for the SLOCUM gliders gives the usual glider nominal surge speed Ug. Its value is generally measured at
the optimal pitch θ angle, i.e. the one that provides the highest glider nominal surge speed Ugmax , which
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Figure 2.12: Spider plot for the force balance motion model during a climb. It shows the surge Ug vs. vertical
wg speeds of the glider for different changes of buoyancy ∆Vbp —typically the bladder or buoyancy pump
capacity. The values below the Ug > |wg| line corresponds to the highest surge speeds Ug, and the most
common values of pitch θ are picked up from that side. In fact, the greatest Ug is obtained at θ ≈ 35◦, that
yields Ug ≈ 0.5m/s for ∆Vbp = −200cc, which is in agreement with the usual gliding speed of SLOCUM
gliders, for such pitch and buoyancy pump configuration. Also note that for all configurations the climb surge
speeds Ug —and the vertical speeds wg as well— are generally slower than the corresponding dive ones, shown
in Figure 2.11.

in the figures is ≈ 0.5m/s. Note that in real conditions the θ is usually around 25◦, rather than θ = 35◦,
which is the theoretical approximation to the optimal —actually, it must be solved numerically, as we do for
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the figures. As expected, the plot shows clearly the increment on the glider speed with greater changes of
buoyancy ∆Vbp, since it produces a higher buoyancy force FB . Similarly, small angles of attack α have a
clear effect, increasing the vertical speed wg, but reducing the nominal surge speed Ug. For the figures, the
highest nominal surge speed Ugmax is obtained with α ≈ 1◦; meanwhile, with α = 0 the models establishes
the Ug = 0, i.e. no forward movement is produced, and the vehicle only goes down or up, with only a vertical
speed of wg ≈ ±0.8m/s for ∆Vbp = ±200cc.

From the glider plots we observe that the speed is slightly greater during the dives. This is a consequence
of the balance of the gravity, lift and buoyancy forces, that favors the movement downwards. Above the line
Ug > |wg| we have those glider setups that produce greater nominal surge speeds Ug. Below this line the
glider is performing poorly and may be an indication, in real missions, of biofouling problems. With these
graphics is quite easy to evaluate and identify some parameters of the glider during the mission. This is one
of the strength of the force balance model, but it still requires some parameters to be set a priori that, as
commented before, are difficult to measure.

Another important advantage over point motion models is that the force balance does not only consider
the ocean currents, but also the water density, which affects the actual glider speed, as shown in the glider
plots Figure 2.11 and 2.12. In essence, this model could be used in place of the unconstrained point motion
model of Section 2.2.2.1, since it is also unconstrained; in fact, it will be difficult to make it constrained, to
reach a given location x, so it cannot be used in some graph-based path planning algorithm like A*.

This glider force balance model reduces to a similar force balance model of a profiler float or a drifter, for
certain values of θ. This happens when the pitch angle θ becomes ±90◦ for the dive and climb movements, in
the case of a vertical profiler. Similarly, a drifter at a given depth is obtained with θ = 0 and neutral buoyancy
for such depths. The details of these variations of the force balance models are developed in Appendix B.

2.2.4 Dynamic Motion Models
There exists a number of works that model glider dynamics (Graver, 2005; Mahmoudian and Woolsey, 2008),
but in general, the glider kinematics suffices to model the vehicle motion for all missions —not only for
long-term ones. A dynamic motion models considers the forces and accelerations in the vehicle, and allow to
characterize its motion accurately. However, for glider path planning problems, in which the vehicle navigates
hundreds of miles or even in short-term missions, such accuracy is not required. Furthermore, due to the high
uncertainty of the vehicle position underwater —especially x and y— and also the uncertainty of the ocean
currents Uc and other physical parameter of water —e.g. density, temperature—, that accuracy is lost within
the error introduced by the uncertainty of the localization and the ocean model.

According to Fossen (2002) the marine craft equations of motion can be written in the following vectorial
setting,

η̇ = JΘ(η)ν (2.50)
Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave (2.51)

where

η = (x, y, z, φ, θ, ψ)> (2.52)
ν = (u, v, w, p, q, r)> (2.53)

are the generalized pose η —composed of position (x, y, z)> and attitude or orientation given by the Euler
angles Θ = (φ, θ, ψ)>—, and velocities ν, for 6 DOF. Similarly, τ is a vector of forces and moments, which
can be due to the wind τwind or waves τwave, which are usually neglected for gliders though. The model
matrices M, C(ν) and D(ν) denote inertia, Coriolis and damping, respectively, while g(η) is a vector of
generalized gravitational and buoyancy forces. Static restoring forces and moments due to ballast systems
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and water tanks —as the glider buoyancy pump and the actuated moving batteries to control the pitch θ—
are collected in the term g0. Finally, JΘ(η) is the Jacobian of the pose η with respect to the attitude Θ.

The differential equations of the marine craft for 6 DOF can be simplified for the particular case of a
glider, in which we can consider only 5 DOF: x, y, z, θ and ψ; although the roll φ may still be worth modeling
if we need high accuracy. Other simplifications are possible, as shown in the work of Graver (2005), but even
in that case the model is still very complex and requires many parameters. In fact, Graver (2005) provides
up to 10 parameters for the ROGUE glider, and similarly, for the SLOCUM glider, it performs several glide
experiments for parameter identification. It is common to use flow simulation software to obtain hydrodynamic
parameters like the drag and lift coefficients, or laboratory experiments. However, even during a glider mission
these parameters may vary —e.g. biofouling—, and they change from one vehicle to another, or even for the
same vehicle due to the trimming and on board equipment for a particular deployment. Hence, the efforts to
parameterized a dynamic motion model correctly are far beyond the scope of this thesis. Additionally, this type
of motion model would require much more computing time than the point motion model of Section 2.2.2, so
the path planning algorithm would last more, and no significant benefit would be obtained from the simulation
of the motion dynamics.



Chapter 3

Ocean Glider Path Planning Problems
and Applications

Ocean gliders constitute an important advance in the highly demanding ocean monitoring scenario. Their
efficiency, endurance and increasing robustness make these vehicles an ideal observing platform for many
long-term oceanographic applications (Rudnick et al., 2004). Gliders are used for a great variety of tasks,
not only in long-term missions, but also short-term ones. However, it is possible to reduce those tasks to
a small number of basic problems, which can be arranged to solve more complex ones. In this section, we
describe those basic problems and some applications that, in our humble opinion, are the most demanded
by the Ocean Research community, where gliders are useful sampling platforms. Therefore, such basic tasks
are presented here as optimization problems, which enable more elaborated tasks or applications. Among
the latter we have covered path following problems, multi-glider coordination and constraint satisfaction, and
sampling techniques for evolving structures on the ocean. All these applications are described in detail in the
sequel, along with the oceanographic applications they relate with. Moreover, the obstacle avoidance problem
is commented, since in many cases it is an implicit problem that must be solved by the glider path planning
algorithm, as a basic feature. This taxonomy of path planning problems for ocean gliders will be later studied,
to evaluate the different algorithms developed.

3.1 Path Optimization
We have identified two atomic glider path planning problems: time and distance optimization. Both of them
consist in finding an optimal path by means of an objective function minimization, and consequently, here we
explain these basic problems and the respective objective functions that model each of them. The first one
looks for the minimal time path to reach a target waypoint xgoal. This problem is equivalent to the Shortest
Path Problem (SPP) for ground robots (LaValle, 2006). For gliders, navigating the ocean currents, the cost
of traveling from one point xi to another xi+1 is not only a function of the distance between those points,
but also of the speed, which depends on the ocean currents profile. The second atomic problem in glider path
planning consists on minimizing the remaining distance to the target waypoint xgoal. In this case the travel
time is asumed to be known and fixed beforehand, so this characteristic of the problem can be exploited by
some path planning techniques.

Along with these atomic problems, we mention similar problems that can be seen as direct extensions
of the atomic ones. This is the case of the minimization of the energy consumption, the optimal departure
time and the minimal earliest arrival problems, which will be addressed by the minimal time path problem,
and to some extent by the minimal distance to the target problem. Finally, we also highlight the differences
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between propelled AUVs and gliders, in order to illustrate the importance of considering the constant time
surfacing scheme performed by gliders. In fact, the difference between propelled AUVs and gliders is twofold.
First, gliders navigate with a relatively low speed Ug with respect to the ocean currents Uc, i.e. SR > 1.
Secondly, gliders cannot localize accurately while underwater, so the bearing angles ψg are commanded only
every surfacing time ts. This second limitation is also a crucial distinction between gliders and Unmanned
Aerial Vehicles (UAVs), which may also travel with SR > 1 on the winds field, but they localize themselves
continuously using the GPS and actuate the rudder often in order to set the appropriate heading ψe. It
is precisely this low rate actuation in discrete intervals, usually only every surfacing time ts, what makes a
difference with respect to other vehicles performing almost the same task.

3.1.1 Minimal Time Path
The minimal time path problem is defined as the problem of finding the path P —made of a series of bearing
angles B— that takes the glider from a starting waypoint x0 to the target waypoint xgoal in the minimal
travel time tt. Each bearing is set at each surfacing point, so the number of bearings and surfacing points is
the same. More formally, this minimization problem can be expressed as

min
B
f(B) (3.1)

where f(B) is a simulation function that applies —preferentially— the unconstrained motion model of
Section 2.2.2.1 from x0 using each bearing in B, so it reaches the ending point xn−1 that should lie within
a radius around xgoal as Figure 3.1 shows. The number of bearings |B| to reach the target xgoal is computed
in this optimization process, since |B| actually determines the travel time; recall that each bearing ψg is
commanded after every surfacing time ts.

xgoal

x1
x2

xn−1

x0

t = f(B)

min
B
f(B) : |B| > 1

Figure 3.1: Diagram of the minimal time path problem. We look for the path P —made of a set of bearings
B— that minimizes the travel time tt = f(B) to go from the starting location x0 to the target one xgoal. The
number of bearings |B| is not fixed, since it actually determines the travel time. The target xgoal is considered
as reached when the ending point xn−1 falls on a radius around it.

It is worth mentioning that in the field of Robotics, this problem is known as a single-pair SPP. However,
some algorithms actually solve the more general problem of the single-source SPP. In the single-source problem,
we have a starting point x0 and we compute the minimal time path —for gliders— to every point xi in the
map, not only xgoal. It turns to be as efficient to solve the single-pair as the single-source SPP (LaValle,
2006). Therefore, the single-source problem can be solved with a wavefront approach as the one shown in
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(a) Wavefront isolines. (b) Minimal Time Path.

Figure 3.2: Minimal Time Path problem as a wavefront expansion search in the vector field defined by the
ocean currents and the glider nominal speed Ug. The optimal path search can be seen as a two steps
procedure, in which we first obtain the (a) iso-lines of cost —which is time for our problem— in the vector
field. Then, a gradient descend gives the minimal cost/time path P from the wavefront, as shown in (b).

Figure 3.2 (a), and the use a gradient descent method to retrieve the minimal time path to the target waypoint
xgoal, as shown in the figure (b).

In practice, the minimal time path problem is generally solved for long-term missions with durations from
one to several weeks and trajectories length of several hundred kilometers. In large missions, we do not have
dynamic ocean currents because the ROMs cannot predict further than a few days ahead. Therefore, although
we can solve the minimal time path problem with both dynamic and static ocean currents, we will see than
it is generally applied to static ones. Historic average ocean currents maps are used in these cases, for the
seasonal period when the mission takes place. At most, this configures a quasi-stationary scenario for the
glider path planning algorithm.

We have mentioned so far the equivalence between the SPP and the minimal time path problem. However,
the SPP is thought for static environments, meanwhile we consider the minimal time path problem for both
static and dynamic ocean currents. The Canadian Traveler Problem (CTP) is a generalization of the SPP
to scenarios that are partially observable (Huang and Liao, 2012; Karger and Nikolova, 2008), i.e. the
cost of moving is revealed while the environment is explored (Papadimitriou, 1991). The concept of partial
observability may include the case of dynamic ocean currents, since we cannot know the actual cost of
navigating from one point xi to another xi+1 until we reach xi, i.e. until we determine the time t at which
we arrive to xi, to take the ocean currents. This is regarded as a #P-hard problem addressed by relatively
few algorithms (Papadimitriou, 1991). Equivalent problems are dynamic traffic routing, where the density
of vehicles in the routes produces variable costs to travel within the routing network; and costmaps, which
are typically associated with terrain-based path planning. In fact, we could build a costmap from the ocean
currents vector field, but that would be equivalent to apply the constrained motion model. However, these
problems still do not include the glider navigation and behavior features, like the constant time surfacing
constraint.

The minimal energy consumption problem is tightly related to the minimal time path problem. Indeed,
in the case of gliders, the lesser the travel time, the lesser the energy consumption. This is basically a
consequence of the direct relation between the travel time tt and the number of bearings n = |B|, since the
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Figure 3.3: Diagram of the minimal departure time problem. Intuitively, the minimal time path problem is
solved starting from x0 now and at different later times t = {+1,+2, . . . ,+T}, using some discretization
step ∆t. Then, the optimal departure time is just the global minimum of the resulting travel time curve, at
+tmin in the figure.

surfacings lasts always almost the same time ts, so

t = nts (3.2)

Consequently, the number of inflections in the yo-yo profiles is also proportional to the travel time. Since most
of the energy consumption employed in the navigation happens at those inflection points, it seems reasonable
to say that we will obtain the same path for the minimal time and minimal energy consumption problems
—for the same number of yos and depth limits. On the contrary, if the vehicle were a propelled AUV, since
they have the ability to adjust their speed, the minimal energy consumption path is usually different from the
minimal time one, clearly. For instance, Inanc et al. (2005) propose an objective function built as a weighted
sum of the travel time and energy consumption for AUV path planning. Gliders, however, can only travel
at a constant nominal surge speed Ug, and it is the number of inflection points what determines the energy
consumption in terms of the navigation system. Therefore, only if we include the number of yos —or similarly,
their depth limits— in the path planning algorithm, the minimal energy consumption path will differ from the
minimal time one. However, it is very uncommon to change the number of yos during a glider missions. In
fact, this could be in conflict with other requirements of the scientific mission.

In the literature of ocean glider piloting and planning there is a number of works that address additional
optimization objectives and applications. The optimal departure time is covered in (Soulignac et al., 2009)
with a Symbolic Wavefront Expansion (WE) algorithm. In Figure 3.3 a plot shows the travel time for several
runs of the minimal time path problem. Each run starts at a different departure time, from now to a given
maximum departure time +T in discrete intervals ∆t. As a result, we have several travel times that form a
curve. Its minimum corresponds precisely to the optimal departure time, since it yields the minimal path time
of all. Clearly, we can solve this problem by solving the minimal time path problem iteratively, although more
efficient solutions may exist, as the Symbolic WE.
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3.1.2 Path of Minimal Distance to the Target
The minimal distance to a target problem pursues the minimization of the remaining distance d =
‖xgoal − xn−1‖ from the ending point xn−1 to the target xgoal for a given travel time tt, as depicted in
Figure 3.4. Since the travel time tt is given for this problem, the number of bearings |B| = n is fixed and
known in advance as well, being

|B| = n =
⌈
tt
ts

⌉
(3.3)

where ts is the surfacing time. More formally, this minimization problem can be expressed as

min
B
‖xgoal − xn−1‖ (3.4)

where |B| = n. As we will see later in this chapter, using optimization methods (see Section 4.6), this
particular problem has a more direct solution than the minimal time path problem discussed thus far.

d = ‖xgoal − xn−1‖

xgoal

x1
x2 xn−1

x0

min
B
‖xgoal − xn−1‖ : |B| = n

Figure 3.4: Diagram of the minimal distance to the target problem. We look for the path P defined by a set
of n bearings B that minimizes the distance d = ‖xgoal − xn−1‖ from the ending point xn−1 to the target
xgoal. In this problem the number of bearings |B| = n is fixed and known in advance.

In practice, the minimal distance to the target is usually required in short-term missions, with a maximal
duration of 3 to 5 days and a typical trajectory length below 150km. For this temporal horizon, state-of-the-art
ROMs provide ocean currents in the form of predictions with a high space and temporal resolution. Indeed,
most ROMs solve the ocean model hourly, and compile forecasts from now up to 3 days ahead. Consequently,
the problem is generally solved using dynamic ocean currents, although it is also valid for the simpler case of
static ocean currents.

A concomitant problem was addressed by Thompson et al. (2010) using a three-dimensional grid to
optimize an earliest valid arrival criterion. The idea here is to reach the target waypoint xgoal not before a
given time tmin. This problem can also be solved by compiling several solutions of the minimal distance to the
target problems, or by imposing a constraint such that the valid arrival time condition t ≥ tmin is satisfied.
The actual implementation will depend on the path planning algorithm. Indeed, a possible approach consists
on solving the minimal distance to the target problem for the number of bearing |B| such that the path lasts
at least tmin. Then we iteratively test paths of greater length; although the inverse approach is also possible,
i.e. we can start with a larger |B| and reduce it up to tmin as long as the distance to the target is within
a radius that establishes the vehicle arrives to it. To some extent, and depending on the approach, this is
actually a solution of the minimal time path (see Section 4.6.1).
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3.2 Obstacle Avoidance
Any of the previous optimization problems are supposed to perform adequately not only in offshore, obstacle
free environments, but also in troublesome scenarios where the obstacle avoidance problem must be solved.
We find this kind of environments mainly in coastal areas, where we have static and dynamic/moving obstacles
such as land areas, shallow waters, and heavy traffic shipping routes. Also strong ocean currents against the
heading to the target waypoint xgoal can be regarded as obstacles, since gliders —with their low surge speed
Ug— cannot beat them; note that with the inclusion of strong ocean currents as possible obstacle, even in
offshore environment the obstacle avoidance must be solved.

Figure 3.5: Obstacle Avoidance in glider path planning optimization problems. Obstacles in the ocean can
appear in different forms: strong ocean currents against the desired heading, land areas —like the islands in
the figure—, shipping routes, shallow waters, and basically any area where the glider cannot navigate doing
its characteristic yo-yo profiles underwater.

In Figure 3.5 we have a typical coastal scenario with land obstacles —e.g. islands. Without any sort of
obstacle avoidance logic in the glider path planning algorithm, the path gets easily trapped. In other words, by
solving the obstacle avoidance problem we are actually trying to avoid local minima in the optimization process,
which is also a consequence of the large number of optimization variables involved and the complexity of the
environment. In general, a wide exploration of the search space allows to avoid the obstacles and find an initial
rough path that can be optimized later. However, regarding ocean currents, it is also possible to segment the
environment to avoid unstable regions. We will address this problem in Section 3.5, where we study different
techniques to extract structures from the ocean currents, so we can reduce the high dimensionality of the
problem.

3.3 Path Following
The path following problem was introduced by Eichhorn (2010) with the equivalent name of Hold Track
problem. In brief, it consists on finding the path with the lowest deviation from an user-defined trajectory
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Pd, but still reaching the target waypoint xgoal. Regarding the objective of reaching xgoal, it is solved as the
minimal time path problem discussed thus far. Meanwhile, the path following requirement can generally be
integrated as a constraint in the optimization framework.

P
=
f
(B

)
x1

x2

xk

Pd
A1

A2

A2 A
k

Ak
Agoal

x0

xgoal
min
B

∑|B|
i=1Ai(f(B),Pd)

Figure 3.6: Diagram of the path following problem. We look for the path P defined by a set of bearings B
that minimizes the deviation from a desired path Pd. Such deviation can be measured as a distance d or an
area function A. This path following problem is solved as a constraint on the minimal time path problem,
that allows to reach the target waypoint xgoal.

Figure 3.6 illustrates the path following problem, where the desired path Pd goes from x0 to xgoal. The
problem can be easily understood as the minimization of the area covered by the resulting path found P
around Pd. This is a piecewise area made of right trapezoids areas Ai for i = 1, . . . , |B|, i.e. for each stint
—that is one unit less than the number of bearings |B|, or surfacing points. Note that there are different
ways to compute these areas, but the right trapezoid formula is valid also when the path P crosses Pd.

l : ax+ by + c = 0

dj

m
di

xi

xj

(a) Right trapezoid.

l
A0

c

A1

m

dj

di

xi

xj

(b) Right trapezoid (crossing).

Figure 3.7: Right trapezoid diagram, for the computation of the area between the desired path Pd and the
path found P, in the path following problem. The right trapezoid area is computed for every two consecutive
surfacing points xi and xj . In (a) xi and xj lie in the same semi-plane, divided by the line l that defines P.
When they lie in different semi-planes (b), P crosses Pd and two sub-areas must be subtracted from the right
trapezoid area.
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Given the equation of the desired path Pd simplified as a line l for 2 dimensions in the following form

l : ax+ by + c = 0 (3.5)

and 2 consecutive surfacing point locations xi and xj that define the two-dimensional coordinates

xi = (xiyi)> (3.6)
xj = (xjyj)> (3.7)

we can compute the distance from the points xi and xj to the line l as follows

di = axi + byi + c√
a2 + b2

(3.8)

dj = axj + byj + c√
a2 + b2

(3.9)

assuming an Euclidean metric space.
Using the normal vector n of the line l,

n = (ab)> (3.10)
and the distances di and dj of the points xi and xj , respectively, we can compute their projection onto l with

pi = xi − ndi (3.11)
pj = xj − ndj (3.12)

The distance of the projected points pi and pj can now be computed as the norm of their difference,
which yields the base m of the right trapezoid of Figure 3.7. That is,

m = ‖pj − pi‖ (3.13)

The distances shown thus far are signed distances, so we take their absolute value to obtain the heights
hi and hj of the right trapezoid,

hi = |di| (3.14)
hj = |dj | (3.15)

Consequently, the area of the trapezoid is defined as

A = 1
2mh (3.16)

where
h = hi + hj (3.17)

When two consecutive surfacing points xi and xj in P cross Pd, we must subtract the two sub-areas
A0 and A1 depicted in Figure 3.7 (b), from the right trapezoid area. In this case, the trapezoid polygon
is complex. We can detect whether the trapezoid is a simple or complex polygon by checking the signed
distances di and dj . If they have different sign, the trapezoid is complex, and we must do the subtraction
correction. We can see the following similar triangles equivalence in the figure,

a

h
= c

hj
(3.18)

where hj = |dj |.
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Hence,
c = ahj

h
(3.19)

We have two areas to subtract. First, a triangle of area

A0 = 1
2(a− c)hi

= 1
2

(
a− ahj

h

)
hi

= 1
2ahi

(
1− hj

h

)
= 1

2
ah2

i

h
(3.20)

and, secondly, a rectangle of area

A1 = chi

= ahihj
h

(3.21)

They sum

A0 +A1 = 1
2
ah2

i

h
+ ahihj

h

= ahi
h

(
1
2hi + hj

)
= ahi

h

(
h− 1

2hi
)

= ahi

(
1− hi

2h

)
(3.22)

which is one of the several arrangements of this equation. Therefore, for complex right trapezoid, we compute
the right trapezoid area A and then subtract A0 +A1, so we actually have A− (A0 +A1).

Instead of the right trapezoid areas, we can simply use the distance from each surfacing point xi = (xiyi)>
to the line l,

d = axi + byi + c√
a2 + b2

(3.23)

or a pseudo-distance,
d = axi + byi + c (3.24)

which is defined as a simplified version to speed up the computations. We can also choose between computing
these distances for the two consecutive surfacing points xi and xj , or just to the last one, i.e. xj . In Section 5.7
we will compare all these deviation metrics, in order to show that the simplified versions can be used in place
of the actual right trapezoid area or the XTE formulas of Eichhorn (2010).

3.3.1 Relaxed Path Following
The problem of reaching a target waypoint xgoal in the minimal travel time while keeping the path P as close
as possible to the desired path Pd is shown in Figure 3.8. A glider holds the track of a straight line along
an anti-cyclonic (clockwise) eddy, where the minimal time path will not follow the desired path. It is also
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Figure 3.8: Path following example for gliders. The figure shows the closest path P found to follow the
desired path Pd from the start x0 to the target xgoal waypoint. The glider bearings B of the path P
at each surfacing point are shown along with the ocean currents (ocean currents that exceed the glider
speed Ug = 0.4m/s are highlighted ) from the start to the target waypoint .

possible to relax the path following constraint. This means that we can allow the path found P to deviate
from Pd up to some given distance. This way we define a corridor of a certain width, so it is possible to find
paths of less travel time to reach xgoal, but still close to Pd, as shown in Figure 3.9. Therefore, the travel
time can be reduced at the expense of a small deviation from Pd. Indeed, this relaxation of the constraint
allows us to obtain a set of different solutions that define a Pareto curve, as we will show in Section 5.7.

3.3.2 Summary
In short, by solving the path following problem it is possible to obtain paths that reach the target waypoint,
while they also remain close to an arbitrary trajectory defined, for example, according to a certain scientific
interest. It is straightforward to extend the problem to arbitrary curves by a piecewise linear approximation,
using the line desired paths shown before as a basis. It is also possible to use other functions directly, as far
as we are able to compute the deviation between it and the path found —the area enclosed, or a distance
from each surfacing point xi to the curve.

In oceanography, gliders are useful for long-term missions and data assimilation campaigns, which are
demanded by climate change research, to improve our knowledge of ocean processes and so on (Dobricic
et al., 2010). In this kind of missions it is crucial that the vehicle samples the ocean across a given transect,
i.e. it follows an usually linear path that goes from the start x0 to the target xgoal waypoint. For instance,
it is common to cross the eddy from one side to another passing through the center, in order to estimate its
dimensions and measure its properties (Martin et al., 2009). With gliders, due to their relative slow nominal
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Figure 3.9: Path following example for gliders. The figure shows the closest path P found to follow the
desired path Pd from the start x0 to the target xgoal waypoint, within a corridor around Pd —i.e. the path
following problem is relaxed. The glider bearings B of the path P at each surfacing point are shown
along with the ocean currents (ocean currents that exceed the glider speed vg = 0.4m/s are highlighted

) from the start to the target waypoint .

speed, the path following problem described here cannot be solved with control theory techniques. The
problem is such that it requires a global vision of the environment and some memory in order to take the best
path and avoid situations in which the vehicle could get trapped and not reach the target.

3.4 Multi-Glider Path Planning and Coordination
In the last years a line that has received a good deal of attention by many researchers is the use of multiple
vehicles in coordinated missions. Some relevant examples include the works of Zhang et al. (2007) and
Bhatta et al. (2005), which face the problem of adaptive sampling of oceanic variables by means of a glider
fleet, maximizing the area covered and hence improving the spatial and temporal resolution. The multi-glider
problem is concerned with the coordination of multiple vehicles at the path planning phase to accomplish
coverage tasks that are solved more efficiently by a fleet of gliders navigating in certain formation or according
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to some constraints. In fact, it is possible to implement a glider path planning algorithm by imposing
coordination constraints to the objective function solved for each vehicle in the fleet.

dleftvtleft

vt

vt+1
left

v̂t+1
left

vt+1

dmin dmax

Figure 3.10: Multi-glider coordination constraint diagram, in which each glider sets its trajectory according
to a constraint. In this case, at a given time t, for a particular glider or vehicle vt in the fleet, we impose
that the distance dleft with respect to the left glider vtleft must fall within the range [dmin, dmax]. Also, note
that for a given time t we check that the stints do not intersect —i.e. they do not cross each other. For this
reason, the stint from vtleft to v̂t+1

left is discarded. We will proceed similarly for a right glider vtright, if present.

Basically, this task can be defined as an extension of the atomic problems explained thus far to multiple
gliders. In the example shown in Figure 3.10, these gliders are forced to travel within a distance range among
them. To be more specific, given a glider v, at each surfacing point we should check that its neighbors
lie in the range [dmin, dmax]. Only those paths in which that condition is satisfied are considered as valid.
Also, another check for segment intersections is required, to prune stints that cross others. In the example
of the figure, only the stint in which the glider vleft surfaces at vt+1

left is valid then. These constraints must be
applied during the optimization phase, so the paths found for each glider v are still optimized for the given
objective function, but they also satisfy the coordination constraint. This constitutes a form of coordinated
path planning, that solves a multi-glider problem for the whole fleet simultaneously. In the example of the
figure we have considered a particular constraint that keeps the vehicles close to each other navigating in
formation, but we might have adopt other constraints. In fact, in the next section we address a common
problem in real missions that consists on minimizing the time to recover a fleet of gliders.

3.4.1 Efficient Recovery
The efficient recovery is a multi-glider path planning problem in which a fleet of k gliders must be recovered
by a ship s. The problem is depicted in Figure 3.11, where the starting location of the gliders at t = 0 is
represented by the surfacing points v0

i , and the ship s is waiting at the harbor for a time T before it goes to
recover them. Therefore, the vehicles have a time T to reach the locations vTi that will allow to minimize
the recovery time. That is, the locations vTi such that the ship recovery route Pr will be the shortest —or
minimal time one, which are generally the same because we assume the ship travels relatively fast with respect
to the winds and ocean currents.
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Figure 3.11: Diagram of the efficient recovery problem. A fleet of k vehicles moves to the most appropriate
location vTi during a given time T , for each vehicle i = 0, . . . , k − 1, so the path Pr to recover them with a
ship s takes the minimal travel time tt = f(Pr).

There exist different ways to solve the efficient recovery problem. Apart from the individual path planning
case, in which each glider solves the minimal distance to the target problem independently for the given time
T , trying to reach the harbour or the ship location s, we can identify two coordinated, multi-glider path
planning approaches. First, we can impose a constraint such the vehicle end almost together after the time T .
This way we have a meeting point —which is found by the path planner, not given by the user—, so the ship
only have to go there and back to the harbour. However, the optimality of this approach is usually dominated
by the glider that is further from s, as we will see in the experiments of Section 5.8. A second approach
actually minimizes the recovery time, i.e. the travel time tt = f(Pr) required by the ship to departure from
the harbour s and recover each glider vi in sequence at their ending locations vTi , and comes back to s. This
is exactly the problem we want to solve, so this approach will provide the optimal solution, and will produce
a solution similar to the one shown in Figure 3.11.

3.5 Tracking Evolving Ocean Structures
Ocean gliders have proven to be also useful in the opportunistic short-term characterization of dynamic
structures. Among these, mesoscale eddies are of particular interest due to the relevance they have in many
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oceanographic processes. In the ocean we find different evolving structures, which can be defined as blocks
or regions of water that exhibit certain characteristics as a whole. The mass of water that constitutes these
structures usually moves over time, so it is not trivial to track and sample them. The problem of tracking
evolving ocean structures requires path planning algorithms that allows a glider to track them, while it also
takes samples in order to characterize it. This problem can usually be solved by combining several path
following sub-problems.

Figure 3.12: Finite Time Lyapunov Exponents (FTLE) computed on a double eddy synthetic ocean currents
field —overlaid with white arrows. The FTLE values represent the stability of every region in the field, such
that unstable regions —like the eddies boundaries— are in red and stable ones are in blue —as the centroid
of the eddies.

The most common evolving structures in the ocean are ocean eddies. The centroid and boundary points
of eddies associated with bloom episodes are tracked in the work of Smith et al. (2010). However, we can
also define regions according with their temporal stability. In fact, there is a number of works that use Finite
Time Lyapunov Exponents (FTLE) —or Direct Lyapunov Exponents (DLE)— to analyze the ocean currents
stability (Kasten et al., 2012; Robel, 2010; Shadden et al., 2005). In Figure 3.12 we have the FTLE for
a double eddy synthetic ocean currents field. The centroid c of the eddies are stable regions, because any
drifting object that starts there, will end up there as well after some time T . On the contrary, the interface
between the eddies is very unstable, because the particles there may end up at very different locations after
T .

This analysis produces Lagrangian Coherent Structures (LCS) that can simplify the glider path planning
problems to some extent, since we can reduce the regions explored for the optimal path to those LCSs. In
a work of Inanc et al. (2005), the FTLE is computed for the ocean currents of the region where some glider
missions will take place. The LCSs are used to obtain some insight of the stability of certain zones of the
basin, and that information can be plugged into the path planning techniques, in order to avoid unstable
structures, since the uncertainty in the location of the vehicle may lead to bad results on the field tests. LCSs
are also evolving structures, since depending on the integration time T , they cover different regions or change
their intensity. Therefore, we can also track the regions they define —or the ones they enclosed—, in order
to characterize the actual stability of such regions on the field.
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3.5.1 Ocean Eddies
In the particular case of eddies, the complexity of the path planning scenario is aggravated by the high spatio-
temporal variability of these structures and their specific sampling requirements (Hátún et al., 2007). Indeed,
even in the work of Garau et al. (2005), the A* search algorithm is used to find optimal paths over a set of
eddies with variable scale and dynamics. Smith et al. (2010) propose an iterative optimization method based
on the Regional Ocean Modeling System (ROMS) predictions to generate optimal tracking and sampling
trajectories for evolving ocean processes. More specifically, a fleet of multiple vehicles is used to track the
centroid and boundary of evolving ocean processes. Their scheme includes near real-time data assimilation
and has been tested both in simulation and real field experiments.
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Figure 3.13: An eddy is an evolving structure that can be modeled as an ellipse of half axes a and b, and
orientation θ. The center of the ellipse lies on the eddy centroid, while the perimeter of the ellipse approximates
its boundary.

In order to track an ocean eddy we need some sort of model of it. In Figure 3.13 we have an ellipse model
for the surface footprint of mesoscale ocean eddies. The ellipse is centered at the centroid c of the eddy, and
the half axes a and b, along with its orientation θ, allows to represent the eddy boundary with the ellipse
perimeter. We could also model the eddy volume in 3 dimensions, as we will see in the algorithm designed
in this thesis (see Section 4.8). The problem that it solves consists on generating the glider trajectories that
optimize the sampling of the evolving eddy structure, according with the given objective functions and the
ROM forecast maps. Similarly, the problem can be extended to multiple vehicles, in which the problem scales
to the coordination of glider fleets to define optimal sampling strategies (Leonard et al., 2010; Smith et al.,
2010).

It is worth mentioning the tight relation between ocean eddies and ocean processes that take place beneath
the surface. For instance, in some cases they may originate Harmful Algal Blooms (HABs) because of the
vertical transport of inorganic materials from the seabed (Lopez et al., 2008). Consequently, a good sampling
strategy of this evolving structures should consider their three-dimensional volume. The temporal analysis of
HABs and their formation constitutes an important application of this problem in Ocean Research. It has
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a huge interest in data assimilation and ocean modeling, as well as in the study of biological processes that
occur associated with mesoscale eddies. This kind of eddies has ≈ 50 – 100km�, so a glider traveling at
Ug = 0.4m/s will spend ≈ 1.5 – 3 days to do a transect from one side to another crossing the centroid of the
eddy. This means that a typical mission of at least 4 transects usually lasts more than 1 week, which is time
enough to appreciate how the structure evolve or move spatially over time.

3.5.2 Sampling patterns
Although we can sample evolving structures with multiple vehicles, in this work we have only explored the case
of a single vehicle. In particular, we consider the windmill pattern of Figure 3.14 to sample mesoscale eddies
—which also resemble Foucaults’s pendulum curve. This pattern starts at any point x0 at the eddy boundary,
and crosses the eddy centroid c traveling in a straight line to goes to the opposite side of the eddy boundary,
as the curve of the figure shows. After crossing the eddy, the vehicle moves on the boundary, so the next
transect crossing the structure traverse a different area. This way, we can obtain a better characterization of
the centroid c and the boundary S of the eddy. Note that this pattern is actually a concatenation of path
following problems, where the path is the windmill pattern compose of line transects crossing c and arcs in
the boundary, which can be simplified to lines as well.

S

x0

c

Figure 3.14: Windmill eddy sampling pattern. For a circular eddy, the windmill pattern defines a path that
successively crosses the center c of the eddy with a series of transects starting at x0. Each transect is a linear
path that goes from one side of the eddy to the opposite. There, it travels some distance through the eddy
boundary before crossing the eddy again.

Although different patterns can be defined, this windmill pattern provides a good coverage of the eddy
and it is thought to focus on the two main features of the structure: the centroid c and the boundary S. With
another pattern, like a lawnmower, we would have good coverage, but c would be crossed only once. Since
the structure is moving over time, it is important to sample the centroid at the higher possible rate, so we can
track the evolving structure adequately. Therefore, this problem focus on the exploration and identification or
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characterization of the evolving structures. Furthermore, it is also in connection with data assimilation tasks,
where sampling complex regions is important to feed the ocean models.





Chapter 4

Ocean Glider Path Planning

In this chapter we address the glider path planning topic for the problems and applications of the previous
chapter, using the glider motion models of Section 2.2. In the robotics literature, Path Planning covers
the topic of finding a feasible and usually optimal path to allow a robot to move autonomously from one
location to another in the environment (Lavalle, 1998). Here we will discuss the state-of-the-art path planning
techniques and our proposals to deal with the motion model of ocean gliders.

A general view of Path Planning in Robotics precedes a survey of the state-of-the-art glider path planning
techniques, discussing their assumptions and drawbacks. The detailed explanation of the glider path planning
techniques developed in this thesis follows. The last sections are allocated to discuss feature-based path
planning approaches for AUGs, which rely on the detection of physical ocean structures, like mesoscalar
eddies, or the extraction of unstable regions computed by means of stability analysis.

4.1 Glider Path Planning Survey
In Robotics, path planning addresses the problem of getting a robot from one point to another. It is one of
the three major tasks in any robotic system, as depicted in the diagram of Figure 4.1. This thesis focus on
path planning and, to some extent, in exploration or coverage path planning. This task is very challenging
when it is to be solved under the influence of ocean currents and for slow speed vehicles. The dynamic
ocean currents velocity field directly affects the movement of the vehicle, producing a drift from the expected
trajectory. Compared to ground mobile robotics, the ocean environment is much more challenging, since
operating conditions can vary notably even on reduced areas and over a relatively short period of time. In
terms of path planning, the current field conforms an asymmetric and variable cost map.

In the particular case of ocean gliders, all the mentioned difficulties are magnified, because of their low
surge speed and the low rate of actuation only at the surfacing points. Although this problem is very similar
to path planning Unmanned Aerial Vehicles (UAVs) affected by winds, there is a key difference. Ocean gliders
can only modify their bearing ψg at discrete times, i.e. when they are on surface. Also, at least this single
Degree of Freedom (DOF) ψg must be considered within the configuration space.

For these reasons, most of classical approaches in the path planning field are not directly applicable to
this problem. Many path planners apply a certain form of discretization, either on the trajectory or the
command/configuration space, to reduce the computational cost. However, the downside of discretization
lies in the presumably degradation of the quality of the results, that might lead to unrealistic trajectories.
The computing time is another factor which is often understated due to the typical long duration of glider
missions and immersion periods. Although this is generally true, it is not the case when the path planner
must respond within a reduced time interval to face an unforeseen situation. Therefore, short-term scenarios
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Figure 4.1: Diagram of the tasks that must be solved by a robot in order to acquire accurate models of the
environment; figure reproduced from (Stachniss, 2009). The overlapping areas represent combinations of the
main tasks, which cover mapping, localization and path planning.

with dynamic ocean currents are also covered by glider path planning techniques, as we will see along this
chapter.

For the sake of space below we only explain in detail the techniques applicable to glider path planning,
which are actually, the ones analyzed in this thesis, including adaptations or extensions for some of them and
even some novel proposals. Path planning for Autonomous Underwater Gliders (AUGs) has been a subject
of interest for researchers since the introduction of these robotic platforms. Different approaches have been
developed applying techniques that include searching algorithms based on Artificial Intelligence, potential field
modeling, multi-objective optimization, etc. Some of the most relevant, in our opinion, are summarized in
the following sections.

4.1.1 Graph-based methods
Graph-based methods are a classical path planning approach that lies in the category of Discrete Optimal
Planning (LaValle, 2006). A grid-shape graph represents the search space with the edges labeled indicating the
cost of traveling from a vertex to one of its neighbors. A* (Hart et al., 1968) is probably the first graph method
adapted to the problem at hand (Garau et al., 2005), with the strong assumption of static ocean currents;
although it can be run with dynamic ocean currents at the expense of losing the guarantee of optimality in the
general case. Also Pêtrès et al. (2005) and Soulignac (2010) apply A*, with a thorough analysis of the cost
function in the latter. Note that some authors call this method Wavefront Expansion (WE), which actually
does not use any heuristic and therefore it is Dijkstra’s algorithm basically (Dijkstra, 1959). In this paper, our
implementation of A* is equivalent to Garau et al. (2005, 2009). In another paper, Soulignac et al. (2009)
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address time-varying winds, combining WE and local optimization for each path explored.
As most graph-based path planning methods, A* discretizes the search space using an uniform grid. As a

consequence, the cost function must compute the travel time to go from one node ni to its neighbors, using
the constrained glider motion model of Section 2.2.2.2. The inconvenient of this approach is twofold. First, we
only find the optimal path that lies on the search grid, while the actual optimum lives in the continuous space
defined by the differential equations of the unconstrained glider motion model described in Section 2.2.2.1.
Secondly, in the presence of strong ocean currents, many neighbors are unreachable, and the search gets easily
trapped or discards many paths prematurely. Although we can increase the resolution of the search grid, the
problem is actually associated to the heading angles ψe defined by the topology of the grid, as the set of
headings is restricted to ψe ∈Mπ/4 for M = 0, . . . , 7 in an 8-connected grid. Carroll et al. (1992) apply A*
on a quad-tree search space, which is adapted to the ocean currents field, i.e. it has higher resolution where
the ocean currents vary more spatially; or more formally, where the gradient of the ocean currents is greater.
Similarly, the Fast A* of Walsh and Banerjee (2010) claims to mitigate the discretization problem as well, by
varying the search map resolution as needed and calling A* repeatedly; it has not been applied for glider path
planning though.

There exists a number of variants of A* that are worth to mention. Any-angle methods, like Theta* (Daniel
et al., 2010; Nash et al., 2007), try to obtain shorter paths alleviating the angle discretization problem caused
by the search grid. However, a visibility concept require by this technique is not applicable in the presence of
ocean currents, as their effect on the trajectory must be taken into account. Incremental methods, like D*
(Stentz and Mellon, 1993), D* Lite (Koenig and Likhachev, 2002) or Incremental Phi* (Nash et al., 2009),
aim to reduce the exploration time using previous solutions when partial changes are produced in the map. In
the case of ocean currents the change is global and therefore it is not possible to exploit already computed
solutions. Finally, post-smoothing techniques have the drawback that small changes in the path found might
produce very different, even unfeasible, paths due to the influence of ocean currents. Indeed, with different
locations in the smoothed path, the whole path must be integrated again using the glider motion model from
the start location x0.

4.1.2 Probabilistic Sampling-based methods

Probabilistic Sampling-based methods have been applied to overcome the combinatorial explosion of the
optimal path planning search to some extent. Rapidly-exploring Random Trees (RRT) (Lavalle, 1998; LaValle
and Jr., 1999; Simmons and Urmson, 2003) constitute an incremental sampling and searching approach that
has been applied to both AUVs (Tan et al., 2004) and gliders (Rao and Williams, 2009). The main drawback
of this method in our context is the inability to handle time-dependent ocean currents (see Section 4.5). The
RRT algorithm is very fast, but it does not assure the optimality of the paths found and often requires further
refinement, which is not straightforward in the problem at hand. More precisely, we cannot separate the path
planning procedure into a coarse search followed by a post-processing refinement, as it is common practice in
classical Robotics. Post-smoothing techniques rely on some sort of continuity in the distance or cost within
the search space. However, the presence of ocean currents in the glider path planning problems produce
important changes in the vehicle resulting trajectory if we modify it, since it becomes influenced by different
ocean currents —when it travels through different locations. This happens because the ocean currents field is
defined on a continuous space, so any change on a given path —as the one found with the RRT algorithm—
implies that the path is affected by different cost values, which are neither homogeneous, nor predictable
without actually recomputing the whole path. That is, we must run the path planning algorithm again. In
the case of RRT this is a serious drawback, since this algorithm is thought to find paths fast, but they are
generally sub-optimal, rough solutions.
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4.1.3 Optimization methods

Bio-inspired optimization solutions can also be found for this problem. Genetic Algorithms (GAs), for
example, are used in (Alvarez et al., 2004) for AUV path planning in the presence of variable currents. The main
problem is that it has execution time limitations, however, prevent the use of a high number of generations,
reducing the quality of the path found. Ant Colony Optimization (ACO) algorithms constitute another
interesting alternative used for ship route obstacle avoidance (Tsou and Hsueh, 2010), but is not directly
extensible to highly dynamic environments. Simulated Annealing (SA) is a global optimization technique
applied to path planning, usually as a post-processing refinement over previously generated results (Kirkpatrick
et al., 1983). It is very sensitive to the initial guess, which must be selected wisely. As an example, in (Witt
and Dunbabin, 2008) it is incorporated as part of a swarm optimization method.

Some authors have addressed the problem using System Theory and Analytical Methods (Techy et al.,
2010). In this field, optimal paths are obtained solving a Boundary Value Problem (BVP). Ocean gliders can
be modeled as a Dubins car, so Dubins curves are suitable in the case of steady flow —i.e. static ocean
currents—, with some variants allowing for turn constraints. Furthermore, Zermelo’s optimal navigation
formula is applicable for unsteady flow —i.e. dynamic ocean currents—, but without turn constraints. In
either case, these are local path planning methods that perform poorly with strong currents, so only propelled
vehicles might benefit from them. These techniques are thought for short-term motion control, rather than
long-term path planning, and they do not reflect the concept of constant time surfacings, since they control
the vehicle heading at a higher rate.

The approaches based on minimization of Energy Functions are also worth commenting. As good
examples, we can cite the work of Kruger et al. (2007), that includes the time as an extra dimension in
the search space, or Witt and Dunbabin (2008), which incorporate modeling of time-varying obstacles using
Potential Fields. The main drawback of potential fields is that they often get trapped in local minima.
The problem of local minima has been tackled by means of strategies based on particle swarms, simulated
annealing, or genetic algorithms. Another problem with potential field methods is their adaptation to dynamic
ocean currents. It is very inefficient to re-compute the potential field for the whole map for each time instant.
Furthermore, we must select a time step ∆t equal to the surfacing time ts to do so, and even in that case it
will not cover the ocean currents variability while the glider navigates underwater.

In other proposals, the currents are modeled as continuous time functions, as is the case of the Non-
linear Trajectory Generation or NTG method (Milam et al., 2000) applied over B-Splines of Zhang et al.
(2008). These approaches use numeric optimization techniques to solve the differential equations that model
the glider motion under the effect of ocean currents. This models are extensions of the three-dimensional
unconstrained motion model described in Section 2.2.2.1. Similarly, Yilmaz et al. (2008) models problem in
such a way that Mixed Integer Linear Programming (MILP) is applied to find the optimum path. Also, He
et al. (2009) propose an iterative optimization process for glider path planning. However, the focus of that
work is centered on the waypoint precision enhancement, and not in optimal path planning. Furthermore,
only static ocean currents are considered.

Special mention require the Level Set Methods (LSMs) (Lolla et al., 2012), which are a numerical technique
for tracking interfaces and shapes using an Eulerian approach. LSMs are applicable to many different problems,
including robotic path planning, where the interface or shape they track is the wavefront expanded by the
cost function from the starting location x0. By solving a Partial Differential Equation (PDE) it finds the
cost from the source x0 to any location in the search space, so a gradient descend procedure can be used to
retrieve the optimal path.

The Fast Marching (FM) method, which lies in the LSM family, have been recently applied for AUV
path planning by Pêtrès et al. (2007, 2005). FM can be regarded as a continuous version of Dijkstra’s
algorithm. Indeed, from the algorithmic point of view, it belongs to the class of Breadth-First Search (BFS)
algorithms. However, the neighbors are updated according to a numerical scheme based on the Eikonal
equation ‖∇u‖ = τ , where u represents the costmap —e.g. the ocean currents— and τ is the cost of moving
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Figure 4.2: Temporal diagram with some of the most relevant glider path planning approaches contributed to
the field thus far. The year of publication and the technique are assembled in the diagram, which is divided by
categories according with the type of path planning approach used (in top-down order): Graph-based methods

; Probabilistic Sampling-based methods ; Bio-inspired optimization methods ; System Theory
approaches ; Energy functions ; and numeric optimization methods . The thin lines that
connect different categories represent algorithms that combine ideas from different types of approaches.

to a neighbor location. Therefore, the discretization problems disappear with this continuous motion model.
In its original form, the FM only addresses static isotropic costmaps, as in the SPP. In his PhD Thesis, Pêtrès
(2007) extended this technique to dynamic anisotropic —or asymmetric— costmaps, as in the Minimal Time
Path problem. Also, an heuristic version called FM* is proposed, equivalent to A*. This approach, however,
has not been applied to gliders yet, in which the bearing ψe can only be changed every surfacing time ts.

Many authors use some sort of graph-based method for glider path planning, usually with A* at its core,
but with some additional methods to alleviate the problems derived from its discretization (Sathyaraj et al.,
2008; Thompson et al., 2009, 2010; Wang, 2007). Indeed, one approach to the problem consist on combining
the graph-based search with some kind of local optimization (Soulignac, 2010). However, all these techniques
still do not represent adequately the restriction on the modification the bearing ψg at discrete times because
the travel time between neighbor nodes is still variable, rather than constant. Similarly, Eichhorn (2010)
combines A* and Zermelo’s optimal navigation formula to the path following problem. Other alternatives
that also make use of continuous models are described on the works of Pêtrès et al. (2007, 2005). Later, this
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line of work was extended to deal with strong currents in the works of Soulignac et al. (2008).

4.1.4 Summary
The time lines in Figure 4.2 show the most representative techniques in the glider path planning field. The
figure summarizes the state of the art by arranging the original contributions for each type of path planning
approach. Some categories are connected in order to illustrate the relationship between certain techniques.
In fact, FM* (Pêtrès et al., 2005) can be seen as the continuous version of the graph-based method A*
(Garau et al., 2005); the Sliding Wavefront Expansion (WE) (Soulignac et al., 2008) combines A* with
local optimization methods; and Eichhorn (2010) also combines a variant of A* known as Time Varying
Environment (TVE) with Zermelo’s optimal navigation formula, from System and Control Theory.

In the next sections we will explain the different approaches developed in this thesis. They are described
in detail, highlighting their advantages, drawbacks and assumptions. From the survey of path planning
techniques above, we have selected the most promising ones, including those already in use by others, as well
as novel approaches. This comprises graph-based methods like A*, the probabilistic sampling method RRT,
and optimization techniques. Along with the description of the algorithm, we try to put clear how certain
techniques solve or alleviate the drawbacks or assumptions imposed by others. For instance, we will see how
we address the discretization problem of A* with a novel approach that integrates probabilistic sampling
techniques, or with optimization methods. Later, in the experimental results (see Chapter 5), we evaluate
each of these approaches for the glider path planning problems discussed thus far in Chapter 3, so we can
compare the computing time and path optimality against a naive Direct to Goal strategy that resembles the
manual glider path planning.

4.2 The Direct to Goal Approach
Before we start with the glider path planning techniques developed in this thesis, we are going to discuss a
simple approach that can be considered equivalent to the control algorithm on board the glider, which is used
to reach a waypoint. We have termed it the Direct to Goal —DtG for short— approach, since it tries to
go directly to the goal/target waypoint from any surfacing point, regardless of the ocean currents. In fact,
it is a blind technique, in the sense that it does not take into account the speed and direction of the ocean
currents nearby. It is extremely fast to compute, but the path is usually far from the optimal, as we will see
in Chapter 5. Even worse, in many cases, it does not find any path to the target waypoint, at all.

ψg= ψd

xi−2

xi−1
xi

xgoal

Figure 4.3: Diagram of the Direct to Goal approach, which sets a bearing ψg equal to the heading ψd to the
goal/target xgoal waypoint from the current location xi.

The basic operation of the DtG approach is depicted in the diagram of Figure 4.3. At each location xi,
it commands the glider to set the bearing ψg = ψd, where ψd is the direction from xi to the target waypoint
xgoal. The locations xi correspond to the surfacing points, because only when the vehicle surface it is possible
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to reconfigure its bearing, since the new precise GPS position is available and we can communicate with it.
In fact, once the pilot has set the target waypoint xgoal, gliders operate exactly this way. Every time they
emerge, the bearing is recomputed in order to head to xgoal. Additionally, some gliders —e.g. SLOCUM—
can estimate the ocean current in the last stint and assume it will be the same for the next, so it is used
to correct the next bearing in order to actually head to the target. This behavior can also be activated in
the DtG. However, in sum it does not make any significant difference, because if we do not perform such
correction at xi−1, in the next surfacing point xi the drift will be reflected in the next bearing set to head to
the target from xi.

In practice, glider pilots usually set a waypoint for some days, according with their knowledge of the region
and the ocean currents dynamics for the season, as well as some intuition. A waypoint may not be changed
during days, and during this slot of time the vehicle tries to reach it by running a Direct to Goal approach
as the one described here, with or without ocean currents corrections. For this reason, DtG will be used
as the basis for comparison, since in this work we try to contribute practical approaches to improve current
path planning or piloting methods for ocean gliders. Consequently, while the DtG strategy sets the bearing
ψg = ψd in the straight direction to the target, path planning algorithms explore several paths starting from
the current location xi, trying to find an optimal plan for the particular problem at hand.

The next sections describe the glider path planning algorithms developed in this thesis: the adaptation
of A* using costmaps, i.e. the ocean currents velocity field; our novel CTS-A* (Constant Time Surfacing
A*) algorithm that uses the unconstrained motion model within the A* search in order to model the problem
adequately by ensuring a constant time between consecutive surfacing points; and Adaptive Bearing Sampling
(ABS) method to focus the CTS-A* search and hence reduce its computing time; the RRT algorithms;
optimization-based methods, including our novel Optimization scheme on the configuration space of the
bearing angles B, the Iterative Optimization approach, and an Intelligent Initialization based on a coarse
version of the CTS-A* for obstacle avoidance. We also explain how to model the problem in favorable
scenarios with as a Boundary Value Problem (BVP), and give some insight in glider path planning using
ocean evolving structures.

4.3 Adaptation of the classical A* algorithm
One of the most common path planning algorithms in Artificial Intelligence is the graph-based algorithm A*
(Hart et al., 1968), shown in Algorithm 4.1. In its original form, it solves the Shortest Path Problem (SPP).
More precisely, A* solves the single-pair SPP, in which we have to find the shortest path from the single
source/start node nstart to the single destination/goal/target node ngoal. This is exactly the kind of problem
described thus far in Section 3.1, but requires some adaptation of the cost function to deal with a time cost
instead of distances. Here, we explain the algorithm, how we model the search space, the cost function and
the heuristic, as well as some implementation details, extensions, and important implications of the nature of
A* in glider path planning.

A* finds the optimal path from nstart to ngoal in a graph, which in our case consists on a N ×M grid
of nodes with 8-neighbor vicinity. Or, in other words, a directed graph G = 〈V,E〉, with |V | = N ×M
vertices/nodes that represent a location in a metric space, and |E| = 8 |V | —ignoring the grid boundaries—
edges/arcs that connect the nodes. The nodes disposition is a grid in which they are connected to their
surrounding nodes with a weighted edge. That weight c(ni, ni+1) represents the cost of traveling from the
current node ni to the nearby one ni+1. In the SPP, c(ni, ni+1) represents the distance from ni to ni+1, but
in the minimal time —or the minimal distance to a target problems— explained in Section 3.1, that cost is
the travel time. Such cost is computed with the constrained glider motion model of Section 2.2.2.2. By using
the unconstrained motion model, we are computing the bearing required to travel from the current node ni
to any of its neighbors ni+1. The gridded 8-vicinity topology establishes a set of fixed headings ψe = kπ/4
for M = 0..7, that gives the 8 neighbors. In glider path planning problems, we are actually looking for such
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Figure 4.4: Classical A* algorithm operating on an uniform grid that defines the search space domain Ω. The
heading angles ψe are constrained by the grid, producing straight line trajectories between nodes and non-
constant surfacing times for glider path planning problems. The distance between nodes can be parameterized,
but a high resolution would increase the computing time. Also note that the nodes do not represent surfacing
points because they are not separated a constant time, so we must compute the actual surfacing points
afterwards, setting the bearing found for the previous node.

list of bearings, rather than the location of each node (see Figure 4.4), since the ocean currents at each node
affect this computation.

To focus its search, A* uses h-values h(n) that approximates the distances to the target node from each of
the nodes n ∈ V using an heuristic function. The heuristic function h(n) is admissible if it never overestimates
the actual minimal cost of reaching the target node ngoal —otherwise, we cannot guarantee that the path to
the target is the optimal one. In the special case where h(n) = 0 ∀n we have Dijkstra’s algorithm (Dijkstra,
1959), whose main drawback is the fact that it does a blind search; indeed, for this reason it is considered as
a greedy algorithm. Therefore, the ultimate purpose of the heuristic is to reduce the computational cost of
the search.

According with Sniedovich (2006), Dijkstra’s algorithm can be seen as a successive approximation that
solves the dynamic programming functional equation for the SPP by means of the Reaching method (Denardo
and Fox, 1979). In fact, Dijkstra (1959) uses the fact that, “if R is a node on the minimal path from P to Q,
knowledge of the latter implies the knowledge of the minimal path from P to R”, which is in accordance with
Bellman’s Principle of Optimality. Bellman (2003), widely known as the father of Dynamic Programming,
establishes that this programming method is applicable to problems that exhibit overlapping subproblems and
optimal substructure. This means that Dijkstra’s algorithm actually solve the single-source SPP, not just
the single-pair one. In the single-source SPP, we find the best path from the source node nstart to all other
nodes in the graph. And therefore, it turns out that there is no algorithm more efficient for the single-pair
SPP, than for the single-source SPP. Similarly, the Wavefront Expansion method of Dorst and Trovato (1989)
—repeatedly used in the glider path planning literature—, operates like Dijkstra’s algorithm.

One possible implementation of Dijkstra’s algorithm uses a node set Q that contains all the undiscovered
nodes so far. Initially it has all but the start node nstart, and the algorithm proceed by exploring each node at
a time —starting with nstart. The next node selected for expansion is extracted from Q, being the one with
the minimum cost. The computational cost of the Dijkstra’s algorithm is defined as O (r |E|+m |V |), where
r and m are the number of operations to insert and extract the minimum from the node set Q, respectively.
By using a min-priority queue implemented by a Fibonacci heap the algorithm runs in O (|E|+ |V | log |V |)
(Fredman and Tarjan, 1984, 1987). Although Fibonacci heaps are theoretically better than binary heaps,
in practice the latter exhibit less overhead, and they are common in standard libraries, like the C++ STL
std::priority queue template; in our implementation we have used a binary heap, indeed.

As it has been previously said, A* introduces an heuristic function h(n) to speed up the search of Dijkstra’s
algorithm. Basically, h(n) is added to the cost of the nodes inserted into the node set Q, so their priority



4.3 Adaptation of the classical A* algorithm 69

Algorithm 4.1 A* algorithm pseudo-code for implicit graph search.
Require: Start nstart and target ngoal nodes. Heuristic function h(n) that estimates the cost from node n to

ngoal. The heuristic h(n) is assumed to be consistent, so we use a closed set C to make the search more
efficient. Function parents(ni) that retrieves the path P by extracting the parents of ni = ngoal from
the parent( · ) map recursively, until it reaches nstart.

Ensure: Optimal path P found from nstart to ngoal.
Algorithm: A*(nstart, ngoal) return P

1: g(nstart) = 0 . assume g(ni) =∞ for the rest
2: parent(nstart) = ∅ . assume parent(ni) = ∅ for the rest as well
3: O = C = ∅ . empty open and closed sets
4: O.insert(nstart, g(nstart) + h(nstart))
5: while O 6= ∅ do
6: ni = O.pop . extract node ni with minimum cost
7: if ni = ngoal then . target ngoal reached
8: return parents(ni) . path found (extracted from parent( · ))
9: end if

10: C = C ∪ {ni} . close node ni
11: for all ni+1 ∈ successors(ni) do . for each successor ni+1
12: g′ = g(ni) + c(ni, ni+1) . tentative g-value
13: if (ni+1 /∈ C ∪ O) ∨ (g′ < g(ni+1)) then . undiscovered or better g′
14: g(ni+1) = g′ . update
15: parent(ni+1) = ni
16: O.insert(ni+1, g(ni+1) + h(ni+1)) . decrease key (update, or insert if undiscovered)
17: end if
18: end for
19: end while
20: return ∅ . no path found

is changed. At this point is important to say that our A* implementation manages implicit graphs. It is
common to use implicit graphs when the search graph is such huge that it is better to generate the adjacency
list of each node during the exploration. In Algorithm 4.1, the successors method is responsible of retrieving
all the children nodes ni+1 of the current node ni, according with the 8-neighbor topology. As the algorithm
shows, A* maintains for every node n:

1. The g-value g(n), that is the distance of the shortest path from the start node nstart to the node n
found so far.

2. The parent node of n, which is used to retrieve the path after the search ends. Recall that for the
problem on hand, the path consists on a sequence of bearing angles ψg that are to be commanded to
the glider, and the computed surfacing locations x. This is a consequence of using the constrained
motion model of Section 2.2.2.2, as mentioned before.

There are two general implementations for AI search methods: tree and graph search algorithms. A* can
be implemented with any of them. In a tree search, the topology of the graph already guarantees that no
node is rediscovered during the search. On the contrary, searching on a graph may expand nodes already
explored. As it was previously mentioned, for glider path planning problems we use a directed graph with a
gridded topology. Therefore, we use the graph search version of A*. In this case, since we can rediscover
nodes already explored from alternative paths, we need to use an additional set, not only Q. Indeed, we have
to maintain two data structures:
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1. The open set O, which consists on a priority queue that contains the nodes to be considered for
expansion, along with the expected cost f(n) = g(n) +h(n) to reach the target ngoal. The open set O
is equivalent to Dijkstra’s node set Q.

2. The closed set C, which contains nodes that have already been expanded in order to ensure that each
node is expanded only once, unless we find a better cost g(n) from nstart, coming from an alternative
path.

Since there are different ways of interpreting the A* algorithm, below we provide the equivalence between
node states, coloring and the open and closed sets. The nodes can take three different states during the A*
search:

undiscovered: It is a white node, which is neither in the open O, nor in the closed C set, i.e. n /∈ O ∪ C.

discovered: It is a gray node, which is in the open O set, i.e. n ∈ O.

explored: It is a black node, which is in the closed C set, i.e. n ∈ C.

Note that the case of n ∈ O ∧ n ∈ C is not valid. The implementation with the open and closed sets attends
to the fact that we search an implicit graph, so they are used to mark the nodes discovered and explored thus
far. As in Dijkstra’s algorithm, for the open set O, we use a binary heap to obtain the best efficiency. For
the closed set C we need a hashmap to store the information of whether the node is closed/explored or not;
note that we can use a single hashmap to store the nodes with further information, including an attribute to
indicate whether the node has been explored or not, which is what we do in our implementation.

A* updates the g-value and parent of an unexpanded successor ni+1 of node ni by considering the distance
g(ni) of the path from nstart and the distance c(ni, ni+1) from ni to ni+1, resulting in g(ni) + c(ni, ni+1).
It updates the g-value and parent of ni+1 if the new path distance g(ni+1) is shorter than the shortest path
from nstart to ni+1 found so far (see line 13 of Algorithm 4.1); undiscovered nodes are also updated.

The algorithm minimizes the cost to the target, which in our case consists on a temporal cost based on
the maximum speed a glider can achieve within the ocean current field and the great circle distance between
a pair of locations xi and xj for i 6= j, represented by the nodes of the gridded search graph. The great circle
distance is the shortest distance on a sphere or ellipsoid that in this case approximates the Earth surface, but a
simpler metric distance might be used (see Section A.2). In spherical geometry, the shortest distance between
two points is an arc of a great circle. In this case, the triangle inequality holds provided the restriction that
the segment covers less than half a great circle (Brock et al., 2009; Ramsay and Richtmyer, 1995). Even
for large missions, we can assume this restriction is met. Consequently, since the triangle inequality holds, in
glider path planning we are still working in a metric space, as in our experiments. This is important in order
to guarantee that the heuristic is consistent, and the problem has optimal substructure.

To compute the heuristic we estimate the maximum velocity Ucmax = max
x∈P

(‖Uc(x, t)‖) of the ocean
currents through the path P the glider will follow. Since P is unknown in advance, we estimate Ucmax using
a domain Ω spatial and temporally centered at the current location and time. Given Ucmax and the glider
nominal speed Ug, we compute an underestimated temporal cost to reach the target from the current location
x, of node n, using the straight distance d = ‖x− xgoal‖ to the target,

h(n) = d

Ug + Ucmax

(4.1)

which is a conservative but admissible heuristic function. Furthermore, as long as we use the same estimate
of Ucmax for every node n in the graph, this heuristic is also consistent.

Given the 8-connected grid of A*, Rao and Williams (2009) proposes a simplified heuristic, where d is not
computed as an Euclidean distance, but rather as an almost Manhattan distance considering also the Mπ/4
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connections. For a given location x = (x, y) and target waypoint xgoal = (xgoal, ygoal), in 2 dimensions, we
compute the width w and length l values as

w = min |xgoal − x| , |ygoal − y| (4.2)
l = max |xgoal − x| , |ygoal − y| (4.3)

Now, the distance d turns into
d = ∆x

(
(
√

2− 1)w + l
)

(4.4)

which can be directly plugged into the the previous heuristic h(n) definition (4.1). Also note, that for the
Euclidean distance, it is sufficient to use the squared distance d = ‖x− xgoal‖2, which makes (4.1) as efficient
in terms of operations as (4.4), and hence it is what we use in our implementation.

Regarding the time complexity of A*, Pearl (1984); Russell and Norvig (2010) establish that in the worst
case the number of nodes expanded is exponential on the length of the optimal path, but it is polynomial if
the search space is a tree, there is a single goal, and the heuristic meets the following condition:

|h(n)− h∗(n)| = O (log h∗(n)) (4.5)

where h∗(n) is the optimal heuristic, i.e. an admissible heuristic that gives the exact cost to get from the node
n to ngoal (Russell and Norvig, 2010). Unfortunately, in our case the search space is not a tree, but a gridded
graph, and the heuristic h(n) (4.1) is presumably far from the optimal. Therefore, the time complexity of A*
applied to glider path planning problems is not polynomial. However, it expands less nodes than Dijkstra’s
algorithm, since it is not an informed search as A* —that uses an admissible h(n).

So far, we have said that the heuristic used for the search must be admissible. This is required to guarantee
that we find the optimal path. However, we can impose a more strict condition on the heuristic. It is said
that a consistent, or monotone, heuristic function is defined as

h(ni) ≤ c(ni, ni+1) + h(ni+1) (4.6)
h(ngoal) = 0 (4.7)

Indeed, (4.6) establishes that it is necessary and sufficient for a heuristic to obey this triangle inequality to be
consistent (Pearl, 1984).

By definition, a consistent heuristic is also admissible, i.e. it never overestimates the cost of reaching
the target from any node ni. However, the opposite is not always true. Although it is unusual to have an
admissible heuristic h which is not consistent, it can be made into a consistent heuristic h′ using the pathmax
equation (Russell and Norvig, 2010):

h′(ni+1) = max {h(ni+1), h(ni)− c(ni, ni+1)} (4.8)

A* is complete and optimal provided that h(n) is admissible (for a tree search) or consistent (for a graph
search) (Russell and Norvig, 2010). Indeed, the pseudocode of Algorithm 4.1 assumes that the heuristic
function is consistent, which is a frequent case in most practical problems. However, if the assumption is not
true, nodes in the closed set may be rediscovered and their cost improved. In other words, the closed set
can be omitted —yielding the tree search algorithm— if a solution is guaranteed to exist; or if the algorithm
is adapted so that new nodes are added to the open set only if they have a lower f(n) value than at any
previous iteration. For static ocean currents, the heuristic h(n) (4.1) is consistent, for the reason of the
analysis presented here. However, for dynamic ocean currents, since the cost of going from any node to
another changes, the triangle inequality is violated, and h(n) is no longer consistent. Consequently, we may
rediscovered explored nodes from alternatives paths with an improved cost g(n). Fortunately, h(n) remains
an admissible heuristic in these scenarios as well, so we can apply A*.
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According with Dechter and Pearl (1985), if the heuristic is not admissible, A* is not guaranteed to
expand fewer nodes than another search algorithms with the same heuristic. However, at the expense of the
optimality, we can speed up the search by relaxing the admissibility criterion. Indeed, for large search spaces,
it is common to overestimate the heuristic cost, to reduce the exploration time. Formally, we can use an
ε-admissible heuristic, which guarantees that the solution is no worse than (1 + ε) times the optimal. There
exist several ε-admissible algorithms, being the static and dynamic weighting two reasonable approaches.
Static weighting (Pohl et al., 1969) changes the cost function into

f(n) = g(n) + (1 + ε)h(n) (4.9)

On the other hand, the dynamic weighting adapts the heuristic weight to the node depth (Pohl, 1973), as
follows

f(n) = g(n) + (1 + εω(n))h(n) (4.10)
where

ω(n) =

1− d(n)
N

if d(n) ≤ N
0 otherwise

(4.11)

being d(n) the depth of node n in the search graph, and N the anticipated length of the solution path. We
have experimented with static weighting, but for the results show in Chapter 5 we focus on the solutions and
computing time of A* using the admissible heuristic (4.1).

There exists several approaches to estimate the maximum velocity Ucmax of the ocean currents for the
heuristic function h(n) (4.1). Since taking the global maximum of all ocean currents in the map gives an
admissible h(n), it is a very conservative value. Alternatively, we can take the mean, or more appropriately,
estimate its value only for a region around the current node ni —both in space and time. Although this
may violate the admissibility of h(n), in practice —for relatively large regions—, it provides a reasonable
improvement for the heuristic.

With the heuristic h(n) we try to reduce the computing time of the algorithm, at the expense of finding
a suboptimal solution. However, the A* method also has several drawbacks that come from the fact of using
a grid. These limitations are more noticeable in the case of glider path planning, because of the effect of
ocean currents in the constrained motion model used for the nodes expansion/relaxation. First of all, the grid
resolution must be sufficiently high, so the nodes lie on areas with almost constant ocean currents. Otherwise,
some sort of interpolation is required during the node expansion process, in the successors method. More
important than the resolution is the topology of the grid, because it determines the heading angles ψe that
will be expanded. When ocean currents are very strong, it happens that the range of feasible headings gets
extremely narrow (see the accessibility cone of Section 2.2.2.2). It becomes smaller than the angular resolution
between the headings, which in our case —for an 8-vicinity— is of 45◦. In those cases, if the ocean current
direction falls inside the bisector of two successive heading angles, it happens that no node is expanded, since
the constrained motion model establishes that it is impossible to reach them. The Figure 4.5 shows a case in
which this happens, and the optimal path is not found. In order to alleviate this problem, in some experiments
we have used a greater vicinity radius, i.e. we have included the children of the neighbor nodes, and so on.
Consequently, new heading angles are introduced —indeed, in the successors relaxation, only those nodes that
produce different, new headings are considered. Therefore, we get nodes expanded in the presence of strong
ocean currents, in these type of situations.

The A* algorithm have been used in the context of glider path planning by several authors previously
(Garau et al., 2005; Pêtrès et al., 2005; Soulignac, 2010). Here, we have a thorough analysis of the algorithm
and its main drawbacks when applied to the minimal time and minimal distance to the target problems
(see Section 3.1). The most remarkable limitation of this approach is the fact that the algorithm uses the
constrained motion model explained in Section 2.2.2.2, to compute the cost c(ni, ni+1) of traveling from a
node ni to each of its neighbors ni+1. This imposes a set of heading angles ψg that in the presence of strong
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Figure 4.5: Example of optimal path not found by the A* algorithm. The figure shows the nodes explored
from the start to the target waypoint. At a certain node, the constrained motion model does not

allow to explored the optimal path trajectory, because its heading does not fall into the 8-vicinity grid of the
search graph.

ocean currents are often unreachable. Furthermore, with this scheme we obtain non-constant time surfacings
between nodes. This does not reflect the glider navigation pattern explained in Section 2.1, which exhibits
constant time surfacing. For this reason, we have explored other approaches to overcome such limitations, as
we will see in the sequel.

4.4 A novel Constant Time Surfacing A* (CTS-A*) approach
In this thesis we have developed a graph-based search algorithm named Constant Time Surfacing A* (CTS-
A*). This algorithm alleviates the two main drawbacks of A* discussed thus far: the difficulties to reach the
neighbor nodes in regions of strong ocean currents, and the non-constant travel time required to reach them,
in any case. First, in the A* adaptation of Section 4.3 we use the constrained motion model explained in
Section 2.2.2.2 to go from one node ni to its neighbors ni+1 in the gridded search graph. This motion model
forces the vehicle to reach the neighbor nodes ni+1, by setting the bearing ψg that yields the heading ψe
defined by each ni+1 —the Mπ/4 angles for M = 0, . . . , 7, in the 8-vicinity grid—, which allows to beat the



74 4 Ocean Glider Path Planning

ocean currents. When the ocean currents are very strong, most of the neighbors ni+1 are unreachable, as it
was explained in Section 4.3. Consequently, the algorithm cannot expand more nodes from ni, and in some
cases this prevents from finding a path to the target waypoint, as the Figure 4.5 illustrates. Secondly, even
when it is actually possible to reach the neighbors ni+1 with the constrained motion model, it happens that
the time required to arrive is not constant, because of the design of the algorithm and the motion model. This
represents a clear diversion from the glider navigation pattern, with stints of constant time between successive
surfacing points (see Section 2.1).
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Figure 4.6: Successors generation in the CTS-A* approach proposed. Starting at a node ni several trajectories
are integrated for surfacing time ts considering different bearings ψgj
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Figure 4.7: Diagram of the operation of the Constant-Time Surfacing A* algorithm. At each surfacing
location xi different bearing angles ψg are considered, integrating the glider trajectory for the surfacing time
ts, or a multiple s· ts.

The Constant Time Surfacing A* algorithm —CTS-A* for short— does not impose the strict condition
of reaching the adjacent neighbors ni+1. On the contrary, it integrates numerically the unconstrained motion
model of Section 2.2.2.1 for a constant surfacing time ts —or a multiple s· ts. The ending location is then
mapped into the gridded search graph, but proceeding this way, we do not impose the vehicle to navigate in
a certain heading ψe, which might be unfeasible. Therefore, all the neighbors can be expanded even in areas
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with strong ocean currents. Furthermore, we keep the surfacing time constant. The integration process and
the mapping to the nodes of the gridded search graph is depicted in Figure 4.6 for a subset of bearing angles
ψgj

; note that contrary to A*, we set the bearing directly, instead of computing it from a given heading angle
ψe.

4.4.1 Successors generation
Therefore, the CTS-A* approach includes a notable modification to the original A* algorithm. As a
consequence of forcing constant time surfacings, the process of generating successors changes:

1. For each bearing ψgj
we integrate the glider trajectory for the surfacing time ts, i.e. we compute the

trajectory followed by a glider that keeps a bearing ψgj
under the influence of ocean currents, with

the unconstrained motion model. We also allow for multiples s· ts of the surfacing time, so in the
presence of strong ocean currents we give enough time to the vehicle to move to the area covered by a
neighbor node ni+1; otherwise, the ending location would still lie into the current node ni, and it would
be discarded —since it would have a higher cost g′ = g(ni) + ts. With multiple surfacings s, the cost
c(ni, ni+1) is given by s· ts, which is considered to compute g(ni+1) in the line 10 of the algorithm.

2. The ending location of each trajectory is mapped into the Nearest Neighbor node nψgj

i+1 of a grid, using
the NN method in the algorithm. Special care is taken when that node already represents another
location, and consequently an alternative path that reaches it. This requires the successors generation
procedure to be hard-coded alongside the open list O update step, which is almost reproduced in this
method.

3. Therefore, if two locations fall into the same node —i.e. if the node was discovered or explored
previously—, we take and map the one with lower cost g(n). If both have the same cost g(n), we
take the best location according to some function d(x, n), which can be the Nearest Neighbor to the
node n centroid or the heuristic h(n). If we use h(n), we can approximate all this logic with a single
comparison on the cost f(n). Additionally, the bearing is also stored in the node.

This new generation of successors scheme is concerned with the node labeling and the open O and close
C sets management. The path finding basis of this approach is depicted in Figure 4.7. For each surfacing
location xi, starting with nstart = n0, the glider trajectory is integrated for the surfacing time ts —or a
multiple s· ts— for different bearing angles ψgj . This process is repeated with the new surfacing locations
generated, xψg0

i+1, xψg1
i+1 and x

ψgj

i+1 in the figure, which are selected according to the cost function g(n) that
guides the searching to the target node ngoal. The ending locations x

ψgj

i+1 are not discretized, since they are
mapped into the Nearest Neighbor node nψgj

i+1 of the gridded search graph —i.e. the nodes are labeled with
that ending location. In the next iteration, the glider trajectory is computed starting at the location x

ψgj

i+1
saved.

4.4.2 Discussion
We may argue that using constant time surfacings is equivalent to say that all the edges E in the graph have
the same constant weight. Clearly, if all the weights are the same, we can omit them and find the optimal
path in the unweighted version of the graph. In this type of graphs, the priority queue —that implements the
open set O— degenerates into a FIFO queue, and the problem can be solved with a Breadth-First Search
(BFS), instead of Dijkstra’s algorithm. However, there are two reasons that hold us from doing this for glider
path planning. First, we allow to perform more than a single surfacing to travel from one node ni to its
neighbors ni+1, in order to deal with regions of strong ocean currents. Therefore, the weights c(ni, ni+1) are
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Algorithm 4.2 Successors generation in CTS-A*.
Require: Current node n, the number k of bearings to sample and the surfacing time ts to integrate the

trajectory. The trajectory integration requires the integration step dt, the glider nominal speed vg(ψg)
for a bearing ψg, and the ocean currents velocity field vc(x). If a neighbor node m has equal cost g′ than
the new trajectory xψg

, a d(x, n) function is used. If d(x, n) = h(n), we can use f(n) instead of g(n),
with a single condition.

Ensure: Successors list S and node labeling update considering the cost g(x) and the distance d(x,m) of
the location x paired with the node m.

Algorithm: successors(n, k, ts) return S
1: S = ∅
2: for all 1 to k do
3: ψg ∼ [0, 2π) . sample bearing
4: s = 0
5: repeat
6: xψg = trajectory(ts, dt,vg(ψg),vc(x),xn)
7: m = NN(xψg

) . Nearest Neighbor node m to xψg

8: s = s+ 1
9: until m 6= n

10: g′ = g(n) + s· ts
11: if m /∈ C ∪ O then . m undiscovered so far
12: mx = xψg

13: else
14: if g′ < g(m) then . lower cost
15: mx = xψg

16: else if g′ = g(m) then . equal cost, but
17: if d(xψg ,m) < d(mx,m) then . better location
18: mx = xψg

19: end if
20: end if
21: end if
22: S = N ∪ {m} . add m to successors list S
23: end for
24: return S

not always the constant surfacing time ts, but a multiple s· ts, which is not constant. Now, let us assume
there are not such regions in a particular test case, i.e. the ocean currents are weak and it suffices with a
single surfacing to travel from ni to another node ni+1 in ts time. Under this assumption, we can run a BFS,
which has a time complexity of O (|E|+ |V |). Nevertheless, the informed search of A*, using the heuristic
h(n) is faster in practice, because the number of nodes explored is reduced. With h(n) comes the second
reason we cannot use a FIFO queue, since the cost f(n) = ts+h(n) —where g(n) = ts for our assumption—
is no longer a constant weight.

Regarding the time complexity of the CTS-A* approach, since it only changes the implementation of the
successors method, it remains the same as for the A* (see Section 4.3). However, we have to pay attention
to the cost of integrating the unconstrained motion model for each bearing angle ψg. Indeed, for each node
relaxed in the generation of the successors we incur in a constant cost τ , which depends on the integration
step ∆t or the tolerance configured in the solver (see Section 2.2.2.1). This constant τ multiplies for all the
nodes expanded, which is in the order of O (|V | log |V |), yielding O (|E|+ τ |V | log |V |), which in terms of
complexity is equivalent to O (|E|+ |V | log |V |), the same as in A*. Note that for A*, with the 8-vicinity grid,
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|E| = 8 |V |. Here, although we use the same 8-vicinity grid, the number of edges E depends on the number
M of bearing angles ψg sampled, so |E| = M |V |. In our experiments we have analyzed different values, from
M = 8 to 18, where more samples M yield better results, but at the expense of a higher computing time.

The fact that all the neighbor nodes are expanded does not mean that the time complexity of the algorithm
is exponential. It is easy to see that the mapping into a fixed gridded search graph allows us to keep the
computational cost bounded. After the trajectory integration with the unconstrained motion model, it is
common that the ending location gets mapped into a node already used to map another neighbor location or
path. In this cases, only the best trajectory is chosen to be represented by the node, according with its cost
g(n) and heuristic h(n), as it is shown in the line 13 of Algorithm 4.2, for the process of generating the list
of successors nodes.

Ideally, all bearing angles would be considered for the trajectory integration. Unfortunately, it is
computationally expensive to test so many bearings, and therefore we must take a subset of samples
intelligently. It is expensive not only because the number of nodes expanded grows exponentially, but because
we also incur in the integration time τ mentioned above, for each node expanded as well. The sampling
process to obtain M bearings, which takes place in line 3 of Algorithm 4.2, can be uniformly distributed or it
might follow a Probability Density Function (PDF) distribution, which would be a more intelligent approach.
Indeed, in the next section we explore a novel informed distribution for this sampling process, which will be
evaluated against the uniform sampling in the experiments shown in Section 5.4.3. It is also worth mentioning
that the uniform samples can be centered at the bearing angle in the direction to the target ψd, which
constitutes a first improvement on the sample set selection.

4.4.3 An intelligent Adaptive Bearing Sampling (ABS)
The Adaptive Bearing Sampling (ABS) algorithm discussed in this section is a variant of the CTS-A* algorithm
discussed thus far. In the CTS-A*, a given number M of bearing angles ψg are sampled uniformly, to expand
the successors of the current node ni, by numerical integration of the glider unconstrained motion model
explained in Section 2.2.2.1. This uninformed approach requires a significant number M of bearings to obtain
an optimal path —according with our experiments M ≈ 18, i.e. ∆◦ ≈ 20◦ (see Section 5.4). Unfortunately,
this is computationally expensive, as explained in the previous section. Therefore, a more intelligent, and
informed distribution of the bearing angles samples can allow keeping M small without compromising the
optimality of the result.

Instead of an uniformly distributed bearing sampling, the ABS algorithm follows a PDF distribution. It is
possible to model such a PDF taking the factors below into account:

1. The effective speed Ue that a glider will be able to achieve, which is a function of the glider nominal
speed Ug, the ocean currents speed Uc, and the alignment of their orientation angles ψg and ψc,
respectively.

2. The heading ψd direct to the goal, that gives the shortest, and minimal time, path to the goal under
null ocean currents conditions.

Firstly, the effective speed Ue is modeled as in the constrained motion model of Section 2.2.2.2. Given Ug,
Uc, ψc and the desired heading ψe, it computes the bearing ψg required to compensate for the drift produced
by the ocean currents as

ψg =
{
ψe + arcsin s if |s| ≤ 1
@ otherwise

(4.12)

which yields the effective speed Ue

Ue =
{
Ug
√

1− s2 + Uc cosψec if |s| ≤ 1
0 otherwise

(4.13)
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where
s = Uc

Ug
sinψec (4.14)

and ψec = ψe − ψc.
Consequently, if Ug > Uc the set of feasible heading angles ψe is unbounded. Otherwise, this set is

delimited by a so called accessibility cone with and arc angle ψr given by

ψr = 2 arcsin Ug
Uc

(4.15)

For the special case of Ug = Uc we have ψr = π
2 . Thus, a heading ψe is physically feasible if and only if it lies

in ψe ∈ [−ψr

2 ,
ψr

2 ]. This constitutes a summary of the constrained motion model explained in Section 2.2.2.2.
It is used here to compute Ue, which is employed to build part of the informed PDF distribution of the ABS
strategy, as we will see in the sequel.

Figure 4.8 (a) and (b) show the effective speed vectors Ue for different heading angles ψe, computed with
(4.13). The speed values Ue obtained for each ψe ∈ [−π, π] might be thought as weights w or importance
factors that constitute a PDF distribution. This PDF fψc

(ψe) establishes the heading angles with a higher
probability of producing a greater Ue —i.e. those which are aligned with ψc. Indeed, the highest probability
is always assigned to ψe = ψc, with a value of Ue = Ug +Uc. Depending on the relation between Ug and Uc,
defined as the speed ratio SR = 100Uc

Ug
, we have different distributions (see Figure 4.8 (c)).

However, it is not enough to follow the directions ψe with greater Ue, since this information is local.
We have to take the direction ψd to the goal into account, which constitutes a global guess. An additional
PDF distribution fψd

(ψe) is built accounting the difference between the heading ψe and ψd. We propose the
following Normal distribution to model it,

N (ψe; µ, σ2) = 1√
2πσ2

exp
{
− (ψe − µ)2

2σ2

}
ψe ∈ [0, 2π] (4.16)

with mean µ = ψd in rad and variance σ2. A realization of this Normal distribution on ψd is shown in
Figure 4.9.

The composition of the PDF distributions discussed so far yields a PDF fΘ(ψe) = fψc
(ψe) + fψd

(ψe)
that models both factors simultaneously (see Figure 4.10). This new PDF fΘ(ψe) allows to sample several
heading angles ψe directly. However, the PDFs used so far, being discrete distributions, require a normalization
satisfying

∑k
i=1 wi = 1 to ensure a correct sampling —i.e. one that produces samples distributed according

to the PDF distribution.
A powerful way to sample from nonparametric distributions is the Sequential Importance Sampling (SIS)

algorithm, a Monte Carlo (MC) method that forms the basis for most sequential MC filters (Doucet and
Johansen, 2008; Fishman, 1996; Hammersley and Handscomb, 1964). Developed by Madow (1949, 1953);
Madow and Madow (1944) in a series of papers, the Sequential sampling algorithm is a method commonly
used for this purpose. Figure 4.11 depicts the operation of the SIS algorithm. Instead of selecting samples
independently of each other, the selection involves a sequential stochastic process. This is achieved by
drawing a random number r ∈ [0,M−1], where M is the number of samples to draw. Samples are selected by
repeatedly adding M−1 to r and choosing the sample that corresponds to the resulting number. Any number
U = r + (m− 1)M−1 ∈ [0, 1] points to exactly one sample, namely the sample i for which

i = arg min
j

j∑
k=1

wk ≥ U (4.17)

The advantage of the SIS algorithm is threefold. First, it covers the space of samples in a more systematic
fashion than an independent random sampler, and it tends to not provide ill-suited samples that an uniformly
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(c) PDF distributions fψc (ψe) given by Ue

Figure 4.8: Effective speed vectors Ue for heading angles ψe ∈ [−π, π], considering different speed ratios in
(a) and (b); (c) PDF distributions fψc(ψe) for SR ∈ [50, 150]% centered at ψc.

distributed set of samples would. Secondly, if all samples have the same importance factors, the resulting
sample set will follow the same PDF distribution. Third, this low-variance sampler has O (M) complexity.

The SIS algorithm might produce repeated headings, as Figure 4.12 shows. Duplicated headings are
replaced by uniformly distributed samples using the interval (ψei

−dl, ψei
+dr) around the duplicated heading
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Figure 4.9: PDF distribution fψd
(ψe) that considers the heading ψd = π
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(4.16).
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Figure 4.10: Combination of the PDF distributions fψc
(ψe) shown in Figure 4.8 (c), and a PDF distribution

fψd
(ψe) that considers the direct heading ψd = π

2 to the goal, modeled with (4.16). SR ∈ [50, 150]% .

ψei , where

dl =
ψei
− ψei−1

2 (4.18)

dr =
ψei+1 − ψei

2 (4.19)
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Figure 4.11: Sequential Importance Sampling (SIS) of M samples from N original weighted samples, where
M < N , i.e. subsampling. When M = N it is usually known as resampling, while it performs an oversampling
when M > N .
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Figure 4.12: Proposed PDF distribution fΘ(ψe) for SR = 100% and samples obtained after applying the
SIS algorithm for M = 100 samples. Samples are shown with an histogram count of M bins to show
repetitions, which are eliminated creating new samples in a post-processing step.

are the midpoints of each side of ψei .
Once the set of heading samples ψei

is drawn from fΘ(ψe) in Figure 4.10 with the appropriated speed
ratio, the bearing angles ψgi

for each ψei
are given by (4.12), for i = 1, . . . ,M . Recall that (4.12) is undefined

for |s| > 1, where s, given by (4.14), depends on SR. On those cases, we assume Ug � Uc, so s → 0 and
therefore ψgi = ψei .

In Section 5.4.3 we will compare the uniform sampling with the ABS sampling discussed here. We
consider the PDF distribution proposed here, although different distributions may be defined as well, and the
influence of the number M of bearing samples is analyzed. With the ABS strategy we pretend to mitigate the
exponential growth of the computing time with M , by keeping it small using an informed, intelligent sampling
strategy that allows to obtain nearly optimal paths in better time using less M bearing samples.
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4.5 Extension of Rapidly-Exploring Random Tree algorithm
The Rapidly-exploring Random Tree or RRT technique (Lavalle, 1998) is based on a random generation of
test cases on the problem domain, building up an exploring tree with nodes that tend to cover the search
space. RRT is included in the Rapidly-exploring Dense Tree (RDT) family of methods, which were originally
developed for handling differential constraints (LaValle, 2006). In fact, the glider path planning problems
can be modeled by the differential equations and constraints of the vehicle motion model, considering the
ocean currents (see Section 2.2). Contrary to other algorithms, which focus on finding an optimal path, RDTs
are aimed at returning only feasible trajectories, not necessarily optimal. Their main advantage is that they
produce a solution trajectory with relatively less sampling than other methods, and consequently they run
much faster. Indeed, this performance gain is enabled in part by the lack of concern for optimality.

Algorithm 4.3 RRT algorithm pseudo-code.
Require: Start x0 and target xgoal locations, and number of iterations K.
Ensure: Tree or graph G, that will connect x0 with xgoal.
Algorithm: RRT(x0, K) return G

1: G.init(x0) . add start location
2: for all 1 to K do
3: xrand = rand . new random location
4: xnear = NN(S(G), xrand) . Nearest Neighbor location in the swath S(G)
5: xnew = new(xnear, ∆x) . new location
6: G .add vertex(xnew)
7: G .add edge(xnear, xnew)
8: end for
9: return G

In Algorithm 4.3 the basic RRT algorithm is presented; note the the RDT algorithms are considered as
RRT when they use random samples in the configuration/search space, rather than a deterministic sequence.
In brief, the algorithm builds a graph G, which is actually the exploring tree. The root of the tree is the start
location x0. The pseudo-code shown in the algorithm is the original version of Lavalle (1998), but adapted
to the notation of the space configuration of glider path problems. Then, for a given number of iterations
K, the RRT algorithms sample randomly a new location xrand. In the general case, this random location
must be validated, in order to check that it is a feasible location —e.g. it does not collide with an obstacle.
Fortunately, in the case of glider missions, we usually do not have this problem because they operate offshore.
Then, the nearest neighbor NN node in the swath S(G) of G is chosen; the swath of a graph G = (V,E) is
simply the reachability of all edges e ∈ E, since they define a path, that is

S(G) = ∪
e∈E

e([0, 1]) (4.20)

where e([0, 1]) is the image of the path e (LaValle, 2006). The nearest neighbor node xnear is used to generate
a new location xnew by moving from xnear an incremental distance ∆q in the direction of xrand. That new
node xnew is added to G along with and edge that connects xnear with it.

After a certain number of iterations, the RRT algorithm exhibits its innate biased towards exploration,
filling the configuration space. In Figure 4.13 (a), after K = 50 iterations, we observe an example run of
the RRT algorithm on a bi-dimensional search space. Even at this early stage, we observe how the search
space is almost uniformly sampled. It is after K = 500 iterations in (b), when we see a more dense tree that
covers almost all the search space, with some gaps that would be filled in further iterations. It is also easy to
observe that despite of the good exploration capabilities of this approach, the solution —if found— will not
be optimal and will require further refinement or some sort of smoothing procedure. However, it is important
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(a) 50 iterations. (b) 500 iterations.

Figure 4.13: Example of an RRT tree after (a) 50 and (b) 500 iterations.

to note that in the case of differential problems like glider navigation, a small change in the location of any
node of the path found will result in a different trajectory, because the ocean currents may be different at the
new locations, and hence the motion model will yield a new ending location. This is an important drawback
of this approach for glider path planning.

When applied to navigation, a bias is used to direct trajectories towards the goal location (Rao and
Williams, 2009; Tan et al., 2004). In fact, our implementation is based on the work of Rao and Williams (2009),
which biases the RRT growth. They point out that the probability distribution for any RRT implementation is
a critical aspect. On one hand, the growth of the tree must be extensive enough to ensure optimal solutions
are not overlooked, but on the other hand, it must be small enough to avoid expanding into unnecessary
areas. They propose applying the adjusted Iterative k-Nearest RRT (IkRRT) algorithm of Simmons and
Urmson (2003) which weights the Voronoi regions of each node by some heuristic cost, and adjusts the RRT
implementation to consider the k-nearest neighbors rather than a single neighbor. Additionally, to apply the
RRT algorithm to glider path planning, they advice to generate RRTs bidirectionally, i.e. one from the start
x0 and one from the target waypoint xn−1; the latter is generated in reverse to simulate the actual glider
motion.

In our preliminary experiments we have observed that at least two RRTs must be generated simultaneously,
in order to obtain good results. With a single RRT from the start waypoint x0 the path cost is very poor,
or we simply do not reach the target. The drawback of requiring at least 2 RRTs is that one of them must
be run from the target waypoint xn−1, and in the case of dynamic ocean currents we need to know the
time when the glider will reach it. Clearly, we do not know this information, unless we solve the problem.
Therefore, we cannot generate a RRT from xn−1, since we do not know the time to retrieve the ocean
currents corresponding to it. For this reason, the RRT algorithm is only used with static ocean currents in
the experiments of this thesis.

4.6 Analysis and Applicability of Optimization techniques
Apart from the graph-based search methods discussed thus far, it is possible to apply optimization methods to
minimize an objective function that models the glider path planning problem at hand. This objective function
will clearly depend on the particular problem we are solving. In this thesis, we have seen that it is possible
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to solve all the problems enumerated in Chapter 3 using a single objective function that solves the minimal
distance to the target problem (see Section 3.1.1). For the rest of the problems, we build a more elaborated
algorithm on top of this one.

To solve the minimal distance to the target problem we define an objective function based on the ending
point xn−1 of the integration of the glider trajectory for all the bearing angles B commanded from the starting
waypoint x0,

xn−1 = f(x0,B, C,G) (4.21)
where C is the ocean currents map and G is the glider setup —i.e. the nominal speed Ug and other parameters
used in the unconstrained motion model of Section 2.2.2.1. Since we want to minimize the distance to the
target waypoint xgoal, we build our objective function as the remaining distance between xn−1, given by
(4.21), and xgoal. That is, the objective function f ′ is

f ′(x0,B, C,G) = ‖xgoal − f(x0,B, C,G)‖ (4.22)

where ‖· ‖ is a distance metric, which in our case is the length of the arc of the great circle that passes
through xn−1 and xgoal, since we are navigating the spherical geometry that approximates the Earth; for
short-term missions, with small distance, we can use another approximation or even an Euclidean distance
(see Section A.2) though. Indeed, to avoid computing square roots during the optimization process, we can
take the squared distance ‖· ‖2, so the final objective function implemented is

f ′(x0,B, C,G) = ‖xgoal − f(x0,B, C,G)‖2 (4.23)

It is important to note that the number of bearing angles in B must be known in advance. For the minimal
distance to the target problem, this is given a priori, since we want to leave the glider as close as possible to
the target xgoal in a given time T . The number of bearings |B| is obtained as T/ts, where ts is the so called
surfacing time, also known in advance hence. On the contrary, for the minimal time problem |B| is unknown
a priori —indeed, it is the output of the objective function. Therefore, we will use an iterative scheme (see
Section 4.6.1) on top of the Optimization method explained here.

Regarding the optimization method kernel, we have tried several techniques, in order to analyze how they
perform with glider path planning problems. Most of these kernels solve the following minimization problem,

min
x
f(x) (4.24)

which in some cases can be subject to constraints. Another alternative formulation is the Least Squares (LS)
one, which solves this slightly different problem,

min
x
‖f(x)‖2 (4.25)

where f(x) might be a non-linear function.
It is easy to adapt our objective function (4.23) for both formulations. In the first case, we minimize our

objective function directly. That is,
min
B
f ′(x0,B, C,G) (4.26)

which yields the best path as a sequence of bearings B. We can observe that by plugging the value of (4.23),
we actually have the formulation of a LS optimization problem,

min
B
‖xgoal − f(x0,B, C,G)‖2 (4.27)

Therefore, if we use this kind of optimization kernels, we only have to pass the difference between the target
waypoint xgoal and (4.21),

xgoal − f(x0,B, C,G) (4.28)



4.6 Analysis and Applicability of Optimization techniques 85

which provides the remaining distance to xgoal. It is important to highlight that in any case, the optimization
is in the space of the bearing angles B, which makes the problem scale well for long-term missions.

All optimization kernels require an initial guess, in order to iterate numerically to the optimal solution.
Therefore, we have an initialization phase concerned with the generation of a feasible path that can be used
as an initial guess. We need this phase to be extremely fast, so it does not introduce an excesive overhead on
the whole algorithm. Therefore, we use very simple approaches. In fact, we could use two strategies. First, we
simply set all the bearings B = ψd, where ψd is the direction direct to the goal, regardless of the actual glider
trajectory if it would follow them. With this first strategy we assume that B would produce a straight line
trajectory from x0 to xgoal. The main advantage of this approach is that it is extremely fast, but the solution
may not be feasible in some cases, since it can lead the optimization kernel to local minima, far from the
actual global minimum. A second strategy consists on applying the DtG approach discussed in Section 4.2,
which in most cases gives a sub-optimal, but feasible solution. Only when the scenarios are very complex
—with strong ocean currents and many obstacles—, this approach fails, and we need a more intelligent and
elaborated initialization phase, as it will be explained in the sequel in Section 4.6.2.

The next Section 4.6.1, extends the Optimization method explained in this section, to the minimal time
path problem. With this problem, contrary to the minimal distance to the target problem covered here, the
number of bearings B is unknown. However, an iterative approach uses the optimization kernel to solve the
problem by successive optimization runs. Then, we improve the initialization phase explained above in order
to avoid obstacles. The details of this intelligent initialization phased are explained in Section 4.6.2. Finally,
we evaluate different optimization kernels with the Iterative Optimization method in Section 4.6.3; note that
this iterative approach calls the kernels several times, so it allows for a more representative evaluation of the
kernels.

4.6.1 A novel Iterative Optimization scheme
When the number of bearings |B| is unknown in advance, the previous Optimization approach is not sufficient.
However, we can build an iterative approximation in which we basically start with an optimistic, small |B|
that is incremented in successive calls to the optimization kernel, until we reach the goal xgoal. Consequently,
we will end up reaching xgoal in the minimal time. In fact, with this Iterative Optimization approach we solve
the minimal time path problem described in Section 3.1.1.

The iterative approximation of this method is described in the pseudo-code of Algorithm 4.4. As in the
previous Optimization method, in a first initialization step performs the computation of a coarse, optimistic
underestimation of the number of bearings

∣∣∣B̂∣∣∣ required to reach the target waypoint xgoal. The function

length in line 4 provides
∣∣∣B̂∣∣∣ by taking the line-of-sight trajectory from the current ending location x —

which initially is the starting location x0— to xgoal. This function establishes the estimate number of stints
—and consequently

∣∣∣B̂∣∣∣— of duration ts, required to reach xgoal assuming an ocean current Ucmax . In our
implementation we consider the maximum of all ocean currents around the mission area, to set Ucmax . Since
this might be quite pesimistic, in many cases we have reduced the area used to compute it, to a patch around
the start and target waypoints.

Once we have the estimate
∣∣∣B̂∣∣∣, the problem is solved as with the Optimization approach. Therefore, we

obtain an initial guess with the function init of line 5. This function includes two options to obtain the list
of bearings B̂; that is, it considers the bearing angles in the direction from x to xgoal, or it applies the DtG
approach for them. Then we extend the list of bearings B from x0 to the ending location x, with the guess
B̂ from x to the target xgoal (see line 6).

Once the initial bearings B̂ have been computed, the optimization kernel is run with this initial guess,
starting at the last ending location x. If the target waypoint xgoal is not met with the desired precision tmax,
the loop iterates again, expanding the list of bearings B with a new guess starting at the ending location x
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Algorithm 4.4 Iterative Optimization algorithm pseudo-code.
Require: The start x0 and target xgoal points, the ocean currents map C, the glider setup G and the target

precision time radius tmax.
Ensure: List of bearing angles B for the path of minimal cost found.
Algorithm: iterative optimization(x0, xgoal, C, G, tmax) return B

1: x = x0 . last surfacing point so far
2: B = ∅ . set of bearing angles that represent the path solution
3: repeat
4:

∣∣∣B̂∣∣∣ = length(x,xgoal, C,G) . # bearings required to reach xgoal from x

5: B̂ = init(x,xgoal,
∣∣∣B̂∣∣∣) . initialize

∣∣∣B̂∣∣∣ new bearing angles
6: B = B ∪ B̂
7: 〈B,x〉 = optimize(x0,B, C,G)
8: Ucmax = max

xi∼x
C(xi) . max current around x, e.g. a rectangle

9: t = ‖xgoal − x‖
Ucmax

. time distance from last surfacing point to the target
10: until t < tmax
11: return B

of the last optimization iteration.
The termination condition is computed on the remaining time t. To calculate t, we divide the distance

between the last ending location x and the target xgoal, by Ucmax . In the algorithm, the distance computation
is represented by ‖· ‖, which can be a great circle distance for long-term missions, or the Euclidean distance
for short-term ones, or another distance metric approximation (see Section A.2). This process iterates until
the precision time radius tmax is met, yielding the optimal path in the list of bearings B, and its ending
location x. Since the stints have a constant time duration ts, the termination condition must be defined for
a time radius tmax ≥ ts; otherwise the optimization will probably oscillate around the minimum.

4.6.2 Intelligent Initialization and Obstacle Avoidance
The initialization approaches described thus far, produce acceptable results for offshore areas, which are only
affected by moderately strong ocean currents at most, and where we do not have any obstacles. However, as
indicated previously, for short-term coastal navigation, the naive initialization using a straight line to the target
or the DtG approach fails in these scenarios. As a consequence of the complexity of these environments, and
the coupled nature of the process variables, the Optimization method can easily get trapped in local minima
or lead to wrong, non-optimal solutions, including paths with collisions.

The Figure 4.14 illustrates this problem for a couple of test cases. For both of them we have run the naive
initialization phase described thus far, and then the optimization method, for the figures (a) and (c), on the
left. In both cases, the path does not reach the target waypoint because it gets trapped in an obstacle —the
land, in the examples. On the contrary, with the intelligent initialization phase described here in the sequel,
we obtain a rough feasible path which is successfully optimized later, as shown in the figures (b) and (d), on
the right. Here, our intention is only to show that the naive initialization approach fails to find a path, so an
intelligent initialization phase is required. The quality of the results will be later evaluated in the Chapter 5
by experimental comparison with graph-based path planning algorithms.

To overcome the limitation of the naive initialization when it is required to have some sort of obstacle
avoidance logic in the path planning algorithm, we have developed an intelligent initialization phase which is
run before the optimization method, in order to provide a feasible and good initial guess. Of course, being
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(a) Naive initialization. Case #1. (b) Intelligent initialization. Case #1.

(c) Naive initialization. Case #2. (d) Intelligent initialization. Case #2.

Figure 4.14: Path found for 2 test cases with obstacles, using the Optimization method for the minimal
distance to the target problem during 4 days. Each figure shows the resulting path for the glider bearing
angles B found for each surfacing point, along with the dynamic ocean currents , from the start to
the target waypoint . The naive initialization approach is shown in (a) and (c), where no path that reach
the target is found; meanwhile, (b) and (d) shows the successful result with an optimal path that reaches the
target, by using the intelligent initialization phase.

an initialization phase, it must run fast. The advantage is that the initial guess does not have to be optimal,
so a rough path is enough. For the sake of clarity, we termed our method (Iterative) Optimization with
Intelligent Initialization, or just (Iterative) Optimization-CTS-A* for short. Hence, the initialization phase
can be thought as a bootstrap module, which is inspired on a coarse version of CTS-A* Section 4.4 and ND
algorithms (Minguez et al., 2004), and that generates an appropriate initial set of bearing angles B to start
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the optimization phase described thus far. There, that initial guess is refined by the (iterative) optimization
method until no improvement is obtained, generating the final solution —the optimal path.

We have said that our intelligent initialization phase is based on the CTS-A* algorithm. However, the
problem of CTS-A* is its time complexity. In order to alleviate the high computing time, the following
simplification strategy is applied during the initialization phase. On one hand, a scale factor is applied on
the stint duration to reduce the resolution of the search space grid. This factor is computed as a function
of the straight-line trajectory length. On the other hand, the bearing rose used for the node expansion
is discretized and pruned according to the most probable trajectory orientation. The trajectories are then
expanded recursively according with this procedure, starting from the initial point x0 and ending when the
target xgoal is reached. An Euclidean distance metric is used as the cost function to guide the search, as well
as an heuristic, optimistic estimation of the composition of the glider and ocean currents speed. The whole
intelligent initialization phase comprises 4 steps, which are explained below.

1. First, the initialization process considers a set of evenly spaced radial vectors emanating from the starting
point x0 at different bearing angles, and simulates the glider trajectory with that fixed bearing for each
one, inside the temporal horizon T of the mission (see Figure 4.15 (a)). For the minimal distance to
the target problem T is unknown, but for the minimal time path problem we assume some estimation;
note that the Iterative Optimization method used for the minimal time problem applies an incremental
iterative approximation of the number of bearings |B|, so it is not a problem if T is underestimated,
and the initial guess does not really reach the target xgoal.

2. Secondly, a set of nodal points is selected for each trajectory. These points are candidate nodes ni that
are selected at evenly spaced surfacing points, as shown in Figure 4.15 (b). Generally, this is equivalent
to evenly spaced time instants, because of the constant time surfacings ts.

3. Thirdly, the algorithm considers a set of evenly spaced radial vectors again, emanating from every node
ni and simulates the glider navigation with a fixed bearing for each trajectory during the remaining
temporal horizon. That is, a new set of trajectories is generated for each candidate node ni recursively,
simulating them for the remaining mission time (see Figure 4.15 (b)).

4. Finally, the bearing angles B of the trajectory that reaches the nearest location to the target point xgoal
are selected as initial guess value for the optimization process (see Figure 4.15 (d)).

In practice, we have observed that it suffices to divide the trajectory in a single turning point —i.e. one
node ni— for short-term mission of T = 4 days, where the glider travels up to ≈ 100−150km. For long-term
mission we will need more nodal points, so the initialization phase will take slightly more time to finish.

In brief, the initialization process makes a division of candidate trajectories in 2 or more stretches. These
candidate trajectories use a fixed bearing angle for all the stints into one stretch; note that one stretch simulate
multiple glider navigation stints of a constant time surfacing ts. The nodal division points between stretches,
in the initialization algorithm, are allowed to have a flexible location ni+1 within the stretch defined by the
nodes ni and ni+2, according with the diagram of the Figure 4.16.

Once the intelligent initialization phase finishes, the set of bearings B that defines a trajectory whose
ending location has the minimal distance to the target waypoint xgoal is used as the initial guess in the next
optimization phase. For the minimal distance to the target problem, the Optimization method of Section 4.6
tries to minimize the objective function from the ending point of that initial guess to the target, in order to
find the optimal path. In the case of the minimal path problem, we use the Iterative Optimization method
of Section 4.6.1, which tries to minimize the number of stints by reducing progressively the bearing set B, by
removing the last element. This reduction optimization loop is repeated until the optimal result is found. Note
that in this case, instead of incrementing the number of bearing |B| (see Algorithm 4.4), we decrement them,
because the initial guess is a non-optimal path, i.e. it has more bearings than the optimal one. However,
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(a) Step #1. (b) Step #2.

(c) Step #3. (d) Step #4.

Figure 4.15: The Intelligent initialization for Obstacle Avoidance comprises the following steps: (a) First
step of the initialization process: Radial vectors emanating from the starting point. (b) Second step of the
initialization process: Selection of candidate nodes. (c) Third step of the initialization process: Radial vectors
emanating from each candidate node. (d) Fourth step of the initialization process: Selection of the best
trajectory.

depending on the approximation of the mission time horizon T used, the opposite it may happen, so we
actually check whether we have reached the target or not, to disambiguate the actual case.

In conclusion, as it was initially shown in Figure 4.14 (b), this intelligent initialization approach is able
to find a rough, non-optimal, but feasible path to the target waypoint xgoal, which avoids obstacles like the
coastline, land areas, or strong currents zones. Meanwhile, under the same conditions, the previous naive
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ni

ni+1

ni+2

Figure 4.16: Diagram of the partition of the intelligent initialization stretches. For a given stretch from the
node ni to ni+2, a new node ni+1 can be inserted between them. Its location is flexible, since we allow to
move it in any direction in the plane.

initialization approach was not able to find a good solution (see Figure 4.14 (a)), and consequently, the
optimization phase fails to find any solution, or it gets trapped in a local minima, so the optimal path is not
found.

4.6.3 Evaluation of Optimization kernels
Regarding the optimization kernel used in both the Optimization and Iterative Optimization methods, we
have compiled a set of test cases to evaluate the path cost of the solution found, and the computing time,
which are shown in Table 4.1 and 4.2, respectively. Since we have done the evaluation for the minimal time
path problem —with the Iterative Optimization method—, the path cost is the travel time. As we already
said in the previous section, there are two formulations for the optimization problem. For the LS formulation
we have tested a single kernel, called lsqnonlin in the tables, which supports non linear problems, as in our
case. Then, for the general formulation, we have tested three kernels: fminsearch, fminunc and fmincon.
The actual optimization techniques implemented by these kernels are mentioned below:

fminsearch: It uses the Nelder-Mead simplex direct search of Lagarias et al. (1998).

lsqnonlin: It solves non-linear LS problems by means of the Trust-Region-Reflective method (Coleman and
Li, 1996) or Levenberg-Marquardt (Levenberg, 1944; Moré, 1978), with a default λ = 0.01, where λ is
the so called damping parameter. The results in the tables are for the Trust-Region-Reflective method.

fminunc: It solves unconstrained minimization problems with the medium scale Quasi-Newton algorithm
(Fletcher and Powell, 1963).

fmincon: It solves minimization problems, which can be subject to constraints. It implements the Active-Set
(Gill et al., 1981) or the Interior-Point (Byrd et al., 1999) algorithms. Here, we have used the Active-Set
method. It also supports Sequential Quadratic Programming (SQP) (Biggs, 1975; Nocedal and Wright,
2006) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods (Broyden, 1970), which were tested in
some preliminary experiments without acceptable results, so it is not included in the tables here.

For the 10 test cases run with a glider nominal speed of Ug = 0.4m/s, and shown in Table 4.1 and 4.2,
the best kernel is fmincon; we use it as a reference, and the speedup is computed for the other kernels, which
is always below the 100%. This means that it is the kernel that provides the best results for both the minimal
time path and minimal distance to the target problems. It also has the lowest average computing time, so
in the experiments of Chapter 5 it will be the kernel used for any setup of the Optimization and Iterative
Optimization methods. The drawback of other methods with similar optimality or computing time, is that
in some test cases they get trapped in local minima, while fmincon does not. Furthermore, with fmincon
we can solve optimization problems which are subject to constraints, like the path following and multi-glider
problems of Section 3.3 and 3.4.
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Table 4.1: Comparison of the travel time for different optimization kernels used in the Optimization method,
for the minimal time path problem. The glider nominal speed was set to Ug = 0.4m/s. The table shows the
speedup of the travel time with respect to the fmincon kernel, i.e. < 100% is worse.

Case d[km] fminsearch lsqnonlin fminunc
1 831.33 99.46% 99.64% 99.64%
2 1007.50 100.00% 100.00% 100.00%
3 974.34 27.94% 39.48% 110.21%
4 500.18 99.87% 100.00% 100.00%
5 861.88 100.00% 100.00% 100.00%
6 1050.70 18.74% 11.36% 60.86%
7 1158.70 108.04% 72.82% 79.29%
8 151.40 100.00% 100.00% 100.00%
9 1197.80 99.80% 100.00% 91.84%

10 136.07 100.00% 100.00% 100.00%
Mean 786.99 85.38% 82.33% 94.18%

Table 4.2: Comparison of the computing time for different optimization kernels used in the Optimization
method, for the minimal time path problem. The glider nominal speed was set to Ug = 0.4m/s. The table
shows the speedup of the computing time with respect to the fmincon kernel, i.e. < 100% is worse.

Case fminsearch lsqnonlin fminunc
1 3.24% 6.26% 16.06%
2 9.40% 48.36% 51.92%
3 14.21% 55.83% 620.20%
4 6.15% 47.70% 45.20%
5 7.47% 51.08% 38.54%
6 0.58% 0.83% 9.26%
7 6.70% 28.77% 5.86%
8 26.74% 49.29% 77.61%
9 17.79% 33.78% 25.43%

10 20.42% 75.00% 65.00%
Mean 11.27% 39.69% 95.51%

4.7 Boundary Value Problem models and methods
The minimal time path problem in the context of ocean currents have been traditionally solved as a two-
point Boundary Value Problem (BVP). This method gives the optimal solution in the continuous domain. It
basically set the start x0 and target xgoal waypoints as the boundary conditions of the problem and finds the
optimal trajectory solving numerically the differential equations that model the problem. The interest of this
method relies on the fact that it provides the real optimal solution without any sort of discretization —the
ocean currents are simply interpolated. However, its main drawback resides on the fact that it fails to solve
the problem for strong and opposite ocean currents. Therefore, in most cases it is only useful for validation
purposes using test cases with synthetic ocean currents, instead of real ones.

The general form of the two-point BVPs is a system of ODEs (Ordinary Differential Equations)

ẏ = f(x, y, p) (4.29)
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and a set of boundary conditions at the two points a and b

0 = g(y(a), y(b), p) (4.30)

where p is a vector of unknown parameters (Shampine et al., 2003). In the next sections we describe the two
main optimal formulas to solve this problem in the context of the minimal time path problem for glider path
planning. These optimal formulas are Zermelo’s optimal navigation formula, and the more general Hamilton’s
equations. The basic difference among them is that Zermelo’s considers 3 DOF, being the x and y position,
and the bearing ψ. On the other hand, Hamilton’s equations models the bearing in a more general way with
two ODEs. Clearly, Zermelo’s optimal navigation formula represents the glider unconstrained motion model
in 2 dimensions, although the notation here is different. Also, the BVP usually requires the ODEs system to
be augmented with an additional ODE τ̇ , as it happens in the equations below.

4.7.1 Zermelo’s Optimal Navigation Formula
It solves the adimensional equations

(x(t), y(t), ψ(t), τ(t))> (4.31)
subject to the ODE system 

ẋ
ẏ

ψ̇
τ̇

 = τA4×1 (4.32)

where

A4×1 =


u+ Ug cosψ
v + Ug sinψ

vx sin2 ψ + ux sin 2ψ − uy cos2 ψ
0

 (4.33)

and with boundary conditions

x(a) = x0 y(a) = y0 x(b) = x1 y(b) = y1 (4.34)

where a = 0 and b = 1. These boundary conditions correspond to the start x0 and target xgoal waypoint of
any glider path planning problem.

The Jacobian of the ODE system is

J =


ux uy −Ug sinψ
vx −ux Ug cosψ
∂ψ̇
∂x

∂ψ̇
∂y

∂ψ̇
∂ψ

03×1

01×4

 τ + (A4×1)1×4 (4.35)

where

∂ψ̇

∂x
= uxx sin 2ψ + vxx sin2 ψ − uxy cos2 ψ (4.36)

∂ψ̇

∂y
= uxy sin 2ψ − uxx sin2 ψ − uyy cos2 ψ (4.37)

∂ψ̇

∂ψ
= (uy + vx) sin 2ψ + 2ux cos 2ψ (4.38)

and beingvy = −ux.
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Finally, the Jacobian of the boundary conditions is

G(a) =
(

I2×2 02×2
02×4

)
(4.39)

G(b) =
(

02×4
I2×2 02×2

)
(4.40)

4.7.2 Hamilton’s Equations
It solves the adimensional equations

(x(t), y(t), px(t), py(t), τ(t))> (4.41)

subject to the ODE system 
ẋ
ẏ
ṗx
ṗy
τ̇

 = τA5×1 (4.42)

where

A5×1 =


u+ Ug cosψ
v + Ug sinψ
−pxux − pyvx
pyux − pxuy

0

 (4.43)

and
ψ = arctan

(
−py
−px

)
= π + arctan

(
py
px

)
(4.44)

using atan2 to compute arctan. Alternatively, we might use

sinψ = αpy (4.45)
cosψ = αpx (4.46)

where
α = 1√

p2
x + p2

y

(4.47)

and with boundary conditions

x(a) = x0 y(a) = y0 x(b) = x1 y(b) = y1 (4.48)

and
px(a)(u+ Ug cosψ) + py(a)(v + Ug sinψ) = 1 (4.49)

where a = 0 and b = 1.
The Jacobian of the ODE system is

J =

L2×2 M2×2
N2×2 −L>2×2

04×1

01×5

 τ + (A5×1)1×5 (4.50)
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where

L2×2 =
(
ux uy
vx −ux

)
(4.51)

M2×2 = α2Ug

(
−px sinψ py sinψ
px cosψ −py cosψ

)
(4.52)

N2×2 =
(
−pxuxx − pyvxx −pxuxy + pyuxx
pyuxx − pxuxy pyuxy − pxuyy

)
(4.53)

Finally, the Jacobian of the boundary conditions is

G(a) =

 I2×2 02×3
02×5

∂ġ5
∂x(a)

∂ġ5
∂y(a)

∂ġ5
∂px(a)

∂ġ5
∂py(a) 0

 (4.54)

G(b) =

 02×5
I2×2 02×3

01×5

 (4.55)

where g5 refers to (4.49) and

∂ġ5

∂x(a) = px(a)ux + py(a)vx (4.56)

∂ġ5

∂y(a) = px(a)uy − py(a)ux (4.57)

∂ġ5

∂px(a) = u+ Ug cosψ + α2px(a)(py(a)Ug cosψ − px(a) sinψ) (4.58)

∂ġ5

∂py(a) = v + Ug sinψ + α2py(a)(px(a)Ug sinψ − py(a) cosψ) (4.59)

4.7.3 BVP solvers
Both Zermelo’s and Hamilton’s equations can be solved numerically with the following BVP methods or
solvers:

Collocation: Requires reformulation in order to have a fixed time interval t ∈ [a, b], so a trick is used, by
adding an additional ODE function τ .

Shooting: This solver is direct, i.e. it requires no reformulation of the ODE system.

We have accomplished a preliminary study of these methods with ocean currents generated with anaylitic
streamfunction equations. The main drawback of the BVP solvers is that it fails with complex environments.
Only with weak ocean currents we are able to find a solution. For this reason, we cannot include this approach
in the experiments of this work, since we usually have test cases with strong ocean currents and obstacles.
Anyway, for some synthetic test cases used for the path following problem (see Section 5.7), we have observed
that for this particular problem and test, the Collocation solver performs better than the Shooting one. Also,
Zermelo’s optimal navigation formula works better than Hamilton’s, since the latter fails before when the
glider nominal speed Ug is reduced. In any case, optimal control (BVP) is very sensitive to the start/target
waypoint location, Ug, the ocean currents function or model, and the BVP solver parameters. Thus, it is
difficult to find a solution in many cases. Therefore, this family of methods are only useful to obtain the
optimal solution in those cases were SR < 1, i.e. with weak ocean currents, and also without obstacles.
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4.8 Glider Path Planning on Structures Extracted from the Environ-
ment

Apart from the glider path planning algorithms discussed thus far, it is also possible to simplify the complexity
and dimensionality of the problem by means of extracting features or structures from the environment, or by
finding regions which are unstable, dangerous or for some reason it is better to avoid navigating on them.
Then, we can run the path planning algorithms only on the regions outside such structures —or on the
contrary, only on those structures if they are the interesting regions.

In the next sections we discuss some intelligent ways to segment the ocean in different regions, so we
can use them for feature-based path planning. One way to segment the ocean is by the stability analysis
of the ocean currents vector field. Also, we can track Lagrangian structures like eddies, by detecting and
characterizing them. Here we will present an algorithm that detects, characterize and track mesoscale eddies,
which is an illustrative example and also an important application in Ocean Research, modeling and data
assimilation.

4.8.1 Stability Analysis
The stability analysis is concerned with the temporal stability of every region on the ocean domain. The
ocean currents define a dynamic system, in which we study the transport of particles within it. In fact, the
stability analysis measures how these particles separate after a given interval time T . When applied to fluids,
these particles are known as tracers. Clearly, the ocean currents define the vector field v(x, t) of the ocean
flow at any given point x and time t. This is exactly the output of the ROMs, which computed the ocean
model equations in order to obtain such time-dependent velocity field v(x, t). In time-dependent flows, there
exist emerging patterns that influence the transport of the tracers, according with the work of Shadden et al.
(2005), which is followed here.

The emerging patterns that are detectable in v(x, t) are often referred as coherent structures. When they
are studied in terms of fluid trajectories, they are named Lagrangian Coherent Structures (LCS). Formally,
they are local extrema of the Finite-Time Lyapunov Exponent (FTLE) field, which quantifies the asymptotic
behavior of infinitesimally close particles in a dynamic system (Shadden et al., 2005). Hence, it provides the
stability analysis of the ocean flow on the ocean currents vector/velocity field. Then, LCSs are simply ridges
in the FTLE field. Shadden et al. (2005) define such ridges as special gradient lines of the FTLE field that
are transverse to the direction of minimum curvature. Here we will reproduce the mathematical background
of FTLEs and will show how to compute them in order to extract LCSs, which being unstable regions should
be avoided by glider path planning algorithms.

Paraphrasing Shadden et al. (2005), the FTLE is a finite time average of the maximum expansion rate
for a pair of particles advected in the flow. Using the notation of their paper, when a point x is advected, it
moves to φt0+T

t0 (x) after the time T , starting a t0. This advection is simply the unconstrained motion model
of a drifter, described in Section B.1.1. Although here we consider bi-dimensional FTLEs for surface ocean
currents, it is easy to extend this stability analysis to 3 dimensions (Lekien et al., 2007).

Consider the temporal evolution of a perturbed point y = x + δx(0) where δx(0) is an infenitesimal
perturbation at t = t0, i.e. we have a point nearby x. After the advection for the time T , this pertubation
becomes

δx(T ) = φt0+T
t0 (y)− φt0+T

t0 (x) =
∂φt0+T

t0 (x)
∂x δx(0) +O

(
‖δx(0)‖2

)
(4.60)

using Landau notation (Marsden and Hoffman, 1993). The growth of linearized perturbations is hence

‖δx(T )‖ =
√
〈δx(0),∆δx(0)〉 (4.61)
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where

∆ =
∂φt0+T

t0 (x)
∂x

∗
∂φt0+T

t0 (x)
∂x (4.62)

being M∗ denotes the adjoint (transpose) of M .
The maximum stretching occurs when δx(0) is aligned with the eigenvector associated with the maximum

eigenvalue of ∆, i.e. if λmax(∆) is the maximum eigenvalue of ∆, then

max
δx(0)

‖δx(T )‖ =
√
λmax(∆) ‖δx̄(0)‖ (4.63)

where δx̄(0) is aligned with the eigenvector associated with λmax(∆). We can recast this equation to make
explicit the Lyapunov exponent,

max
δx(0)

‖δx(T )‖ = eσ
T
t0 (x)|T | ‖δx̄(0)‖ (4.64)

where
σTt0(x) = 1

|T |
ln
√
λmax(∆) (4.65)

which represents the largest FTLE for a finite integration time T , associated with the point x at time t0.
Interestingly, we can use both positive and negative integration times T . We can use backward-time integration
to locate attracting LCSs, and forward-time integration for repelling LCSs.

Once we have the FTLE field σTt0(x), LCSs are defined as ridges on the field. A possible definition uses
the second derivative ridge (Shadden et al., 2005), which uses the Hessian of the FTLE field,

H =
∂2σTt0(x)
∂x2 (4.66)

Algorithm 4.5 FTLE field computation pseudo-code.
Require: Start location x0 of a set of particles X0 at time t0, to be advected for the integration time T .
Ensure: FTLE field σTt0(x).
Algorithm: FTLE(X0, t0, T ) return σTt0(x)

1: for all x0 ∈ X0 do
2: xT = φt0+T

t0 (x0) : xT ∈ XT . advect particle x0 for time T
3: end for
4: J = ∇XT . gradient of flow map XT
5: ∆ = J∗J

6: σTt0(x) = 1
|T |

ln
√
λmax(∆) . apply (4.65)

7: return σTt0(x)

The computation of the FTLE field for a list of particles or tracers x0 ∈ X0 at time t0 is summarized in
Algorithm 4.5. All the particles are advected with φt0+T

t0 (x) for an integration time T , i.e. their trajectories
on the ocean currents velocity field are integrated with the unconstrained motion model of a drifter described
in Section B.1.1. As a result, we obtain the location of each particle xT ∈ XT after the time T . Then,
we compute its gradient, which yields the Jacobian J that is used to compute ∆. Finally, the FTLE is a
straightforward evaluation of (4.65). In Section 3.5 we have already seen the output of the FTLE field of a
dynamic double eddy, which can be generated with the analytical ocean model of Section 5.1.2.4. Here we
illustrate it again for a Stuart vortex (see Section 5.1.2.5), for an integration time T = 10. This produces a
forward-time FTLE field, shown in Figure 4.17. Recall that the forward-time FTLE field shows the repelling
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Figure 4.17: Stability analysis by computing the FTLE field of a Stuart vortex. The unstable regions correspond
to LCSs, which appear in red tones at the boundaries of the eddies/vortexes.

LCSs of the ocean currents velocity field, so we observe that the unstable regions localize at the boundary of
the eddies/vortexes.

In terms of glider path planning, the LCSs define regions which are inherently unstable. Due to the
uncertainty of the ocean model and the vehicle localization, if the vehicle crosses an unstable region, a small
error on the estimation of its position may yield a resulting trajectory very different from the expected one.
Therefore, we can incorporate LCSs in the path planner as obstacles, in order to avoid such regions. The
great interest of the LCSs is that they can be computed for both static and dynamic ocean currents, revealing
unstable regions that are not evident at first sight.

4.8.2 Feature-based Path Planning
Instead of using the whole vector field defined by the ocean currents, we can find optimal paths on a low
dimensional search space populated by features. Such features can be extracted from the ocean currents,
with some algorithm. For instance, we may want track ocean evolving structures, like the LCSs discussed
previously, or the aforementioned mesoscale eddies. Here, for feature-based path planning we simply referred
to include information from such structures within the path planning algorithm in order to reduce the search
space. In the next section we will see an example of this sort of feature-based path planning. We track
mesoscale eddies, a particular kind of evolving structures very common on the ocean.

4.8.2.1 Detection, Characterization and Tracking of Mesoscale Eddies

Here we propose a path planning algorithm meant to track eddies or similar evolving structures. The approach
comprises three phases: detection and identification of eddy model parameters, definition of objective function
and path generation. The algorithm uses a discretized version of the eddy model proposed by Jimenez et al.
(2008) for the Canary Islands eddies system, which originates from a combination of wind and topographic
forcing. The eddy model divides the structure volume into several sectors rotating at different velocities. Each
sector is defined by its min/max limits in depth, radius and angle dimensions (see Figure 4.18).

As a first phase, the eddy parameters are identified by combining the ocean currents, altimetry and
temperature maps in a semi-automatic process. The centroid and the boundary of the eddy are annotated
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Figure 4.18: Mesoscale eddy model used for the path planning algorithm developed to detect, characterize
and track this kind of evolving ocean structures. The figure shows the volume segmentation of an eddy.

manually on the SSHA maps and then refined using the ocean currents and temperature maps. Additionally,
the eddy annotation is assisted by an automatic detection run at pre-processing step. It highlights potential
eddy candidates, using the vorticity of the vector field or an eddy detection algorithm (Nencioli et al., 2010).

Once the eddy has been detected and modeled, the objective function is expressed in terms of the eddy
sectors (see Figure 4.18) that should be sampled and the desired mission duration. This way it is possible
to define different sampling strategies: track the centroid of the eddy, navigate at the boundary, maximize
the sampled volume, flight at a given depth, and so on. Finally, in the last phase, a Genetic Algorithm
optimization is run in order to find the trajectory that best meets the specifications. At this step, we use the
three-dimensional unconstrained point motion model of Section 2.2.2.1.

4.9 Glider Path Planner Library and Tools
Apart from the algorithmic contributions of this thesis to the problem of glider path planning, as a result of
this work we have developed as set of tools and a library. We have termed this library and tools Pinzón, after
the Spanish navigator and explorer Vicente Yáñez Pinzón, who came back from America and faced strong
opposing ocean currents near the North coast of Spain, as we faced at the end of the RU27 trans-Atlantic
mission, when we assisted on the piloting with our path planning tools.

The library developed comprises all the path planning algorithms presented in this chapter, along with the
point and force balance motion models. We can also use Pinzón to simulate/integrate the glider trajectory,
given the real surfacing points xi of a glider at the ocean. Additionally, we can simulate other vehicles like
drifters and floats, under both motion models (see Appendix B).

The software allows to run and compare the DtG approach, A*, (ABS) CTS-A*, RRT, (Iterative)
Optimization —with or without the intelligent initialization phase for obstacle avoidance. The Figure 4.19
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Figure 4.19: Output that shows the path found with the CTS-A* algorithm. The figure draws the glider
trajectory from the start to the target node/waypoint. The blue arrows on the background show the
ocean currents vector field at the starting time, while thick red and green arrows are the bearing ψg
and heading ψe angles, respectively.

depicts a typical path planning output. It shows the path found, which consists on a sequence of waypoint
locations xi, and the bearing angles ψgi

that must be commanded to the glider. The bearing angles, along
with the resulting heading angles ψei

, are shown as arrows emanating from each surfacing point located at
xi. The glider trajectory due to the drift is drawn to illustrate the important effect of time-varying ocean
currents. Bear in mind that the background ocean currents vector field of Figure 4.19 corresponds to the first
time snapshot, because it is not possible to show it over time in a single frame. Thus, Pinzón produces movie
clips to sort this issue out. Finally, for graph-based algorithm the explored nodes —or even discovered— by
the algorithm are marked, for debugging and evaluation purposes as in the figure for the CTS-A* algorithm.
This gives some insight on the searching process, that might be exhaustive or not depending on the problem
on hand. Equivalent debugging capabilities are offered for the rest of the algorithms supported.

The tools in Pinzón also allow to visualize the output of the ROMs. We can download the nowcast and
forecast maps for a given date and analyze the different parameters computed by the ocean model. This
include scalar water properties like the Sea Surface Temperature (SST), the Sea Surface Height Anomaly
(SSHA), which are both defined for the surface, and three-dimensional data like the temperature and salinity
—from which we can compute the density at every depth. And also include the ocean currents vector field,
typically with the u and v components for the surface or at depth; see Appendix A for more information on
Ocean Models and their products. Furthermore, our Pinzón path planner is capable of producing a movie to
illustrate the temporal dynamics of the ocean currents vector field and how the glider trajectory is affected,
for the path found. Pinzón also generates Google™ Earth animations in Keyhole Markup Language (KML)
format, as the one in Figure 4.20 that allows to analyze the path found overlaid on the glider mission data,
or even the weather, on the map where the mission takes place.
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Figure 4.20: Example of path planned by Pinzón in the ESEOAT region of the ROM of the ESEOO project
using the RU27 surfacing points, to reach a goal specified as crossing a meridian. The output is a KML
animation that can be run in Google™ Earth; in the figure we see a snapshot.



Chapter 5

Experimental Results

This chapter shows the experimental results obtained for the glider path planning algorithms developed in this
thesis. They are evaluated and compared with each of the problems or applications explained in Chapter 3.
Here, we start by describing the default experimental setup, which is used for most of the algorithms and
problems; any minor variation with respect to this base configuration will be explicitly mentioned though,
along with any particular setup of a given experiment. The experimental setup gives an overview of the ocean
model products and the glider motion model used for path planning. Although we mostly use real ROM
products in our experiments, we have also developed a number of analytic ocean model equations. They
constitute a complementary contribution of this work, being useful to evaluate the algorithms in environments
that exhibit a particular structure or dynamics —e.g. constant ocean currents, sinks, sources, eddies, etc.

Before we show and discuss the results, the evaluation metrics are described in detail. In brief, they
comprise the computational time and path optimality assessment. The first should be in agreement with
the algorithm complexity, as described in Chapter 4. The path optimality depends on the particular problem
though. If a clear and simple objective function is available, such function itself gives the path optimality
directly, as in the minimal time and minimal distance to the target problems. The path following problem
is evaluated using a Pareto curve for the path following and minimal time path objectives. In the case of
multi-glider path planning problems, we evaluate the proximity of the gliders flying in formation, or the time
required for their recovery, which are the two problems covered here.

For the atomic problems minimal time path and minimal distance to the target, all the path planning
algorithms developed in this thesis are evaluated. For the rest of the problems —which are build as an
aggregation of the atomic ones— we only want to check and assess the applicability of the most promising
technique for such problem. This is the case of multi-glider coordination using constraints, path following
—to some extent—, and tracking evolving ocean structures.

For the sake of clarity, we present the experimental results organized by problem or application. Note
that some techniques are not applicable for some problems, so this seems a reasonable way to compare
them. Furthermore, this way we can evaluate each method with its best configuration for a given problem,
and answer one of the questions addressed in this thesis, i.e. which technique performs better for a certain
problem/application. Finally, along with that comparison, we discuss several field glider missions in which our
algorithms have been used aiding piloting and path planning.

5.1 Experimental Setup
Before we show the experimental results, we are going to indicate here the default and basic configuration of
the experiments. This comprises the glider motion model, some assumptions or simplifications on the glider
navigation behavior, and the characteristics of the ocean currents provided by the ocean model employed in
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the test cases. Unless stated explicitly, the test cases later presented for each glider path planning problem
will adopt the experimental setup described here.

In Section 2.2 we explored the three main options to model the glider motion. First, the point model,
which considers the glider as a 0-mass point moving with a certain nominal speed ug in a given bearing ψg.
Secondly, the force balance model, which compounds the vehicle buoyancy, gravity, drag and lift forces to
obtain the glider speed, which also depends on the angle of attack α of the wings with respect to the hull,
and the pitch θ and glide γ angles. And third, dynamic motion models that solve the differential equations of
the vehicle dynamics. In our experiments we use the point motion model described in Section 2.2.2, since for
the accuracy obtained with the other models is not really required given the large errors and the uncertainty
of some parameters of the glider motion model and the ocean model itself. Furthermore, for the relatively
large missions performed, it makes no sense to use precise motion models in most of the cases.

Moreover, given the large dimensionality of the problems, it is common to consider certain assumptions.
A common simplification consists in using only surface ocean currents to find the optimal path. However, the
glider navigates underwater doing yo-yo profiles, and affected by the ocean currents at the depth it is flying.
We can compute the depth average ocean currents though, if we want to work in 2 dimensions but still reflect
the effect of underwater ocean currents. In fact, it is straightforward to use such depth average ocean currants
as in Thompson et al. (2010), where the total ocean current force experienced by the glider underwater is
taken to be a constant Cxyτ within each grid cell. Anyway, it will be better to consider the ocean currents
in 3 dimensions, in order to obtain the most accurate estimation of the glider trajectory underwater, and
hence the next surfacing point location xi+1. We have detected that the decision depends on the algorithm
designed to solve the problem.

So far we have mentioned that the A* algorithm uses the constrained motion model of Section 2.2.2.2,
while others like the CTS-A*, RRT or the Optimization method integrate the unconstrained motion model
of Section 2.2.2.1. Recall that in the constrained motion model we do not integrate the glider trajectory
while it navigates underwater. We simply compute the bearing ψg to follow a given heading ψe, using the
glider nominal surge speed Ug and the ocean currents vector Uc. Since the trajectory is not integrated, we
do not really use the depth ocean currents. Therefore, for the constrained point motion model we use the
two-dimensional surface ocean currents in our experiments; we use depth average ocean currents if the ROM
provides the ocean currents at different depths, but this depends on the temporal resolution, as we will later
see in Section 5.1.1.

On the other hand, for the unconstrained point motion model we integrate the glider trajectory underwater,
which is affected by the ocean currents at each depth computed by the integration method. Therefore, if the
ocean currents below the surface are provided by the ROM, we use three-dimensional ocean currents with
the algorithms that use the unconstrained motion model, i.e. the CTS-A*, RRT and (Iterative) Optimization
methods —and the DtG approach as well.

Notice that we do not simulate the drift during the surfacing interval (see Section 2.1.2). We have chosen
to isolate its effect, assuming it distributes as a constant added cost for all the algorithms evaluated. Only
when we are assisting in the glider piloting we will include the surfacing intervals of ≈ 15min in the path
planning algorithm —stating it explicitly—, so the path P found can actually be followed on the field. Note
that to simulate the drift produced by the surface ocean currents for this slot of time, we use the drifter motion
model, which is simply runs the two-dimensional unconstrained point motion model, or its three-dimensional
version with no pitch θ = 0◦ (see Section B.1.1).

In our experiments we generally set the glider pitch to θ = 25◦, which is the typical value set for the
SLOCUM glider. However, we could also set the optimal value θ = 35◦, which give the maximum glider
nominal speed Ugmax according with the equations of the force balance motion model (see Section 2.2.3).
Anyway, for the same group of test cases we use the same pitch θ. Moreover, we do not include θ in the
path planning optimization, since it is rarely changed during real glider missions. Similarly, we neither modify
the depth limits [zmin, zmax], which are set to [20, 200]m in most of the test cases run here. The number of
yo-yo profiles done for the surfacing time ts —while the glider navigates underwater— is not set and neither
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change in the path planner. Its value is determined from the depth limits and ts, as shown in Section 2.2.2.1.
Although we will indicate it explicitly, we consider two main values for the glider nominal surge speed

Ug in our experiments. We set Ug = 0.2m/s as a slow glider speed, which is equivalent to navigate with
strong ocean currents, i.e. SR > 1; and Ug = 0.4m/s as a fast glider speed, which is equivalent to navigate
with weak ocean currents. This constitutes a sub-division of the test cases in the experiments as well. We
also categorizes them as offshore or coastal, in order to separate obstacle free environments from the ones
populated by many of them, respectively. And similarly, we distinguishes between long-term and short-term
missions, which are associated with the use of static and dynamic ocean currents, respectively. Also, the
former is generally the type of mission for the minimal time path problem, while the latter type of mission if
more common for the minimal distance to the target problem. Unless stated explicitly, these categories obey
this criteria.

5.1.1 Regional Ocean Model Scenarios
In the present work, we have fed our path planning algorithms with the ocean currents computed by Regional
Ocean Models (ROMs). Although we have also used non regional Ocean Models, this ones have less resolution
than ROMs, both in space and time. Therefore, they cannot capture many phenomena that take place in
the ocean. Indeed, for our firsts experiments during the last stings of the RU27 trans-Atlantic mission, when
the glider traveled the Spanish EEZ, we had to use a ROM that modeled that region. We used the ROM
developed by Puertos del Estado (Ministerio de Fomento, Gobierno de España) as part of the project ESEOO,
that covers the Spanish Atlantic shore (Sotillo et al., 2007, 2008). The model is run separately for three
domains in the Spanish territory. First, the ESEOAT covers the North Atlantic area close to the west coast
of the Iberian Peninsula. Secondly, the ESEOMED models the Mediterranean sea nearby Spain. And third,
the ESEOCAN region comprises the Canary Islands.

In our experiments we have used extensively the ESEOAT model, and for the obstacle avoidance test cases
we also use ESEOCAN, since the Canary Islands take the role of land obstacles in the ocean. This ROM
provides temporal series hourly with 3-day predictions —or forecast maps— at 0.05◦ spatial resolution for
latitude and longitude. The ROM output is validated with samples taken in situ by oceanographic sensor
networks. Thus, the ROM is meant to provide accurate data, capturing the high temporal dynamics of
the area. It provides two types of data in regards of their dimensionality and temporal resolution. First,
bi-dimensional surface ocean currents for every hour. We consider them dynamic ocean currents in the
experiments. Secondly, three-dimensional ocean currents for every day; more precisely, the model provides the
daily means. For long-term missions we usually need more days than the 3-day forecast maps generated by
the ROM. We use a single, representative map of the seasonal period when we are running the experiment.
We use three-dimensional ocean currents, which represent the average ocean currents in such period of time.

Although the ROM provides several data, it is possible to plan paths using ocean currents only, because
they are not geostrophic ocean currents simply, i.e. they incorporate the effect of other phenomena, like
tides. Anyway, additional physical parameters might be incorporated easily, as the density —obtained from
the depth, temperature and salinity scalar maps— if we were to use the force balance motion model, the Sea
Surface Height Anomaly (SSHA) —tightly related with the ocean currents vector field— or the Chlorophyll
concentration (CHL) to avoid dangerous areas in regards of the bio-fouling and its impact on the vehicle
autonomy.

Apart from the ESEOAT and ESEOCAN regions, for the next experimental results we also use the output
of the IBI ROM, which also covers the North Atlantic and the Canary Islands. Nevertheless, we have also run
our algorithms for several path planning problems on different regions in the oceans. We have used global,
mesoscale ocean models of less resolution, like NCOM, NLOM, and HYCOM, to mention some. All these
ocean models are enumerated and described briefly in Appendix A.

In Figure 5.1 several plots illustrate the high temporal variability of ocean currents in the area covered
by the ESEOAT ROM, which was crossed by the RU27 glider in its trans-Atlantic mission. Paths planned

http://www.puertos.es
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(a) Velocity field. (b) Velocity plot.

(c) Compass plot. (d) Rose plot.

Figure 5.1: Ocean currents temporal dynamics in the ESEOAT region for a whole day, showing (a) the ocean
currents field —of a patch of ≈ 6◦ × 12◦ (latitude, longitude) at the ESEOAT region (North Atlantic)— and
(b)-(d) the ocean currents speed and direction at a particular location x = (42◦N,−13◦E), using hourly data
for the 21-Nov-2009 —the intensity of this ocean currents is given in (c). The oscillations observed in (b) are
common in hourly ocean currents, since they incorporate the tides.

without considering the change of ocean currents over time will be less close to reality, not matter if they
are more or less expensive. In fact, depending on the temporal variability in the area, path planning over
time will be more or less significant. As already said, static ocean currents are assumed to be daily means,
instead of hourly series. Notice that for daily means, ocean currents are only interpolated for the last and
first hour of two consecutive days when we integrate the unconstrained motion model of Section 2.2.2.1. As
Figure 5.2 shows, dynamic ocean currents yield glider trajectories that cannot be reproduced by simply using
daily means. The zones covered by the ESEOAT —as in the figure— and ESEOCAN regions are precisely very
dynamic, so for short-term missions we always use dynamic ocean currents up to the 3 days of the forecast
maps of the ESEOO ROM. In the case of IBI we have up to 5 days, but we generally do not have more than
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Figure 5.2: Trajectories of the path found by running a glider path planner on dynamic and static (daily
means) ocean currents, using the ESEOAT region from 21-Nov-2009 onwards. We solve the minimal
time path problem from the staring waypoint x0 to the target waypoint xgoal , within the radius . The
dynamic case shows non-linear trajectories and takes 7 stints —or surfacing points—; meanwhile, the static
case takes 1 stint more, because it does not take the ocean currents variability into account.

such number of predictions in most ocean models.

5.1.2 Analytical Ocean Model Equations
Apart from the ocean currents provided by ROMs for a particular region of the oceans, we can also generate
them using analytic equations. Here we show some useful examples of these equations and a procedure
to generate realistic ocean currents synthetically. The idea is to have ocean currents to reflect the typical
structures on the ocean, which are typically eddies. Also, we can model areas with constant ocean currents
in a given direction, sinks or sources, circular or elliptical eddies, and spiral vortex structures. All this kind of
structures, can be modelled to some extend with the analytic equation shown in the sequel. Also, we can tile
the space with multiple instances of them.

We can define the ocean currents vector field directly, but it is common to obtain it from a streamfunction
Ψ(x, y, t). To some extend, the streamfunction is equivalent to the SSHA, from which we can also apply the
next procedure to compute its vector field, i.e. the ocean currents it defines. Therefore, for each location
x = (x, y) and time t, the bi-dimensional vector field is obtained from the streamfunction applying the
following equations

u(x, y, t) = −∂Ψ(x, y, t)
∂y

(5.1)

v(x, y, t) = ∂Ψ(x, y, t)
∂x

(5.2)

that hold the incompressibility of the flow, i.e. the null divergence condition

∂u(x, y, t)
∂x

+ ∂v(x, y, t)
∂y

= 0 (5.3)
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According with the Coriolis effect, the relations (5.1) and (5.2) are valid for the North hemisphere solely.
For the South hemisphere the sign of each velocity component changes

û(x, y, t) = −u(x, y, t) = ∂Ψ(x, y, t)
∂y

(5.4)

v̂(x, y, t) = −v(x, y, t) = −∂Ψ(x, y, t)
∂x

(5.5)

In the next sections we describe the equations of several analytical ocean model equations, along with
an example of the resulting vector field. We focus on those analytical models that provide vector fields of
the same dimensionality that we usually need for glider path planning. The ideal would be to have the 3
vector components (u, v, w), but the vertical ocean currents w are generally very small and can be neglected.
Indeed, most of the ROMs do not compute them, and there are few analytical ocean model equations that
solve them. Therefore, the analytical ocean models shown here only compute the (u, v) vector fields. Then,
in the ideal case we will have one of these vector at each location in the three-dimensional space (x, y, z)
and also for each time t. However, the analytical models for 3 dimensions are very complex, so we only have
models for the 2 surface dimensions (x, y). Finally, some of the models described are static, but most of them
are dynamic or can be extended easily to be time-varying.

It is worth mentioning that the analytical ocean models operate in the metric space (x, y), rather than
with the longitude λ and latitude φ coordinates of the spherical reference system of the Earth. This is an
important difference with the ocean currents provided by the ROMs. We could use a Sinusoidal Projection
to convert from (x, y) to (λ, φ) but it is not advisable because it is more efficient to work with the ocean
currents represented on an evenly spaced grid. ROMs usually provide the ocean currents for evenly spaced
(λ, φ), so it makes no sense to project them because we will not obtain an evenly spaced grid as a result.

Anyway, we need to project the locations xi to compute the distance between two points in the glider path
planner. Hence, we have tried different projections embedded in the distance equations, with different levels
of accuracy —from the simple Sinusoidal projection to the exact great circle distance. These distances are
computed many times during the path planning search, so they must run fast. Since we operate far from the
poles, the flat Earth assumption is valid for the navigation frame during the glider mission. Therefore, we can
use the Sinusoidal projection as a good approximation, since it runs faster than any of the other projections
used in Section A.2 —note that we only use this for the vehicle location, but not for the ocean currents.

Finally, another difference between the analytical ocean models and the ROMs, is the discretization inherent
to the output of the ROMs. The ocean currents are only given at certain locations in the space. On the
contrary, the analytical ocean models can be solved for any location. Therefore, we do not need any kind of
interpolation with them. But for the ocean currents maps provided by the ROMs we need a fast and accurate
interpolation method. In the experiments shown here we use linear interpolation —trilinear for bi-dimensional
surface ocean currents with time, and for static three-dimensional ocean currents as well—, although we have
also taken the Nearest Neighbor ocean current in the grid with acceptable results. Note that more accurate
methods —like the tricubic interpolation of Lekien and Marsden (2005)— are not generally required for glider
path planning missions.

5.1.2.1 Power Spectrum with Random Phases

Despite of having several ROMs available, we have also developed a synthetic current field generator to assist
the production of controlled test cases —e.g. current strength, eddies size. It is possible to generate a synthetic
current field from a streamfunction Ψ(x) —that resembles the Sea Surface Height Anomaly (SSHA)— as
shown in Figure 5.3. Such a streamfunction might be randomly generated from a specific power spectrum
with random phases, as proposed by Garau et al. (2005). In other words, it will consist on a Gaussian mixture
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model given by the following sum of N bivariate Gaussians

Ψ(x) =
N∑
i=1

ωi ·N (µi,Σi) x ∈ R2 (5.6)

with a random mean µi and covariance matrix Σi each. The spectrum might be peaked at a particular
spatial scale in order to obtain eddies with homogeneous length scale, which is parameterized by means of
Σi. Finally, the weight ωi controls the rotation direction of eddies and the current strength. Once we have
the streamfunction, which defines a scalar map, we compute the vector field using (5.1) and (5.2).

Figure 5.3: Streamfunction Ψ(x), computed as a sum of N bivariate Gaussians that generate random synthetic
eddies, and resulting ocean current field Uc(x) overprinted, which resembles a typical SSHA map. This
synthetic streamfunction is defined in the domain x = (x, y)km.

This approach provides realistic ocean currents vector field realizations, where we can appreciate eddies
with different characteristics. Furthermore, we can parameterize some of those characteristics, such as the
number of eddies, their size and the current strength. In fact, Figure 5.4 shows some examples of synthetic
ocean currents field realizations where the size of eddies has been tuned. This way, we can generate illustrative
cases which are particularly interesting for glider navigation, that might be hard to retrieve from ROMs.

This approach does not generate realistic time-varying ocean currents. However, moving the Gaussians
that model the streamfunction Ψ(x) spatially over time gives high temporal changes that can be useful to
evaluate path planning strategies.

5.1.2.2 Constant vector field

Given a vector (uc, vc) representing a constant ocean current speed, we define a constant vector field for each
location x = (x, y) as

u(x, y) = uc ∀x = (x, y) ∈ R2 (5.7)
v(x, y) = vc ∀x = (x, y) ∈ R2 (5.8)

In Figure 5.5 (a) we have a constant vector field generated with (uc, vc) = (0.05, 0)m/s in the region
defined by x ∈ [−2, 2] and y ∈ [−2, 2]; note that we have zoomed in.
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(a) Eddies of ≈ �15km (b) Eddies of ≈ �30km

(c) Eddies of ≈ �50km (d) Eddies of ≈ �100km

Figure 5.4: Examples of synthetic ocean current field realizations with eddies of different size. (a)-(d) The
figures show the top view of the ocean current field Uc(x) and the generative streamfunction Ψ(x).

(a) Constant. (b) Source. (c) Sink.

Figure 5.5: Basic analytical ocean currents for (a) constant ocean currents (uc, vc) = (0.05, 0)m/s, (b) source
and (c) sink centered at xc = (xc, yc) = (0, 0).

5.1.2.3 Source and Sink

Given the center xc = (xc, yc) of the desired source, the vector field (u, v) for each location x = (x, y) is
defined as

u(x, y) = r cosα (5.9)
v(x, y) = r sinα (5.10)
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where r and α are the distance and angle with respect to xc, which are computed as

r =
√

∆x2 + ∆y2 (5.11)

α = arctan
(

∆y
∆x

)
(5.12)

being ∆x = x− xc and ∆y = y − yc. Note that the arctan should be computed with atan2.
In order to obtain a sink, we can compute it from the vector field of the source defined above, just by

changing the sign of both components u(x, y) and v(x, y), so we have

u(x, y) = −r cosα (5.13)
v(x, y) = −r sinα (5.14)

In Figure 5.5 (b) and (c) we have a source and a sink vector field, respectively. Both are centered in
xc = (xc, yc) = (0, 0) and are defined in the region (x, y) ∈ [−2, 2]× [−2, 2]; note that we have zoomed in.

5.1.2.4 Double eddy

A dynamic double eddy can be defined with the streamfunction of Shadden et al. (2005) as

Ψ(x, y, t) = A sin (πf(x, t, ε, ω)) sin (πy) (5.15)

where A is the amplitude of the stream and f(x, t, ε, ω) is a time-varying function

f(x, t, ε, ω) = x (a(t, ε, ω)x+ b(t, ε, ω)) (5.16)

being

a(t, ε, ω) = ε sin (ωt) (5.17)
b(t, ε, ω) = 1− 2a(t, ε, ω) (5.18)

where ε and ω are two parameters that allow to configure the streamfunction and, consequently, the shape
of the double eddy.

In order to compute the vector field (u, v) from the streamfunction, we need the first partial derivatives
of (5.15), i.e. the Jacobian

JΨ =

∂Ψ(x, y, t)
∂x

∂Ψ(x, y, t)
∂y

 = πA

(
cos (πf(x, t, ε, ω)) sin (πy) Jf

sin (πf(x, t, ε, ω)) cos (πy)

)
(5.19)

where Jf is the Jacobian of (5.16), given by

Jf = ∂f(x, t, ε, ω)
∂x

= 2a(t, ε, ω)x+ b(t, ε, ω) (5.20)

In Figure 5.6 (a)-(d) we have 4 snapshots at t = {0, 0.33, 0.66, 1} for the double eddy vector field in the
region (x, y) ∈ [0, 2]× [0, 1]. We observe how the eddies stretch and expand together over time, conforming
a dynamic vector field. We have set A = 0.1, ε = 0.25 and ω = 2π.
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(a) t = 0. (b) t = 0.33.

(c) t = 0.66. (d) t = 1.

Figure 5.6: Snapshots for the analytical double eddy ocean currents at (a) t = 0, (b) t = 0.33, (c) t = 0.66,
and (d) t = 1.

5.1.2.5 Stuart vortex

A Stuart vortex is a dynamic eddy-like structure (Kasten et al., 2012) defined for any location x = (x, y) and
time t as follows

u(x, y, t) = 1 + sinh (2y)
A

(5.21)

u(x, y, t) = sin (2(x− t))
4A (5.22)

where
A = cosh (2y)− cos (2(x− t))

4 (5.23)

In Figure 5.7 (a)-(d) we have 4 snapshots at t = {0, 0.33, 0.66, 1} for the double eddy vector field in the
region (x, y) ∈ [0, 2]× [0, 1]. We observe how the eddies stretch and expand together over time, conforming
a dynamic vector field. We have set A = 0.1, ε = 0.25 and ω = 2π.

5.1.2.6 Tiled eddies

Interestingly, we can create a tile of eddies of the same size for any location x = (x, y) by using these simple
equations,

u(x, y) = − sin y (5.24)
v(x, y) = sin x (5.25)

Similarly, we can make the tiled eddies a dynamic vector field by simply moving one of the coordinates x
or y (Robel, 2010). In fact, we are just translating the equations of the tile in such direction. For instance, if
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(a) t = 0. (b) t = 5.

(c) t = 10. (d) t = 15.

Figure 5.7: Snapshots for the analytical Stuart vortex ocean currents at (a) t = 0, (b) t = 5, (c) t = 10, and
(d) t = 15.

we make such translation to depend on the time t, we have dynamic tiled eddies. Therefore, in the case of a
translation on y we have

u(x, y, t) = − sin (y + t) (5.26)
v(x, y, t) = sin x (5.27)

(a) t = 0. (b) t = 2. (c) t = 4.

Figure 5.8: Snapshots for the analytical dynamic tiled eddies ocean currents at (a) t = 0, (b) t = 2, and (c)
t = 4.

In Figure 5.8 (a)-(c) we have 3 snapshots at t = {0, 2, 4} for the dynamic tiled eddies vector field in the
region (x, y) ∈ [7, 18]× [7, 18].
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5.1.2.7 Sinusoidal

Eichhorn (2010) uses a time-varying ocean flow streamfunction that has a dynamic sinusoidal shape (Alvarez
et al., 2004; Cencini et al., 1998), to test the path following problem. Indeed, we also use this same
streamfunction in part of our preliminary experiments (see Section 5.7). The streamfunction is defined
as

Ψ(x, y, t) = 1− tanh (Q) (5.28)

where the quotient Q = N/D is defined by

N = y +A (5.29)
D =

√
1 +A2

x (5.30)

where, with a slightly abuse of notation for the sake of clarity,

A = A(x, t, k, c) = −B(t, ε, ω, θ) cos (k(x− ct)) (5.31)

and
Ax = ∂A(x, t, k, c)

∂x
= kB(t, ε, ω, θ) sin (k(x− ct)) (5.32)

where
B(t, ε, ω, θ) = B0 + ε cos(ωt+ θ) (5.33)

with B0 = 1.2, ε = 0.3, ω = 0.4, θ = π/2, k = 0.84 and c = 0.12. This are the values used in (Eichhorn,
2010) and in our tests in Section 5.7 as well.

(a) t = 0. (b) t = 0.33.

(c) t = 0.66. (d) t = 1.

Figure 5.9: Snapshots for the analytical sinusoidal ocean currents at (a) t = 0, (b) t = 0.33, (c) t = 0.66,
and (d) t = 1.

In order to compute the vector field (u, v) from the streamfunction, we need the first partial derivatives
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of (5.28), i.e. the Jacobian

JΨ =

∂Ψ(x, y, t)
∂x

∂Ψ(x, y, t)
∂y

 = − sech2Q

D

(
Ax −

QAxx
D

1

)
(5.34)

where
Axx = ∂2A(x, t, k, c)

∂x2 = −k2A(x, t, k, c) (5.35)

In Figure 5.9 (a)-(d) we have 4 snapshots at t = {0, 0.33, 0.66, 1} for the dynamic sinusoidal vector field
in the region (x, y) ∈ [−12, 12]× [−4, 4].

5.2 Evaluation Metrics
In order to evaluate the different algorithms developed in this thesis we will use a series of metrics. Here we
enumerate and describe them in detail, since they will be used intensively in the following sections. Although
these metrics are generally applicable to all the glider path planning problems addressed, in some cases the
evaluation is rather qualitative. This is the case of problems like path following, some multi-glider problems
and tracking evolving ocean structures, where the assessment of the technique depends tightly on the objective
function that the problem aims to optimize. In these problems, we simply try to validate it can solve the
problem adequately in a reasonable amount of computing time.

We distinguish two type of metrics. First, those that evaluate the quality of the result, that in the case
of path planning is the optimality of the path found. Secondly, the computing time on average or the worst
case. In order to obtain representative values for these evaluation metrics we will run a number of test cases
with representative scenarios, divided in different categories. Such categories allow for a fine evaluation at
different types of environments, like weak or strong ocean currents, static or dynamic ocean currents, offshore
or coastal regions —which are usually populated by more obstacles—, and long-term or short-term missions.

Regarding the optimality of the path found, the actual evaluation metric depends on the glider path
planning problem at hand, since it defines a specific objective function to optimize. However, for the problems
discussed in this thesis, we identify two main optimality metrics, which are associated with each of the atomic
glider path planning problems (see Section 3.1). On one hand, for the minimal time path problem we evaluate
the travel time, which is the time required to go from the starting waypoint x0 to the target one xgoal, for
a given glider nominal surge speed Ug and the ocean currents Uc —of the map used in the tests— along the
path P found. On the other hand, for the minimal distance to the target problem we evaluate the remaining
distance to the target xgoal, from the ending point xn−1 of the path P found for the travel time tt given. In
the case of the minimal time path problem, we have also used an alternative evaluation metric. This metric
is the glider effective speed Ue of the path found. It provides a more relative value, rather than the travel
time tt, which is an absolute value. In fact, Ue is computed as

Ue = ‖xgoal − x0‖
tt

(5.36)

which gives a quasi-normalized metric of the distance d = ‖xgoal − x0‖ from x0 to xgoal divided by the travel
time tt. However, this metric still depends on the distance d of a given test case, so we must categorized the
test cases according to d in order to facilitate the comparison of the algorithms, as we do in Section 5.4 and
5.6

In glider path planning, the computing time is often ignored as a priority due to the typical long duration
of glider missions and immersion periods of ts time between surfacings. For this reason, the computing time
of the results shown in the sequel is given simply as a relative reference. We have tried to use the best
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implementation and configuration for each algorithm in our programming environment, but the computing
time still depend strongly on the codification, compiling and executing efficiency, and it is not the central
focus of this thesis.

Although this is generally true, in some cases the path planner must respond inside a short temporal
window to face an unforeseen situation, and provide the glider with a new path before it dives again, during
the short time it stays on surface for ≈ 15min. In fact, this is very common in short-term missions, where
the minimal distance to the target problem is usually solved at each surfacing point xi in order to update the
actual xi in the path planner and obtain the optimal path for the next stints using the —possibly updated—
dynamic ocean currents. Consequently, we evaluate the computing time of the techniques for a sufficient
number of tests, and adopt the best configuration for each algorithm at the problem at hand.

5.3 Experiments

In the next sections we show the experimental results of the present thesis work. For each application or glider
path planning problem we evaluate the algorithms discussed in Chapter 4. The results shown here have been
obtained in simulation, but using ocean currents provided by ROMs that actually represent —up to some
uncertainty— the state of the ocean, by means of the computation of ocean models fed and tuned with data
assimilation. Therefore, the test cases run can be considered close to real field tests. Indeed, we have used
some of the results to assist on the piloting of several gliders operating in long-term mission. This is the case
of the RU27 trans-Atlantic missions, as we will see in Section 5.4.

In Chapter 3 we have described the glider path planning problems addressed in this work. They cover the
atomic optimization problems of finding the minimal time path and the minimal distance to the target, along
with a series of more elaborated problems. These two atomic problems are analyzed first, in order to validate
the applicability of each technique in the basic problems that are later required to implement the others.
Being the minimal time path problem the first one covered, we include the preliminary results we obtained at
the start of this work. Similarly, we explain how we applied it for the piloting of the RU27 using the ocean
currents of the ESEOAT region provided by the ROM of the ESEOO project. Apart from the feasibility of the
techniques and the optimality of the path found, we also analyze the computing time, as mentioned previously.
For this reason, we study the influence of the ABS strategy (see Section 4.4.3) for the CTS-A* algorithm at
the beginning. Then, all the methods presented in the thesis are compared in long-term missions using static
ocean currents, as this is the common scenario for minimal time path problems. On the other hand, for the
minimal distance to the target problem, we address short-term missions, and we use dynamic ocean currents
provided by the ROM forecast maps; note that in this case some methods are not applicable, like the RRT.

Then, we analyze how all the techniques perform in the presence of obstacles. We have run test experiments
for both atomic problems in both types of missions —i.e. long-term and short-term, with static and dynamic
ocean currents, respectively. Then, for the rest of the glider path planning problems, the most promising
techniques are evaluated. For the path following problem we validate the different objective functions
developed to measure the deviation of the path found P from the desired path Pd (see Section 3.3). Next,
we apply our Iterative Optimization method to solve this problem as a constraint imposed on the minimal
time path problem. We also relax the path following constraint with a corridor around Pd in order to obtain
several non-dominated solutions for each objective. And finally, we illustrate how to scale this problem to more
complex paths Pd, as a windmill pattern to sample mesoscale eddies. Later, we coordinate multiple gliders to
solve several multi-glider path planning problems. Here we cover the navigation in formation, and the efficient
recovery of the glider fleet with a ship. Finally, we conclude our experiments by showing our preliminary results
on tracking evolving ocean structures. In particular, we model mesoscale eddies as described in Section 4.8,
and apply a Genetic Algorithm to optimize the sampling strategy of certain regions of the eddy.
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5.4 Minimal Time Path
As we have previously mentioned, we are going to start the presentation of our experimental results with the
minimal time path problem. This basic problem, in the field of glider path planning, is the equivalent to the
shortest path problem for ground robots. It constitutes a minimal capacity required to perform other sorts of
glider path planning, and it will be used in several applications at the ocean. Here, we compare the algorithms
proposed in this thesis with the manual direct to goal piloting approach, and later among them. We consider
two main cases for evaluation. The first case is the short-term path planning with dynamic ocean currents,
where we have used the ROM forecast maps as input. The other one is the long-term path planning —in
the order of ≈ 1 month traveling— using static ocean currents, since no ROM provides predictions for such
number of days in advance. Indeed, we consider test cases in which the path does not last longer than the
seasonal period, which can be represented with an average map.

In the first case, with dynamic ocean currents, we illustrate the viability of graph-based methods. The A*
algorithm adapted to glider path planning (see Section 4.3) is compared with the novel CTS-A* approach (see
Section 4.4). With our first experiments we do not want to evaluate these methods in accord with the metrics
shown thus far. On the contrary, our intention is to put clear that the A* adaptation of authors like Garau
et al. (2005); Pêtrès et al. (2005); Soulignac (2010) —and ours as well—, still does not reflects the glider
motion model adequately. Later, using static ocean currents we will evaluate all the techniques presented in
this dissertation using the evaluation metrics of Section 5.2, for the minimal time path problem in long-term
scenarios.

At this point, we want to draw the attention to the central difference between A* and CTS-A*. Such
difference comes from the fact that the cost function is based on the time rather than on the distance traveled.
Furthermore, the effect of ocean currents on the glider motion model —whatever it is— creates a manifold
that is confined to the accessibility cone shown in Section 4.4.3, i.e. the region where the vehicle is able to
move according with the speed ratio SR. The A* algorithm defines an uniform grid in advance, where the
nodes —or vertex— of the grid are placed at a given constant distance from each other. Consequently, the
time required to reach a node is not constant, and it may even be impossible to follow the bearing to go from
the current node to certain adjacent ones. Therefore, the cost function, which incorporates the constrained
glider motion model and yields a time value, has a twofold negative impact on the A* algorithm.

First, in the presence of large ocean currents —i.e. a high speed ratio— the number of feasible bearings
plummets. The path search is then reduced to a small number of adjacent nodes in the graph. Sometimes, it
may even happen that the feasible bearings neither fall in any of these nodes, and no path is found. Clearly, we
need to search in the bearing configuration space. This is a first consequence we conclude from the analysis
of A* algorithm. The second negative impact is on the fail to remain faithful to the glider navigation pattern
(see Section 2.1), in particular, regarding the constant time between successive surfacing points. Trying to
reach the nodes on the grid, the time underwater is not constant anymore.

Our CTS-A* approach, although still based on A* search, solves the two problems of A* aforementioned.
CTS-A* does it by exploring different bearing angles starting from the current node, and applying the
unconstrained glider motion model of Section 2.2.2 for a constant integration time. Consequently, all bearings
are explored and they produce a constant time stint underwater. Recall that the final location of these
trajectories is then taken to a gridded search space, as explained in Section 4.4.

5.4.1 RU27 trans-Atlantic mission
In Figure 5.10 we show the output of A* and CTS-A*, along with the DtG approach and the path followed by
the “Scarlet Knight” RU27 glider in the trans-Atlantic mission (Glenn et al., 2009). We developed our first
path planning techniques —A* and CTS-A*— to assist in the glider piloting of RU27 when it entered in the
area of the ocean modeled by the ESEOAT region of the ROM maintained by the ESEOO project, highlighted
in Figure 5.11, which includes the Spanish EEZ (Exclusive Economic Zone) and the coast of Portugal and
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Figure 5.10: Comparison of paths planned with different path planning strategies from the start node to
the target node for the 21-Nov-2009: DtG , A* and CTS-A* , along with the RU27 path ;
the ocean currents provided by ESEOAT in an area of ≈ 100km, close to the coast of Galicia (Spain), were
used by the path planning algorithms.

some part of France and Marocco. We run our algorithms to obtain the path plan that would allow the glider
to reach the waypoint of Figure 5.10 starting at its actual surfacing point location on November 21, 2009.
At this time —after almost 221 days of travel, as it took finally—, the ocean currents where very strong and
highly time varying nearby. After several months flying the Atlantic Ocean, barnacles had attached to the
glider’s hull, as shown in Figure 5.13. Such accumulation of organisms on wet surfaces is known as biofouling.
Its impact on the glider dynamics is an added mass and extra drag that reduces the vehicle horizontal speed;
recall the spider plots shown for the force balance motion model in Section 2.2.3. More than 500 years ago,
in 1493, a similar historic episode happens when the Spanish navigator Pinzón was coming back from the
discovery of America. His caravel class ship named the Pinta was very damaged and the weather conditions
were bad, as they were in our experiments with RU27. Our path planner proposed, for the glider, a path
similar to the one Pinzón followed to reach the coast of Spain. For that reason, we coined Pinzón to our path
planner.

For our experiments with RU27, we used the ROM forecast maps of ESEOAT, which predicts up to 3 days.
The paths found with DtG, A* and CTS-A* techniques are plotted in Figure 5.10, assuming a glider horizontal
speed of Ug = 0.35m/s. However, according with the RU27 path, also shown in the figure, the glider was
traveling at a lower speed of Ug ≈ 0.15m/s, as a consequence of the biofouling. Although simulated with a
higher speed, the DtG approach follows a path similar to RU27, since the strategy is equivalent to manual
piloting (see Section 4.2). Note that with Ug = 0.15m/s it was not possible to reach the target, as shown in
Figure 5.12 (b); the same happened to the real glider, indeed. For this reason, we try to take the glider as
close as possible to the target, and we even found a path that reached the target for certain situations at the
end of the mission, as shown in the figure (a). The blind approach of DtG executes very fast, but the path
found takes more time than our graph-based path planning methods. While the DtG strategy sets the bearing
in the straight direction to the goal, the other two methods explore several paths starting from the current
location. Later, with long-term scenarios we will quantify the difference among them using the evaluation
metrics.
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Figure 5.11: Map showing the RU27 path and the ESEOAT region, where we apply our path planning
techniques to assist in the glider piloting, at the end of the trans-Atlantic mission.

(a) Plot output. (b) KML output.

Figure 5.12: Pinzón paths found for the RU27 trans-Atlantic mission: (a) plot, and (b) KML output; for two
different situations at the end of the mission.
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Figure 5.13: SLOCUM glider affected by biofouling after several months flying. Barnacles have attached
to the vehicle’s hull and have grown to the point that the dynamics are significantly affected. Image taken
from the Atlantic Crossing blog (Glenn et al., 2009), which shows the conditions of RU27 by the end of the
trans-Atlantic mission.

5.4.2 Initial Results
By now, we just want to highlight that the global view of the path planners helps in finding a better solution,
close to the optimal one. And they search for that solution by adequately managing the dynamic ocean
currents, the glider motion model, and the time-based cost function. The limitations of A* can be observed
in Figure 5.10. A* represents each surfacing point with a node in a regular grid. As a consequence, the
set of bearings evaluated for the next action is reduced to the ones that connect the current node with its
neighbors. The surfacing point of the path found by A* shows that gridded pattern in the figure. Also, the
distance traveled is constant, but not the time. Meanwhile, the path found by CTS-A* has constant time
stints, which a travel distance which is clearly different among each of them in the figure. With CTS-A*, the
underwater trajectory is also computed with the unconstrained glider motion model. This can be appreciated
in the bend path of CTS-A* between surfacing points. On the contrary, A* uses a constrained motion model
that —apart from some improvements made in our implementation— only takes a single mean velocity to
represent the ocean current speed during a stint between adjacent nodes. Consequently, it does not compute
the motion accurately, neither considers the variability of the ocean currents during the stint.

Although the path found by A* may have a similar cost —or even better, in some experiments— to CTS-
A* one, the important point to bear in mind is the fact that A* does not model the glider motion adequately.
Or, put differently, with CTS-A* the glider motion model is accurately computed, and the constant time
surfacing behavior is guaranteed within the path planning algorithm. All in all, for the test run shown in
Figure 5.10, both A* and CTS-A* find paths of lower cost than the DtG one, which costs approximately 8h
more. As it have been previously mentioned, the improvement in the path cost is greater when the speed
ratio is high. For this reason, we have analyzed the influence of the ocean currents strength, their temporal
variability and the size of ocean eddies, on the results of our path planning methods and the DtG approach.

The effect of the ocean current field strength actually relies on the speed ratio given by Ucmax
Ug

, used in
the heuristic shown in Section 4.3. It determines whether the glider can beat them or not. From that speed
ratio equation we have that an Ug increase is equivalent to navigate through weaker ocean currents; or, on
the contrary, a Ug decrease is like moving in strong ones. For testing purposes we consider a given ocean
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current field and different values for Ug. For slow speeds (or strong ocean currents) the glider will be more
sensitive to the drift —almost following the ocean currents—, as observed in the more curved trajectory of
the Ug = 0.2m/s case of Figure 5.14. On the contrary, the resulting paths tend to the straight line with
the faster Ug = 0.35m/s speed (weaker ocean currents), as shown in the figure as well. Clearly, intelligent
path planning is more important under strong ocean currents, or more specifically, when the speed ratio is
high. In fact, for weak currents the DtG approach suffices to capture a nearly optimal path. Furthermore,
the figure shows the influence of strong ocean currents on the glider trajectory while it glides underwater, as
computed by our CTS-A*. It integrates the equations of the unconstrained motion model of Section 2.2, so
such trajectories are accurately computed and used by the planner. In the case of A*, we do not have those
trajectories, but the effect of strong ocean is more severe, because it prunes many path from the search space
prematurely.

Figure 5.14: Paths planned for November 21, 2009, considering fast Ug = 0.35m/s (speed ratio of 167.02%)
and slow Ug = 0.2m/s (speed ratio of 292.28%) glider horizontal speeds, which is equivalent to path

planning for weak and strong ocean currents, respectively. The paths were found with the CTS-A* algorithm
using the ocean currents provided by ESEOAT in an area of ≈ 100km, close to the coast of Galicia (Spain).

Similarly, it is possible to test the path planner for different structures of the ocean currents. Eddies
are common structures that may vary in size; from small and short life, to large and long life ones —like
mesoscale eddies. When they are large, the resulting paths are more intricate, provided that the ocean
currents are sufficiently strong. Therefore, path planning proves particularly useful in such cases, as we will
see throughout the experiments of this chapter. Indeed, during the RU27 flight sub-mesoscale eddies were
oscillating over time in the ESEOAT region.

5.4.3 ABS CTS-A*
Before we compare all the path planning techniques implemented in this thesis for the minimal time path
problem, we are going to evaluate our CTS-A* algorithm in terms of computing time. Such evaluation includes
the Adaptive Bearing Sampling (ABS) strategy explained in Section 4.4.3, which helps to reduce the CTS-A*
computing time. Furthermore, we consider several numbers of samples M to evaluate up to which point it can
be reduced before the path quality degenerates significantly. Since we are interested in establish such value
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of M , according with the cost of the path found, we will also evaluate that cost, along with the computing
time. For this purpose, we have built 21 test cases using ocean current maps of the ESEOAT region. For
these experiments we have considered 2D surface ocean currents, which suffice to illustrate the ABS proposal.

We have run the next experiments on long-term scenarios, and thus we have static ocean currents. With
this setup, the difference between the techniques is more evident and clear than with short-term, dynamic
cases. Anyway, all the techniques are designed to accommodate dynamic ocean currents, and have been tested
accordingly. The start and goal points are generated randomly and those test cases more representative and
sufficiently complex have been selected. All tests have been run on an Intel® Core™-i7 CPU 2630 QM running
at 2GHz with 8GiB of RAM.

Table 5.1: Minimal time path cost speedup of the paths found for CTS-A* with uniform sampling using
M = 18 samples, and the ABS for different numbers of samples M , for the 21 test cases run. We observe
that even with M = 8 samples, the cost of the paths found is not significantly affected, and even in some
cases a small speedup is obtained, i.e. > 100%.

ABS CTS-A*
Case # M = 18 M = 15 M = 8

1 98.9% 98.8% 98.4%
2 100.1% 100.2% 100.2%
3 100.3% 99.9% 98.6%
4 100.4% 98.1% 98.7%
5 100.5% 100.7% 101.1%
6 99.8% 99.8% 99.8%
7 101.1% 100.3% 99.8%
8 103.1% 99.3% 100.5%
9 100.5% 100.6% 99.8%

10 100.2% 100.4% 100.8%
11 97.9% 104.2% 103.4%
12 101.0% 99.8% 101.1%
13 100.3% 100.0% 99.6%
14 99.7% 99.6% 100.1%
15 100.2% 100.2% 100.0%
16 99.2% 100.5% 98.9%
17 101.0% 101.8% 101.3%
18 101.0% 99.3% 98.8%
19 99.8% 99.3% 98.6%
20 100.4% 100.6% 99.9%
21 100.7% 100.8% 100.7%

Mean (std) 100.3(1.0)% 100.2(1.2)% 100.0(1.2)%

We have evaluated two bearing sampling strategies. On one hand, we have the uniform sampling of the
original CTS-A*. On the other, its extension with the ABS procedure, using a bearing distribution defined
by fψd

(ψe) = N (ψe; µ, σ2) with σ2 = 10◦ ≈ 0.1745rad and fψc
(ψe). The simulations have been run with

Ug = 0.4m/s and ts = 8h between consecutive surfacing points. For the uniform sampling CTS-A* we have
used M = 18 bearing samples (20◦ bearing resolution). A greater M would have given a higher resolution,
but at a very high computational cost. On the other hand, the ABS permits the reduction of the number
of samples M without compromising the exploration of the search space and, consequently, the path quality.
Therefore, as we will see, we still can obtain good results in less computing time. However, we cannot reduce
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Table 5.2: CPU (computing) time speedup to find the paths in the 21 test cases run, for CTS-A* with uniform
sampling using M = 18 samples, and the ABS for different numbers of samples M .

ABS CTS-A*
Case # M = 18 M = 15 M = 8

1 93.5% 161.6% 199.1%
2 93.4% 162.7% 202.6%
3 93.2% 163.8% 196.7%
4 93.6% 158.3% 194.7%
5 95.9% 168.4% 207.0%
6 94.1% 165.6% 204.6%
7 95.3% 164.9% 200.3%
8 111.4% 170.4% 237.6%
9 94.8% 165.3% 198.6%

10 92.7% 162.3% 202.0%
11 93.2% 153.6% 280.9%
12 97.2% 115.3% 206.9%
13 95.5% 117.0% 198.8%
14 94.6% 112.6% 198.2%
15 98.3% 118.7% 211.4%
16 92.7% 113.9% 203.8%
17 96.5% 118.6% 206.2%
18 115.9% 114.6% 203.2%
19 97.0% 117.0% 203.2%
20 96.2% 113.9% 192.9%
21 97.8% 114.9% 209.4%

Mean (std) 96.8(5.9)% 140.6(24.7)% 207.5(19.1)%

M to the minimum because the sampling process degrades. The reason is twofold: first, with a small M
the probabilistic sampling distribution of the ABS is badly modeled; secondly, a reduction of M also reduces
the search space. As a consequence, the path planning algorithm loses its exploration capabilities —in the
exploration vs. exploitation trade-off—, and the path found may be far from the optimal. In our experiments
we have set M = {18, 15, 8} to illustrate the influence on the computing time and path cost. As we will
see in the sequel, these M values are an adequate selection because the penalty on the path cost is not very
severe. In fact, the path cost allows us to check the impact on the path search, by simply comparing against
the result of CTS-A* with uniform sampling, which is taken as a reference for comparison.

Since the ABS strategy is a probabilistic algorithm, we have run a Mann–Whitney–Wilcoxon (MWW) test
(Fay et al., 2010) to assess whether the CPU time (computing time) and path cost are significantly different
for the ABS approach (null hypothesis H0) or not. In Table 5.1 and 5.2 we have the results for the test
cases run to evaluate the ABS strategy, designed to improve the computing time of the CTS-A* algorithm.
Respectively, we have the minimal time path cost and the CPU time for each test case in the rows of the
tables. The results of CTS-A* with M = 18 samples are taken as a reference. We can observe the tendency
of the path cost and the CPU time for the decreasing values of M tested in the ABS strategy. Clearly, the
computing time is reduced with M for all the cases. Indeed, by reducing M we have been able to drop down
the CPU time up to ≈ 50% —i.e. a ≈ 200% speedup— using ABS with M = 8, in comparison with the
uniform sampling with M = 18. We can also see that ABS introduces an overhead of ≈ 3%, which is clearly
appreciated for M = 18, which is the same number of samples used in the uniform sampling CTS-A*.
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Table 5.3: Summary of minimal time path cost (days) of the 21 test cases run for CTS-A* with uniform
sampling and the ABS strategy. We show the mean and the 95% CI of all the test cases.

Method M Median 95% CI
CTS-A* 18 20.62 [13.49, 27.75]

ABS CTS-A* 18 20.55 [13.35, 27.75]
ABS CTS-A* 15 20.63 [13.43, 27.83]
ABS CTS-A* 8 20.71 [13.49, 27.93]

The path cost requires special attention. The probabilistic nature of ABS CTS-A* produces results that
must be evaluated globally for all the test cases, and for several runs on the same test case as well. Interestingly,
we observe that for small values of M the path cost is not very different from the CTS-A* one. In Table 5.3
we have a summary of the path cost for all the test cases. In our tests we observe that ABS CTS-A* with
M = 18 samples, as in the uniform sampling approach, produces even better results in average. With fewer
samples M , the minimal time path cost increases, but not significantly. Indeed, with M = 8 the cost remains
acceptable in average. The CPU time, on the other hand, is clearly lower, with a ≈ 140% speedup with
M = 15, and a ≈ 200% speedup with M = 8, with respect to CTS-A*, according with the mean values in
Table 5.2.

Figure 5.15: Path cost box and whisker plot for the 21 test cases run to evaluate the ABS strategy of CTS-A*.

We have gone a step further in the evaluation of the ABS strategy. We have run an hypothesis test to
evaluate whether the ABS CTS-A* minimal time path cost is significantly different with respect to the uniform
sampling CTS-A* or not. Before we apply the test, we can obtain some intuition of the difference between
CTS-A* and the several configurations of ABS CTS-A* —for M = {18, 15, 8} samples— using a box and
whisker plot for all the test cases. In the box and whisker plots of Figure 5.15 we have more information about
all the test cases than in the summary table commented thus far; it shows the median and 95% confidence
intervals (CI) —discarding outliers— of the distribution of the results for all the test cases, for the path cost.
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Although it seems clear that there is no significant difference in the path cost between CTS-A* and any of
the ABS CTS-A* configurations, we are going to run a Mann–Whitney–Wilcoxon (MWW) test.

Table 5.4: Mann–Whitney–Wilcoxon (MWW) test for ABS CTS-A* with respect to (uniform sampling) CTS-
A* with M = 18 samples —for the latter. The test is applied on the ABS with M = {18, 15, 8} samples.
The results for several runs on each of the 21 test cases are shown for a α = 0.05 significance level hypothesis
test. Note the the U value is the result for the equivalent Mann-Whitney U -test.

Computing time Path cost
M U p-value H? U p-value H?
18 438.50 0.753 H0 456.00 0.101 H0
15 511.00 0.138 H0 452.00 1.000 H0
8 551.00 0.013 H1 451.00 1.000 H0

In Table 5.4 we have the results of the MWW test for both the CPU time and the minimal time path
cost, with an α = 0.05 significance level. The test shows that the CPU time is clearly different, and actually
better, for the ABS CTS-A* with M = 8. Certainly, with M = 15 the algorithm is also faster than CTS-A*
with uniform sampling and M = 18, but the difference for all the test case is still not significant. Regarding
the path cost, we have that for any value of M tested, the ABS CTS-A* have found paths that are not
significantly different from the ones found with the uniform sampling CTS-A*. This means that the ABS
CTS-A* is valid, faster and still provides good results in terms of the path planning cost function. In fact,
with M = 8 the reduction in computing time is justified, since the penalty on the path cost is not significant,
according with the MWW test results for our test cases.

Figure 5.16 shows an example of the paths obtained using uniform sampling and the ABS, with M = 18
and M = 15 samples, respectively. This example corresponds with one of the test cases used for the previous
evaluation of the ABS strategy. We observe a long-term scenario in the figure, in which ocean currents are
static. The distance from the starting node to the target one is in the order of hundreds of kilometers and it
takes several days to reach it. More specifically, the travel time goes from approximately 1 week to no more
than 2 months, so the temporal dynamics of ocean currents within a day can be neglected, and we also avoid
seasonal changes in the average ocean current field that we use. Furthermore, the path planning algorithm
must explore a great number of alternative paths from the origin in order to find the optimal one. With
this type of scenarios we are able to check the exploration and exploitation capabilities of the path planning
algorithms, which are reflected in the path cost and computing time. In fact, for the particular case of the
figure, we observe that the shape of both paths is very similar, and the cost is nearly the same. Consequently,
the ABS CTS-A* can be used instead of CTS-A* —with uniform sampling— when we need a result faster,
as long as we can deal with a small penalty on the path optimality.

In sum, the ABS strategy is a probabilistic technique that reduces the computing time by means of reducing
the search space in a guided way (see Section 4.4.3), at the expense of degrading the optimality of the path
found slightly. It is for this last reason that in the following comparison results with other techniques —for
this and other problems— we use the deterministic version. That is, we use the uniform sampling, which is
slower because it requires a higher number of samples M , but it produces the best possible results for the
CTS-A* algorithm, in terms of path cost.

5.4.4 Comparison in static long-term scenarios
Now that we have validated our implementation of the A* adaptation to glider path planning, and our novel
CTS-A* approach, we proceed to compare the techniques developed in this thesis. The methods compared
are the Direct to Goal approach, A*, RRT, CTS-A*, ABS CTS-A* and Iterative Optimization, all explained
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Figure 5.16: Path found by CTS-A* (M = 18) and ABS CTS-A* (M = 15) for the test case #2
with start and goal . Strong ocean currents (≥ vg, where vg = 0.4m/s) are highlighted . The ABS
CTS-A* has a similar cost to CTS-A*, which uses an uniform sampling of the bearing configuration space.
However, with ABS only M = 15 samples are required, rather than M = 18. Hence, the computing time is
reduced, but we still have a good result, significantly equivalent to the CTS-A* one.

in Chapter 4. We have used the same equivalent discretization level for each method, when applicable. For
instance, the search grid used for A* and CTS-A* has a cell size of 1/20◦ in x and y axes. For the CTS-A*
algorithm we have set a division of 20◦ in the bearing rose, i.e. M = 18 samples. We reduce the number of
samples to M = 15 in the ABS CTS-A*. Similarly, the Iterative Optimization method uses the SQP algorithm
in the optimization phase.

For this comparison we have picked out several test cases from the ESEOAT region. The test cases are
defined by a start and target waypoints, and a static ocean current field. Being static ocean currents, as in
the example test case of Figure 5.17, we can include the RRT algorithm in the comparison. The use of static
ocean currents is also a consequence of the fact that the number of forecast maps provided by the ROM
is small. Therefore, since we want representative, long test cases, we are compelled to run our experiments
on static ocean currents. Anyway, all the techniques —except for RRT— are applicable to dynamic ocean
currents, as we will show several experiments for other problems and applications throughout this chapter.
It is also worth noting that A* results require special consideration. The constrained motion model (see
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Figure 5.17: Minimal time path obtained with the Iterative Optimization technique for an example case. The
glider speed was set to Ug = 0.4m/s. The distance traveled was d = 423.22km, while the travel time was
tt = 10.5 days. The computing time to obtain this result was tc = 24.9s. The figure shows the path over
the ocean currents (ocean currents that exceed the glider speed Ug are highlighted ) from the start

to the target waypoint . Finally, the glider bearing to set at each surfacing point is shown with orange
arrows .

Table 5.5: Path cost (travel time) in days for the Minimal Time Path problem. The mean for the 20 test
cases is shown for comparison, for a glider nominal speed of Ug = 0.4m/s. When a technique does not find
a solution for some test cases, we include the percentage of NA (No Arrival) cases.

Method All Successful
DtG NA in 60% 18.0
RRT NA in 20% 17.7
A* 19.4 17.1
CTS-A* 19.2 16.9
ABS CTS-A* 19.2 16.9
Iterative Optimization 18.9 16.7

Section 2.2.2) that it uses to generate the trajectories produces unrealistic non-constant stint times between
surfacing points. That is to say, the surfacing points in A* will not generally correspond with the actual
surfacing points of the glider, as they are forced to be the nodes of the search graph.

The experiments described here were configured for a glider speed of Ug = 0.4m/s and a period between
surfacing points of Ts = 8h. A set of 20 test cases, with an average distance of ≈ 650km from the start
to the target waypoint, has been analyzed. We apply the path cost and computing time evaluation metrics
described in Section 5.2 to compare the results of the path planning techniques. Note that the computing
time is quite an important factor, as sometimes it is necessary to obtain a path in a few minutes. Although
this depends on the particular case and field missions constraints, a small computing time is useful.

Table 5.5 summarizes the path cost results of the 20 test cases by showing the mean of the travel time of
the path found for each method. As some algorithms did not find a solution in some test cases —shown as
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Table 5.6: Effective velocity in km/day for the Minimal Time Path problem. The mean and standard deviation
for the 20 test cases is shown for comparison, for a glider nominal speed of Ug = 0.4m/s.

Method Mean (std)
DtG 31.7 (5.0)
RRT 32.6 (4.5)
A* 32.9 (4.1)
CTS-A* 33.4 (4.5)
ABS CTS-A* 33.4 (4.5)
Iterative Optimization 34.3 (4.6)

Table 5.7: CPU (computing) time (in seconds) for the Minimal Time Path problem. The mean for the 20
test cases is shown for comparison, for a glider nominal speed of Ug = 0.4m/s. The ABS CTS-A* with the
same number of samples M as the CTS-A* takes slightly more time, but it can run faster with fewer samples;
however, the path cost would be affected, so we do not show any CPU time, because it depends on M .

Method Computing time (s)
DtG 0.1
RRT 1.0
A* 75.0
CTS-A* 120.0
Iterative Optimization 74.0

the no arrival percentage under the mean of all cases column—, we have added a third column showing the
mean for only those test cases where all the methods found a solution. The interpretation of these results is
almost the same for both columns, i.e. for all the test cases or for only the successful ones for all the methods.
In fact, the rows of the table show the methods in order from the worst to the best one. The DtG approach
finds the paths which are less optimal, taking up to 18 days on average for the successful test cases. But
more interesting is the fact that it does not find a path to reach the target waypoint in a 35% of the cases.
It gets trapped in some areas between the start and target waypoint, because of its local blind search to the
target. On the contrary, with the path planning algorithms we are able to find a path for all the cases; except
for RRT, which fails in a 5% of the cases —much less than the DtG. Although RRT improves the results of
the DtG approach, it is with graph-based methods and optimization when we have a greater improvement.
CTS-A* performs slightly better than A* on average, but it is the Iterative Optimization approach the one
that finds the path closest to the optimal.

An equivalent metric to the path cost is the effective speed, which normalizes the cost by the distance
from the start to the target waypoint as explained in Section 5.2. In Table 5.6 we have the mean and standard
deviation of the effective speed for each path planning method. The conclusion remains the same as with
the path cost evaluation metric of Table 5.5. The effective speed is a good metric for evaluation in this case
because our 20 test cases cover a wide range of scenarios, with different distances from the start to the target
waypoint.

Table 5.7 shows the computing time for each method. The DtG approach takes less than 1s on average,
being an extremely fast method to obtain a rough path. With RRT we still can obtain a path in ≈ 1s.
However, recall that RRT is only applicable to static ocean currents and it does not find optimal paths.
Furthermore, both DtG and RRT do not find a path to the target waypoint for all test cases —specially the
DtG approach. With the graph-based methods the computing time increases, but we always find a path.
First, A* takes more than 1 minute on average. Our CTS-A* algorithm with M = 18 samples requires ≈ 2
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Figure 5.18: Comparison of the Minimal Time Path for the DtG, RRT, A*, CTS-A* with M = 18 samples,
and Iterative Optimization, for the case # 1. The glider speed was set to Ug = 0.4m/s. The distance traveled
was d = 151.4km. The figure shows the path over the ocean currents (ocean currents that exceed the
glider speed Ug are highlighted ) from the start to the target waypoint . The travel time tt (in days)
for each method was: DtG: 4.9; RRT: 4.6; A*: 4.5; CTS-A*: 4.3; Iterative Optimization: 4.0.

minutes. This increment in computing time is a direct consequence of the fact that with the unconstrained
motion model more nodes are expanded than in A*. We could use the ABS strategy with less samples M
to reduce the computing time. The Iterative Optimization method takes slightly less than the A*. But more
interestingly, it yields the best path on average, and contrary to A* it also integrates the glider trajectory
underwater with the unconstrained motion model.

In Figure 5.18 and 5.19 we have the comparison of the minimal time path found by each technique for
2 test cases of our 20. In the case # 2 we observe that the DtG approach does not find any path, while
the path planning techniques do. The results of these test cases agree with the summary tables discussed
thus far. In conclusion, the experimental results demonstrate that the Iterative Optimization approach offers
better results. However, the graph-based and optimization-based methods presented have a computational
time of the same order of magnitude.

5.4.5 Discussion
Regarding the graph-based methods, if we had used a smaller cell size for the search grid of A*, or analogously,
if we had increased the number of bearing samples M that CTS-A* explores, the path cost would have
improved. However, the computing time would have increased notably. Consequently, from the results
obtained with the 20 test cases, we can conclude that with the Iterative Optimization method we can find a
close to optimal path in a reasonable time. Furthermore, this approach scales well to accommodate strong
and dynamic ocean currents. For instance, in Figure 5.20 we include an example of the paths obtained
for Ug = 0.2m/s. This is equivalent to navigating through strong ocean currents. In this type of adverse
conditions, DtG tends to produce worse results or the path may not arrive to the target waypoint. The same
may happen to the path planning techniques. Indeed, we observe that the difference in path cost is magnified,
with respect to the average values of Table 5.5.

Finally, the test case shown in Figure 5.21 illustrates the problems of the DtG and RRT, which gets trapped
in an area of strong ocean currents, while the path planning methods find a path to the goal that avoids such
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Figure 5.19: Comparison of the Minimal Time Path for the DtG, RRT, A*, CTS-A* with M = 18 samples,
and Iterative Optimization, for the case # 2. The glider speed was set to Ug = 0.4m/s. The distance traveled
was d = 974km. The figure shows the path over the ocean currents (ocean currents that exceed the
glider speed Ug are highlighted ) from the start to the target waypoint . The travel time tt (in
days, or NA for No Arrival) for each method was: DtG: NA; RRT: 31.3; A*: 27.3; CTS-A*: 27.2; Iterative
Optimization: 26.3.

region. On the other hand, graph-based methods perform a more exhaustive search and find a path close
to the optimal one. The Iterative Optimization method performs a less exhaustive search than graph-based
methods, but it is able to successively refine the solution to one closer to the optimal.

With Ug = 0.2m/s the Optimization method does not find a solution in some test cases because of the
strong ocean currents with respect to the glider nominal speed Ug. Therefore, such ocean currents may
become obstacles to the glider navigation and, consequently, the optimization-based methods gets trapped.
This particular situation is later studied in Section 5.6, where we evaluate the algorithms for the obstacle
avoidance problem.

5.5 Path of Minimal Distance to the Target
The second basic path planning problem consists on finding the path that minimizes the distance from the
final point of the path to a target waypoint, for a given travel time. In other words, with such objective
function we try to find the path that leaves the vehicle closer to the target after a known time. This problem
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Figure 5.20: Comparison of the Minimal Time Path for the DtG, RRT, A*, CTS-A* with M = 18 samples,
and Iterative Optimization, for a high speed ratio, i.e. for strong ocean currents, by setting the glider speed to
Ug = 0.2m/s. The distance traveled was d = 861.88km. The figure shows the path over the ocean currents

(ocean currents that exceed the glider speed Ug are highlighted ) from the start to the target
waypoint . The travel time tt (in days) for each method was: DtG: 53.8; RRT: 49.7; A*: 49.6; CTS-A*:
50.0; Iterative Optimization: 47.4.

is interesting because ROMs provide forecast only for a few days in advance. A key aspect of this problem
is precisely that we must know the travel time on advance. As explained in Section 3.1.2, this is common in
short-term path planning scenarios, as for glider recovery or when navigating with the ROM forecast maps. In
fact, when RU27 was close to Baiona (Spain), at the end of the trans-Atlantic mission, we also tried this kind
of path planning. The high temporal variability of the strong currents, as a consequence of the bad weather,
forced us to take into account the hourly evolution of the ocean currents, in order to move forward to the
target. At that time we used the forecast maps of the ESEOO project for the ESEOAT region. Similarly, for
our experiments, we have used the forecast maps of the ESEOAT and ESEOCAN regions. They provide the
hourly predictions of surface ocean currents up to 3× 24h = 72h in advance, as explained in Section 5.1.1.

For RU27 we set a target in the direction to the coast, and run our path planning algorithms for the
minimal distance to the target problem, starting at the current glider location. That way we were able to
move forward to the coastline despite of the strong ocean currents, for the forecast slot of time. For such sort
of field experiments, the target was not defined as a waypoint, but rather as a meridian —to pass—, which
seemed to be a more appropriate predicate for the objective function under those circumstances.
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Figure 5.21: Comparison of the Minimal Time Path for the DtG, RRT, A*, CTS-A* with M = 18 samples,
and Iterative Optimization, for the case # 3, from the second set of test cases. The glider speed was set to
Ug = 0.4m/s. The distance traveled was d = 1178.9km. The figure shows the path over the ocean currents

(ocean currents that exceed the glider speed Ug are highlighted ) from the start to the target
waypoint . The travel time tt (in days, or NA for No Arrival) for each method was: DtG: NA; RRT: NA;
A*: 30.9; CTS-A*: 30.9; Iterative Optimization: 30.1.

5.5.1 Experiments Setup
In the experiments shown here, we have used target waypoints, for a total of 65 test cases generated over the
ESEOAT and ESEOCAN regions. We use the 3 days of hourly forecast maps, so we run our path planning
algorithms on dynamic ocean currents. We assume a constant glider horizontal speed of Ug = {0.2, 0.4}m/s
and a stint duration of ts = 8h between consecutive surfacing points. The travel time tt required as an
input for the minimal distance to the target problem is set to the forecast slot of time, i.e. tt = 3 days.
Consequently, since ts = 8h, the number of surfacing points n is also constant and known a priori. In this
case it yields n = tt/ts = 72/8 = 9, i.e. we only have to find 9 bearing angles to set at each surfacing point.
This is what the path planning methods must find. In the particular case of the Optimization method, the
iterative part is no longer required, because the number of bearings —the objective function variables— is
already known. As explained in Section 4.6.1, the Optimization method becomes more simple and efficient
for this problem hence.

Figure 5.22 illustrates the high dynamic ocean currents in the region used for the experiments. This figure
shows several snapshots of the trajectory of the path found with the Optimization method. We can appreciate
the curved trajectory of the stints, which is a consequence of the dynamic variability of the ocean currents.
Therefore, apart from the comparison of the techniques for the minimal distance to the target problem, here we
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Figure 5.22: These 7 snapshots show the trajectory (red line) of the path found with the Optimization
algorithm for a 3-day period of time. We are solving the minimal distance to the target problem using
dynamic ocean currents, provided as hourly maps for the ESEOAT region. The start waypoint is marked with
a square, while the target waypoint is drawn as a circle. The figure shows the path over the ocean currents

(ocean currents that exceed the glider speed Ug are highlighted ) from the start to the target
waypoint . Finally, the glider bearing to set at each surfacing point is shown with orange arrows .

show that our techniques are suitable for time varying ocean currents, and we evaluate them under such kind
of environment. The comparison includes all the methods discussed in this thesis —DtG, A*, CTS-A*, and
Optimization—, with the important exception of RRT. Recall that RRT algorithm is not suitable for dynamic
ocean currents, and therefore is not included in the analysis. In brief, the RRT search can be expanded only
from the starting point on a time-dependent ocean current field (see Section 4.5). Similarly, in the case of
A* algorithm, the explored vertices in the search graph can no longer be discarded during the exploration,
due to the temporal variation of ocean currents. As a consequence, the cost function, which depends on the
ocean currents, varies as well, but the vertices are no re-explored anyway. Assuming this limitation, we have
run A* in this scenario, but we cannot ensure the optimality of the result, since it does not reflect that fact.
Additionally, if we had considered the time component in the graph, as another dimension, the search space
would have grown significantly, and the exploration would have taken an unreasonable amount of time.

Regarding the configuration of the algorithms used in the comparison, we have used the same equivalent
discretization level for each method, when applicable. In fact, the spatial grid for A* and CTS-A* has 1/20
degrees of resolution. And CTS-A* uses a division of 20◦ in the bearing rose. For the Optimization method,
no iterative scheme is required in this problem, since the number of bearings is known to be n = 9 in advanced.
We use the default optimization kernel, as indicated in Section 4.6.

5.5.2 Results
Table 5.8 shows the average distance to the target difference with respect to the DtG, for the whole set of test
cases. In all of them, the Optimization method gets better results, being able to find paths that end closer to
the target waypoint. In order to obtain more insight on the results of the experiments, we have divided them
into two subsets. According to the strength and direction —with respect to the straight direction from the
start to the target waypoint— of ocean currents, we distinguish strong and weak ocean current cases. Hence,
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Table 5.8: Average distance to the target difference (in km) with respect to the DtG approach; positive is
better. Value for the 65 test cases run for the minimal distance to the target problem.

Method All Strong Weak
A* 0.5 4.9 −6.0
CTS-A* 5.2 8.6 0.2
Optimization 8.5 12.4 2.7

the strong test cases are those in which ocean currents are against the direction to the target waypoint and
are greater in magnitude than the glider speed Ug; meanwhile, weak cases are the rest —i.e. ocean currents
are slower than Ug, or aligned with the direction to the target waypoint. As expected, the improvement on
the path cost is always greater for the strong cases, for all the algorithms with respect to the DtG method.
We can also conclude that, for the short-term test cases run, the improvement is high.

5.5.3 Discussion
According with the results summarized in Table 5.8 we also see that the best results are always given by
the Optimization method, followed by the novel CTS-A*, with ≈ 25% less of improvement. Finally, the
lowest improvement is obtained with A*. But the results of A* required some clarification. Recall that the
discretization of the search space and, above all, the discretization of the bearing angles —in multiples of 45◦
for the 8 neighborhood— justifies that in certain cases the optimum is not found, or even no path is found.
This happens because of the discretization, so we can alleviate this problem by increasing the spatial resolution
or by considering neighborhood radius r > 1 —that would yields a greater bearing resolution < 45◦. However,
that would also increase considerably the computing time. According to the results, the best method for this
problem is the Optimization one.

In Figure 5.23 two illustrative examples are presented. Unfortunately, only a static ocean current map
(the last one snapshot) can be showed in this printed document; the video sequence of the path simulation
along with the ocean currents allows to identify clearly the correlation between the trajectory and the ocean
currents direction. Being short-term test cases, most of the results obtained in our experiments yield a path
cost only a few kilometers closer to the target waypoint, when compared to the DtG, or even among all the
algorithms. Although, the Optimization is always the best, there are some test cases where we indeed have
great differences between the final trajectories and path costs (see Figure 5.24). This is mainly due to the
influence of strong currents and their temporal variability. Therefore, these techniques are more convenient
in such environments. Those situations are common with bad weather, or close to the coastline.

5.6 Obstacle Avoidance
So far, we have evaluated the two basic problems for glider path planning. Now that we know that our
techniques perform correctly on those problems, we proceed to analyze the influence of the presence of
obstacles on the path cost. The previous experiments were done on almost obstacle free environments. Here,
the test cases include obstacles close to the start or target waypoint, or even between them —in their line of
sight trajectory. It is important to recall that in the ocean we identify two main types of obstacles, regarding
glider path planning. On one hand, we have land regions —usually inflated—, and also zones of shallow
depths, where the glider cannot navigate safety. On the other hand, strong ocean currents in the opposite
direction to the target waypoint can be seen as obstacles as well, especially when they are considered as
static ocean currents. Although most common ocean glider missions are generally done offshore, there is a
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Figure 5.23: Snapshot of two different test cases run with Ug = 0.4m/s using 3-day forecast maps in the
ESEOAT region. In the left figure the distance from the start to the target waypoint is 95.3km. The result,
which is the remaining distance to reach the target, is: Optimization = 8.4km; CTS-A* = 11.2km; A*
= 9.9km; DtG = 22.5km. For the right figure the distance is 89.3km, and the results are: Optimization
= 27.7km; CTS-A* = 29.9km; A* = 29.6km; DtG: = 32.8km.

good number of applications near the coast (see Section 3.2), where the path planning techniques must avoid
obstacles efficiently.

Some path planning techniques already integrate the logic for obstacle avoidance, like graph-based method
—i.e. A* and CTS-A* in this thesis. Others, on the contrary, required some sort of adaptation or special
initialization. That is precisely the case of our Optimization approach —including its Iterative flavor. In
Section 4.6.2 it is explained the initialization procedure for the Optimization method. In this section we
include both the method with and without the initialization phase, in order to show that it is actually required
—i.e. without the initialization phase, the method does not find any solution in many cases, when there
are obstacles in the environment. Additionally, we can evaluate the impact of the initialization phase on the
overall computing time of the algorithm. We extend the computing time comparison to the rest of methods
as well.

Both the minimal time path and the minimal distance to the target problems are covered in this section.
For each, we have run new test cases, that now include obstacles in the form of land areas or strong and
opposite ocean currents. Depending on the problem we have used a different setup and environment. Although
the details are explained in the next sections, we distinguish two types of scenarios. The first ones is the
short-term path planning with static ocean currents, for the minimal time path problem. The second one is
the long-term path planning with dynamic ocean currents, for the minimal distance to the target problem.
Finally, we have also run the experiments for fast Ug = 0.4m/s and slow Ug = 0.2m/s glider speeds, which
is equivalent to navigating weak and strong ocean currents, respectively.

5.6.1 Comparison in static long-term scenarios
Following the order of presentation of the previous problems, we will start by analyzing our techniques for
the minimal time path problem with obstacles. We consider —as it is common in this type of problem—
static ocean currents and long-term scenarios. In this kind of scenario, with static ocean currents, we can
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Figure 5.24: Snapshot for a test case of 4 days; the last forecast is repeated to fill unavailable ones. The
figure shows the path over the ocean currents (ocean currents that exceed the glider speed Ug = 0.4m/s
are highlighted ) from the start to the target waypoint . The distance from the start to the target
waypoint is 344.6km. The remaining distance to reach the target is, for each algorithm: Optimization
= 68.9km; CTS-A* = 85.1km; A* = 169.4km; DtG = 217.6km.

compare all the methods discussed in this thesis, i.e. DtG, RRT, A*, CTS-A*, and the Iterative Optimization
approach. For the Iterative Optimization we also analyze the version with the Initialization phase, specifically
designed to deal with obstacles, termed Iterative Optimization-CTS-A* (see Section 4.6.2).

5.6.1.1 Experiments Setup

We have run a set of test cases in the ESEOAT and ESEOCAN regions. For weak ocean currents, using
Ug = 0.4m/s we have run 70 test cases. Meanwhile, for strong ocean currents, with Ug = 0.2m/s we have
run 50 test cases. The stint duration is the typical ts = 8h. We have divided the test cases in two different
situations, which have been analyzed separately. The first set of cases corresponds to coastal scenarios, while
the second includes only offshore, obstacle free scenarios. For the actual definition of scenarios with obstacles,
we simply consider those test cases in which the DtG approach does not find a solution, or it is very bad.
Hence, in the results we will see almost a 100% rate of NA (Not Arrival) for the DtG with obstacles.

Regarding the algorithms’ configuration used for the experiments, we have used the same equivalent
discretization level for each method, when applicable. In fact, the spatial grid for A* and CTS-A* has 1/20
degrees of resolution. Additionally, CTS-A* uses a division of 20◦ in the bearing rose (see Figure 5.25).
The Iterative Optimization-CTS-A* approach considers 6 angles in each node expansion for the initialization
phase, which are:

1: One keeping the bearing of the previous stint.



5.6 Obstacle Avoidance 135

Table 5.9: Average travel time (in days d+hours h) for the minimal time problem in static long-term scenarios
with and without obstacles. The table summarizes the 70 test cases (28 with obstacles and 42 obstacle free)
run with a glider speed Ug = 0.4m/s. When a technique does not find a solution for some test cases, we
include the percentage of NA (No Arrival) cases.

Method With obstacles Obstacle free
DtG NA in 96% 13d + 21h
RRT NA in 71% 13d + 07h
A* 11d + 15h 12d + 18h
CTS-A* 11d + 10h 12d + 10h
Iterative Optimization NA in 50% 12d + 05h
Iterative Optimization-CTS-A* 11d + 09h 12d + 00h

Table 5.10: Average travel time (in days d + hours h) for the minimal time problem in static long-term
scenarios with and without obstacles. The table summarizes the 50 test cases (35 with obstacles and 15
obstacle free) run with a glider speed Ug = 0.2m/s. When a technique does not find a solution for some test
cases, we include the percentage of NA (No Arrival) cases.

Method With obstacles Obstacle free
DtG NA in 94% 32d + 08h
RRT NA in 69% 27d + 15h
A* NA in 17% 23d + 17h
CTS-A* 28d + 06h 23d + 02h
Iterative Optimization NA in 57% 22d + 14h
Iterative Optimization-CTS-A* NA in 9% 21d + 21h

Table 5.11: Effective speed of the glider in km/day (standard deviation) for the minimal time problem in
static long-term scenarios; all test cases —with and without obstacles— are considered together. The table
summarizes all the test cases run with a glider speed Ug = 0.4m/s and Ug = 0.2m/s.

Method Weak, Ug = 0.4m/s Strong, Ug = 0.2m/s
DtG 28.2 (10.0) 14.9 ( 9.0)
RRT 29.2 (10.0) 16.8 (10.0)
A* 29.7 (10.0) 16.3 ( 9.0)
CTS-A* 30.5 (10.0) 17.0 ( 9.0)
Iterative Optimization 31.5 (11.0) 18.0 (10.0)
Iterative Optimization-CTS-A* 31.6 (11.0) 18.6 (10.0)

2, 3: Deviations of ±22.5◦,

4, 5: and ±45◦, with respect to 1.

6: And the straight direction to the target waypoint, from the current location.
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Table 5.12: Average computing time (in seconds) for the minimal time problem in static long-term scenarios;
all test cases —with and without obstacles— are considered together. The table summarizes all the test cases
run with a glider speed Ug = 0.4m/s and Ug = 0.2m/s.

Method Weak, Ug = 0.4m/s Strong, Ug = 0.2m/s
DtG 0.1 0.2
RRT 1.0 3.0
A* 20.0 75.0
CTS-A* 44.0 80.0
Iterative Optimization 18.0 489.0
Iterative Optimization-CTS-A* 38.0 167.0
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Figure 5.25: Diagram of the angles considered for expansion in the initialization phase of the Optimization-
CTS-A* method, for the coarse version of the CTS-A* used.

5.6.1.2 Results

Table 5.9 shows the average travel time to reach the target waypoint. In some test cases, several algorithms
did not find a solution. Therefore, we have included a last column that shows the average travel time of
obstacle free cases, in the sense that the DtG approach finds a solution. This table summarizes the results
using a glider speed of Ug = 0.4m/s. In this case, the average distance traveled by the glider has been 650km.
With these results, under weak ocean currents, we observe some interesting conclusions. First, the DtG does
not arrive to the target waypoint in any case with obstacles, in our experiments. Only the graph-based
methods, A* and CTS-A*, and the Iterative Optimization-CTS-A* arrive always to the target. The RRT fails
more than the 70% of the test cases, while the Iterative Optimization —without the initialization phase—
fails on the 50%. Clearly, this shows that the initialization phase is really required in these scenarios, for our
optimization-based method. Also, it seems to work well, since it has been able to reach the target waypoint
for all the test cases, and also yields the best path —i.e. the lowest travel time—, as expected accordingly
with the results of Section 5.4.

However, we want to evaluate the algorithms on more adverse conditions. Therefore, we have repeat
the experiments but with a lower glider speed of Ug = 0.2m/s, which is equivalent to navigating stronger
ocean currents. The results are summarized in Table 5.10). We see that some techniques that were able to
reach the target with Ug = 0.4m/s, now do not. In particular, RRT and Iterative Optimization fail in more
than a 60% of the cases. In sum, the Iterative Optimization-CTS-A* produces the best results for weak and
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strong currents, so the experiments show it is a valid approach to deal with obstacles using our optimization-
based method. Finally, to facilitate the comparison, Table 5.11 collects the average and standard deviation
of the glider effective speed, which is obtained for the path found with each method. It reflects the same
conclusions of the travel time, but in a probably more normalized way. In fact, we see that the improvement
on the effective speed is higher with weaker ocean currents (Ug = 0.4m/s), rather than with strong ones
(Ug = 0.2m/s).

Figure 5.26: Comparison of the Minimal Time Path for the Obstacle Avoidance problem. Comparison of
the methods for a test case run with a glider speed of Ug = 0.4m/s (weak ocean currents). The distance
from the start to the target waypoint is d = 831km. The figure shows the path over the ocean currents

(ocean currents that exceed the glider speed Ug = 0.4m/s are highlighted ) from the start to the
target waypoint . The travel time (in days d+hours h, or NA for No Arrival) for each technique is: Iterative
Optimization-CTS-A*: 26d + 21h; Iterative Optimization: 27d + 10h; CTS-A*: 27d + 18h; A*: 28d + 19h;
RRT: NA; DtG: NA.

Finally, Table 5.12 shows the computing time for each method, measured on a Intel® Core™-i7 CPU
2630 QM running at 2GHz with 8GiB of RAM. For Ug = 0.4m/s, the results reflect that the Iterative
Optimization-CTS-A* method requires more computing time, because of the intelligent initialization phase;
but it is still fast to compute. Apart from the DtG and RRT approaches, the Iterative Optimization method
takes less computing time for Ug = 0.4m/s. A* requires almost the same computing time, but recall it does
not integrate the unconstrained motion model. The CTS-A* takes more than 2 times to find a path, but it
is still a reasonable time.

With strong ocean currents, i.e. for Ug = 0.2m/s, we observe that the computing time of the Iterative
Optimization method without the initialization phase degrades when it cannot find a solution. The larger
computing time is associated with the fact that it has spent many time trying to find a path without success.
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Figure 5.27: Comparison of the Minimal Time Path for the Obstacle Avoidance problem. Comparison of the
methods for a test case near the coast, run with a glider speed of Ug = 0.4m/s (weak ocean currents). The
distance from the start to the target waypoint is d = 974km. The figure shows the path over the ocean
currents (ocean currents that exceed the glider speed Ug = 0.4m/s are highlighted ) from the start

to the target waypoint . The travel time (in days d + hours h, or NA for No Arrival) for each technique
is: Iterative Optimization-CTS-A*: 26d + 7h; Iterative Optimization: NA; CTS-A*: 27d + 4h; A*: 27d + 7h;
RRT: 31d + 7h; DtG: NA.

With the intelligent initialization phase the computing time is smaller. However, in this type of environments
the graph-based methods take less computing time. A* and CTS-A* use the same resolution for the gridded
search graph, with weak and strong ocean currents. Therefore, the growth in computing time only depends
on the number of nodes explored, which increases moderately with strong ocean currents. On the contrary,
the Iterative Optimization methods have to optimize more variables with strong ocean currents, because the
number of bearings |B| required to reach the target waypoint xgoal is greater. Figure 5.26 and 5.27 show two
of the cases included in the experiments. Both figures show experiments run with Ug = 0.4m/s, i.e. weak
ocean currents. However, the second one is closer to the coastline, so the path planning algorithm must deal
adequately with the land obstacles. Indeed, in that case the Iterative Optimization method fails.

5.6.1.3 Discussion

In conclusion, the Iterative Optimization without the initialization phase gets trap in the obstacles for many
test cases. On the contrary, the Iterative Optimization-CTS-A* version, which includes the initialization
phase, is able to find a path to the target waypoint for almost all the test cases. A* and CTS-A* obtain
worse results because of their discretization nature. In some cases they are not able advance in the exploration
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search because the strong currents keep them from expanding new nodes. The solution to this consist on
increasing the resolution of the search grid, at the expense of increasing the computing time of the algorithm.

Regarding the computing time, graph-based method scale better in the presence of obstacles, because they
search in the same gridded graph. On the contrary, the Iterative Optimization methods requires more time
with strong ocean currents, i.e. with Ug = 0.2m/s, because the number of bearings |B| increases. Anyway,
with the intelligent initialization phase, the computing time is still acceptable.

5.6.2 Comparison in dynamic short-term scenarios
Now that we have analyzed obstacle avoidance scenarios for the minimal time path problem, we proceed to
do the same for the minimal distance to the target problem. In this case, we consider dynamic ocean currents
instead of static ones. We use ROM forecast maps for the ESEOCAN region for short-term scenarios. The
election of ESEOCAN region exclusively relies on the fact that it covers the Canary Islands, where the islands
themselves constitute a good number of representative land obstacles for the test cases. Now, the algorithms
evaluated are DtG, A*, CTS-A*, Optimization and Optimization-CTS-A*. Recall that RRT cannot be run
in dynamic ocean currents (see Section 4.5). Regarding the optimization-based methods, note that for the
minimal distance to the target problem, the travel time is set in advance. Consequently, the number of
surfacing points n is known as well, for a given constant surfacing time. Therefore, we do not use the
iterative version of the optimization-based approach.

Table 5.13: Difference of the remaining distance to reach the target waypoint with respect to the Optimization-
CTS-A* method, for the minimal distance to the target problem. Average and standard deviation within
brackets, both in km. The table summarize the 45 test cases run for a glider speed Ug = 0.4m/s.

Method Total Coast Offshore
DtG 42.4 (46.0) 67.4 (39.0) 13.6 (24.0)
A* 8.5 (18.0) 5.3 ( 7.0) 9.1 ( 6.0)
CTS-A* 5.2 ( 6.0) 5.8 ( 7.0) 6.5 ( 4.0)
Optimization 10.3 (21.0) 19.6 (26.0) 0.0 ( 0.0)

Table 5.14: Difference of the remaining distance to reach the target waypoint with respect to the Optimization-
CTS-A* method, for the minimal distance to the target problem. Average and standard deviation within
brackets, both in km. The table summarize the 45 test cases run for a glider speed Ug = 0.2m/s.

Method Total Coast Offshore
DtG 18.0 (29.0) 30.4 (29.0) 10.5 (27.0)
A* 13.5 (49.0) 10.5 (13.0) 15.3 (19.0)
CTS-A* 9.9 (10.0) 7.0 ( 7.0) 11.5 (10.0)
Optimization 6.2 (13.0) 16.3 (17.0) 0.2 ( 1.0)

5.6.2.1 Experiments Setup

Similar to the previous experiments, we have configured the glider speed to both Ug = 0.2 and 0.4m/s, and
the stint duration to ts = 8h. The travel time have been set to 4 days using the ROM forecast maps. For this
amount of time and ts, the number of bearings to find is 12. In the case of optimization-based methods, that
is the number of variables to optimize. A total of 45 test cases have been run, divided in two situations, which
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again are coastal and offshore scenarios. The algorithms’ parameters remain the same for the graph-based
methods. Meanwhile, the Optimization-CTS-A* uses a division of 5◦ for the initialization phase, inserting a
turning point candidate every 3 surfacing point —i.e. the equivalent to one day of navigation for our setup.
Note that the initialization procedure is slightly different for the minimal distance to the target problem (see
Section 4.6.2).

5.6.2.2 Results

Table 5.13 shows the average and standard deviation of the difference of the remaining distance to reach
the target waypoint with respect to the Optimization-CTS-A* approach, for each technique. The results
are presented separately for the coast and offshore scenarios, being the average distance traveled by the
glider of 120km. Note that a positive value means a worse path found, i.e. a path the finishes further than
the one found by the Optimization-CTS-A* approach. A first point to analyze is the fact that in offshore
scenarios, without obstacles, the path cost is the same for both optimization-based techniques, regardless of
the initialization phase. This demonstrates that the initialization phase also works without obstacles correctly.
It is for coastal environments where we observe that the Optimization method without the initialization phase
degrades significantly. Regarding the graph-based method, both A* and CTS-A* behave similar. As we see
in Section 5.5, they do not find a path as good as the Optimization-CTS-A* method, but they perform better
than the Optimization method, when it does not use the initialization phase. Finally, DtG always finishes
further from the target waypoint, than the other techniques, as expected.

We go a step forward by running the test cases with Ug = 0.2m/s, which is equivalent to navigate
stronger ocean currents. In Table 5.14 we have the results for these experiments, with an average distance
travel of 60km, i.e. half of the other run, since Ug is also the half part. Now, almost the same conclusion
as with Ug = 0.4m/s holds, but with some details. Now, the Optimization method is slightly worse than
the Optimization-CTS-A* because with strong currents the initialization phase becomes more important.
Consequently, the Optimization-CTS-A* approaches deals with obstacles under dynamic ocean currents better
than other techniques, according with our experiments.

5.6.2.3 Discussion

Figure 5.28 shows 4 test cases of the experiments run so far. In (a)-(c) we have test cases near to coast zones
—actually some islands. Meanwhile, in (d) we have and offshore —obstacle free— test case, for comparison
purposes. The distance required to reach the target waypoint after the 4 days is shown for each method. It
must be noted that the currents vary on time and only the last snapshot of them is shown in the figure. In the
obstacle free case, we observe that the result of the Optimization method and Optimization-CTS-A* method
are almost the same. This means that the initial guess find by the initialization phase is almost the same
as the one use without initialization in this kind of scenarios. Therefore, it is valid for any kind of scenario:
with or without obstacles. For the other 3 cases we observe how some methods get trapped because they
cannot avoid the obstacles. This happens always for the DtG approach. It also happens with the Optimization
method without initialization, as in the figures (b) and (c). Indeed, for (c) only the Optimization-CTS-A* is
able to find a path to avoid the obstacle. In this case, the graph-based methods fail as a consequence of the
search grid resolution, which should be increased in order to avoid the situation in which the current node
cannot expand any neighbor, as it was also explained in the previous section.

Finally, as with static long-term scenarios, we have analyzed the influence of some algorithm parameters.
As in the previous section, we have reduced the division of the bearing rose for the Optimization-CTS-A*
methods, and duplicate the search grid of A*, obtaining similar results.
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(a) Case I. (b) Case II.

(c) Case III. (d) Case IV (obstacle free).

Figure 5.28: Comparison of the Minimal Distance to the Target problem for the Obstacle Avoidance problem.
Comparison of 4 test cases running at Ug = 0.4m/s. The remaining distance to the target waypoint is
(SL if Stop in Land): (a) Optimization-CTS-A* = 13.3km, Optimization = 22.1km, CTS-A* = 20.6km,
A* = 25.9km, DtG = 157.1km (SL); (b) Optimization-CTS-A* = 0.0km, Optimization = 69.7km (SL),
CTS-A* = 3.2km, A* = 8.7km, DtG = 80.0km (SL); (c) Optimization-CTS-A* = 46.7km, Optimization
= 54.2km (SL), CTS-A* = 60.7km (SL), A* = 58.9km (SL), DtG = 61.3km (SL); (d) Optimization-CTS-A*
= 67.4km, Optimization = 68.8km, CTS-A* = 85.1km, A* = 169.4km, DtG = 217.6km. Respectively, the
total distance from the start to the target waypoint is: 176.5km, 125.8km, 75.2km, 343.4km.

5.7 Path Following

This and the next sections address problems that, in brief, impose constraints on the basic problems studied
thus far. In fact, this first one here requires the glider to follow a predefined path. In other words, we impose
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a constraint such that the surfacing points must lie as close as possible to the desired path. In the most
simple case, such path is a simple line from the start to the target waypoint. So far, we have tried to find
the minimal time path or the minimal distance to the target path. Now, for any of those problems —with
or without obstacles—, we additionally require to minimize the distance from each surfacing point to that
line. Clearly, this constitutes another objective function to be minimized. What we do is basically combine
the objective function of any of the previous problems —e.g. the minimal time cost function— with this new
conflicting objective function. Hence, the path following is a multiobjective optimization problem, as it was
explained in Section 3.3. The path following problem can also be modeled as a constraint that forces the path
to be within a certain bounds with respect to each side of the given path. As we will see in the sequel, we
can configure that bounds in order to relax the path following constraint. As a consequence, we can have a
set of solutions for this problems depending on a relaxation weight or factor. This constitutes a Pareto curve,
that we will also analyze in this section.

Figure 5.29: Comparison of the HTTVE and Iterative Optimization methods applied to the Path Following
problem. For HTTVE, several approximations are used to compute the area between the desired and found
path; these approximations are described in Section 3.3. The optimal control solution, using Zermelo equation,
is also included. It shows the minimal time path, which is the objective function set for the problem, along
with the path following constraint; which are conflicting objectives. An straight line from the start to the
target waypoint represents the desired path to follow.

As it was explained in Section 3.3, we also refer to this problem as hold track, because it was originally
based on the work of Eichhorn (2010). In that paper, the Hold Track Time-Varying Environment (HTTVE)
algorithm is used to solve this problem. It computes a function based on the area between the desired
path and the one found, which is applied during the search. This algorithm is based on the Time-Varying
Environment (TVE) algorithm of the same author, proposed in a previous paper (Eichhorn, 2009). In general,
it is equivalent to our A* implementation since it bases on a modification of Dijkstra’s algorithm, which turns
to be equivalent to A* without the heuristic function. Indeed, it is trivial to include the heuristic in the
algorithm, as the author shows on (Eichhorn, 2010). Although we have the implementation of these variants,
here we use the basic HTTVE algorithm for the sake of clarity, and because we are interested in the result,
rather than on the computing time, which is what the variants are concerned of.
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Figure 5.30: Path following problem solved using the Iterative Optimization, for a straight line. The path
found is compared with the minimal time path, obtained with the Iterative Optimization method as well.
Along with the path, the figure shows the glider bearings at each surfacing point, the ocean currents

, and the start and target waypoint . The distance traveled is d = 222km.

5.7.1 Evaluation of Path Following Constraints
Regarding the computation of the area between the two paths, there are actually several ways to compute
it. We can compute the area between them, as in (Eichhorn, 2010), using the XTE area, which is almost
equivalent the area of a right trapezoid. Or we can take some approximation of the area, based on different
point to line equations, as the ones that has already been shown in Section 3.3. Also note that the area is
computed in a piecewise manner, for each sub-region created every time one path crosses the other. Figure 5.29
shows a comparison of several techniques to compute the area between the desired and found path, embedded
in the HTTVE algorithm. It also includes the optimal control path, which gives the minimal time path using
Zermelo equation. Finally, we compare the result of the graph-based method with the Iterative Optimization
approach, which has been adapted to include a constraint such that the path found must be at most some
distance apart from the desire one. This is some kind of corridor constraint defined over the path line given,
for which we can setup the corridor width. Clearly, we have a trade-off between the path following constraint
and the objective function, which in this case is the minimal time. In the figure we observe that the different
techniques to compute the area within the HTTVE algorithm yield almost the same result —they overlap.
Therefore, it is safe to use some line-to-point approximation if we need to reduce the computing time.

The path following problem does not impose a strong constraint on holding the vehicle to navigate on the
desired path, which in most cases is actually impossible because of the ocean currents. On the contrary, we
look for the minimum separation from such desired path. In fact, if we compare the results with the optimal
control path, we see that the minimal time path does not follow the desired path at all. The ocean currents
have been generated with a synthetic streamfunction (see Section 5.1.2), where the currents are favorable
—so the optimal control can find the optimal path—, but with a sinusoidal oscillation that makes the best
path to be out of the desired straight line path. According with the results, although all the variants produce
the same path for the HTTVE, with the Iterative Optimization method we have an alternative path, but of
equivalent cost, as the figure shows. For both techniques, we have been able to reduce the separation for
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the desired path, and still reach the target waypoint. However, the travel time is increased, since the two
objectives are in conflict. In our Iterative Optimization, we can adjust the bound that defines the corridor
around the desired path, so we can generate a set of results of different travel time and separation from the
desired path. Later we will see that these pairs of solutions define a Pareto curve.

5.7.2 Experiments Setup

We have run several tests in the ESEOCAN region for the path following problem using the Iterative
Optimization method. We have started with simple cases, in which we navigate weak ocean currents and just
try to follow a path defined as a line, as Figure 5.30 shows. In this example, the maximum deviation from the
straight line is 170m; note that we are traveling several hundreds of kilometers, so we are almost navigating
through the desired line. As it was explained at the initial chapters of this dissertation, there is special interest
on data sampling in the ocean modeling field. In most data sampling or monitoring applications, we must
follow a given path —a line or a concatenation of them—, rather than finding the minimal time path, in order
to obtain samples along a certain transect the crosses some area of interest. For this reason, here we focus
on a particular case, which consist on crossing mesoscale eddies.

Figure 5.31: Comparison of paths found with a glider traveling at Ug = 0.4m/s to cross an eddy from
one side to another, for the path following problem. The desired path is defined by a straight line. The
Iterative Optimization method have been run with a path following constraint that establishes the bound
—i.e. maximum distance/separation— around the desired path. Such bound has been set to 0 —i.e. strictly
follow the path— and relaxed by increasingly different amounts from 0.2km to 10km. The minimal time
path is also included, in which no constraint is imposed, which actually corresponds for the case in which an
infinite bound is allowed, i.e. the unbounded, unconstrained optimization. In the figure, the surfacing points
are marked along the paths. The ocean currents (ocean currents that exceed the glider speed Ug are
highlighted ) and the land coastline are shown as well.
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Figure 5.32: Pareto curve that shows the travel time vs. the average distance to the desired path, for the
paths found in Figure 5.31. The Pareto curve plots the two conflicting objectives against each other, i.e.
the travel time (y-axis) vs. average distance to the desired path (x-axis) —which is the straight line in this
example. All paths try to keep the vehicle close to the straight line, but this constraint is relaxed in each
simulation by means of increasing the size of a corridor around such line. As the figure shows, the tighter the
corridor, the higher the travel time. Meanwhile, as the corridor size grows, we approach to the minimal time
path of the unconstrained optimization.

5.7.3 Results and Discussion

We have run several experiments to study the behavior of the Iterative Optimization algorithm in a cross-eddy
missions. Crossing an eddy consist basically in following a path from a starting waypoint that finishes at
a target waypoint that lies in the opposite side of the eddy. It is important to highlight the fact that only
with such type of linear path crossing the structure, we are able to characterize the eddy size, centroid and
boundaries properly. Thus far, in Figure 5.30, the path following problem was solved by forcing the path to
be the closest to the straight, desired line path. On the contrary, in Figure 5.31 we allow some separation
from the desired path, given as a bound around that path, which defined some sort of corridor. The desired
path is 57km long, from the start to the target waypoint, passing across the centroid of the eddy. For each
run, we have considered stints of ts = 4h with a period of 15min drifting at the surface, for communications
and self-localization; the reason for taking into account the surfacing period is because these tests have been
done to simulate some field experiments. In the first case, with a null bound, the travel time is 79h hours and
the largest distance to the straight line is 80m —almost none. In the second case, in which the constraint
was relaxed in order to allow paths inside a corridor of 1km on each side of the straight line, the travel time
was reduced by 11h. The next cases produce paths of better minimal time, but within wider corridors, until
no bound is set for the classical minimal time path problem. If we plot the travel time vs. the maximum
distance to the desired path, for each of the paths found in these experiments, we obtain the Pareto curve of
Figure 5.32. This curve shows all the non-dominated solutions for the each corridor configuration set up in
the algorithm, for the test case. These results are very interesting, because we can pick out a solution from
the Pareto curve, according with some design criteria, depending on the trade-off between the minimal time
path and path following problems. For our experiments, it is always better to set a small corridor, rather than
the strict constraint to follow the path, because in such cases the travel time is excessively long. Therefore,
it is better to accept a small deviation from the desired path.

In some test cases, the effect of strong currents —i.e. those that exceed the glider speed Ug— makes
impossible to keep the desired path, as it can be observed in Figure 5.33. At the very beginning of the path
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Figure 5.33: Path following problem applied to cross a mesoscale eddy under strong ocean currents. The
desired path to cross the eddy goes from one side to another crossing its centroid, as described by an straight
line. The glider speed is Ug = 1km/h, and the strong ocean currents that exceed Ug are highlighted .
The bearings at each surfacing point are shown, along with the ocean currents from the start to
the target waypoint .

we observe a significant deviation from the straight line. However, the overall result is acceptable, since the
Iterative Optimization method manage to find a path that in general follows the desired path closely. From
this result for a single transect crossing the eddy we can build a composition of several desired lines to define
any trajectory, of any length. For instance, in Figure 5.34 a journey across several predefined waypoints is
shown. The whole trajectory is a piecewise composition of straight lines that cross the eddy multiple times
from different angles. We obtain a windmill trajectory that will allow to characterize the eddy centroid,
boundary and size adequately in a real field mission. Dynamic, evolving eddies will be addressed later, in an
ad hoc manner. Similar applications can be found in Oceanography, when we need to collect data from a
particular known trajectory, not only a certain point. The HTTVE, or our Iterative Optimization method, can
be applied in such scenarios to solve the path following problem. Furthermore, we have shown that we can
relax the path following constraint, so we have a Pareto curve with several paths/solutions. Each of them,
with a different trade-off between the path following constraint and the minimal time path —or the minimal
distance to the target, if we had chosen that other basic problem for optimization.

5.8 Multi-Glider Path Planning and Coordination
So far, we have tried to find optimal paths for a single glider using different objective functions —e.g. the
minimal time path, the minimal distance to a target waypoint, etc. In many oceanographic tasks, however,
a large region must be covered —e.g. sampling exhaustively such region for data assimilation. For such
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Figure 5.34: Assemble of path following problem to perform a mesoscale eddy sampling and characterization
mission. The windmill trajectory is decomposed in straight line paths that cross the eddy multiple times from
different directions, for which the path following problem is solved using the Iterative Optimization method.
The glider bearings at each surfacing point, along with the ocean currents from the start to the
target waypoint are shown.

problems, it is always better to employ multiple vehicles, rather than a single one. With a fleet of multiple
gliders exploring the same region, arises the possibility to apply efficient methods to do so. For instance, we
can try to optimize the time required to cover the whole area with a fleet of gliders, or similarly, maximize
the area explored after a given period of time. Additionally, we can coordinate the paths of several gliders to
navigate in formation.

In most cases, the exploration of a region is basically a succession of several path following problems, in
which the vehicle performs a lawnmower trajectory obtained with a Boustrophedon Cell Decomposition (BCD)
(Choset and Pignon, 1997). Once this coverage path planning route is obtained, we just have to follow the
concatenation of line paths that form it. For that we can use the algorithms evaluated in Section 5.7 for the
path following problem. It is reasonable to extend this approach to multiple vehicles just by imposing some
constraint to make them navigate in formation, i.e. maintaining a certain distance among them. This is
precisely the problem that we evaluate here. Given a fleet of N gliders, we try to find a path that optimizes
certain objective function, while a constraint is satisfied at every point in the path.

5.8.1 Experiments Setup
For the objective function, we use the one of the minimal time path problem (see Section 3.3 and 5.7),
using static ocean currents for long-term scenarios, so the evaluation is more representative. Regarding the
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Figure 5.35: Multi-glider path planning, coordinating the navigation of a fleet of 3 gliders. The vehicles are
constrained to travel within a distance range of [5, 15]km with respect to the neighbor gliders. A gap of
0.1◦(≈ 11.1195km) is set among them at the start and target waypoints, which for this test case are
separated a distance d = 299km.

multi-glider problem, we consider a simple but flexible problem. It consists on navigating a fleet of gliders in
parallel. Other kinds of formation can be plug into the path planning algorithm easily. In fact, we only have
to implement such constraint —the rest remains the same—, if we use the Iterative Optimization method,
which is the one used for the experiments below. This constraint can be configured to establish the minimum
and maximum separation among the fleet of gliders. As it was previously said, this solution can be applied to
the coverage path planning problem when we have multiple vehicles, although we can also use others schemes.
Indeed, later we will see another example of multi-glider coordination to solve the problem of efficient recovery.
In brief, we want to reduce the time required to recover a fleet of gliders spread on the ocean, using a ship.
Note that all these problems have already been explained in more detailed in Section 3.4.

5.8.2 Navigation in Parallel Formation

Regarding the coordination problem of navigating a fleet of vehicles, we have run several experiments on the
ESEOAT region, for a fleet of 3 gliders (see Figure 5.35 and 5.36). During the optimization process, the
distance range —[5, 15]km in both figures— is checked for each surfacing point, and also any intersection
among trajectories are forbidden —even underwater. In sum, the Iterative Optimization method finds the
minimal time path for each glider, subject to such constraint, but taking into account the whole fleet of
vehicles altogether, for a single optimization run. Consequently, the figures illustrate that the paths not only
satisfy the constraint, but also minimize the travel time.
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Figure 5.36: Multi-glider path planning, coordinating the navigation of a fleet of 3 gliders. The vehicles are
constrained to travel within a distance range of [5, 15]km with respect to the neighbor gliders. A gap of 0.1◦
is set among them at the start and target waypoints, which for this test case are separated a distance
d = 1008km.

5.8.3 Efficient Recovery

Another example of multi-glider path planning and coordination is the problem of efficient recovery. In brief,
a ship must recover a fleet of N gliders in the minimal time. Initially, the gliders are spread in the ocean, and
the ship is at a certain point —usually at the port. We try to find the path that leaves the gliders in the best
location, so the ship can travel less time, and consequently we can save ship time and oil.

For this problem we have run several experiments in the ESEOCAN region, using dynamic ocean currents
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(a) Individual. (b) Meet together. (c) Ship path.

Figure 5.37: Multi-glider path planning and coordination for a fleet of 5 gliders that have to be recovered
from the sea by a ship in the minimum time. This efficient recovery problem is solved with the Optimization
method, while it tries to solve the minimal distance to the target problem for a period of 4 days. The glider
travels at Ug = 1km/h, with a surfacing time of ts = 8h. In (a), we have the individual path planning
solution. On the contrary, the other two figures show the results using multi-glider path planning. In (b), all
the gliders try to meet at a point for the recovery. Finally, in (c), the ship path is included in the optimization
process. The ship has to travel: (a) 192.0km; (b) 167.5km; (c) 165.4km, respectively.

for short-term missions. We use the Optmization method to solve the minimal distance to the target problem,
where the target is usually the ship location or the port. However, with a fleet of gliders, we impose some
constraints to leave the gliders at the best location, in terms of minimizing the recovery time. Note that the
recovery time is assumed to be proportional to the recovery distance, since the ship navigates much faster
than the ocean currents, and therefore these are neglected in the ship motion model (see Section 3.4.1 for
more details on the efficient recovery problem).

In our experiments we have set the glider speed to Ug = 1km/h ≈ 0.2778m/s, with a surfacing time
of ts = 8h. We consider dynamic ocean currents for short-term missions. This way, we have tested both
static and dynamic, long-term and short-term, and the minimal time path and minimal distance to the target
problems, with multiple gliders. The ROM forecast maps of ESEOCAN region are used to obtain the dynamic
ocean currents, for a period of 4 days. The ship is assumed to go for the recovery after that time, so we are
searching for the paths that leave all the gliders in the best location at the end of the mission, reducing the
recovery time then.

5.8.3.1 Results and Discussion

In Figure 5.37 we have three different results for the same test case with a fleet of 5 gliders. First, in (a), we
have the solution without multi-glider path planning. Each glider on its own tries to end at the closest point
to the target waypoint, which is set at the ship/port location. The drawback of this approach is that some
gliders are still far, and will take much to to go and recover it. With this approach, the cost of the recovery
is dominated by the glider that finishes further from the ship/port. Therefore, the ship must travel 192.0km.

With a multi-glider path planning algorithm, we can proceed in two different ways, to alleviate such
limitation. First, as shown in Figure 5.37 (b), all the gliders try to finish at a meeting point after the whole
mission —4 days in the example. The meeting point does not have to be set. The Optimization method
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simply imposes a constraint that forces all the gliders to finish close to each other. With this approach, the
ship goes to the meeting point and there it can recovers all the gliders. This approach has several advantages
over the individual approach. The ship only has to go to the meeting point, recover the gliders and come
back to the port. Formerly, it had to decide in which order to go for each glider individually, which takes more
time. Furthermore, now there is a recovery point —i.e. the meeting point—, which is closer to the ship/port
than the finish location of the glider that would have end further from it, using the previous approach. In
fact, in this case the ship only has to travel 167.5km, much less than before.

The second approach consists on including the recovery path that the ship will actually perform to recover
the gliders from their finish locations. By doing so, we are actually minimizing the recovery time. In this case,
the gliders do not finish at a meeting point (see Figure 5.37 (c) for instance), but even though, they are in the
best location, in terms of recovery time. Now the ship only has to travel 165.4km, which is the minimum so
far, of all the approaches. Anyway, the improvement with respect to the meeting point approach is not very
big. Therefore, in conclusion, any of the two multi-glider path planning strategies is better than individual
path planning to solve the efficient recovery problem, which is a real application for ocean glider missions.

5.9 Tracking Evolving Ocean Structures
Previously, we have mentioned the considerable importance of sampling ocean processes (see Section 1.1).
Most of the phenomena in the oceans are dynamic and span throughout relatively large regions. The techniques
discussed in this thesis manage dynamic ocean currents, so they allow us to move and sample at a desired
location with great expectation. However, when we need to sample large evolving structures, we usually have
to sample certain zones of such structure, not only a point.

We have already seen, in Section 5.7, that by solving the path following problem we can sample along a
desired path. Indeed, we have shown a few examples where we applied this approach to characterize mesoscale
eddies. However, in a more general case, it is not enough to sample this kind of evolving structures by simply
crossing them with a set of desired paths defined as lines. Since the whole structure is moving, we actually
have to track/follow it as a whole. Furthermore, during that tracking task, we must sample certain areas of
the structure, and we can set out the sampling strategy in many different ways. For instance, one might track
and sample the centroid of the structure exclusively; or, on the contrary, take samples from its boundary. For
large ocean structures the problem is not trivial, precisely because of their size, when we must sample a given
zone of the evolving structure.

5.9.1 Experiments Setup
Here, we focus on the most common evolving structure that appears on the ocean currents velocity field: the
ocean eddies. The ocean is populated by eddies of different size and lifespan. Probably, mesoscale eddies are
the most interesting ones in Oceanography, because of their tight relationship with many biological, physical
and chemical processes in the sea (see Section 1.1). They have a size of several tens to hundreds of kilometers,
and a lifespan that goes from weeks to a few months. For our experiments, we have designed the method
explained in Section 4.8, which is based on a discretized version of the eddy model proposed by Jimenez et al.
(2008). In brief, we divide the volume of the eddy structure into several sectors rotating at different velocities.
Each sector is defined by its minimum and maximum limits in depth, the radius and angle dimensions. Note
how this description of the structure considers the depth, contrary to the path following approach discussed
thus far.

In Section 4.8, the three phases of the method used for this experiment are explained. At this point, it is
important to recall that the second phase of the algorithm uses an objective function that is defined in terms
of the eddy sectors that should be sampled and the desired mission duration. This scheme allows to define
a great number of sampling strategies, such as tracking the centroid of the eddy, navigating its border, or
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maximize the sampled volume, focus in a particular depth, and so on, as well as time-dependent formulations.
A Genetic Algorithm has been used to obtain the path that meets those specifications.

5.9.2 Results and Discussion
We have run several test cases for the Canary Islands eddy system using the forecast maps of MyOcean-IBI.
Our only intention is to validate the approach. In Figure 5.38, a 5 days trajectory optimized to track the
eddy border is shown. Note that we are using the dynamic ocean currents of the 5 days forecast provided by
the ROM. Since the figure only shows the snapshot at the end of the mission, we only see that at the end
the location of the glider is effectively at the boundary of the eddy. The rest of the path is actually tracking
that border, by considering the sectors of the eddy model, and the dynamic ocean currents. Therefore, the
path found tries to follow the eddy boundary as much as possible at every instant of time during the whole
mission. It seems clear, that using a path following strategy it would be difficult to define the path found
by the Genetic Algorithm to solved this problem; it is not a simple straight line, and the resulting curve is
only known after the optimization process, by considering the temporal evolution of the structure as a whole.
Therefore, this technique is not only more flexible, but it is also required to follow certain regions of evolving
ocean structures, like eddies. Finally, although the majority of evolving structures in the ocean are eddies, our
approach is also applicable to other type of structures, with the same model or a similar one adapted to the
particular structure to track.

Figure 5.38: Example in which the boundary of a mesoscale eddy is tracked using our Genetic Algorithm
and discretized eddy model approach. The figure shows a snapshot of the ocean currents and the optimized
trajectory at the end of the mission; note that the eddy moves while it is being sampled.

In conclusion, the method evaluated here constitutes a valid alternative that can contribute to extend
the glider operational capabilities to track evolving ocean structures of large size, such as mesoscale eddies.
Obviously, the results of this method are dependent on the prediction accuracy of the ROM used. However,
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in our opinion, is still a reasonable option when a try and error scheme is not admissible for a field mission.
Indeed, the most suitable real applications are one-shot type, where a maximization of the success probabilities
is highly desirable —e.g. due to budget/time restrictions. Furthermore, this approach is more flexible than
aggregating several path following path, since we consider the whole structure in three dimensions, and model
its shape, as in the case here for the mesoscale eddies.





Chapter 6

Conclusions

The present work has been conceived to validate the following hypothesis

Novel Path Planning algorithms designed for the problem of Autonomous Underwater Gliders
(AUGs) navigation bring the possibility of computing (sub-)optimal paths automatically, and hence
improve, simplify and, in some cases, enable missions in zones with strong ocean currents that
exhibit a complex distribution or a high temporal variability.

The main developing lines are organized in the analysis of the glider path planning context, the discussion
of the motion models, the identification of the set of representative problems, and the proposal of path
planning algorithms.

6.1 Topic Analysis
Path planning plays an important role in glider navigation (Davis et al., 2009) as a consequence of the special
motion characteristics these vehicles exhibit. First of all, gliders have a slow nominal surge speed Ug, which
is a consequence of the buoyancy-driven navigation system explained thus far (see Section 2.1). This confers
gliders a large autonomy at the expense of traveling relatively slow with respect to ocean currents. In fact,
they sometimes face ocean currents Uc stronger than Ug, which may head against them. A global path
planner is required to provide a way to avoid these troublesome scenarios and reach the target waypoint in
the minimal time or optimizing any other parameter of the mission.

A second fundamental feature of ocean gliders is inherent to almost all AUVs. They cannot localize
themselves accurately underwater, unless very expensive systems are deployed. The GPS signal does not
penetrate into the water, so there is no way to geo-localize the vehicle while it navigates underwater doing the
yo-yo profiles. The dead reckoning estimates the vehicle pose underwater, but the drift produced by the ocean
currents is not observable by the low power consuming navigation sensors on board. Path planning algorithms
can reproduce such dead reckoning by integrating the appropriate motion model, which does include the
ocean currents obtained with ROMs. This way we can predict the next surfacing point xi+1, and therefore
command the vehicle to head in the most appropriate direction to reach the target waypoint xgoal.

Ocean gliders surface at regular intervals of time ts, which are typically around 2 to 8 hours. Only when
they are on surface they can geo-localize and correct their bearing ψg in order to head to xgoal. The fact that
the vehicle is only commanded every surfacing time ts, is a key feature in the design of glider path planners.
Consequently, contrary to ground robots or UAVs, which can be commanded at high rates, ocean gliders set
their bearings at very low rates —i.e every surfacing time ts. This is a third key feature that drives the design
of glider path planning techniques, since they must reflect this very low bearing commanding rate. In fact,
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the novel approaches presented in this thesis include this aspect of the glider motion model inside the path
planner.

Another particularity of glider path planning relies on the special characteristics of the ocean. Contrary
to ground mobile robots, the glider motion model can be significantly affected by the ocean currents. Apart
from this fact, it is worth noting that ocean currents form a dynamic and asymmetric vector field. On one
hand, they change over time and define a variable cost map, in the path planning sense. On the other hand,
the cost of traveling from one location xi to another xi+1 is asymmetric, i.e. c(xi,xi+1) 6= c(xi+1,xi). We
have relaxed the first factor and considered static and dynamic ocean currents separately, in this thesis. This
allows us to obtain a comprehensive analysis of the problem, and to evaluate the techniques in the simplified
case of static ocean currents. The second factor cannot be simplified, but we have considered different glider
vs. ocean currents speed ratios SR in order to analyze the behavior of the algorithms under weak and strong
ocean currents. Indeed, it is with strong ocean currents where glider path planning becomes more useful,
since that is the typical scenario where naive approaches like the DtG and manual piloting fail.

Another feature that is remarkable in glider path planning is the uncertainty, generated by from two main
sources. One —that we have already mentioned— is the uncertainty in the glider localization underwater.
The other is the uncertainty of the maps computed by the Ocean Models, which comes from measurement
errors in data assimilation, or incorrect modeling of ocean dynamics and processes. This produces a tightly
coupled uncertainty in the glider motion model, since its uncertainty may come from the ocean model. Within
the path planning algorithm, the localization is solved by means of such glider motion model, so the result
inherits the uncertainty of the ocean currents provided by the ROM. Furthermore, it is also very difficult to
obtain precise values for the motion model parameters. As a consequence, the accuracy in the estimation of
the next surfacing point degrades. Indeed, in Section 2.2.2.1 we have analyzed the effect of such uncertainty
in the glider nominal surge speed Ug and the heading error ψ̂e, by comparing the output of our unconstrained
glider motion model and the surfacing points of the RU27 glider during the trans-Atlantic mission. We have
observed the Ug reduction over time due to the bio-fouling, and the unpredictable behavior of ψ̂e from one
stint to the next. Therefore, in real missions it is important to feedback the path planner with the new
surfacing point xi every time the glider wakes, in order to recompute the optimal path.

Finally, in this thesis we have discussed several motion models. First, the constrained and unconstrained
point motion models, which are simple approximations that model the glider as a single, holonomic particle
without mass. These models can be applied in 2 dimensions —using only the surface ocean currents, or depth
averages— or in 3 dimensions, which requires the glider pitch θ as an additional parameter, apart from the
nominal surge speed Ug and the bearing ψg. In our experiments we have used both approaches depending
on the data provided by the ROMs, and we have also taken into account the time spent by the glider on
surface —of ≈ 15min—, while it moves like a drifter. Furthermore, we have tested a force balance motion
model (see Section 2.2.3) that incorporates the mass and buoyancy of the vehicle, along with the drag and
lift forces. It requires much more parameters than the point motion models, but if correctly configured it can
model the glider yo-yo profiles more accurately. However, in general we do not need such accuracy in glider
path planning, because the uncertainty in the ocean model introduces higher errors in the integration of the
motion model for the long time ts between surfacing points.

6.2 Problem Identification
The problem of AUG navigation is actually a series of different problems that gliders must solve in order
to be used in real applications. In the present work we have identified the main problems and applications
where gliders constitute a useful platform. More specifically, we contribute with novel approaches for glider
path planning, on top of the navigation control system on the vehicle. From the path planning point of
view, we consider two atomic problems that are the building elements of more elaborated problems and real
applications. Regarding the applications, we have put the focus on the Ocean Research demands, but we may
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extend the applicability of the glider path planning techniques to other domains.
The two atomic problems address the equivalent to the Shortest Path Problem (SPP) in the scope of

ocean gliders. The direct equivalent to the SPP is the minimal time path problem discussed in Section 3.1.1.
The cost of traveling from one location xi to another xi+1 in the ocean is not simply the distance, but the
travel time that depends on the effective speed, which combines the glider nominal surge speed Ug with the
ocean currents Uc. The second problem looks for the minimal distance to the target waypoint for a given
period of time T , which gives a fixed number of surfacing points |B| (see Section 3.1.2). In most cases,
the minimal time path problem is associated with long-term missions, in which we use static ocean currents
because there are no forecast maps available for long periods of time in advance. Meanwhile, the minimal
distance to the target problem is usually solved for short-term missions, using the dynamic ocean currents
of the ROMs forecast maps. All the glider path planning techniques discussed in this thesis support both of
these atomic problems, expect for the RRT that only addresses the minimal time path problem with static
ocean currents. In this way we contribute a number of solutions to the basic problems of glider path planning;
among them two important novel approaches.

Apart from the atomic problems, we have addressed more elaborated ones, which are tightly connected
with real glider applications in oceanography. Although not strictly a new problem, we ensure that our methods
avoid obstacles, so they can be used in coastal environments, where we find obstacles in the form of land
areas, shipping routes, shallow waters, and —as in offshore environments— strong ocean currents against the
heading to the target waypoint. Obstacle avoidance is an important requirement to have practical algorithms
for real field missions, and as we have shown in Section 5.6, graph-based algorithms and optimization-based
methods with the intelligent initialization phase fulfill this demand.

Three other application problems are covered by this work. First, the path following problem that tries
to obtain a path P as close as possible to a desired path Pd, but still arriving at the target in the minimal
travel time. This constitutes a multi-objective problem, which can also be solved as an optimization with
constraints problem. Indeed, we have successfully applied this latter approach using the optimization-based
methods. Furthermore, we can relax the path following constraint by defining a corridor rather than a path,
so we obtain a Pareto curve of non-dominated paths for each objective (see Section 5.7). We also apply
graph-based methods to solve this problem with a cost function that represents the area between P and Pd
—or simply a point to line/curve distance. This problem is the building block to sample large areas by means
of coverage path planning. We have illustrated this problem in the particular case of eddy sampling, using
a windmill pattern —made of several linear transects— that crosses an eddy from one side of its boundary
to the other passing through the centroid. This coverage path is more adequate to sample and characterize
these ocean structures than a lawnmower one. This happens because it is important to estimate accurately
the centroid location, specially for these evolving ocean structures.

A second problem is directly concerned with tracking and sampling evolving structures, as an extension
of the path following problem. We have seen thus far, that we can sample eddies by means of a coverage
path and solving the path following problem for each transect it defines. However, eddies move on the ocean
over time, so we must track them and decide where to maximize the sampling strategy. A three-dimensional
model of the eddy is proposed, and a Genetic Algorithm looks for the best path to sample the desired regions
within the eddy —defined as 3D sectors (see Section 3.5).

Finally, we address a family of problems that comprises path planning for gliders fleets. We optimize certain
objective functions for several vehicles simultaneously. We illustrate the ability of our novel optimization-based
approach to accommodate multi-glider problems with two particular applications. On one hand, the parallel
formation of k gliders, which is of interest to obtain simultaneous measurements of large regions in data
assimilation. On the other hand is the efficient recovery problem, which can reduce the cost of the recovery
operations at the end of a mission. It looks for the best locations for all the gliders, so a ship has to
travel the minimal distance/time to recover the whole fleet. In Section 5.8 several experiments validate our
implementation, and compare different approaches for the efficient recovery problem.
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6.3 Algorithms
As the thesis hypothesis claims, we have designed several novel path planning algorithms for the afore-
mentioned glider path planning problems. We started by adapting the A* algorithm to the minimal time
path problem using the constrained motion model of Section 2.2.2.2, as it was the state-of-the-art approach
(Garau et al., 2005, 2009; Soulignac, 2010). However, this approach suffers several drawbacks. Although
A* guarantees to find the optimal path, it only does so within the search grid. Since the glider path
planning problems are clearly defined in a continuous space, with A* we cannot find the real optimum
hence. Furthermore, the discretization of the grid reduces the number of bearings tested from each surfacing
point xi to kπ/4 where k = 0, . . . , 7, in the usual 8-vicinity grid. However, the main problem relies on the
constrained motion model. It forces the glider to reach a given location xi+1 —of a given neighbor. Due to
the effect of the ocean currents, many headings cannot be followed and consequently the algorithm fails to
search many paths. Indeed, with strong ocean currents, the range of feasible heading angles may be such
narrow that we could not travel to any neighbor. In those cases, the search gets trapped and it may even fail
to find a single path to the target waypoint.

The grid resolution or the neighborhood radius r can be increased to alleviate this problem, but we have run
A* with up to ×8 resolution per dimension with a large increase in the computational cost and no significant
improvement. With an r = 3 neighborhood, new neighbors represent new heading angles and help to alleviate
the problem, but the computing time is even larger. Additionally, the cost of traveling from xi to xi+1 is
variable. This cost is the travel time of a stint, which according to the glider navigation must be constant, i.e.
the constant time surfacing ts. Therefore, A* does not reflect this glider behavior, and it neither integrates
the unconstrained motion model while it navigates underwater doing the yo-yo profiles. For this reason, even
when A* finds a solution, it must be interpreted as a rough approximation, constrained to the search grid
used, that may not fit well to the real scenario. Furthermore, A* only guarantees the optimality of the path
found for constant costs, but the ocean currents vector field defines a time-dependent cost map.

In order to alleviate the A* limitations, we have developed a novel approach that reflects the constant time
surfacing behavior of gliders. It is based on A* search and it basically modifies the generation of successors
within this graph-based algorithm. The Constant Time Surfacing A* (CTS-A*), hence, uses the unconstrained
motion model of Section 2.2.2.1 in order to integrate the glider trajectory from xi to xi+1 for the constant
surfacing time ts. A grid search is used like in A* to save the resulting surfacing points xi+1, so the memory
usage does not grow without bounds. Now we discretize the number of bearings M to test, but we do not
force the vehicle to travel in any given heading, so all the bearings can generate a new path and the algorithm
does not get trapped. However, the time complexity of the CTS-A* algorithm depends on the number of
bearings M expanded from each surfacing location xi. For this reason, we have proposed an Adaptive Bearing
Sampling (ABS) strategy (see Section 4.4.3) that replaces the uniform sampling of the basic CTS-A*, using a
PDF distribution. This ABS takes more bearings in the most promising directions, according to the direction
to the goal and the ocean currents direction nearby xi. Therefore, we can keep M small, while we still find
near optimal paths, so the computing time is reduced. Although we have not performed a thorough analysis
of the PDF distribution fΘ(ψe) parameterization, we have observed that σ2 = 10◦ for fψd

(ψe) and a direct
composition with fψc

(ψe) gives good results.
We have tested optimization-based methods for the minimal distance to the target problem —where the

number of bearings |B| is known in advance— with successful results. This approach optimizes an objective
function defined on the configuration space of the bearings and integrates the unconstrained motion model, so
we reflect the constant time surfacing ts and simulate the glider navigation underwater properly. The method
runs fast and also finds optimal paths. Indeed, it is possible to run it during the few minutes —usually
≈ 15min— a glider stays on surface between stints, in case of re-planning —although we usually have more
time. For the minimal time path problem, since |B| is unknown a priori, we simply adopt an iterative approach.
Both the Optimization and Iterative Optimization methods require an initial guess. In offshore environments it
suffices with the DtG solution or simply by setting all the bearings pointing to the target waypoint. However,
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in the presence of obstacles this approach fails, as shown in the results of Section 5.6. We have developed
an intelligent initialization phase that uses a coarse version of the CTS-A* algorithm (see Section 4.6.2), so
it runs fast and allows the optimization-based methods to avoid obstacles in coastal environments, where the
strength of ocean currents is usually higher and there is a potential risk of collision.

Other techniques like the RRT have also some drawbacks. In the case of RRT, the computing time is
very fast, but this type of algorithms does not look for the optimal path, but rather for a solution, which is
generally non-optimal. Also, it performs bad in the presence of obstacles, including strong ocean currents
against the heading to the target waypoint. Furthermore, we have observed that we must run the RRT with
more than a single tree to obtain reasonable results for the glider path planning problems. For this reason
it cannot be applied in the case of dynamic ocean currents, since we do not know the arrival time to the
tree rooted at the target waypoint (see Section 4.5). Similarly, the manual piloting modeled with the DtG
approach in this thesis (see Section 4.2) always performs worse than any of the path planning methods because
it usually gets trapped within obstacles, showing the importance of them in the field of glider navigation and
piloting. The DtG approach runs very fast, but it is a blind search that gets easily trapped in obstacles or
relatively strong ocean currents. It also fails on obtaining the optimal path, and it is only applicable for the
atomic problems. On the contrary, the CTS-A* and the (Iterative) Optimization method find the optimal
path —improving the manual piloting—, and in the case of the latter the computing time is relatively fast.
Furthermore, the (Iterative) Optimization method is easily adaptable for other problems, like path following,
multi-glider path planning and tracking evolving features. Therefore, it simplifies many missions that rely on
those path planning problems.

A complete set of experiments have been designed and conducted in order to support the thesis conclusions
and validate the proposals originated from this work.

6.4 Contributions
Here we will enumerate the contributions of this thesis, and we will discuss the questions we formulated at
the beginning of this dissertation to define the scope and extension of the present work (see Section 1.6).
The insight obtained on such questions is indeed tightly related with the contributions, so they are discussed
together in the sequel.

• The present work compiles a thorough study of the glider path planning literature, as well as path
planning problems with variable costs and asymmetries. Although we have seen few contributions in
this area, we establish which are the most similar problems: the Canadian Traveler Problem (CTP),
dynamic traffic routing, and costmaps or path planning with costs. We include an analysis of state-of-
the-art methods, their limitations and the reasoning that justifies why some of them are not applicable
to glider path planning.

• Rather than a theoretical analysis of the problem and the path planning algorithms, in this work we have
adopted a pragmatic study of methods applicable to glider path planning. We have adapted classical
graph-based methods like A*, and probabilistic sampling techniques like RRT, following previous works
from other authors (Rao and Williams, 2009).

• The minimal time path problem is unusual in field ground robotics, where the most common path
planning problem is the aforementioned Shortest Path Problem (SPP). We have identified that the
main difference is that the cost of traveling from one point xi to another xi+1 not only depends on the
distance between them ‖xi+1 − xi‖, but also on the vehicle speed, according with the glider motion
model (see Section 2.2) and, eventually, the level of biofouling it suffers.

• A* is widely used to address the SPP, so it seems reasonable to analyze its applicability to ocean glider
path planning. We have adapted A* to the minimal time path problem by incorporating the constrained
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motion model of Section 2.2.2.2. This way, we find the optimal path within the gridded search graph
of the algorithm.

• We have shown that although the A* algorithm can be adapted to solve the minimal time path problem,
it does not reflect the glider navigation behavior. In particular, it only finds the optimal path within the
search grid; the grid discretization imposes a constrained motion model that in the presence of ocean
currents can lead to dead paths, because no node can be expanded from such regions. Additionally, the
travel time from one location to its neighbors does not produce constant time surfacings, and the glider
navigation equations are not integrated while it flights underwater. The analysis of these limitations is
an important contribution of this thesis work.

• The particularities of glider path planning, that make it a hard problem, derive from the fact that the
ocean currents conform a dynamic and asymmetric cost map, in the most general case. This prevents
the use of many path planning techniques, because they cannot manage variable costs and they usually
assume a metric cost function. This thesis highlights the importance of modeling the glider navigation
faithfully by incorporating the simulation of its unconstrained motion model, including the constant
time surfacings and the 3D yo-yo profiles underwater.

• We have identified several limitations on the A* and RRT algorithms, for the glider path planning
problems. Therefore, we have developed several novel approaches to alleviate such drawbacks. In brief,
we apply the glider unconstrained motion model and include the constant time surfacing behavior, as
part of the path planning algorithm. We do this for both the CTS-A* and the different variants of the
Optimization methods described in this thesis. This way, the paths found —the bearing commands—
can also be used/sent in the field, in real missions.

• We have run several experiments to evaluate the feasibility, optimality and computing time of the
different algorithm proposals. We have observed that almost for all test cases, the best paths are found
with the Optimization method, which is also the faster in computing time. The CTS-A* also finds
nearly optimal results, and the ABS algorithm allows to reduce its computing time. Finally, a rough
version of the CTS-A* algorithm is used in the initialization phase of the Optimization methods in order
to avoid obstacles in coastal environments.

• The results in Chapter 5 also show that our Optimization methods are easy to adapt to a good number
of glider path planning problems. This comprises path following, multiple glider path planning including
the navigation in parallel and the efficient recovery problem, and tracking evolving ocean structures like
mesoscale eddies. Similarly, we have distinguished between long-term and short-term missions in our
experiments, since they are solved with dynamic and static ocean currents, respectively. This allows for
a detailed study of the algorithms under different conditions. Analogously, we separate weak and strong
ocean currents, and also offshore and coastal environments, to analyze the obstacle avoidance problem.

• We have seen that the benefits of the Optimization approach proposed in this thesis rely on the
particularities of gliders. It optimizes the path in the space of bearings, rather than in the space
of locations. As a consequence of the constant time stints of ts ≈ 8 hours between surfacing points, the
dimensionality of the optimization problems is reduced dramatically, which helps to keep the computing
time small. For other vehicles with a higher control rate —i.e. with a smaller ts—, the number of
bearings |B| will increase and we will lose this advantage.

• We have used point glider motion models intensively within our path planning methods. It is a reasonable
election, given the relatively large missions performed by gliders, in comparison with the accuracy that
other motion models can achieve. We have also evaluated a kinematic force balance motion model
(see Section 2.2.3) and compared its results with the surfacing points of the RU27 glider in the trans-
Atlantic mission. As already mentioned, the higher accuracy of these models is not required for glider
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path planning, they would increase the computing time of the path planner with no tangible benefit,
and they require a great number of parameters —many of them very difficult to quantify.

6.5 Conference Papers and Publications
Here we enumerate and describe briefly the list of conference papers and publications derived from the
development of this PhD Thesis. First, we show the list of papers about glider path planning.

OCEANS 2010: In (Fernández Perdomo et al., 2010b) we describe the novel Constant-Time Surfacing A*
(CTS-A*) algorithm and compare it with our A* adaptation (see Section 4.4 and 4.3, respectively).
The unconstrained and constrained point motion models of Section 2.2.2 —which are used by CTS-A*
and A* respectively—, are discussed as well. Furthermore, these techniques were used to assist on the
piloting of the RU27 glider at the end of the trans-Atlantic mission, using the ocean currents provided
by the ROM of the ESEOO project for the ESEOAT region.

EuroCAST 2011 (I): We introduced our Iterative Optimization (see Section 4.6.1) method for the minimal
time path problem in (Isern-González et al., 2011b). This work includes a comparison with the DtG
approach and the graph-based methods A* and CTS-A*.

EuroCAST 2011 (II): Further comparison tests of DtG, A* and CTS-A* were presented in (Fernández-
Perdomo et al., 2011b).

LNCS 2011: An extended version of the EuroCAST 2011 (I) paper was selected for the Lecture Notes in
Computer Science (LNCS) (Isern-González et al., 2011c), in which more results are included.

ICRA 2011 (I): Our Adaptive Bearing Sampling (ABS) strategy for the CTS-A* algorithm (see Section 4.4.3)
was presented in (Fernández-Perdomo et al., 2011a). The ABS strategy is explained thoroughly and
compared with the uniform bearing sampling of CTS-A*, for different numbers of samples M .

ICRA 2011 (II): We address the minimal time path and minimal distance to the target problems in (Isern-
González et al., 2011e). This work includes a comparison of all the techniques discussed in this thesis
for such problems, being the DtG, RRT, A*, CTS-A* and Iterative Optimization.

OCEANS 2011 Santander: We address multi-glider path planning problems in another conference work
(Isern-González et al., 2011d), using Iterative Optimization. The parallel navigation and efficient
recovery problems are modeled with constraints and explained in the paper, as in Section 3.4.
Additionally, further comparison tests of DtG, RRT, A*, CTS-A* and Iterative Optimization methods
are included, for the ESEOAT and ESEOCAN regions.

OCEANS 2011 Kona: The path following —or Hold Track— problem is addressed in (Isern-González et al.,
2011f). We incorporate the HTTVE algorithm of Eichhorn (2010) and the analysis of different ways
to model the deviation from the desired path Pd, using several point to line distances and the right
trapezoid area (see Section 3.3). We adapt our Iterative Optimization method to this problem and
show how to combine several paths in sequence in order to sample eddies with a windmill pattern. Also,
we relax the path following constraint and define a corridor. As a result, we obtain a Pareto curve of
non-dominated solutions for the path following and minimal time objective functions.

WAF 2011: For the minimal distance to the target problem, we improved the initialization phase of our
Optimization method in order to avoid obstacles (see Section 4.6.2). Several comparison tests are run
for the DtG, A*, CTS-A* and Optimization methods in this work (Isern-González et al., 2011a).
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JoPha 2012: The WAF 2011 paper was selected for publication in the JoPha journal, so more experiments
were included to complement the previous results with more complex scenarios. In fact, in (Isern-
González et al., 2012) we consider the ESEOCAN region, which comprises the Canary Islands. We also
address the minimal time problem, with the Iterative Optimization method.

EuroCAST 2013 (I): We address the problem of tracking evolving structures in (Hernández et al., 2013a),
for the particular case of mesoscale eddies (see Section 3.5.1). Here, our objective function is concerned
with the optimal sampling strategy of the eddies in the ESEOCAN region.

LNCS 2013: An extended version of the EuroCAST 2013 (I) paper was selected for the Lecture Notes in
Computer Science (LNCS) (Hernández et al., 2013b), in which more results are included.

6.5.1 Communication Papers
Also, some communication papers have been presented in the following meetings in the area:

NRC 2010: The contributions to the glider path planning and piloting of RU27 during the trans-Atlantic
flight were covered in (Cabrera Gámez et al., 2010). This work comprises the graph-based methods
developed in this thesis, being the A* adaptation and our novel CTS-A*, with and without the ABS
strategy.

EGO 2011 (I): We contributed our results on glider path planning with optimization-based methods to the
European Glider Observatory (EGO) meeting (Isern-González et al., 2011g).

EGO 2011 (II): Our contributions to the assistance in the RU27 piloting during the trans-Atlantic flight
were also presented at the EGO meeting (Ramos et al., 2011a). We presented our glider path planning
tools, termed Pinzón, and several experiments on the ESEOAT region.

EGO 2011 (III): Also part of Pinzón, we described our contributions to the Cook Crossing glider mission
—being Cook a thermal SLOCUM glider— in the EGO meeting as well. These tools provide assistance
to evaluate transoceanic glider missions (Ramos et al., 2011b).

6.5.2 Additional Related Research and Publications
Finally, additional research and more publications have been done in the field of Underwater Robotics, including
the participation in the 2012 edition of the Student Autonomous Underwater vehicle Challenge - Europe
(SAUC-E).

WAF 2009: As a result of the Degree Thesis, several contributions were compiled in (Fernández Perdomo
et al., 2009) for the mission specification of underwater robots, using the CoolBOT framework of
Doḿınguez-Brito et al. (2007) for the components of the control architecture.

JoPha 2010: The WAF 2009 paper was selected for publication in the JoPha journal, providing more details
and results (Fernández Perdomo et al., 2010a).

SAUCE 2012: As part of the participation in the SAUC-E 2012 with the AVORA team, we elaborated a
paper describing the mechanics, electronics and software of the AUV developed from scratch (Mahtani
et al., 2012). Also, the algorithms developed to passed the 6 tasks are explained.

EuroCAST 2013 (II): Having received the first prize in one of the categories of the SUAC-E 2012
competition, we presented our winning entry and the awarded underwater telepresence system in
(Mahtani et al., 2013a).

http://sauc-europe.org
http://sauc-europe.org
http://www.coolbotproject.org
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LNCS 2013: An extended version of the EuroCAST 2013 (II) paper was selected for the Lecture Notes
in Computer Science (LNCS) (Mahtani et al., 2013b). It includes a summary of the AUV electronics,
mechanics and software system, the navigation algorithms, the missions and the techniques developed
to solve them, and the telepresence system details.

It is also worth mentioning that during this period, more papers have been published in Robotics
conferences, as well as internal reports and the Master Thesis entitled Test and Evaluation of the FastSLAM
Algorithm in a Mobile Robot (Perdomo, 2009). All this work covers topics like Control Architectures, Robotic
Frameworks, Underwater Robotics and Vision, SLAM, Embedded Systems, and Inertial Navigation Systems
(INS).

6.6 Future Works
Further works might address three main topics: the parallelization of the techniques discussed in this thesis; a
thorough evaluation of the techniques in field tests; and to explore applications in the field of data assimilation
by extending the first step taken in tracking and sampling mesoscale eddies.

Regarding the algorithms parallelization, it is worth mentioning that some approaches discussed here can
benefit significantly from multiple computing nodes and distributed computing technologies. Indeed, it is
possible to parallelize the A* algorithm, as well as our novel CTS-A*, which will improve their computing
time. Furthermore, the integration of the unconstrained motion model is susceptible of massive parallelization
for each successor node generated from a discovered node. Additionally, we might explore the development
of some sort of bootstrap phase to speed up the A* search phase. The extension to a 3 or 4 dimensional
path planning —by means of incorporating the depth limits [zmin, zmax], the pitch angle θ, etc., or the time
dimension— would benefit from such parallelization. Also, by incorporating a three-dimensional dimensional
search, we can look for the optimal path considering the physical phenomena that happen beneath the surface;
for instance, the Ekman-like spiral described by the ocean currents when the depth increases (Davis, 1981),
suggests to modify the depth limits or the pitch in accordance, e.g. in order to optimize the travel time.
Some details can be further improved and analyzed as well, in order to reduce the computing time. In the
case of the ABS strategy defined for the CTS-A* in Section 4.4.3, we could evaluate PDF distributions built
in a different manner than the one proposed here, to analyze whether it is possible to reduce the number M
of bearings sampled even more or not.

Most of the results presented in this work have been run in simulation. Some of them have been used to
assist in the glider piloting of real missions, like the RU27 trans-Atlantic crossing. The next step should consist
on running our algorithms for the surfacing points xi of a real glider navigating on the ocean, and command it
with the bearing angles B of the path found by them. This way we will be able to evaluate the accuracy of the
glider motion model run by the path planner and the ocean currents provided by the ROM; recall the coupled
uncertainty of both the motion and ocean models, in the estimation of the vehicle pose. More interestingly,
we could make more tests for more elaborated problems, like path following and multi-glider missions. In the
particular case of path following, we propose to start by characterizing the eddies that generate in the Canary
Islands region. In fact, the windmill pattern shown in Section 3.5 will do the coverage path planning required
to characterize the eddy adequately, by means of a succession of path following problems.

In connection with sampling mesoscale eddies, further research may explore applications in the field of
data assimilation by extending the first steps taken in tracking and sampling these evolving structures. In
fact, in this thesis we have proposed an approach to optimize the sampling strategy of mesoscale eddies (see
Section 4.8) which constitutes a good starting point. This approach is interesting when the budget or time
restrictions are such that we must guarantee a good sampling strategy, since it may not be possible to repeat
the experiments in a regular basis. Obviously, the results of this method depend on the prediction accuracy
of the ocean model used. However, in our opinion, it is still a reasonable option when a try and error scheme
is not admissible. So far, we have tested the algorithm in simulation for the Canary Islands eddy system. Our
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intention is to additionally test the method using maps from other eddy scenarios, such as the Balearic Sea
and the southern California System. This will also help to start using gliders to monitor ocean currents, and
therefore validate the output of the ocean models. Withing the research group, we are planning to execute
also some real field trials as a continuation of this thesis, which may lead to further research on the topic.
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Appendix A

Ocean Models

In this thesis we have employed the output of several Ocean Models to run our glider path planning algorithms.
We have generally used the ocean currents, but we can also incorporate other ocean parameters provided by
these models, like the temperature, salinity and SSHA. Here we will enumerate the Ocean Models used during
the development of the present work, indicating which ones are ROMs. Similarly, we describe them briefly:
their spatial and temporal resolution, the number of forecast provided on advance, the products they compute,
and the region they model.

Then we also discuss here how to compute distances and azimuth angles, since they are required to deal
with the spherical coordinates that the Ocean Models use to represent their products. We indicate the exact
metrics, and describe a series of approximations which are compared. These approximations are meant to
speed up the computation within our glider path planning algorithms, and the glider motion model integration.

A.1 Numerical Ocean Models
An Ocean Model is basically a numerical model that represents the ocean behavior by means of the primitive
equations of the ocean. These equations are far from the scope of this thesis. Indeed, here we use the
output of these models to find optimal paths. The output is in the form of several products, which include
the ocean currents velocity field that we use for path planning. From this point of view, only the features
of such products are important in our problem. Therefore, some key features are: the spatial resolution, the
dimensionality —bi-dimensional surface data, or three-dimensional depth data—, and the temporal resolution.

Most global ocean models have poor spatial resolution, and they provide surface daily means. On the
contrary, Regional Ocean Models (ROMs) include some products that model the depth, are solved hourly,
and employ a high resolution spatial grid. ROMs focus on modeling a relatively small region of the ocean,
and incorporate accurate measurements to improve the model by means of data assimilation. For this reason,
we use ROMs in our experiments, specially for short-term missions that required a high temporal resolution,
in the order of hours.

Below we enumerate and describe briefly some Ocean Models, all of them used for our tests and assistance
in glider path planning during the last years.

ESEOO Project: The ESEOO project uses a POLCOMS ocean model for the ESEOAT, ESEOCAN and
ESEOMED regions. These regions comprises the North Atlantic sea, the Canary Islands and the
Mediterranean sea, respectively, covering all the Spanish coasts. The model provides 72h forecast
maps, with hourly surface ocean currents or three-dimensional daily means using 32 σ-levels; the σ-
levels are non evenly spaced depth levels, which are adapted to the bathymetry. This project is currently
finished, but it is continued by MyOcean.
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MyOcean: It is an European network for the ocean monitoring and forecasting. It provides products for
several regions. We have used the Iberian Biscay Irish (IBI) region in our experiments. It uses NEMO,
a 3D baroclinic model that solves the Navier Stokes equations in a grid of 1/36◦ and 50 depth levels.

HYCOM: The HYbrid Coordinate Ocean Model is adapted to operate in both the open, stratified ocean,
and in shallow coastal regions. It covers different regions, both regional and global, with 1/12◦ and
1/25◦, respectively. It provides daily means for −5 days hindcast —for evaluation from data assimilation
processes— and +5 day forecast maps.

GeoEye: The NCOM and NLOM models provide surface ocean currents or just the SSHA with 1/8◦ and
1/32◦ spatial resolution, respectively. They are global models that actually integrate data from different
oceanographic instruments on board satellites.

Additionally, we have used HF RADAR data from the coast of California, which provides high resolution
ocean currents up to some kilometers from the coastline. These are surface ocean currents of a great accuracy,
and high spatial and temporal resolution. Similarly, we have taken the winds velocity field of the HIRLAM
atmospheric model.

A.1.1 Ocean Model Products
Apart from the ocean currents, extensively used in this thesis, Ocean Models also compute other physical
parameters of the water. This comprises the temperature, salinity, and the Sea Surface Height Anomaly
(SSHA) —or just the topography—, among others. From the temperature and salinity, if they are given at
depth, we can compute the density of the water using the TEOS-10 equations (IOC et al., 2010). In fact,
we have computed the water density to integrate the force balance motion model described in Section 2.2.3.
Figure A.1 shows an example of (a) temperature and (b) SSHA maps, respectively. The outputs correspond
to the region of the Canary Islands within the IBI region of MyOcean model.

Furthermore, there are chemical and biological parameters that can also form part of the product suite
of Ocean Models, or satellite imagery. A representative example is the concentration of CHLorophyll (CHL).
This parameters can be used to define forbidden regions, that the path planning algorithms must avoid. In
the case of the CHL this was used in real missions to reduce the risk of biofouling.

In the case of the SSHA, we have used the NLOM maps to compute the geostrophic ocean currents.
Given a SSHA map s(x, y, t) defined for every location (x, y) ∈ R2 and time t, the geostrophic ocean currents
velocity field v(x, y, t) is computed for each component u(x, y, t) and v(x, y, t) as

u(x, y, t) = − g
f

∂s(x, y, t)
∂y

(A.1)

v(x, y, t) = g

f

∂s(x, y, t)
∂x

(A.2)

where g is the gravity force, f is the Coriolis parameter

f = 2Ω sinφ (A.3)

which depends on the latitude φ, with 2Ω = 1.458423 × 10−4rad/s, and the partial derivatives define the
gradient of the SSHA field. That is,

∇s(x, y, t) =

∂s(x, y, t)
∂x

∂s(x, y, t)
∂y

 (A.4)

which is solved numerically from the SSHA product data.
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(a) Temperature.

(b) SSHA.

Figure A.1: Example of the output of MyOcean model for the IBI region: (a) temperature and (b) SSHA.

A.2 Distance Metrics
Here we describe different ways to compute the distance of two points on the Earth surface. Although the
great circle distance gives the exact solution, we will see that there are some approximations that suffice for
most glider missions, and run in less computing time. Below we give the notation used later to describe
several metrics, which are finally compared on some tests.

A.2.1 Notation
Given two locations P0 = (λ0, φ0) and P1 = (λ1, φ1) in geographical coordinates longitude λ and latitude φ,
we define the differences in longitude and latitude as follow,

∆λ = λ1 − λ0 (A.5)
∆φ = φ1 − φ0 (A.6)

In some distance metrics it is common to use the mean latitude

φm = φ0 + φ1

2 (A.7)

Finally, the colatitude θ is expressed in terms of the latitude φ as

θ = π

2 − φ (A.8)
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For the radius R of the Earth we use the standard value R = 6371km, although it is possible to use more
precise values, as the one for the WGS84 datum ellipsoid.

The distance metrics bellow compute the distance d in meters for the two points P0 and P1 on the Earth.
Most of them assume a spherical or ellipsoidal shape for the Earth, and they are presented in order of accuracy
and complexity of the equations managed. At the end, in Section A.2.9, we will compare all the distance
metrics against the great circle distance, used as ground truth. The comparison it meant to show the error
ε of the distance metrics and their computational time, in order to observe the speed up with respect to the
great circle distance computed with the distance of Matlab®.

A.2.2 Pythagorean Formula with Parallel Meridians
This basic distance metric simply uses the Pythagorean theorem, which yields the straight line distance as the
shortest one. Therefore, it computes the distance d as in the classical Euclidean space, although the result is
multiplied by R. That is,

d = R
√

∆λ2 + ∆φ2 (A.9)

There exists an alternative formulation that uses an approximation of the Earth radius R. It separates R
into two constants Rλ and Rφ that scale the differences ∆λ and ∆φ respectively. Hence,

d =
√

(Rφ∆φ)2 + (Rλ∆λ)2 (A.10)

where

Rλ = 53sm (A.11)
Rφ = 69.1sm (A.12)

This distance metric is only meant to compute distances in the plane, so it should only be used for very
short distances and close to the equator.

A.2.3 Pythagorean Formula with Converging Meridians
For the equator, with greater latitudes, the longitude difference ∆λ is distorted, becuase the meridians
converge at the poles. Such distortion can be corrected using some coefficient based on the mean latitude
φm. There are two formulations, depending on the Earth shape assumed: spherical or ellipsoidal.

Both of the two distance metrics below are still meant for short distances, but they can be used outside
the equator. However, the error grows as we approach to the poles, i.e. with large latitudes φ.

A.2.3.1 Spherical Earth projected to a plane

This distance follows the Pythagorean theorem, but the longitude is scaled by φm as follows,

d = R
√

∆λ2 + cos (φm) ∆φ2 (A.13)

Similarly to Section A.2.2, there is an alternative formulation that uses an approximation of the Earth
radius R. In this cases, it only uses Rφ —which actually approximates R—, for the expression,

d = Rφ
√

∆λ2 + cos (φm) ∆φ2 (A.14)

This approximation is very fast and produces fairly accurate results for small distances.
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A.2.3.2 Ellipsoidal Earth projected to a plane

If we instead assume an Ellipsoidal Earth, rather than a sphere, we have

d = 1000
√

(K0∆λ)2 + (K1∆φ)2 (A.15)

where

K0 = 111.41513 cos (φm)− 0.09455 cos (3φm) + 0.00012 cos (5φm) (A.16)
K1 = 111.13209− 0.56605 cos (2φm) + 0.00120 cos (4φm) (A.17)

This formula is prescribed for distances not exceeding 475km. It is worth mentioning the special meaning
of the constants K0 and K1,

K0 = cos (φm)N π

180 (A.18)

K1 = M
π

180 (A.19)

which are the kilometers per degree for the longitude and latitude differences, respectively. The values M
and N are the Meridional and its Normal radii of curvature.

A.2.4 Polar Coordinate Flat-Earth formula
Using polar coordinates and still assuming a flat Earth, we have

d = R
√
θ2

0 + θ2
1 − 2θ0θ1 cos(∆λ) (A.20)

where θ0 and θ1 are the colatitudes of the latitudes of the points P0 and P1, respectively, computed with
(A.8).

A.2.5 Spherical Law of Cosines
Contrary to the previous distance metrics, here we use an spherical-surface formula, rather than the flat-Earth
one. This is the simplest formula of this kind, defined as

d = R arccos (sinφ0 sinφ1 + cosφ0 cosφ1 cos ∆λ) ; (A.21)

With this expressions we can obtain ε ≈ 0.5% of error, since it uses the sphere that best approximates
the surface of the Earth. As we did for Section A.2.2 and A.2.3.1, we can use the Rφ approximation of R.

A.2.6 Haversine formula
The Haversine formula gives great circle distances between two points on a sphere. It is computed as follows,

d = 2R arcsin
(√

sin2
(

∆φ
2

)
+ cosφ0 cosφ1 sin2

(
∆λ
2

))
(A.22)

The Spherical law of cosines is actually a similar formula written using cosines instead of haversines.
However, if the two points are close together —e.g. a kilometer apart— we will have numerical problems.
The haversine formula, using sines, avoids that problem.

As with the law of cosines, this formula assumes a spherical Earth. However, the radius of curvature of a
North-South meridian on the Earth’s surface is 1% greater at the poles than at the equator. Therefore, we
have a ε ≈ 0.5% error.
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A.2.7 Vincenty’s formula
The Vincenty’s formula consider the Earth’s ellipticity, so it breaks with the spherical Earth assumption of
the two previous methods. Therefore, it can reduce the error on the distance computation. The Vincenty’s
formula consists on an iterative approximation scheme. Here we use a simplified explicit computation that
uses the expression

d = Rσ (A.23)
where σ is the arc length in the auxiliary sphere, iteratively computed as

σ = arctan sin σ
cosσ (A.24)

until σ converges to a value. The expression is computed at each step using

sin σ =
√

(cosφ1 sin ∆λ)2 + (cosφ0 sinφ1 − sinφ0 cosφ1 cos ∆λ)2 (A.25)
cosσ = sinφ0 sinφ1 + cosφ0 cosφ1 cos ∆λ (A.26)

Indeed, this is the special case of the Vincenty’s formula computed for a sphere. Meanwhile, we must
solve the method of Vincenty’s formula for ellipsoids.

A.2.8 Great Circle
Finally, we compute the great circle distance on the WGS84 datum ellipsoid that approximates the Earth using
the distance function of Matlab®. We could have used the Vincenty’s formula method, but the distance
provides more flexibility to set the desired datum. In Figure A.2 we observe the so called great circle that
gives the shortest distance between P0 and P1 in a sphere or ellipsoid, in the most general case.

Figure A.2: Great Circle in a sphere shown in blue. It is the unique great circle that crosses the two points
P and V . The arc of the great circle that goes from P to V gives the shortest distance between two points
in a sphere or ellipsoid —which is a good approximation of the Earth shape.

This distance metric is used as ground truth in the next section, since it uses an ellipsoid shape Earth
approximation that gives the most accurate distance so far, for all the distance metrics discussed here.
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A.2.9 Comparison
Here we compare the computing time, the distance and the error with respect to the ground truth given by
the distance function. For the comparison we have run a series of distance computations for two points
P0 = (φ,−20◦) and P1 = (φ,−10◦), where the latitude φ ∈ [0, π/2] goes from the equator to the North pole.
This way we evaluate the distance metrics at different latitudes, which is the basic difficulty on computing
distances on the Earth shape —being spherical or ellipsoidal.

(a) All distance metrics.

(b) Zoom in without the slowest.

Figure A.3: CPU time (s) for (a) all the distance metrics described here, and (b) zoom in discarding the great
circle distance of Matlab®, which is the slowest approach.

For the sake of clarity, we use the following acronyms for the distance metrics compared here.
PFPM: Pythagorean Formula with Converging Meridians.

PFCMSE: Pythagorean Formula with Converging Meridians, using Spherical Earth projected to a plane.
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(a) All distance metrics.

(b) Zoom in without the worst.

Figure A.4: Distance (m) for (a) all the distance metrics described here, and (b) zoom in discarding the
approaches with higher error, being the PFPM and its approximation variant.

PFCMEE: Pythagorean Formula with Converging Meridians, using Ellipsoidal Earth projected to a plane.

PCFE: Polar Coordinate Flat-Earth formula.

SLC: Spherical Law of Cosines.

Haversine: Haversine formula.

Vincenty: Vincenty’s formula.

The items with the suffix approx refer to the approximation variant of the given distance metric.
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(a) All distance metrics.

(b) Without the worst.

Figure A.5: Error (m) with respect to the great circle distance metric for (a) all the distance metrics
described here, and (b) discarding the approaches with higher error, being the PFPM and its approximation
variant.

We start by comparing the CPU time, to validate our first hypothesis, i.e. the distance function is
slower than the approximations presented here. In fact, the figure Figure A.3 (a) shows that it is one order
of magnitude slower than all the distance metrics described here. In (b) we zoom in to inspect the CPU time
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of the rest of the formulas. The PFCMSE and its approximation is the slowest of them. Then, as expected,
we have the Haversine and the Vincenty’s formulas, which are also the more accurate formulas presented
here. The fastest CPU time is obtained with the PFPM formula and its approximation, since they use fewer
trigonometric functions than the others.

Now that we know that it is worth using an approximation in place of distance, we compare the distance
and error, shown in Figure A.4 and A.5, respectively. In Figure A.4 (a) we observe how at the poles the
distance vanishes, and it grows as we approach to the equator. Except for the simplest approaches, the
rest of the formulas reproduce the same curve as the one obtained with distance. The PFPM, and its
approximation variant, generate a constant distance, since it does not depend on the latitude φ. The PCFE
does not produce a curve, but a line with a slope tangent to the curve at the pole φ = 90◦. If we zoom in,
we observe in Figure A.4 (b) a small error between the rest of the formulas.

The error with respect to distance is shown Figure A.5 (a) for all the distance metrics. We remove the
worst ones in order to observe the error in more detail. Figure A.5 (b) shows how the error varies with the
latitude φ. At first sight, we observe that at the pole all the formulas have no error, because the distance
is d = 0 there. Curiously, only the PFCMEE has almost no error at the equator. The reason is that it
approximates the Earth with an ellipsoid, as distance. The rest use an sphere shape approximation, which
produce a clear offset from the correct distance. We can change the Earth radius R, to reduce the error at
the equator, but it will grow at other latitudes.

A.3 Azimuth Angle Metrics
Similar to the distance metrics, we can also compute the azimuth angle ψ between the two points P0 and P1.
Indeed, the approaches to compute ψ are twin formulas of the equations discussed thus far for the distance
metrics. However, only a few provide the azimuth ψ. Below we describe each, to later compare them against
the great circle azimuth function of Matlab®, considered as the ground truth.

A.3.1 Pythagorean Formula with Parallel Meridians
As for the distance computation, the Pythagorean theorem is also applied here to compute the angle. We
only have to compute the arctan of the differences ∆λ and ∆φ. That is,

ψ = π

2 − arctan
(

∆φ
∆λ

)
(A.27)

Being an azimuth angle, we subtract the arctan value from π/2, to obtain the correct angle, with 0◦ at
the North and growing counter-clockwise. This basic equation it only valid for close points, and also near the
equator.

A.3.2 Pythagorean Formula with Converging Meridians
A.3.2.1 Spherical Earth projected to a plane

If we scaled the longitude λ according with φm, we obtain the twin formula of the Spherical Earth using the
Pythagorean formula with converging meridians. Hence,

ψ = π

2 − arctan
(

∆φ
cos (φm) ∆λ

)
(A.28)

This formula will allow to compute the azimuth at any latitude, not only close to the equator. However,
the error increases when we approach to the poles.
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A.3.3 Great Circle
For the great circle formula we distinguishes between the spherical and ellipsoid Earth approximations.

A.3.3.1 Spherical Earth

Assuming a sphere shape Earth, we have

ψ = arctan
(

cosφ1 sin ∆λ
cosφ0 sinφ1 − sinφ0 cosφ1 cos ∆λ

)
(A.29)

This is the particular case of an ellipsoid degenerated into a sphere. The error with this approach is
ε ≈ 0.5%, since the sphere assumption is less accurate for large latitudes φ, close to the poles.

A.3.3.2 Ellipsoidal Earth

Finally, we use the azimuth function of Matlab®, using the WGS84 datum ellipsoid to approximate the Earth
surface. This approach gives the best estimation of the azimuth, since it does not assume a spherical Earth,
but ellipsoidal. Therefore, this angle metric is considered as the ground truth for the next comparison.

A.3.4 Comparison
Here we compare the computing time, the distance and the error with respect to the ground truth given
by the azimuth function. For the comparison we have run a series of distance computations for two points
P0 = (φ,−20◦) and P1 = (φ− 5,−10◦), where the latitude φ ∈ [0, π/2] goes from the equator to the North
pole; we use φ− 5 in P1 in order to have a more representative example, and not simply a horizontal ψ = 0◦
azimuth angle. This way we evaluate the angle metrics at different latitudes, which is the basic difficulty on
computing them on the Earth shape —being spherical or ellipsoidal.

In Figure A.6 (a) we observe that the azimuth function takes more time to compute the azimuth angle
than the approximations described here. Again, the speed up is of one order of magnitude or even more. If
we zoom in for the approximation formulas in (b), we observe that the PFCMSE is the slowest. As expected,
the PFPM is very fast, but surprisingly the spherical Earth great circle —shown as Great Circle in the figure—
is even slightly faster; note that this approach is also more accurate.

In fact, in Figure A.7 (a) we see that the spherical Earth great circle yields almost the same azimuth as
the ellipsoidal version provided by azimuth. The PFCMSE shows a similar curve, but with some offset error.
Meanwhile, the PFPM is constant, since it does not depends on the latitude φ. Therefore, in Figure A.7 (b)
the error with respect to azimuth is almost null for the spherical Earth great circle.
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(a) All azimuth angle metrics.

(b) Zoom in without the slowest.

Figure A.6: CPU time (s) for (a) all the azimuth angle metrics described here, and (b) zoom in discarding
the great circle azimuth of Matlab®, which is the slowest approach.
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(a) Azimuth angle metrics.

(b) Error.

Figure A.7: Azimuth angle (◦) for (a) all the azimuth angle metrics described here, and (b) error with respect
to the azimuth function of Matlab®.





Appendix B

Motion Models

Here we cover some simplified or reduced motion models that derivate from the glider motion models discussed
in Section 2.2. This comprises drifters and profiler floats, which can be modeled with the extrema cases of
the glider motion models, at the singular values of some parameters like the pitch θ or the nominal surge
speed Ug.

B.1 Point Motion Models
The glider point motion models shown in Section 2.2.2 can be adapted to operate as a drifter with a few minor
changes. This models are usually particularizations of the unconstrained point motion model of Section 2.2.2.1.

B.1.1 Drifter
A drifter is a vehicle that does not generate any speed at all —i.e. U = (0, 0, 0)m/s. It simply moves as a
consequence of the effect of the ocean currents that carry it from one location to another. The vehicle can
be modeled including its mass and forces, and apply a force balance motion model as in Section B.2.2, but
drifters are usually modeled as a point that travels according to an unconstrained point motion model defined
by the differential equations

ẋ = u (B.1)
ẏ = v (B.2)
ż = w (B.3)

where u, v and w are the x, y and z components of the ocean current speed at a given location x = (x, y, z)
and time t.

This drifter motion model is used to integrate the glider trajectory when it drifts on the surface, affected
by the surface ocean currents (u, v) —at surface w = 0— for a time of ≈ 15min, which is the typical time
the vehicle stays at surface before it dives again.

B.2 Force Balance Motion Models
The glider force balance motion model shown in Section 2.2.3 can be adapted to operate as a profiling float
or a drifter with a few minor changes. For your convenience, we recall the force balance equations for a glider
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below.

FB − cos γFL − sin γFD − Fg = 0 (B.4)
− cos γFD + sin γFL = 0 (B.5)

where FB is the (net) buoyancy force, Fg is the force due to gravity, FL is the lift force, FD is the drag force
and γ is the glide angle, defined as the sum of the pitch angle θ and the angle of attack α.

B.2.1 Profiling Float
The glider force motion model discussed above might be applied for a profiling float. We only have to consider
a glide angle of γ = π

2 . Therefore, the pitch angle is ω = γ = π
2 and the angle of attack is α = 0. As a result,

the motion model is simplified significantly. The lift force —perpendicular to the vehicle displacement— has
no effect, while the drag force is produced exclusively by a constant parasite drag CD0 .

For a profiling float we only have a vertical force balance, and consequently only vertical speed. Taking
the same gravity and buoyancy forces of the glider force motion model, (2.30) and (2.31), and the simplified
drag force

FD = 1
2ρCD0SU

2 (B.6)

where S might be thought as the float’s stabilizers surface, the resulting force balance is

Fg − FB − FD = 0 (B.7)

Fg − FB −
1
2ρCD0SU

2 = 0 (B.8)

Then, the speed U can be evaluated with

U =

√
2(FB − Fg)
ρSCD0

(B.9)

In this case, there is only a vertical speed component. For this reason, we actually have U = w, since
sin γ = sin π

2 = 1. However, it is important to treat the speed sign properly. This sign determines the
direction taken by the buoy, which is positive + for climbing and negative − for diving. The sign is given
by the difference between the gravity and buoyancy forces, so we can consider the absolute value inside the
square root and apply the sign to the final result,

w = U = sign (FB − Fg)

√
2 |FB − Fg|
ρSCD0

(B.10)

B.2.2 Drifter
A drifter performs four steps during its operation cycle:

1. Starting at surface, the first task consists on diving to approximately 1000m depth.

2. Then, the buoy drifts for 8 ∼ 10 days.

3. After drifting at a fix depth, the buoy dives to 1500 or 2000m.

4. Finally, a profiling step is performed. It consists on climbing from the current depth to the surface,
retrieving data of the water column.
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The profiling step is covered by the previous section. Meanwhile, in order to drift at a fix depth, the
vertical speed must be null w = U = 0. In other words, the gravity and buoyancy forces must be equal,

Fg − FB −
1
2ρCD0SU

2 = 0

Fg = FB

gmg = gρ(Vg(1− εP + αT (T − T0)) + ∆Vbp)

The buoy must control the volume displaced by the buoyancy engine to compensate the mass mg of the
vehicle. This volume ∆Vbp can be evaluated with

∆Vbp = mg

ρ
− Vg(1− εP + αT (T − T0)) (B.11)

Here, the density ρ, the pressure P and the temperature T depend on the current position of the buoy. We
assume that ∆Vbp is computed once the fix depth is reached and is kept in the sequel. This may lead to
slightly changes of depth, due to the variability of temperature and density basically.
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Caṕıtulo 1

Introducción

La oceanograf́ıa es la disciplina que se encarga del estudio de los océanos. Se trata de un ámbito complejo

en el que convergen múltiples áreas de interés como son el estudio de las corrientes marinas, el oleaje o

la dinámica de fluidos; tectónica de placas y geoloǵıa del fondo marino; organismos marinos y dinámica de

ecosistemas; difusión de sustancias qúımicas y propiedades f́ısicas del océano.

El estudio de los diferentes procesos presentes en el medio marino requiere la definición y ajuste de modelos

que permitan caracterizar su dinámica y ayudar a predecir su evolución. Un aspecto clave, del que depende

en gran medida el éxito de esta tarea, es la necesidad de disponer de sistemas de muestreo adecuados que

suministren datos reales con los que contrastar la bondad de dichos modelos. Esta tesis se centra en los

aspectos ligados al uso de dispositivos robóticos en la monitorización del medio marino.

1.1 Técnicas de muestreo

Tradicionalmente se han empleado en la observación del océano diferentes sistemas de captura de datos como

son la tele-detección basada en satélite, radares, boyas o los buques oceanográficos. En las últimas décadas han

surgido nuevas técnicas de muestreo que intentan suplir diferentes limitaciones identificadas en los sistemas

más tradicionales. Se trata de los veh́ıculos autónomos submarinos.

Podemos distinguir dos tipos principales de veh́ıculos submarinos: los operados remotamente o ROVs, y

los autónomos o AUVs. Dentro de estos últimos, existe un tipo especial, que son los planeadores submarinos

o gliders. El presente trabajo está enfocado a proporcionar herramientas destinadas a este tipo de veh́ıculos.

i
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1.2 Planeadores Submarinos Autónomos

Los Planeadores Submarinos Autónomos, también denominados comúnmente planeadores o gliders —

atendiendo al término en inglés—, son un tipo de veh́ıculo autónomo submarino que se desplaza usando

un mecanismo de propulsión único basado en modificar su flotabilidad. Estos veh́ıculos poseen un sistema que

emula el funcionamiento de la vejiga natatoria de los peces para provocar movimientos de ascenso y descenso

ćıclicos. Dichos desplazamientos verticales se traducen en una lenta pero efectiva velocidad de avance gracias

a la interacción de los planos de control y sustentación con el medio acuático. Se generan de esta manera

perfiles de movimiento en “V” caracteŕısticos, denominados yo-yos.

Figura 1.1: Spray de Bluefin Robotics (delante), SLOCUM de Teledyne Webb Research (medio) y Seaglider
de iRobot (detrás), en el Laboratorio de Gliders en las instalaciones de la Plataforma Oceánica de
Canarias (PLOCAN). Corteśıa de PLOCAN. Nótese que las alas son extráıbles para facilitar el transporte
y mantenimiento, y por esa razón han sido extráıdas del casco en los veh́ıculos aqúı mostrados.

Un glider eléctrico, como el modelo SLOCUM de la Figura 1.1, utiliza una bomba hidráulica para trasvasar

un cierto volumen de aceite entre el interior y el exterior del casco del veh́ıculo. De esta forma, el consumo

de enerǵıa necesario para la propulsión se produce únicamente en los puntos de inflexión en los que el robot

activa la bomba, permitiendo unos niveles de autonoḿıa dif́ıciles de igualar para otros veh́ıculos.

Los gliders operan en base a la definición de unos puntos de paso o waypoints que el robot trata de alcanzar
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sucesivamente. Una vez fijado el rumbo hacia el próximo objetivo el veh́ıculo ejecuta una serie predefinida

de ciclos de ascenso/descenso, denominados transecto o stint; y que están delimitados entre dos valores de

profundidad ḿınima y máxima, tras los cuales emerge de nuevo. Una vez en superficie, el glider se localiza

por medio del GPS —o por cualquier otro GNSS—, transmite datos básicos a su centro de control y, en su

caso, recibe nuevas órdenes. Transcurrido un corto periodo de tiempo, en torno a 15− 20 minutos, el glider

inicia un nuevo stint (tramo sumergido), cuya duración suele oscilar entre 6 y 8 horas.

1.3 Planificación de rutas

El principal inconveniente que tiene el uso de los gliders en la monitorización del medio marino es su

dependencia de las condiciones del medio. La lenta velocidad de avance que los caracteriza (aproximadamente

un kilómetro por hora) puede llegar a ser igualada e incluso superada por las corrientes marinas. Por lo

tanto, es necesario anticipar su efecto en la trayectoria del veh́ıculo si se desea conseguir alcanzar un punto

determinado o seguir una ruta deseada. La fuente de información básica con la que se trabaja son los modelos

de predicción oceánicos, que permiten tener en cuenta con varios d́ıas de antelación el estado más probable

de la zona en la que se encuentre el glider.

Dependiendo del tipo de misión y la región que se esté considerando, existirán diferentes modelos

disponibles. En general, los mejores resultados son los aquellos que se obtienen con modelos de predicción

regionales, especialmente ajustados para capturar las condiciones particulares de una determinada zona.

En un esquema de pilotaje de gliders tradicional, un operador humano realiza un seguimiento del estado

presente y futuro del mar y de la evolución del veh́ıculo, decidiendo cuándo es necesario modificar los puntos

de destino. En una misión real, las propias medidas del glider se convierten en un indicio de si las predicciones

de los modelos oceánicos se están verificando o no. La Figura 1.2 ilustra la trayectoria final del glider RU27

tras finalizar la misión trans-Atlántica. Ésta se llevo a cabo mediante un pilotaje manual o tradicional. No

obstante, durante los últimos stints cerca de las costas españolas, este pilotaje fue asistido por las herramientas

de planificación de caminos para gliders desarrolladas en este trabajo de tesis.
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Figura 1.2: Camino seguido por el glider RU27 Scarlet Knight (SLOCUM) en la misión trans-Atlántica,
realizada en 2010. La missión fue dirigida por la Universidad de Rutgers, con la colaboración de la División
de Robótica y Oceanograf́ıa Computacional (DROC), SIANI.

1.4 Hipótesis de la tesis

En este trabajo se plantea como hipótesis el que pueden definirse mecanismos automáticos para la planificación

de rutas en gliders que aporten ventajas significativas en el uso de estos dispositivos como instrumentos de

muestreo del océano.

1.5 Objetivos

Los objetivos de esta tesis se resumen en las siguientes cuestiones que trata de resolver. Asimismo, definen el

ámbito y extensión del presente trabajo.

• La literatura sobre planificaciones de caminos recoge un importante número de algoritmos usados para

obtener la secuencia (cuasi-)óptima de configuraciones de estado que permita a un veh́ıculo moverse

desde una posición a otra. Es por tanto de gran interés estudiar si estos algoritmos son aplicable en el

campo de la planificación de rutas para gliders. De hecho, en esta tesis analizamos si el método A* es



1.5 Objetivos v

aplicable. Si puede ser adapta al problema con gliders, o si hay alguna particularidad que lo impide, o

hace que resulte ineficiente.

• Veremos como las técnicas clásicas no son directamente aplicables a nuestro problema, a menos que

sea adaptadas. En este sentido trataremos de analizar cuáles son las particularidades de la planificación

de caminos con gliders que justifican la necesidad de esta adaptación. Aśı, obtendremos conocimiento

sobre las siguientes cuestiones:

– Cuáles son las diferencias respecto a otros problemas que se solucionan empleando planificadores

de caminos clásicos? Nos referimos a problemas como la planificación de caminos en laberintos,

mapas de coste, etc.

– Qué razones explican por qué las técnicas clásicas no son aplicables o útiles en este caso? O que

impide que puedan manejar eficientemente el problema?

• El estudio de la bibliograf́ıa y el estado del arte nos permitirá categorizar la tipoloǵıa del problema que

intentamos resolver. Es decir, en qué categoŕıa taxonómica ubican el problema otros autores, o al menos

establecer el tipo de problema más similar.

• Desde un punto de vista más práctico, pretendemos investigar y desarrollar métodos que resuelvan el

problema. En este trabajo implementamos varios técnicas novedosas. Éstas son evaluadas conforme a

dos criterios. Primero, evaluamos la optimalidad de la solución encontrada o lo lejos que queda del

óptimo. Segundo, el tiempo de cómputo y uso de memoria.

• De esta forma, podremos comparar nuestros resultados con otras aproximaciones de la literatura sobre

el tema. Aśı podremos establecer cómo atacan el problema otros autores, aśı como las simplificaciones

y los supuestos que éstos asumen. Consecuentemente, podremos valorar si éstos y nuestros algoritmos

son escalables y generalizables para resolver otro tipo de problemas de planificación de rutas.

• Respecto a la dimensionalidad del problema, veremos que los modelos oceánicos ofrecen 4 dimensiones:

espacio tridimensional y tiempo. Los gliders navegan por este espacio tridimensional que cambia

significativamente en el tiempo. Asimismo, es posible considerar o despreciar ciertas caracteŕısticas

de la dinámica del veh́ıculo y su navegación, como el ángulo de planeo, las profundidades ḿınima y

máxima de los perfiles yo-yo, la velocidad nominal, etc. La forma en que manejar toda esta complejidad
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y la alta dimensionalidad del problema eficientemente, es también un aspecto fundamental que se trata

en el presente trabajo. Igualmente, queremos ver si es posible garantizar la optimalidad de la solución

encontrada, o simplemente hasta cierto punto y bajo ciertas suposiciones.

• A partir de la implementación y evaluación de deferentes técnicas obtendremos cierta intuición respecto

a cuáles son más apropiadas para determinadas condiciones y entornos. Por ello, también se realiza

una categorización de escenarios: áreas con obstáculos, zonas de alta variabilidad temporal, corrientes

fuertes, etc.

Las cuestiones anteriores definen el ámbito y los objetivos de la tesis, puesto que ésta trata de darles

respuesta. Adicionalmente, para poder tratar con la complejidad del problema, se han asumido ciertas

simplificaciones y marcado algunas limitaciones.

• La alta dimensionalidad del problema se ha reducido hasta cierto punto. Asumimos un modelo de

movimiento del glider simplificado. En algunos casos la planificación de rutas se hace considerando

sólo las corrientes bidimensionales en superficie, con una resolución temporal de horas; mientras que

en otros casos tomamos corrientes tridimensionales, aunque como medias diarias. Esta reducción en la

dimensionalidad del problema es habitualmente aceptable, al mismo tiempo que reduce la complejidad

sustancialmente.

• Algunos detalles de las misiones y el pilotaje de gliders son despreciados. En muchos casos no es posible

observar fenómenos como el biofouling, que afecta a la velocidad y equilibrado del glider. Esto produce

un cambio en el ángulo de planeo y puede producir una desviación sistemática en el rumbo. Del mismo

modo, vaŕıa el centro de masas y la flotabilidad, reduciéndose la velocidad del veh́ıculo. En otros casos,

sólo podemos estimar ciertos parámetros con un determinado error, como el tiempo que permanece

el veh́ıculo en superficie. Estos valores no se suelen modelar porque en realidad nos interesan otros

aspectos del sistemas y podemos ignorar sus efectos en la mayoŕıa de casos.

• El sistema embebido y el software en los gliders modernos tiene capacidades muy reducidas. Por ello en

la práctica el pilotaje automático o autónomo no es trivial. Aunque no se trata estrictamente de una

limitación, hemos recogido este hecho en nuestra simulaciones. Puesto que la calidad del dead-reckoning

es mala, las comunicaciones no son posibles, y la deriva producida por las corrientes no es observable

bajo el agua, se requiere una planificación de rutas con comandos discretos espaciados significativamente
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en el tiempo. Incluso si fuera posible variar el rumbo del veh́ıculo con mayor frecuencia, el veh́ıculo aún

no podŕıa disponer de los mapas de corriente abordo para actualizar el rumbo convenientemente.

En la tesis se aborda en primer lugar el planteamiento y metodoloǵıa, describiendo el veh́ıculo y el modelado

de su movimiento. Posteriormente se analizan diferentes problemas y aplicaciones de interés. Se pasa entonces

a la exposición de los algoritmos de planificación actualmente existentes y, a continuación, las propuestas

desarrolladas en el marco de esta tesis. Seguidamente se describen los experimentos realizados con vistas a la

validación de las propuestas presentadas, para concluir con los resultados y conclusiones.





Caṕıtulo 2

Planteamiento y Metodoloǵıa

El planteamiento y metodoloǵıa del problema comienza aqúı con el estudio de los planeadores oceánicos y

sus modelos de movimiento. Sin embargo, hay que entender que se extiende a los caṕıtulos siguientes, con el

estudio de los problemas de planificación de caminos para gliders y los algoritmos propuestos en el presente

trabajo de tesis.

2.1 Planeadores Oceánicos

Disponer de un modelo adecuado del comportamiento de un glider es un requisito indispensable para poder

realizar simulaciones fiables. De esta forma, las trayectorias planificadas automáticamente tendrán más validez

al presentar una buena correspondencia con las realizadas por el robot en misiones reales.

La Figura 2.1 y 2.2 muestran el tipo de navegación que realizan los gliders, aśı como las distintas fases de

las que ésta se compone. La primera figura ilustra el perfil yo-yo y el patrón en forma de diente de sierre que

sigue el glider mientras navega sumergida, usando la vejiga de aceite y la bomba de flotabilidad. La figura

recoge los valores más comunes para el intervalo de profundidades durante un tramo sumergido y el tiempo

que permanece en superficie. La segunda figura muestra las fases de un tramo de navegación del glider. Esto

incluye las siguientes fases:

1. La emersión y localización con el GPS.

2. La deriva producida por las corrientes oceánicas y el viento en superficie durante ts ≈ 15min, mientras

ix
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Figura 2.1: Diagrama del perfil yo-yo y el patrón de diente de sierra seguido por un glider mientras navega
sumergido.

también se comunica con la estación base.

3. La inmersión.

4. El perfil yo-yo durante el periodo de navegación sumergido, con puntos de inflexión en el intervalo de

profundidad [zmı́n, zmáx] dado.

En superficie, la localización del glider se resuelve usando el GPS, pero después del punto de inmersión

es desconocida. Las elipses representan la incertidumbre de la estimación de la posición bajo el agua. La

principal fuente de incertidumbre es la deriva causada por las corrientes oceánicas. En cada punto de emersión

dicha incertidumbre colapsa con el primer fix GPS.

2.2 Modelos de Movimiento

Se analizan tres modelos: modelo puntual, equilibrio de fuerzas y dinámico.
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Figura 2.2: Diagrama de un tramo de navegación de un glider.

2.2.1 Modelo de Movimiento puntual

El modelo puntual asume el esquema más simple, donde el glider se modela como un punto sin masa. La

trayectoria se integra a partir de la combinación del rumbo del glider con las corrientes de la zona en que

navega, proporcionadas por un modelo numérico de predicción. Se trata de un modelo simple que contiene

un único parámetro de configuración: la velocidad nominal del glider.

Se plantean dos posibles variantes para este modelo, dependiendo de las restricciones impuestas a la

simulación de la navegación. En la variante no restringida, la trayectoria se integra a partir de una composición

vectorial directa del rumbo del glider y su velocidad con el campo de corrientes. En la variante restringida, el

rumbo del glider no viene dado, sino que se precalcula a partir de la definición de un punto inicial y un punto

objetivo en la trayectoria. Ambas variantes del modelo de movimiento puntual se describen en las siguientes

secciones.



xii 2 Planteamiento y Metodoloǵıa

2.2.1.1 Modelo no restringido

La velocidad efectiva Ue se computa usando

Ue = Ug + Uc (2.1)

donde Ug es la velocidad nominal del glider y Uc es la velocidad de la corriente a lo largo del camino P

descrito por el glider.

Puesto que Uc es diferente en cada punto del entorno, debemos integrar la velocidad a lo largo de P. Por

tanto, tenemos

Ue = Ug +
∫ xi

xi−1

Uc(x) dx (2.2)

para un camino P que empiece en xi−1 y termine en xi, que correspondeŕıan con puntos de emersión.

Algorithm 2.1 Integración de la trayectoria
Require: Tiempo entre emersiones ts y paso de integración dt. Velocidad nominal del glider Ug, campo de

velocidad de las corrientes oceánicas Uc(x) para todas las localizaciones x, y localización inicial x0.
Ensure: Localización final xts después de integrar la trayectoria para el tiempo ts.
Algorithm: trajectory(ts, dt, Ug, Uc(x), x0) return xts

1: x = x0 . Localización inicial
2: for all t = 0 to ts with step dt do
3: Ue = Ug + Uc(x)
4: x = x + Ue · dt
5: end for
6: return x

La integral a lo largo del camino P se discretiza e integra numéricamente durante un tiempo fijo ts entre

emersiones. Dicha integración permite obtener la trayectoria del glider bajo las condiciones del campo de

corrientes oceánicas, como ilustra la Figura 2.3. Por tanto, implementamos la siguiente recursión

Ue(t) = Ug + Uc(x(t), t) (2.3)

x(t+ 1) = x(t) + Ue(t) · ∆t (2.4)

donde ∆t es el paso de integración y x(0) se inicializa con la localización inicial del veh́ıculo. El algoritmo

de integración se resume en el Algoritmo 2.1. Resolvemos esta Ecuación Diferencial Ordinaria mediante las

fórmulas de Runge-Kutta de orden 4 y 5 (Dormand and Prince, 1980) de manera numérica, sin necesidad de
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U
c = 0m/s and

ψ̂
e = 30 ◦

U
c =

0m
/s

drifter: U
g = 0m/s

Ug = 0,170m/s

Ug = 0,165m/s

U
g = 0,050m/s

Figura 2.3: Ejecución del modelo de movimiento puntual no restringido para diferentes velocidades del glider
Ug, para un error de rumbo (heading) constante de ψ̂e = 30◦N. Observamos la deriva en las trayectorias,
efecto de las corrientes oceánicas, desde Ug = 0,050m/s a Ug = 0,170m/s . A medida que Ug se reduce,
tienden a la trayectoria de un derivador (drifter) con Ug = 0m/s . Al contrario, la trayectoria sin corrientes
Uc = 0m/s seŕıa recta, como se muestra sin error de rumbo y ψ̂e = 30◦ .

indicar ∆t. En este proceso, interpolamos las corrientes Uc(x(t), t) en cada localización x(t) de la trayectoria

y tiempo t.

2.2.1.2 Modelo restringido

El modelo restringido funciona de forma radicalmente diferente. Ahora básicamente resolvemos el problema

de navegación de ir de una localización inicial x0 a una final x1. El ángulo entre x0 y x1 define un rumbo ψe

que queremos que el veh́ıculo siga. Aśı, dado el vector de corrientes Uc y la velocidad nominal horizontal del
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glider Ug, el problema de navegación consiste en encontrar la dirección (bearing) ψg necesaria para movernos

en ψe, si es posible. De hecho, cuando las corrientes son más fuertes que Ug, existe un rango de rumbos ψe

que no son factibles, i.e. no existe ninguna dirección ψg tal que permita al veh́ıculo alcanzar x1 poniendo

rumbo ψe.

Dada la velocidad nominal del glider Ug, el rumbo deseado ψe, y la velocidad Uc y dirección ψc de la

corriente, podemos computar la corrección de la deriva que el glider debe aplicar para mantener el rumbo.

Aśı, obtenemos la dirección ψg con

ψg =


ψe + arcsin s if |s| ≤ 1

@ en otro caso
(2.5)

y la velocidad resultante Ue con

Ue =


Ug
√

1− s2 + Uc cosψec if |s| ≤ 1

0 otherwise
(2.6)

donde

s = Uc
Ug

sinψec (2.7)

y ψec = ψe − ψc. Al margen de la diferencia de ángulos ψec, podemos definir el ratio de velocidad SR como

SR = Uc
Ug

(2.8)

que permite categorizar las corrientes en fuertes o débiles, dependiendo de si SR > 1 o SR < 1,

respectivamente.

Consecuentemente, si Ug > Uc el conjunto de rumbos factibles ψe no tiene ĺımites. De lo contrario,

está acotado por el conocido cono de accesibilidad con un arco de ángulo ψr dado por

ψr = 2 arcsin Ug
Uc

(2.9)

Para el caso particular de Ug = Uc tenemos ψr = π
2 . Luego, el rumbo ψe es f́ısicamente factible si y sólo si
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cae en ψe ∈ [−ψr

2 ,
ψr

2 ].

Nótese que e el caso particular de Ug = Uc la condición |s| ≤ 1 es siempre verdadera, puesto que

s = sinψec. Operando, (2.5) y (2.6) se reducen a

ψg =


2ψe − ψc if |ψec| ≤

π

2
@ otherwise

(2.10)

y

Ue =


2Ug cosψec if |ψec| ≤

π

2
0 otherwise

(2.11)

respectivamente, cumpliendo Ue ≥ 0.

UcUg

Ue

x
ψc

ψeψg

Figura 2.4: Composición de vectores para la corrección de la deriva. Una dirección (bearing) ψg debe
comandarse para obtener el rumbo (heading) ψe tal que compensa una corriente en la dirección ψc. La
velocidad efectiva resultante Ue depende de la velocidad del glider Ug y de la corriente Uc.

En la Figura 2.4 se muestra la composición de vectores del proceso de corrección de la deriva. Nótese

que todas estas velocidades U· no son vectores, sino magnitudes ‖U· ‖. Asumimos Ue = 0 cuando no es

posible mantener un rumbo ψe. Esto es normalmente consecuencia de una velocidad del glider relativamente

baja Ug respecto a la velocidad de la corriente Uc, que fuerza al glider a navegar siguiendo su dirección ψc.

2.2.2 Modelo de Movimiento de Equilibrio de Fuerzas

En el modelo de equilibrio de fuerzas se parte de una caracterización de los cambios de flotabilidad del glider

para estimar la velocidad de ascenso/descenso del veh́ıculo. A partir de ah́ı se obtiene la velocidad de avance

que es posible integrar para generar la trayectoria simulada. Se trata de un modelo más elaborado, en el

que existen multitud de parámetros que es preciso identificar adecuadamente a fin de obtener una simulación

fiable.
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x

z

y sea surface

γ
θ

α

γ

GC

FD

FL

FB

Fg

Figura 2.5: Diagrama de equilibrio de fuerzas en un glider que representa el movimiento de un glider en el
plano vertical xz junto con las fuerzas que actúan y la definición de ángulos.

Las fuerzas que intervienen en un glider son la flotabilidad FB , que va hacia arriba a la superficie; la

gravedad Fg, que va hacia abajo en dirección opuesta a FB ; la sustentación (lift) FL, que va hacia delante

y abajo o arriba, cuando el glider emerge o se sumerge, respectivamente; y el arrastre (drag) FD, que va

hacia atrás, en contra del movimiento. La sustentación es responsable de generar el movimiento de avance del

veh́ıculo, mientras sea suficiente para compensar la fuerza de arrastre FD. El ángulo de cabeceo θ representa

el ángulo del eje horizontal del veh́ıculo con respecto al plano horizontal. El ángulo de planeo γ representa

el ángulo del plano de ascenso/descenso con respecto al plano horizontal, e incluye el ángulo de ataque α,

que es producido por la dinámica del diseño de las alas y el casco. Por tanto, la diferencia entre el ángulo de

planeo γ y el cabeceo θ es el ángulo de ataque α.

De acuerdo con el diagrama de la Figura 2.5, los equilibrios de fuerzas verticales y horizontales son

FB − cos γFL − sin γFD − Fg = 0 (2.12)

− cos γFD + sin γFL = 0 (2.13)

respectivamente, donde FB es la fuerza de flotabilidad (neta), Fg es la fuerza debida a la gravedad, FL es la

fuerza de sustentación, FD es la fuerza de arrastre y γ es el ángulo de planeo, que se define como la suma

del ángulo de cabeceo θ y el de ataque α, i.e. γ = θ + α.



2.2 Modelos de Movimiento xvii

Tras operar, la velocidad U se puede evaluar como

U =

√
2 sin γ(FB − Fg)
ρS(CD0 + CD1α

2) (2.14)

Dado el rumbo ψe del glider, como teńıamos para el modelo de movimiento puntual, las componentes

horizontal y vertical del vector de velocidad son

ug = U cos γ cosψe (2.15)

vg = U cos γ sinψe (2.16)

wg = U sin γ (2.17)

respectivamente, donde γ = θ + α. La velocidad ug corresponde al eje x o longitud, y vg se mapea al eje

y o latitud. Nótese además que la velocidad de avance del glider Ug es simplemente la composición de las

velocidades horizontales ug y vg, que da

Ug = U cos γ (2.18)

Con esta expresión de la velocidad del glider U , la mayor velocidad de avance Ug se obtiene para

aproximadamente θ = 35◦. De hecho, es posible crear una gráfica spider para el modelo de movimiento

de equilibrio de fuerzas, como muestra la Figura 2.6 para un perfil yo-yo de descenso. Este gráfico representa

la velocidad de avance horizontal Ug frente a la velocidad vertical wg para varios cambios de flotabilidad

∆Vbp de la vejiga. Junto con las curvas para diferentes ∆Vbp obtenemos iso-ĺıneas de mismo ángulo de ataque

α. Además, podemos obtener el cabeceo θ usando el hecho de que λ = θ + α. La figura muestra ug y vg

para ∆Vbp ∈ [50, 300]cc —que es negativo en los descensos. Como era esperable, la gráfica muestra un claro

incremento de la velocidad del glider al aumentar los cambios de flotabilidad ∆Vbp, puesto que producen una

mayor fuerza de flotabilidad FB . De manera similar, pequeños ángulos de ataque α incrementan la velocidad

vertical wg, pero reducen la de avance nominal Ug.

2.2.3 Modelo de Movimiento Dinámico

El modelo dinámico constituye la aproximación más elaborada, al tener en cuenta la combinación de todas las

fuerzas implicadas en el sistema f́ısico. De esta forma, se considera la fuerza de la gravedad, la flotabilidad,
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Figura 2.6: Gráfica spider para el modelo de movimiento de equilibrio de fuerzas durante una inmersión.
Muestra las velocidad de avance del glider Ug frente a la velocidad vertical wg para diferentes cambios de
flotabilidad ∆Vbp —comúnmente la capacidad de la vejiga o la bomba de flotabilidad. Los valores por encima
de la ĺınea Ug > |wg| se corresponden con las velocidades de avance Ug mayores, y los valoers más comunes de
cabeceo θ se toman de ese semiplano. De hecho, la mayor Ug se obtiene con θ ≈ −35◦, que da Ug ≈ 0,5m/s
para ∆Vbp = −200cc, que concuerda con la velocidad de planeo t́ıpica de los gliders SLOCUM, para dicho
cabeceo y configuración de la bomba de flotabilidad.

la hidrodinámica, etc.

2.3 Análisis

Los diferentes modelos representan un compromiso entre exactitud de la simulación y dificultad de calibración.

En general, para el tipo de aplicaciones abordadas en esta tesis, el modelo puntual es la elección más adecuada,

puesto que permite obtener resultados razonablemente aproximados sin requerir un esfuerzo de identificación

de parámetros excesivo.



Caṕıtulo 3

Problemas y Aplicaciones

A lo largo de esta tesis se han ido identificando un conjunto de problemas y aplicaciones vinculadas a los

gliders que se han considerado relevantes por las contribuciones que su resolución aporta a estos veh́ıculos.

En un primer nivel de problemas básicos está la optimización de rutas, que puede verse como un recurso

capacitante para abordar otras aplicaciones más complejas. En un segundo nivel se consideran la evitación de

obstáculos, el seguimiento de trayectorias, la planificación multi-glider o el muestreo de estructuras oceánicas

móviles.

3.1 Optimización de Rutas

El problema básico que se debe resolver es la optimización de la ruta que debe seguir un glider para alcanzar

un determinado destino. Se plantean dos dos problemas de optimización diferentes, en los que se busca: el

camino de ḿınimo tiempo y el de ḿınima distancia restante al destino.

3.1.1 Camino de Ḿınimo Tiempo

El problema del camino de ḿınimo tiempo consiste en la minimización del tiempo requerido por un glider para

llegar a un destino determinado. La principal dificultad de este planteamiento reside en tratar de abordar su

resolución reflejando de la forma más fiel posible el funcionamiento de un glider real.

La Figura 3.1 ilustra este problema, en el que se busca el camino óptimo desde el waypoint inicial x0 al

de destino xgoal. En este problema, utilizando un esquema de optimización no es posible resolverlo de manera

xix
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xgoal

x1
x2

xn−1

x0

t = f(B)

mı́n
B
f(B) : |B| > 1

Figura 3.1: Diagrama del problema del camino de ḿınimo tiempo. Buscamos el camino P —formado por un
conjunto de direcciones (bearings) B— que minimice el tiempo viajado tt = f(B) para ir desde la localización
inicial x0 a la de destino xgoal. El número de direcciones |B| no es fijo, puesto que éste realmente determina el
tiempo viajado. El destino xgoal se considera alcanzado con el punto final xn−1 cae en un radio alrededor
suyo.

directa ya que se desconoce a priori el número de variables implicadas, i.e. el número de direcciones |B| que

forma el camino. La resolución pasa, por tanto, por implementar un esquema iterativo.

3.1.2 Camino de Ḿınima Distancia Restante al Destino

El problema del camino de ḿınima distancia restante al destino consiste en tratar de acercarse lo más posible

a un punto de destino en un tiempo determinado. El planteamiento es bastante directo cuando se aborda

con técnicas de optimización, puesto que se pueden considerar los rumbos a comandar como las variables

del proceso de optimización. Además, la resolución es directa, puesto que el número de direcciones |B| es

conocido de antemano.

La Figura 3.2 ilustra este problema, donde partimos de x0 y llegamos hasta la localización final xn−1 tras

comandar |B| = n direcciones, que forman el camino a buscar, para una duración de tiempo fija y dependiente

de n según el tiempo entre emersiones ts. La optimización minimiza la distancia restante d, mostrada en la

figura.
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d = ‖xgoal − xn−1‖

xgoal

x1
x2 xn−1

x0

mı́n
B
‖xgoal − xn−1‖ : |B| = n

Figura 3.2: Diagrama del problema de ḿınima distanca al destino. Buscamos el camino P defino por un
conjunto de n direcciones B que minimicen la distancia d = ‖xgoal − xn−1‖ desde el punto final xn−1 hasta
el destino xgoal. En este problema el número de direcciones |B| = n es fijo y conocido por anticipado.

3.2 Evitación de Obstáculos

Una de las principales limitaciones de los gliders es su reducida velocidad y maniobrabilidad. Esto hace que

determinadas trayectorias deban de ser cuidadosamente planteadas si se quiere llegar a una solución válida.

Ejemplos de esos escenarios son la presencia de obstáculos en las inmediaciones de la ruta a planificar.

Dichos obstáculos pueden materializarse de diferente forma, incluyendo obstáculos fijos como islas (véase la

Figura 3.3), costa, aguas someras, puertos, etc.; móviles como barcos; o restricciones del tipo corrientes de

intensidad similar o superior a la velocidad de avance del glider.

Los procesos de optimización en estos supuestos deben ser complementados para evitar problemas de

convergencia en la solución o trayectorias no válidas.

3.3 Seguimiento de Trayectorias

Otro conjunto de problemas de interés son aquellos en los que se requiere que el veh́ıculo siga una ruta

predefinida de la forma más ajustada posible. Los procesos de optimización en este caso requieren una

verificación más estricta, puesto que debe tratar de garantizarse un comportamiento adecuado tanto en

los puntos de emersión como a lo largo de los stints.

Para determinar la separación o desviación respecto a la trayectoria deseada se pueden aplicar diversas

fórmulas para su cálculo. En principio, se trata del cómputo del área de un trapezoide recta entre el camino
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Figura 3.3: Evitación de obstáculos en problemas de optimización de planificación de caminos para gliders.
Los obstáculos aparecen en el océano en diferentes formas: corrientes oceánicas fuertes en contra, zonas de
tierra —como las islas de la figura—, rutas de tráfico maŕıtimo, aguas someras, y básicamente cualquier área
dónde el glider no puede navegar realizando su caracteŕıstico perfil yo-yo bajo el agua.

P
=
f
(B

)

x1

x2

xk

Pd
A1

A2

A2 A
k

Ak
Agoal

x0

xgoal
mı́n
B

∑|B|
i=1Ai(f(B),Pd)

Figura 3.4: Diagrama del problema de seguimiento de trayectorias. Buscamos el camino P defino por un
conjunto de direcciones B que minimice la desviación respecto al camino deseado Pd. Tal desviación puede
medirse como una distancia d o una función del área encerrada A. Este problema de seguimiento de trayectorias
se resuelve como una restricción sobre el problema del camino de ḿınimo tiempo, que permite alcanzar el
waypoint de destino xgoal.

deseado y el resultante, computada para cada pareja de puntos de emersión consecutivos, tal y como muestra

la Figura 3.4.
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3.3.1 Relajación de la restricción de seguimiento

En la mayoŕıa de estas aplicaciones, la falta de flexibilidad en la trayectoria se traduce en un pero

aprovechamiento de las corrientes por parte del glider. Una ligera relajación de las condiciones, por ejemplo,

se traduce en una ruta más adecuada en términos del tiempo invertido.

Figura 3.5: Ejemplo de seguimiento de trayectorias para gliders. La figura muestra el camino más corto P
encontrado para seguir el camino deseado Pd desde el waypoint inicial x0 al de destino xgoal, dentro de un
pasillo alrededor de Pd —i.e. el problema de planificación de ruta se relaja. Las direcciones del glider B
para el camino P en cada punto de emersión se muestran junto con las corrientes oceánicas (las corrientes
que exceden la velocidad del glider vg = 0,4m/s están resaltadas ) desde el waypoint inicial al de destino

.

Esto se ilustra en la Figura 3.5, donde se define un pasillo alrededor del camino deseado. De esta forma

es posible relajar a medida la restricción de seguimiento de la trayectoria. De hecho, las soluciones que se

obtienen para que pasillo de mayor tamaño definen una curva de Pareto de soluciones no dominadas, para
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el objetivo de seguimiento de trayectorias y del camino de ḿınimo tiempo entre los extremos del camino

deseado.

3.4 Planificación Multi-glider

Con frecuencia nos encontramos escenarios en los que varios robots deben cooperar para resolver una

determinada tarea. Surgen entonces problemas que no pueden tratarse de forma independiente para cada

veh́ıculo. Ejemplos de este tipo de aplicaciones son el muestreo en formación o la coordinación para facilitar

las tareas de recuperación de los gliders tras finalizar una misión conjunta.

dleftvtleft

vt

vt+1
left

v̂t+1
left

vt+1

dmı́n dmáx

Figura 3.6: Diagrama de restricción de coordinación multi-glider, en el cual cada gliders fija su trayectoria
de acuerdo con una restricción. En este caso, en un instante de tiempo dado t, para un glider o veh́ıculo vt
concreto en la float, imponemos que la distancia dleft con respecto al glider izquierdo vtleft debe caer dentro del
rango [dmı́n, dmáx]. Además, nótese que para un instante dado de tiempo t chequeamos que los tramos no se
intersectan —i.e. no se cruzan entre śı. Por este motivo, el tramo desde vtleft a v̂t+1

left se descarta. Procederemos
de manera similar con el glider de la derecha vtright, si está presente.

Precisamente la Figura 3.6 ilustra el caso de la navegación formando en paralelo. Una flota de gliders debe

navegar garantizando que la restricción impuesta por la condición de vecindad ilustrada en la figura se cumple

en todo momento, desde el waypoint inicial al de destino. Mientras, se resuelve otro problema, como puede

ser el del camino de ḿınimo tiempo. Éste se resolverá simultáneamente para todos los veh́ıculos de la flota,

al mismo tiempo que la optimización está sujeta a la restricción de formación en paralelo, en este caso.
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3.4.1 Recogida Eficiente

Otra problema multi-glider, con una aplicación clara en misiones con múltiples veh́ıculos, es el de la recogida

eficiente de los mismos. Tal y como muestra la Figura 3.7, un barco debe recoger la flota formada por k

veh́ıculos en el menor tiempo posible, puesto que con ello se reduce el coste económico de la recogida —al

reducir el gasto de combustible.

P
rt = f(P
r )

v0
0

v0
1

v0
2

v0
k−1

s

vT0

vT1

vT2

vTk−1

mı́n
∪k

i=0Bi

f(Pr) : Pr = {s,∪ki=0f(Bi), s}

Figura 3.7: Diagrama del problema de la recogida eficiente. Una flota de k veh́ıculos se mueve a la localización
más apropiada vTi durante un tiempo dado T , para cada veh́ıculo i = 0, . . . , k−1, de tal modo que el camino
Pr para recogerlos con un barco s requiera el ḿınimo tiempo tt = f(Pr).

3.5 Muestreo de Estructuras

Un conjunto interesante de aplicaciones son aquellas en las que se necesita muestrear una estructura que

evoluciona en el tiempo. La planificación en estos casos debe tener en cuenta de forma simultánea la previsión
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de las condiciones marinas y la evolución del proceso a muestrear, de forma que se maximicen las posibilidades

de obtener una buena caracterización.

Dentro de esta categoŕıa se recogen aplicaciones destinadas a la detección y seguimiento de proliferaciones

de algas nocivas, filamentos, frentes o giros oceánicos.

3.5.1 Estructuras Coherentes Lagrangianas

Igualmente, es posible obtener Estructuras Coherentes Lagrangianas, que pueden ser estáticas o dinámicas a su

vez. Éstas se obtienen a partir del análisis de estabilidad de la corrientes oceánicas, utilizando los Exponentes

de Lyapunov en Tiempo Finito (FTLE).

Figura 3.8: Exponentes de Lyapunov en Tiempo Finito (FTLE) computados sobre un campo de corrientes
oceánicas sintético que forma un doble giro —superpuesto con flechas blancas. Los valores de FTLE
representan la estabilidad de cada región en el campo, tal que las regiones inestables —como los bordes
de los giros— aparecen en rojo y las estables en azul —como el centroide de los giros.

La Figura 3.8 muestra el campo de FTLE con las corrientes de un doble giro generado sintéticamente.

Claramente observamos como las zonas del borde de los giros son altamente inestables. Esto es debido a que

si el veh́ıculo estuviera en estas zonas, un ḿınimo error en su localización podŕıa significar que acabaŕıa en

posiciones muy diferentes pasado un tiempo T , asumiendo el modelo de movimiento puntual de un derivador.

Dada la incertidumbre en la localización de los gliders bajo el agua, en la medida de lo posible es interesante

evitar estas zonas duran la planificación de rutas.
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3.5.2 Giros Mesoescalares

Los giros son un tipo de estructura que se encuentra a distintas escalas espaciales y temporales en el océano.

Por ello son de alto interés en los estudios del comportamiento del océano. Para poder caracterizarlos es

necesario muestrearlos siguiendo una trayectoria que se focalice en los caracteŕısticas claves del giro, para un

correcta caracterización. La Figura 3.9 muestra patrón de muestreo en forma de molino, donde se realizan

transectos en forma de ĺıneas que cruzan el centroide del giro desde un extremo a otro de su borde. Estas ĺıneas

se seguirán resolviendo el problema de seguimiento de trayectorias, discutido con anterioridad. Este patrón de

muestreo resulta conveniente para estas estructuras, frente a otros patrones comunes en exploración, como el

de lawnmower.

S

x0

c

Figura 3.9: Patrón de muestreo de giros en forma de molino. Para un giro circular, el patrón de muestreo en
forma de molino define un camino que cruza el centro c del giro sucesivamente con una serie de transectos
empezando en x0. Cada transectos es un camino lineal que va desde un lado del giro al opuesto. Ah́ı, viaja
cierta distance a lo largo del borde del giro antes de volver a cruzarlo.





Caṕıtulo 4

Planificación de Rutas

El objetivo central de esta tesis es proponer algoritmos que permitan la optimización de rutas para gliders

oceánicos aprovechando las condiciones de las corrientes marinas en el entorno.

4.1 Revisión

En la bibliograf́ıa se han planteado diferentes soluciones al problema de la planificación de trayectorias para

veh́ıculos marinos no tripulados, en general, y gliders en particular. Como aproximaciones más significativas

podemos encontrar los métodos basados en grafos (A* y variantes), el muestreo probabiĺıstico (RRT) y las

técnicas basadas en optimización (bioinspiradas, teoŕıa de sistemas, campos de potencial).

La Figura 4.1 muestra un diagrama resumen con las técnicas aplicadas a la planificación de rutas para

gliders por otros autores. Estas técnicas se representan en ĺıneas temporales organizadas por categoŕıas,

que representan el tipo de aproximación adoptado. Igualmente, aquellas técnicas inspiradas en variaciones

aproximaciones, se señalan con ĺıneas más finas que interconectan varias categoŕıas.

4.2 Pilotaje Manual

El pilotaje manual de un glider, explicado con anterioridad, se utilizará como elemento base para comparar

los algoritmos de planificación de caminos desarrollados en este trabajo. Aqúı modelamos el pilotaje manual

con una aproximación que fija las direcciones ψe del glider directamente hacia el destino xgoal en cada punto

xxix
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Figura 4.1: Diagrama temporal con algunas de las aproximaciones de planificación de caminos para gliders
más relevantes dentro del campo. El año de publicación y la técnica se muestran en el diagrama, el cual
está dividido por categoŕıas de acuerdo con el tipo de técnica de planificación de caminos usado (de arriba
a abajo): Métodos basados en grafos ; métodos basados en muestreo probabiĺısticos ; métodos de
optimización bio-inspirados ; aproximaciones de Teoŕıa de Sistemas ; funciones de enerǵıa ;
y métodos de optimización numérica . Las ĺıneas delgadas que conectan diferentes categoŕıas
representan algoritmos que combinan ideas de diferentes tipos de aproximaciones.

de emersión. A esta aproximación la denominamos DtG (Direct to Goal).

El diagrama de la Figura 4.2 ilustra el funcionamiento del DtG. Desde la localización xi de un punto de

emersión, se fija la dirección ψg igual al rumbo ψd directo al destino xgoal. El problema de esta aproximación

es que es ciega, es decir, no tiene en cuenta el efecto de las corrientes.
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ψg= ψd

xi−2

xi−1
xi

xgoal

Figura 4.2: Diagrama de la aproximación Direct to Goal, la cual fija la dirección ψg igual al rumbo ψd hacia
el waypoint de destino xgoal desde la localización actual xi.

4.3 Algoritmos propuestos

A lo largo de este trabajo de tesis se han desarrollado un conjunto de algoritmos de planificación especialmente

adaptados a las caracteŕısticas de los gliders. A continuación se incluye una descripción de sus principales

caracteŕısticas.

4.3.1 Adaptación del A*

Se ha adaptado el algoritmo clásico para operar en base a la simulación de las trayectorias posibles del glider

sobre el mapa de corrientes. El A* se utiliza comúnmente para resolver el problema del camino más corto, pero

utilizando el modelo de movimiento puntual restringido de la Sección 2.2.1.2 es posible resolver el problema

del camino de ḿınimo tiempo.

ψe

xi−2

xi−1 xi

xgoalfmı́n

Figura 4.3: Algoritmo A* clásico sobre una rejilla uniforme que define el dominio del espacio de búsqueda Ω.
Los ángulos de rumbo ψe están restringidos por la rejilla, produciendo trayectorias en ĺınea recta entre nodos
y tiempos de emersión no constantes para los problemas de planificación de caminos para gliders.

El funcionamiento del algoritmo A* se ilustra en el diagrama de la Figura 4.3. Podemos ver como la

dirección ψg que se fija para el glider debe ser tal que permita seguir el rumbo ψe, tal que el veh́ıculo pueda



xxxii 4 Planificación de Rutas

ir del nodo actual a otro nodo de la rejilla del grafo de búsqueda. Es por eso que se requiere del modelo de

movimiento restringido. El problema fundamental de esta aproximación es que en zonas de corrientes fuertes,

el cono de accesibilidad se puede estrechar hasta el punto de que no sea posible llegar a ningún nodo vecino

desde el nodo actual.

Algorithm 4.1 Pseudo-código del algoritmo A* para búsquedas en grafo impĺıcitos.
Require: Nodos inicial nstart y destino ngoal. Función heuŕıstica h(n) que estima el coste desde el nodo n

a ngoal. La heuŕıstica h(n) se asume consistente, de modo que se usa un lista cerrada C para hacer
la búsqueda más eficiente. Función parents(ni) que recupera el camino P extrayendo los padres de
ni = ngoal a partir del mapa parent( · ) map recursivamente, hasta que alcanza nstart.

Ensure: Camino óptimo P encontrado desde nstart a ngoal.
Algorithm: A*(nstart, ngoal) return P

1: g(nstart) = 0 . asumimos g(ni) =∞ para el resto
2: parent(nstart) = ∅ . asumimos parent(ni) = ∅ para el resto también
3: O = C = ∅ . listas abierta y cerrada vaćıas
4: O.insert(nstart, g(nstart) + h(nstart))
5: while O 6= ∅ do
6: ni = O.pop . extraer nodo ni con el ḿınimo coste
7: if ni = ngoal then . destino ngoal alcanzado
8: return parents(ni) . camino encontrado (extráıdo de parent( · ))
9: end if

10: C = C ∪ {ni} . cerrar nodo ni
11: for all ni+1 ∈ successors(ni) do . para cada sucesor ni+1
12: g′ = g(ni) + c(ni, ni+1) . valor g candidato
13: if (ni+1 /∈ C ∪ O) ∨ (g′ < g(ni+1)) then . no descubierto o mejor g′
14: g(ni+1) = g′ . actualizar
15: parent(ni+1) = ni
16: O.insert(ni+1, g(ni+1) + h(ni+1)) . decrementar clave (actualizar, o insertar si no

descubierto)
17: end if
18: end for
19: end while
20: return ∅ . ningún camino encontrado

En el Algoritmo 4.1 tenemos el pseudo-código del algoritmo A* utilizado. Éste emplea un grafo impĺıcito,

que se construye evaluando el modelo de movimiento restringido en la función que genera los nodos sucesores

—o vecinos— del nodo actual. Como se mencionó anteriormente, en algunos casos el número de vecinos

puede ser muy bajo o, incluso nulo, debido al efecto de las corrientes oceánicas.

El algoritmo A* emplea una heuŕıstica para acelerar la búsqueda del camino óptimo, siendo aśı más rápido

que el algoritmo de Dijkstra. Para computar la heuŕıstica h(n), estimamos la máxima velocidad Ucmáx =

máx
x∈P

(‖Uc(x, t)‖) de las corrientes oceánicas a lo largo del camino P seguido por el glider. Puesto que P
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no se conoce de antemano, estimamos Ucmáx usando un dominio Ω centrado espacial y temporalmente en la

localización actual y tiempo. Dada Ucmáx y la velocidad nominal del glider Ug, computamos una subestimación

temporal del coste de alcanzar el destino desde al localización actual x, del nodo n, usando la distancia

d = ‖x− xgoal‖ al destino,

h(n) = d

Ug + Ucmáx

(4.1)

que es una función heuŕıstica conservativa pero admisible. Además, mientras usemos la misma estimación de

Ucmáx para cada nodo n en el grafo, esta heuŕıstica también es consistente.

4.3.2 CTS-A*

El patrón de movimiento del glider es recogido con precisión en este algoritmo, de manera que los resultados

tienen un mayor plausibilidad. A diferencia del A*, el CTS-A* genera tiempos constantes entre emersiones,

al igual que los gliders. Para ello, en la generación de sucesores del grafo impĺıcito de búsqueda, emplea el

modelo de movimiento puntual no restringido explicado en Sección 2.2.1.1.

ψg

xi−2

xi−1

xi

xgoalfmı́n

Figura 4.4: Diagrama de funcionamiento del algoritmo Constant-Time Surfacing A*. En cada localización de
emersión xi diferentes direcciones ψg son consideradas, integrando la trayectoria del glider durante el tiempo
entre emersiones ts, o múltiplos s· ts.

El diagrama de la Figura 4.4 ilustra como ahora se considera un conjunto de direcciones ψg y para cada

una de ellas se integra el modelo de movimiento no restringido. La posición resultante de la emersión tras el

tiempo ts se lleva a una rejilla sólo con la finalidad de mantener constante el uso de memoria del algoritmo.

Aśı, mantenemos los tiempos entre emersiones constantes y simulamos la verdadera trayectoria del glider

realizando los perfiles yo-yo mientras navega sumergido entre emersiones.

En el Algoritmo 4.2 se muestra el procedimiento de generación de sucesores, en el que se considera un

muestreo uniforme de direcciones ψg —con una determinada discretización— y para cada una se integra el
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Algorithm 4.2 Generación de sucesores en el CTS-A*.
Require: Nodo actual n, el número k de direcciones (bearings) a muestrear y el tiempo entre emersiones ts

para integrar la trayectoria. La integración de la trayectoria require el paso de integración dt, la velocidad
nominal del glider vg(ψg) para una dirección ψg, y el campo de velocidades de las corrientes oceánicas
vc(x). Si un nodo vecino m tiene el mismo coste g′ que la nueva trayectoria xψg

, se usa una función
d(x, n). Si d(x, n) = h(n), podemos usar f(n) en lugar de g(n), con una sola condición.

Ensure: Lista de sucesors S y actualización del etiquetado de nodos considerando el coste g(x) y la distancia
d(x,m) de la localización x emparejada con el nodo m.

Algorithm: successors(n, k, ts) return S
1: S = ∅
2: for all 1 to k do
3: ψg ∼ [0, 2π) . muestrear bearing
4: s = 0
5: repeat
6: xψg

= trajectory(ts, dt,vg(ψg),vc(x),xn)
7: m = NN(xψg

) . nodo m más cercano a xψg

8: s = s+ 1
9: until m 6= n

10: g′ = g(n) + s· ts
11: if m /∈ C ∪ O then . m no descubierto hasta ahora
12: mx = xψg

13: else
14: if g′ < g(m) then . menor coste
15: mx = xψg

16: else if g′ = g(m) then . igual coste, pero
17: if d(xψg

,m) < d(mx,m) then . mejor localización
18: mx = xψg

19: end if
20: end if
21: end if
22: S = N ∪ {m} . añadir m a la lista de sucesors S
23: end for
24: return S

modelo de movimiento no restringido. Este algoritmo también controla el etiquetado de los nodos, que se

encarga de guardar las localizaciones de las emersiones en los nodos. Se guardan en base al coste acumulado

y una función que puede ser la distancia más cercano al nodo o la propia heuŕıstica.

4.3.3 ABS

Para aliviar el coste computacional del CTS-A*, se emplea un muestreo en base a una función de densidad

de probabilidad (PDF) que tiene en cuenta tanto la dirección predominante de la corriente como el rumbo

fijado para el glider. Esto mejora el muestreo uniforme de las direcciones ψg adoptado en la versión básica del
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algoritmo CTS-A*.

−π −π

2
ψc = 0 ψd = π

2
π

ψe [rad]

ω = 1

Figura 4.5: Combinación de distribuciones PDF fψc(ψe) y una distribución PDF fψd
(ψe) que considera el

rumbo ψd = π
2 directo al destino, modelada con (4.5). SR ∈ [50, 150] % .

En la estrategia de muestreo adaptativo de direcciones (ABS) es posible modelar la PDF considerando la

velocidad efectiva Ue y el rumbo ψd al destino. Primeramente, Ue se modela con el modelo de movimiento

restringido de la Sección 2.2.1.2. Dados Ug, Uc, ψc y el rumbo deseado ψe, se computa la dirección ψg

necesaria para compensar la deriva producida por las corrientes como

ψg =


ψe + arcsin s if |s| ≤ 1

@ otherwise
(4.2)

que da la velocidad efectiva Ue

Ue =


Ug
√

1− s2 + Uc cosψec if |s| ≤ 1

0 en otro caso
(4.3)

donde

s = Uc
Ug

sinψec (4.4)
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y ψec = ψe − ψc.

Se construye otra PDF fψd
(ψe) considerando la diferencia entre el rumbo ψe y ψd. Proponemos la

siguientes distribución Normal para modelarla,

N (ψe; µ, σ2) = 1√
2πσ2

exp
{
− (ψe − µ)2

2σ2

}
ψe ∈ [0, 2π] (4.5)

con media µ = ψd in rad y varianza σ2.

Componiendo ambas PDFs, obtenemos la PDF propuesta tal y como se muestra en la Figura 4.5 para

varios ratios de velocidad SR. A partir de esta nueva PDF, una vez normalizada se muestrean los rumbos

ψe, y a partir de ellos se tienen las direcciones ψg que se usarán para integrar el modelo de movimiento

no restringido tal y como se indica en el algoritmo CTS-A*. Aśı, podemos emplear un menor número de

direcciones, reduciendo el tiempo de cómputo, pero manteniendo o mejorando la calidad de la solución,

puesto que exploramos en las direcciones más prometedoras.

4.3.4 Adaptación del RRT

En este algoritmo se generan de forma rápida las trayectorias más probables que puede seguir el glider en una

exploración dirigida de su entorno. El algoritmo RRT se muestra en el Algoritmo 4.3, en su versión genérica,

la cual es aplicable en la planificación de caminos para gliders. Es importante indicar que este algoritmo

no busca la solución óptima, sino una solución factible en poco tiempo de cómputo en problemas de gran

dimensionalidad.

Algorithm 4.3 Pseuo-código del algoritmo RRT.
Require: Localización inicial x0 y destino xgoal y número de iteraciones K.
Ensure: Árbol o grafo G, que conectará x0 con xgoal.
Algorithm: RRT(x0, K) return G

1: G.init(x0) . añadir localización inicial
2: for all 1 to K do
3: xrand = rand . nueva localización aleatoria
4: xnear = NN(S(G), xrand) . localización más cercana en el swath S(G)
5: xnew = new(xnear, ∆x) . nueva localización
6: G .add vertex(xnew)
7: G .add edge(xnear, xnew)
8: end for
9: return G

En la práctica, hemos observado que en el problema de planificación de rutas para gliders, al menos se
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(a) 50 iteraciones. (b) 500 iteraciones.

Figura 4.6: Ejemplo de un árbol RRT después de (a) 50 y (b) 500 iteraciones.

requieren dos árboles de búsqueda, una lanzado desde la localización inicial x0 y otro desde el destino xgoal

que irá en sentido contrario —i.e. utilizando los valores de corrientes invertidos. Esta aproximación sólo es

válida con campos de corrientes estáticas, ya que de ser dinámicas no seŕıa posible determinar en que instante

de tiempo se lanza el árbol desde el destino, pues para ello hay que resolver el problema.

4.3.5 Optimización

Este algoritmo permite afrontar planificaciones complejas a partir de un sistema de inicialización adecuado al

problema seguido por un esquema de optimización iterativo.

Para resolver el problema de ḿınima distancia restante al destino, definimos una función objetivo basada

en el punto final xn−1 de integración de la trayectoria del glider para todas las direcciones B comandadas

desde el waypoint inicial x0,

xn−1 = f(x0,B, C,G) (4.6)

donde C es el mapa de corrientes oceánicas y G es la configuración del glider —i.e. la velocidad nominal

Ug y otros parámetros usados en el modelo de movimiento no restringido de la Sección 2.2.1.1. Puesto que

queremos minimizar la distancia restante al waypoint destino xgoal, construimos nuestra función objetivo como

la distancia restante entre xn−1, dado por (4.6), y xgoal. Es decir, la función objetivo f ′ es

f ′(x0,B, C,G) = ‖xgoal − f(x0,B, C,G)‖ (4.7)
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donde ‖· ‖ es una distancia métrica, que en nuestro caso es la longitud del arco del great circle que pasa por

xn−1 y xgoal, ya que navegamos una geometŕıa esférica que aproxima a La Tierra; para misiiones cortas, con

distancias pequeñas, podemos usar otra aproximación o incluso la distancia Eucĺıdea (véase la Sección A.2).

4.3.5.1 Optimización Iterativa

En el caso del problema del camino de ḿınima distancia, no se conoce el tiempo que se tardará en llegar al

destino, pues es lo que buscamos resolver. Por tanto, tampoco conocemos el número de direcciones ψg ∈ B,

que forman parte de la función objetivo. Para solucionar este problema planteamos un método de optimización

iterativo, que se muestra en el Algoritmo 4.4.

Algorithm 4.4 Pseudo-código del algoritmo de Optimización Iterativa.
Require: Puntos inicial x0 y destino xgoal, el mapa de corrientes oceánicas C, la configuración del glider G y

el radio temporal de precisión del destino tmáx.
Ensure: Lista de direcciones (bearings) B para el camino de ḿınimo coste encontrado.
Algorithm: iterative optimization(x0, xgoal, C, G, tmáx) return B

1: x = x0 . último punto de emersión hasta ahora
2: B = ∅ . lista de direcciones que representa el camino
3: repeat
4:

∣∣∣B̂∣∣∣ = length(x,xgoal, C,G) . # direcciones necesarias para alcanzar xgoal desde x

5: B̂ = init(x,xgoal,
∣∣∣B̂∣∣∣) . initializar las nuevas direcciones

∣∣∣B̂∣∣∣
6: B = B ∪ B̂
7: 〈B,x〉 = optimize(x0,B, C,G)

8: t = ‖xgoal − x‖
Ucmáx

. tiempo desde el último punto de emersión al destino
9: until t < tmáx

10: return B

4.3.5.2 Inicialización Inteligente. Evitación de Obstáculos

El principal problema de las técnicas de optimización es que requieren una buena solución inicial para no

verse atrapadas en ḿınimos locales. En el caso de entornos con obstáculos se requiere de un procedimiento

de inicialización que encuentra una solución suficientemente buena, para luego ser optimizada.

En general, para entornos libres de obstáculos se puede utilizar la aproximación del DtG como solución

inicial. Sin embargo, en presencia de obstáculos proponemos un algoritmo para la fase de inicialización que

emplea una versión gruesa del algoritmo CTS-A*. Con ella conseguimos evitar obstáculos y aśı proporcionar

una solución inicial al algoritmo de optimización. La Figura 4.7 ilustra los cuatro pasos de este procedimiento
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(a) Paso #1. (b) Paso #2.

(c) Paso #3. (d) Paso #4.

Figura 4.7: La inicialización inteligentes para la Evitación de Obstáculos comprende los siguientes pasos:
(a) Primer paso del proceso de inicialización: Vectores radiales emanando desde el punto inicial. (b) Segundo
paso del proceso de inicialización: Selección de nodos candidatos. (c) Tercer paso del proceso de inicialización:
Vectores radiales emanando desde cada nodo candidato. (d) Cuarto paso del proceso de inicialización: Selección
de la mejor trayectoria.

de inicialización:

1. Se lanzan vectores en dirección radial desde el punto inicial x0.

2. Se seleccionan nodos candidatos.
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3. Se vuelven a lanzar más vectores radiales desde cada nodo candidato.

4. Finalmente se selecciona la mejor trayectoria.

4.4 Planificación de Rutas sobre Estructures Oceánicas

A parte de las técnicas comentadas hasta ahora, es posible planificar rutas teniendo en cuenta estructuras

oceánicas presentes en el océano, en lugar de todas las corrientes. Para ello podemos aplicar técnicas de

identificación y seguimiento de dichas estructuras, como veremos a continuación.

4.4.1 Análisis de Estabilidad

El análisis de estabilidad del campo vectorial de corrientes oceánicas permite determinar qué zonas son

estables y cuáles inestables, utilizando tanto corrientes estáticas como dinámicas. Para ello computamos el

campo FTLE con la siguiente expresión,

σTt0(x) = 1
|T |

ln
√
λmáx(∆) (4.8)

que representa el FTLE más grande para un tiempo de integración finito T , asociado al punto x y el instante

de tiempo t0.

Algorithm 4.5 Pseudo-código para computar el campo FTLE.
Require: Localización inicial x0 de un conjunto de part́ıculas X0 en el instante de tiempo t0, para su advección

durante el tiempo de integración T .
Ensure: Campo FTLE σTt0(x).
Algorithm: FTLE(X0, t0, T ) return σTt0(x)

1: for all x0 ∈ X0 do
2: xT = φt0+T

t0 (x0) : xT ∈ XT . advección de la part́ıcula x0 durante el tiempo T
3: end for
4: J = ∇XT . gradiente del mapa de flujo XT
5: ∆ = J∗J

6: σTt0(x) = 1
|T |

ln
√
λmáx(∆) . aplicar (4.8)

7: return σTt0(x)

En el Algoritmo 4.5 se muestran los pasos para obtener el FTLE a partir del campo de corrientes. El

resultado puede verse en la Figura 4.8 para un vórtice Stuart, generado sintéticamente. Podemos observar
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Figura 4.8: Análisis de Estabilidad computando el campo FTLE de un vórtice Stuart. Las regiones inestables
se corresponden con LCSs, las cuales aparecen en tonos rojos en los bordes de los giros/vórtices.

claramente como las zonas del borde de los giros son altamente inestables. Este información no es fácil de

apreciar directamente sobre el campo de corrientes, especialmente si es dinámico, como en este caso. De

ah́ı surge la utilidad de computar el campo FTLE. A partir de este campo, es posible segmentar las zonas

inestables y aśı obtener Estructuras Coherentes Lagrangianas (LCSs). Aśı, es posible planificar rutas evitando

estas zonas, puesto que su inestabilidad indica que el siguiente punto de emersión puede variar bastante del

esperado, es decir, aumentar su incertidumbre.

4.4.2 Giros Oceánicos

Otro tipo de estructuras muy comunes en el océanos son los giros. Nos encontramos giros de distintas escalas

espaciales y temporales. Aśı, los giros mesoescalares son interesantes para el estudio de múltiples procesos

oceánicos.

La Figura 4.9 muestra un modelado tridimensional de un giro mesoescalar en sectores. Este modelo se

puede incorporar a un Algoritmo Genético para realizar el seguimiento de la estructura, tras su identificación.

Se ha desarrollado una técnica para dar los primeros pasos en el muestreo de estas estructuras móviles,

optimizando la estrategia de muestreo de una determinada zona del giro —v.g. centroide, borde, etc.—,

aśı como su caracterización, lo cual tiene especial utilidad en la asimilación de datos por parte de modelos

oceánicos.
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Figura 4.9: Modelo de giro mesoescalar usado para el algoritmo de planificación de caminos para detectar,
caracterizar y seguir este tipo de estructuras oceánicas móviles. La figura muestra la segmentación del volumen
del giro.

4.5 Libreŕıas y Herramientas

Finalmente, no sólo se han contribuidos algoritmos novedosos a la planificación de rutas con gliders, sino

también una serie de libreŕıas y herramientas para la misma y la visualización de las salidas de los modelos

oceánicos y los resultados de la planificación.

Bajo el nombre de Pinzón, nuestro software permite visualizar los caminos encontrados —junto con sus

direcciones ψg en cada punto de emersión— sobre Google™ Earth, tal y como muestra la Figura 4.10.

Asimismo, se ha automatizado la descarga de productos de múltiples modelos oceánicos y la visualización de

sus productos, como la temperatura, salinidad, SSHA, las corrientes, etc. (véase el Apéndice A).
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Figura 4.10: Ejemplo de camino planificado con Pinzón en la región ESEOAT del ROM del proyecto ESEOO
usando los puntos de emersión de RU27, para alcanzar el objetivo especificado como cruzar un meridiano. La
salida es una animación KML que puede ejecutarse en Google™ Earth; en la figura vemos una captura.
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Resultados Experimentales

Los algoritmos desarrollados en este trabajo de tesis han sido probados para evaluar su validez y comparados

entre śı sobre diferentes escenarios para determinar los más adecuados a cada problema. En estos experimentos

se han utilizado, por un lado, mapas de modelos regionales de predicción, y por otro, mapas sintéticos

generados para reproducir condiciones particulares de test.

Los principales problemas que se han analizado son los siguientes: camino de ḿınimo tiempo, camino

de ḿınima distancia restante al destino, evitación de obstáculos, seguimiento de trayectorias, planificación

multi-glider y, a modo preliminar, seguimiento de estructuras móviles.

En los problemas básicos se ha analizado el rendimiento de los diferentes algoritmos sobre una bateŕıa

de casos de prueba representativos, incluyendo diferentes rangos de distancia y condiciones de corrientes.

Se ha realizado una comparativa de las distintas aproximaciones aplicando las correspondientes métricas de

evaluación.

5.1 Camino de Ḿınimo Tiempo

Para el camino de ḿınimo tiempo hemos probado los algoritmos DtG, RRT, A*, CTS-A* con M = 18

muestras, y Optimización Iterativa. Los resultados se resumen en el Cuadro 5.1.

Se han lanzado 20 casos de test que muestran como el DtG y RRT no son capaces de encontrar ninguna

solución en algunos casos. Por contra, el A*, CTS-A* y el método de Optimización Iterativa, siempre encuentra

solución, siendo la de éste último ligeramente mejor que los métodos basados en grafos.

xlv



xlvi 5 Resultados Experimentales

Cuadro 5.1: Coste del camino (tiempo viajado) en d́ıas para el problema del Camino de Mı́nimo Tiempo. La
media de 20 casos de test se muestra en la comparativa.

Method All Successful
DtG NA in 60 % 18,0
RRT NA in 20 % 17,7
A* 19,4 17,1
CTS-A* 19,2 16,9
ABS CTS-A* 19,2 16,9
Iterative Optimization 18,9 16,7

Figura 5.1: Comparativa del Camino de Mı́nimo Tiempo para el DtG, RRT, A*, CTS-A* con M = 18
muestras, y Optimización Iterativa, para un ratio de velocidad alto, i.e. para corrientes oceánicas fuertes,
fijando la velocidad del glider a Ug = 0,2m/s. La distancia viajada fue d = 861,88km. La figura muestra
el camino sobre las corrientes oceánicas (las corrientes que exceden la velocidad del glider Ug están
resaltadas ) desde el waypoint inicial al de destino . El tiempo viajado tt (en d́ıas) para cada método
fue: DtG = 53,8; RRT = 49,7; A* = 49,6; CTS-A* = 50,0; Optimización Iterativa: 47,4.

La Figura 5.1 muestra un ejemplo de ejecución para el problema del camino de ḿınimo tiempo, utilizando

una velocidad nominal del glider de Ug = 0,2m/s, lo cual equivale a navegar con corrientes fuertes en este
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ejemplo. Se observa claramente como la ruta del DtG y RRT son similares y mas largas que las de los métodos

basados en grafos, A* y CTS-A*, y el de Optimización Iterativa, que encuentran caminos similares entre śı.

5.2 Camino de Ḿınima Distancia Restante al Destino

Para el camino de ḿınima distancia restante al destino hemos probado los algoritmos DtG, A*, CTS-A* con

M = 18 muestras, y Optimización; no se prueba el algoritmo RRT porque manejamos corrientes dinámicas.

Los resultados se resumen en el Cuadro 5.2.

Cuadro 5.2: Diferencia promedio de la distancia al destino (en km) con respecto a la aproximación DtG;
positivo es mejor. Valores para los 65 casos de test ejecutado para el problema de ḿınima distancia restante
al destino.

Method All Strong Weak
A* 0,5 4,9 −6,0
CTS-A* 5,2 8,6 0,2
Optimization 8,5 12,4 2,7

Se han lanzado 65 casos de test, divididos en corrientes débiles y fuertes. La mejora respecto al DtG, que se

muestra en el Cuadro 5.2, es claramente mayor con corrientes fuertes. Asimismo, el algoritmo de Optimización

es el que deja al veh́ıculo más cerca del destino, después del tiempo de misión T dado.

En la Figura 5.2 se muestra un caso de test, en el que tras para el tiempo de misión T vemos la posición

final xn−1 del camino encontrado por cada algoritmo. El DtG y el A* se quedan bastante más lejos que el

CTS-A* y el de Optimización.

5.3 Evitación de Obstáculos

Para la evitación de obstáculos se han seleccionado escenarios extráıdos del mar de Canarias, donde la presencia

de las islas permite definir configuraciones complejas de resolver para la planificación.

Se han analizado los algoritmos tanto para misiones largas con corrientes estáticas, como misiones cortas

con corrientes dinámicas. Esto es equivalente a decir que se ha probado la evitación de obstáculos para el

problema del camino de ḿınimo tiempo y el de ḿınima distancia restante al destino, respectivamente. A

continuación se muestran los resultados para este segundo problema, resumidos en el Cuadro 5.3.
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Figura 5.2: Captura de un caso de test para 4 d́ıas; la última predicción se repite para rellenar las no disponibles.
La figura muestra el camino sobre las corrientes oceánicas (las corrientes que exceden la velocidad del
glider Ug = 0,4m/s están resaltadas ) desde el waypoint inicial al de destino . La distancia desde
el waypoint inicial al de destino es 344,6km. La distancia restante para alcanzar el destino es, para cada
algoritmo: Optimización = 68,9km; CTS-A* = 85,1km; A* = 169,4km; DtG = 217,6km.

Cuadro 5.3: Diferencia de la distancia restante para alcanzar el waypoint de destino con respecto al método
Optimización-CTS-A*, para el problema de ḿınima distancia restante al destino. Promedio y desviación t́ıpica
entre paréntesis, ambas en km. La tabla resume los 45 casos de test realizados para un velocidad del glider
de Ug = 0,4m/s.

Method Total Coast Offshore
DtG 42,4 (46,0) 67,4 (39,0) 13,6 (24,0)
A* 8,5 (18,0) 5,3 ( 7,0) 9,1 ( 6,0)
CTS-A* 5,2 ( 6,0) 5,8 ( 7,0) 6,5 ( 4,0)
Optimization 10,3 (21,0) 19,6 (26,0) 0,0 ( 0,0)

Los resultados se han separado para zonas de costa y offshore, comparando cada técnica con la del

método Optimización-CTS-A*, que aplica el método de inicialización inteligente utilizando una versión gruesa

del algoritmo CTS-A*, tal y como se explica en la Sección 4.3.5.2. Observamos como lejos de costa el resultado

sin esta fase de inicialización es equivalente a la usada en el método de Optimización, lo cual indica su validez

en todos los escenarios. En zonas costeras, esta inicialización mejora cerca de 20km la solución del método

de Optimización. Además, se consiguen resultados en torno a ≈ 5km mejores que con las técnicas basadas
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(a) Caso I. (b) Caso II.

(c) Caso III. (d) Caso IV (sin obstáculos).

Figura 5.3: Comparativa del problema de Mı́nima Distancia Restante al Destino para el problema de Evitación
de Obstáculos. Comparativa de 4 casos de test realizados Ug = 0,4m/s. La distancia restante al waypoint
de destino is (SL si Stop in Land): (a) Optimización-CTS-A* = 13,3km, Optimización = 22,1km, CTS-
A* = 20,6km, A* = 25,9km, DtG = 157,1km (SL); (b) Optimización-CTS-A* = 0,0km, Optimización
= 69,7km (SL), CTS-A* = 3,2km, A* = 8,7km, DtG = 80,0km (SL); (c) Optimización-CTS-A* = 46,7km,
Optimización = 54,2km (SL), CTS-A* = 60,7km (SL), A* = 58,9km (SL), DtG = 61,3km (SL); (d)
Optimización-CTS-A* = 67,4km, Optimización = 68,8km, CTS-A* = 85,1km, A* = 169,4km, DtG =
217,6km. Respectivamente, la distancia total desde el waypoint inicial al de destino es: 176,5km, 125,8km,
75,2km, 343,4km.

en grafos. Más lejos aún queda la aproximación DtG.

En la Figura 5.3 se muestran 4 casos de evitación de obstáculos cerca de islas. En (d) se incluye el caso
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sin obstáculos visto previamente, a efectos comparativos. Podemos observar como en algunos casos de test

la mayoŕıa de técnicas quedan atrapadas; nótese que las técnicas basadas en grafos pueden verse atrapadas

debido las corrientes en torno a determinadas zonas.

5.4 Seguimiento de Trayectorias

En el caso del seguimiento de trayectorias se ha comprobado la capacidad de las soluciones propuestas para

mantener la ruta del glider sobre la ruta deseada. También se ha comprobado la mejora en el rendimiento que

se consigue relajando ligeramente las condiciones del seguimiento.

Figura 5.4: Comparativa de caminos encontrados con un glider viajando a Ug = 0,4m/s para cruzar un
giro desde un lado a otro, para el problema del Seguimiento de Trayectorias. El Camino de Mı́nimo Tiempo
también se incluye. Los puntos de emersión se marcan a lo largo del camino. Las corrientes oceánicas
(las corrientes que exceden la velocidad del glider Ug están resaltadas ) y la ĺınea de costa también se
muestran.

Precisamente, la Figura 5.4 muestra los caminos relajando la condición de seguimiento de la trayectoria

deseada, para diversos anchos desde 0,2km a 10km. El camino deseado se definió como una ĺınea recta, y

el método de Optimización Iterativa se ejecutó con una restricción de seguimiento de trayectoria, alrededor

del camino deseado, según el rango de relajación anterior. Igualmente, se calcula la trayectoria que sigue

estrictamente el camino deseado.

Con la relajación de la condición de seguimiento de la trayectoria obtenemos varias soluciones, que definen
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Figura 5.5: Curva de Pareto que muestra el tiempo viajado frente al promedio de la distancia al camino
deseado, para los caminos encontrados en la Figura 5.4.

la curva de Pareto mostrada en la Figura 5.5. La curva de Pareto muestra los dos objetivos contrapuestos uno

frente al otro, i.e. el tiempo viajado (eje y) frente al promedio de la distancia al camino deseado (eje x) —que

es la ĺınea recta en este ejemplo. Todos los caminos intentan mantener el veh́ıculo cerca de la ĺınea recta,

pero esta restricción se relaja en cada simulación incrementando el tamaño del pasillo alrededor de la ĺınea.

Como muestra la figura, mientras más estrecho es el pasillo, mayor es el tiempo viajado. Mientras tanto, al

agrandarse el pasillo, nos aproximamos al camino de ḿınimo tiempo de la optimización sin restricciones.

Finalmente, es posible concatenar múltiples problemas de seguimiento de trayectorias, como muestra el

patrón en forma de molino de la Figura 5.6. Éste está compuesto por múltiples trayectorias en forma de ĺıneas

rectas que deben ser seguidas. Aśı, con la solución a este problema se pueden realizar aplicaciones de muestreo

de giros siguiendo, por ejemplo, este patrón de molino.

5.5 Planificación Multi-glider

Para la planificación multi-glider se han seleccionado escenarios en los que los gliders deb́ıan mantener una

posición relativa fija con respecto a un veh́ıculo ĺıder. También se han planteado problemas de optimización

del tiempo de recuperación de múltiples unidades desplegadas.
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Figura 5.6: Ensamblaje de problema de seguimiento de trayectorias para realizar una misión de muestreo y
caracterización de un giro mesoescalar. La trayectoria de molino se descompone en ĺıneas rectas que cruzan
el giro múltiples veces desde diferentes direcciones, para las cuales se resuelve el problema de seguimiento de
trayectorias usando el método de Optimización Iterativa. Se muestran las direcciones del glider en cada
punto de emersión, junto con las corrientes oceánicas desde el waypoint inicial al de destino .

5.5.1 Recogida Eficiente

Para la recuperación de múltiples gliders tras una misión, planteamos el problema de su recogida eficiente

con un barco. Este problema requiere la planificación coordinada de los caminos de todos los gliders de la

flota, para aśı reducir el tiempo de recogida y, por consiguiente, el gasto económico de la mismo, atendiendo

al combustible consumido por el barco.

En la Figura 5.7 se muestran varias soluciones para el problema de recogida eficiente utilizando el método

de Optimización. Se busca la recogida de ḿınimo tiempo, a la vez que se intenta resolver el problema de

ḿınima distancia restante al destino para un peŕıodo de 4 d́ıas. Los gliders viajan a Ug = 1km/h, con un

tiempo entre emersiones de ts = 8h. En (a), tenemos las solución con planificación de caminos individual.

Por el contrario, las otras dos figuras muestran los resultados usando planificación de caminos multi-glider.

En (b), todos los gliders intentan encontrarse en un punto para la recogida. Finalmente, en (c), el camino del
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(a) Individual. (b) Encontrarse juntos. (c) Camino del barco.

Figura 5.7: Planificación de caminos multi-glider y coordinación para una flota de 5 gliders que tienen que ser
recuperados del mar por un barco en el ḿınimo tiempo. El barco tiene que viajar: (a) 192,0km; (b) 167,5km;
(c) 165,4km, respectivamente.

barco se incluye en el proceso de optimización. Esta última aproximación es la que da mejores resultados.

5.6 Seguimiento y Muestreo de Estructuras Oceánicas Móviles

Finalmente, hemos realizado algunos simulaciones preliminares de la técnica comentada en la Sección 4.4.2,

para realizar el seguimiento y muestreo de estructuras oceánicas móviles. Concretamente, hemos modelado

giros mesoescalares e intentamos seguirlos al mismo tiempo que se muestran determinadas zonas de interés

de los mismos.

La Figura 5.8 muestra una captura de las corrientes oceánicas y la trayectoria optimizada al final de la

misión; nótese que el giro mueve mientras se muestrea. En este ejemplo se intenta muestrear de manera

óptima un región situada en el borde del giro.
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Figura 5.8: Ejemplo en el que el contorno de un giro mesoescalar se sigue usando nuestra aproximación con
un Algoritmo Genético y el modelo discreto del giro.
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Conclusiones

En esta tesis se ha abordado el estudio del problema de la planificación automática de rutas para gliders a

partir de modelos de predicción numérica. Se ha demostrado que es posible mejorar las capacidades operativas

de estos veh́ıculos introduciendo herramientas de asistencia al pilotaje.

6.1 Aportaciones Originales

Como principales aportaciones conviene destacar el conjunto de algoritmos de planificación desarrollados. Las

herramientas complementarias generadas constituyen asimismo aportaciones válidas que facilitan el trabajo

en este ámbito de manera importante.

Además de lo anterior, en la tesis se han realizado diferentes análisis cuyas conclusiones pueden considerarse

contribuciones en śı mismas, como es el caso de la revisión bibliográfica comentada, los estudios sobre las

alternativas de modelado o el análisis de aplicabilidad de las técnicas de optimización.

De hecho, tras el análisis bibliográfico hemos visto que el problema del camino de ḿınimo tiempo no es

común en la robótica de veh́ıculos móviles terrestres, donde el problema de planificación de caminos más

común es el del camino más corto. La principal diferencia radica en el hecho de que en el camino de ḿınima

tiempo no sólo afecta la distancia entre origen y destino, sino también la velocidad del veh́ıculo, que en el

caso de la planificación de rutas para gliders se ve afectada por las corrientes Uc (véase la Sección 2.2).

El algoritmo A* se usa ampliamente para el problema del camino más corto. Varios autores lo han

adaptado al problema del camino de ḿınimo tiempo para gliders (Garau et al., 2005, 2009; Soulignac, 2010).

lv
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Básicamente, se incorpora el modelo de movimiento restringido de la Sección 2.2.1.2, para encontrar el camino

óptimo dentro de la rejilla del grafo de búsqueda del algoritmo. La discretización de la rejilla obliga a usar

el modelo de movimiento restringido, el cual en presencia de corrientes puede llevar a caminos donde no se

puede expandir ningún nodo. Además, el tiempo entre un nodo y su vecino no es constante ni igual al tiempo

entre emersiones ts, no reflejando aśı la forma en que navega un glider. Igualmente, tampoco se integra la

trayectoria del perfil yo-yo. El análisis de estas limitaciones es una primera contribución de este trabajo de

tesis.

El estudio de la literatura de planificación de caminos para gliders, aśı como la de problemas de planificación

de caminos con costes variables y asimétricos, muestra pocas contribuciones en este área. Los problemas más

similares —i.e. que manejan costes asimétricos variables— son: el Problema del Viajante Canadiense (CTP),

rutas de tráficos dinámicas, y mapas de coste o planificación con costes.

En teoŕıa de grafos, el CTP es una generalización del problema del camino más corte a grafos parcialmente

observables, i.e. el grafo se obtiene mientras es explorado (Papadimitriou, 1991). El concepto de observabilidad

parcial cubre los costes variables del problema del camino de ḿınimo tiempo para gliders. De manera similar, en

los problemas de rutas de tráfico dinámicas, la densidad de veh́ıculos produce costes variables para viajar dentro

de la red de rutas. Esto es equivalente a los mapas de coste, que habitualmente se asocian a la planificación

de caminos basada en relieve. De hecho, podŕıamos construir un mapa de coste a partir del campo vectorial

de corrientes oceánicas, pero esto seŕıa equivalente a aplicar el modelo de movimiento restringido usado por el

A*. Aunque, en nuestra humilde opinión, esta es la categoŕıa en que se ubican los problemas de planificación de

caminos, en realidad no representan la navegación del glider ni ciertas caracteŕısticas de su funcionamiento con

facilidad. Más concretamente, estos problemas no incluyen la restricción de emersiones de tiempo constante.

Antes que un análisis teórico del problema y los algoritmos de planificación de caminos, este trabajo

adopta un enfoque pragmático con el estudio de métodos aplicables a la planificación de rutas para gliders.

Hemos adaptado métodos clásicos basados en grafos como el A*, y técnicas de muestreo probabiĺıstico como

el RRT, siguiendo trabajos previos de Rao and Williams (2009). Debido a las limitaciones del A* y el RRT,

hemos desarrollado varias técnicas novedosas para eliviar sus defectos. Aplicamos el modelo de movimiento

no restringido y reflejamos la restricción de emersiones separadas un tiempo constante. Hacemos estos tanto

para el algoritmo CTS-A* como para las diferentes variantes de los métodos de optimización descritos en la

tesis.

Hemos realizados varios experimentos para evaluar la validez, optimalidad y tiempo de cómputo. Para casi
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todos los casos de test, los mejores caminos son encontrados con los métodos de optimización, que además es

el más rápido. El CTS-A* también encuentra caminos muy cerca del óptimo, aunque con algo más de tiempo

de cómputo. Con la estrategia de muestra ABS se reduce su tiempo de cómputo, puesto que permite reducir

el número de muestras para las direcciones que se integran desde cada nodo. Además, un versión gruesa del

CTS-A* se usa en la fase de inicialización de los métodos de optimización para evitar obstáculos en entornos

costeros.

Los resultados experimentales también muestran que la técnica de optimización es fácil de adaptar a un

buen número de problemas de planificación de caminos para gliders. Esto incluye el seguimiento de trayectorias,

las planificación multi-glider y el seguimiento de estructuras oceánicas móviles. Sin embargo, las ventajas de

nuestro esquema de optimización residen en las particularidades de los gliders. Por ello, tales beneficios se

perdeŕıan si se aplica a la planificación de rutas con otro tipo de veh́ıculo. Es en las emersiones separadas

un tiempo constante donde encontramos la razón de esta falta de generalización. La optimización se realiza

en el espacio de direcciones, en lugar de en el espacio de localizaciones. En consecuencia, gracias los tramos

entre emersión de ts ≈ 8h, la dimensionalidad del problema de optimización se reduce drásticamente, lo cual

ayuda a obtener tiempos de cómputo bajos. Claramente, si usásemos veh́ıculos con una tasa de control —i.e.

con un tiempo ts menos—, el número de direcciones |B| aumentaŕıa, perdiendo esta ventaja.

En el caso de aproximaciones como los métodos basados en grafos, éstos tienen que manejar la gran

dimensionalidad del problema, definido en 4 dimensiones en el caso más general —i.e. 3 dimensiones espaciales

y tiempo. Además, varias direcciones ψg deben considerarse al generar los sucesores cuando se expande un

nuevo nodo en la rejilla de búsqueda. Como resultado, el tiempo de cómputo es grande en estas aproximaciones.

Hemos usado modelos de movimiento puntuales en nuestros algoritmos de planificación de caminos, puesto

que resulta una elección razonable, dada la incertidumbre de los modelos oceánicos y la localización de los

gliders. Además, nos consideramos cambios de cabeceo θ o ĺımites de profundidad [zmı́n, zmáx], puesto que

generalmente no se modifican en la práctica. En algunos casos simulamos la deriva del glider mientras espera

en superficie, pero normalmente sólo cuando el resultado se usa posteriormente para asistir en el pilotaje de

gliders en misiones reales. En cualquier caso, también hemos evaluado un modelo cinemático de equilibrio

de fuerzas (véase la Sección 2.2.2) y comparado sus resultados con los puntos de emersión del glider RU27

en la misión trans-Atlántica. Como ya se ha mencionado, la precisión de estos modelos no se requiere para

la planificación de rutas con gliders, aumentaŕıan el tiempo de cómputo del planificador sin ningún beneficio

tangible, y requieren un mayor número de parámetros —muchos de ellos dif́ıciles de cuantificar.



lviii 6 Conclusiones

Finalmente, hemos avanzado en los primeros pasos en el muestreo de estructuras oceánicas móviles. En

particular, hemos desarrollado una técnica para seguir giros mesoescalares y mejorar la estrategia de muestreo

(véase la Sección 4.4.2). Este problema tiene enorme interés en la asimilación de datos, y su uso para mejorar

el modelado de estas estructuras en los modelos oceánicos.
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Caṕıtulo 1

Introducción

La oceanograf́ıa es la disciplina que se encarga del estudio de los océanos. Se trata de un ámbito complejo
en el que convergen múltiples áreas de interés como son el estudio de las corrientes marinas, el oleaje o
la dinámica de fluidos; tectónica de placas y geoloǵıa del fondo marino; organismos marinos y dinámica de
ecosistemas; difusión de sustancias qúımicas y propiedades f́ısicas del océano.

El estudio de los diferentes procesos presentes en el medio marino requiere la definición y ajuste de modelos
que permitan caracterizar su dinámica y ayudar a predecir su evolución. Un aspecto clave, del que depende
en gran medida el éxito de esta tarea, es la necesidad de disponer de sistemas de muestreo adecuados que
suministren datos reales con los que contrastar la bondad de dichos modelos. Esta tesis se centra en los
aspectos ligados al uso de dispositivos robóticos en la monitorización del medio marino.

1.1 Técnicas de muestreo
Tradicionalmente se han empleado en la observación del océano diferentes sistemas de captura de datos como
son la tele-detección basada en satélite, radares, boyas o los buques oceanográficos. En las últimas décadas han
surgido nuevas técnicas de muestreo que intentan suplir diferentes limitaciones identificadas en los sistemas
más tradicionales. Se trata de los veh́ıculos autónomos submarinos.

Podemos distinguir dos tipos principales de veh́ıculos submarinos: los operados remotamente o ROVs, y
los autónomos o AUVs. Dentro de estos últimos, existe un tipo especial, que son los planeadores submarinos
o gliders. El presente trabajo está enfocado a proporcionar herramientas destinadas a este tipo de veh́ıculos.

1.2 Planeadores Submarinos Autónomos
Los Planeadores Submarinos Autónomos, también denominados comúnmente planeadores o gliders —
atendiendo al término en inglés—, son un tipo de veh́ıculo autónomo submarino que se desplaza usando
un mecanismo de propulsión único basado en modificar su flotabilidad. Estos veh́ıculos poseen un sistema que
emula el funcionamiento de la vejiga natatoria de los peces para provocar movimientos de ascenso y descenso
ćıclicos. Dichos desplazamientos verticales se traducen en una lenta pero efectiva velocidad de avance gracias
a la interacción de los planos de control y sustentación con el medio acuático. Se generan de esta manera
perfiles de movimiento en “V” caracteŕısticos, denominados yo-yos.

Un glider eléctrico, como el modelo SLOCUM de la Figura 1.1, utiliza una bomba hidráulica para trasvasar
un cierto volumen de aceite entre el interior y el exterior del casco del veh́ıculo. De esta forma, el consumo
de enerǵıa necesario para la propulsión se produce únicamente en los puntos de inflexión en los que el robot
activa la bomba, permitiendo unos niveles de autonoḿıa dif́ıciles de igualar para otros veh́ıculos.

1



2 1 Introducción

Figura 1.1: Spray de Bluefin Robotics (delante), SLOCUM de Teledyne Webb Research (medio) y Seaglider
de iRobot (detrás), en el Laboratorio de Gliders en las instalaciones de la Plataforma Oceánica de
Canarias (PLOCAN). Corteśıa de PLOCAN. Nótese que las alas son extráıbles para facilitar el transporte
y mantenimiento, y por esa razón han sido extráıdas del casco en los veh́ıculos aqúı mostrados.

Los gliders operan en base a la definición de unos puntos de paso o waypoints que el robot trata de alcanzar
sucesivamente. Una vez fijado el rumbo hacia el próximo objetivo el veh́ıculo ejecuta una serie predefinida
de ciclos de ascenso/descenso, denominados transecto o stint; y que están delimitados entre dos valores de
profundidad ḿınima y máxima, tras los cuales emerge de nuevo. Una vez en superficie, el glider se localiza
por medio del GPS —o por cualquier otro GNSS—, transmite datos básicos a su centro de control y, en su
caso, recibe nuevas órdenes. Transcurrido un corto periodo de tiempo, en torno a 15− 20 minutos, el glider
inicia un nuevo stint (tramo sumergido), cuya duración suele oscilar entre 6 y 8 horas.

1.3 Planificación de rutas

El principal inconveniente que tiene el uso de los gliders en la monitorización del medio marino es su
dependencia de las condiciones del medio. La lenta velocidad de avance que los caracteriza (aproximadamente
un kilómetro por hora) puede llegar a ser igualada e incluso superada por las corrientes marinas. Por lo
tanto, es necesario anticipar su efecto en la trayectoria del veh́ıculo si se desea conseguir alcanzar un punto
determinado o seguir una ruta deseada. La fuente de información básica con la que se trabaja son los modelos
de predicción oceánicos, que permiten tener en cuenta con varios d́ıas de antelación el estado más probable
de la zona en la que se encuentre el glider.

Dependiendo del tipo de misión y la región que se esté considerando, existirán diferentes modelos
disponibles. En general, los mejores resultados son los aquellos que se obtienen con modelos de predicción
regionales, especialmente ajustados para capturar las condiciones particulares de una determinada zona.

En un esquema de pilotaje de gliders tradicional, un operador humano realiza un seguimiento del estado
presente y futuro del mar y de la evolución del veh́ıculo, decidiendo cuándo es necesario modificar los puntos
de destino. En una misión real, las propias medidas del glider se convierten en un indicio de si las predicciones
de los modelos oceánicos se están verificando o no. La Figura 1.2 ilustra la trayectoria final del glider RU27
tras finalizar la misión trans-Atlántica. Ésta se llevo a cabo mediante un pilotaje manual o tradicional. No
obstante, durante los últimos stints cerca de las costas españolas, este pilotaje fue asistido por las herramientas
de planificación de caminos para gliders desarrolladas en este trabajo de tesis.
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Figura 1.2: Camino seguido por el glider RU27 Scarlet Knight (SLOCUM) en la misión trans-Atlántica,
realizada en 2010. La missión fue dirigida por la Universidad de Rutgers, con la colaboración de la División
de Robótica y Oceanograf́ıa Computacional (DROC), SIANI.

1.4 Hipótesis de la tesis
En este trabajo se plantea como hipótesis el que pueden definirse mecanismos automáticos para la planificación
de rutas en gliders que aporten ventajas significativas en el uso de estos dispositivos como instrumentos de
muestreo del océano.

1.5 Objetivos
Los objetivos de esta tesis se resumen en las siguientes cuestiones que trata de resolver. Asimismo, definen el
ámbito y extensión del presente trabajo.

• La literatura sobre planificaciones de caminos recoge un importante número de algoritmos usados para
obtener la secuencia (cuasi-)óptima de configuraciones de estado que permita a un veh́ıculo moverse
desde una posición a otra. Es por tanto de gran interés estudiar si estos algoritmos son aplicable en el
campo de la planificación de rutas para gliders. De hecho, en esta tesis analizamos si el método A* es
aplicable. Si puede ser adapta al problema con gliders, o si hay alguna particularidad que lo impide, o
hace que resulte ineficiente.

• Veremos como las técnicas clásicas no son directamente aplicables a nuestro problema, a menos que
sea adaptadas. En este sentido trataremos de analizar cuáles son las particularidades de la planificación
de caminos con gliders que justifican la necesidad de esta adaptación. Aśı, obtendremos conocimiento
sobre las siguientes cuestiones:

– Cuáles son las diferencias respecto a otros problemas que se solucionan empleando planificadores
de caminos clásicos? Nos referimos a problemas como la planificación de caminos en laberintos,
mapas de coste, etc.

– Qué razones explican por qué las técnicas clásicas no son aplicables o útiles en este caso? O que
impide que puedan manejar eficientemente el problema?

• El estudio de la bibliograf́ıa y el estado del arte nos permitirá categorizar la tipoloǵıa del problema que
intentamos resolver. Es decir, en qué categoŕıa taxonómica ubican el problema otros autores, o al menos
establecer el tipo de problema más similar.
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• Desde un punto de vista más práctico, pretendemos investigar y desarrollar métodos que resuelvan el
problema. En este trabajo implementamos varios técnicas novedosas. Éstas son evaluadas conforme a
dos criterios. Primero, evaluamos la optimalidad de la solución encontrada o lo lejos que queda del
óptimo. Segundo, el tiempo de cómputo y uso de memoria.

• De esta forma, podremos comparar nuestros resultados con otras aproximaciones de la literatura sobre
el tema. Aśı podremos establecer cómo atacan el problema otros autores, aśı como las simplificaciones
y los supuestos que éstos asumen. Consecuentemente, podremos valorar si éstos y nuestros algoritmos
son escalables y generalizables para resolver otro tipo de problemas de planificación de rutas.

• Respecto a la dimensionalidad del problema, veremos que los modelos oceánicos ofrecen 4 dimensiones:
espacio tridimensional y tiempo. Los gliders navegan por este espacio tridimensional que cambia
significativamente en el tiempo. Asimismo, es posible considerar o despreciar ciertas caracteŕısticas
de la dinámica del veh́ıculo y su navegación, como el ángulo de planeo, las profundidades ḿınima y
máxima de los perfiles yo-yo, la velocidad nominal, etc. La forma en que manejar toda esta complejidad
y la alta dimensionalidad del problema eficientemente, es también un aspecto fundamental que se trata
en el presente trabajo. Igualmente, queremos ver si es posible garantizar la optimalidad de la solución
encontrada, o simplemente hasta cierto punto y bajo ciertas suposiciones.

• A partir de la implementación y evaluación de deferentes técnicas obtendremos cierta intuición respecto
a cuáles son más apropiadas para determinadas condiciones y entornos. Por ello, también se realiza
una categorización de escenarios: áreas con obstáculos, zonas de alta variabilidad temporal, corrientes
fuertes, etc.

Las cuestiones anteriores definen el ámbito y los objetivos de la tesis, puesto que ésta trata de darles
respuesta. Adicionalmente, para poder tratar con la complejidad del problema, se han asumido ciertas
simplificaciones y marcado algunas limitaciones.

• La alta dimensionalidad del problema se ha reducido hasta cierto punto. Asumimos un modelo de
movimiento del glider simplificado. En algunos casos la planificación de rutas se hace considerando
sólo las corrientes bidimensionales en superficie, con una resolución temporal de horas; mientras que
en otros casos tomamos corrientes tridimensionales, aunque como medias diarias. Esta reducción en la
dimensionalidad del problema es habitualmente aceptable, al mismo tiempo que reduce la complejidad
sustancialmente.

• Algunos detalles de las misiones y el pilotaje de gliders son despreciados. En muchos casos no es posible
observar fenómenos como el biofouling, que afecta a la velocidad y equilibrado del glider. Esto produce
un cambio en el ángulo de planeo y puede producir una desviación sistemática en el rumbo. Del mismo
modo, vaŕıa el centro de masas y la flotabilidad, reduciéndose la velocidad del veh́ıculo. En otros casos,
sólo podemos estimar ciertos parámetros con un determinado error, como el tiempo que permanece
el veh́ıculo en superficie. Estos valores no se suelen modelar porque en realidad nos interesan otros
aspectos del sistemas y podemos ignorar sus efectos en la mayoŕıa de casos.

• El sistema embebido y el software en los gliders modernos tiene capacidades muy reducidas. Por ello en
la práctica el pilotaje automático o autónomo no es trivial. Aunque no se trata estrictamente de una
limitación, hemos recogido este hecho en nuestra simulaciones. Puesto que la calidad del dead-reckoning
es mala, las comunicaciones no son posibles, y la deriva producida por las corrientes no es observable
bajo el agua, se requiere una planificación de rutas con comandos discretos espaciados significativamente
en el tiempo. Incluso si fuera posible variar el rumbo del veh́ıculo con mayor frecuencia, el veh́ıculo aún
no podŕıa disponer de los mapas de corriente abordo para actualizar el rumbo convenientemente.
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Problemas y Aplicaciones

En un primer nivel de problemas básicos está la optimización de rutas, que puede verse como un recurso
capacitante para abordar otras aplicaciones más complejas. En un segundo nivel se consideran la evitación de
obstáculos, el seguimiento de trayectorias, la planificación multi-glider o el muestreo de estructuras oceánicas
móviles.

2.1 Optimización de Rutas
2.1.1 Camino de Ḿınimo Tiempo
El problema del camino de ḿınimo tiempo consiste en la minimización del tiempo requerido por un glider para
llegar a un destino determinado. La principal dificultad de este planteamiento reside en tratar de abordar su
resolución reflejando de la forma más fiel posible el funcionamiento de un glider real.

xgoal

x1
x2

xn−1

x0

t = f(B)

mı́n
B
f(B) : |B| > 1

Figura 2.1: Diagrama del problema del camino de ḿınimo tiempo. Buscamos el camino P —formado por un
conjunto de direcciones (bearings) B— que minimice el tiempo viajado tt = f(B) para ir desde la localización
inicial x0 a la de destino xgoal. El número de direcciones |B| no es fijo, puesto que éste realmente determina el
tiempo viajado. El destino xgoal se considera alcanzado con el punto final xn−1 cae en un radio alrededor
suyo.

La Figura 2.1 ilustra este problema, en el que se busca el camino óptimo desde el waypoint inicial x0 al
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de destino xgoal. En este problema, utilizando un esquema de optimización no es posible resolverlo de manera
directa ya que se desconoce a priori el número de variables implicadas, i.e. el número de direcciones |B| que
forma el camino. La resolución pasa, por tanto, por implementar un esquema iterativo.

2.1.2 Camino de Ḿınima Distancia Restante al Destino
El problema del camino de ḿınima distancia restante al destino consiste en tratar de acercarse lo más posible
a un punto de destino en un tiempo determinado. El planteamiento es bastante directo cuando se aborda
con técnicas de optimización, puesto que se pueden considerar los rumbos a comandar como las variables
del proceso de optimización. Además, la resolución es directa, puesto que el número de direcciones |B| es
conocido de antemano.

d = ‖xgoal − xn−1‖

xgoal

x1
x2 xn−1

x0

mı́n
B
‖xgoal − xn−1‖ : |B| = n

Figura 2.2: Diagrama del problema de ḿınima distanca al destino. Buscamos el camino P defino por un
conjunto de n direcciones B que minimicen la distancia d = ‖xgoal − xn−1‖ desde el punto final xn−1 hasta
el destino xgoal. En este problema el número de direcciones |B| = n es fijo y conocido por anticipado.

La Figura 2.2 ilustra este problema, donde partimos de x0 y llegamos hasta la localización final xn−1 tras
comandar |B| = n direcciones, que forman el camino a buscar, para una duración de tiempo fija y dependiente
de n según el tiempo entre emersiones ts. La optimización minimiza la distancia restante d.

2.2 Evitación de Obstáculos
Una de las principales limitaciones de los gliders es su reducida velocidad y maniobrabilidad. Esto hace que
determinadas trayectorias deban de ser cuidadosamente planteadas si se quiere llegar a una solución válida.
Ejemplos de esos escenarios son la presencia de obstáculos en las inmediaciones de la ruta a planificar. Dichos
obstáculos pueden materializarse de diferente forma, incluyendo obstáculos fijos como islas, costa, aguas
someras, puertos, etc.; móviles como barcos; o restricciones del tipo corrientes de intensidad similar o superior
a la velocidad de avance del glider.

2.3 Seguimiento de Trayectorias
Otro conjunto de problemas de interés son aquellos en los que se requiere que el veh́ıculo siga una ruta
predefinida de la forma más ajustada posible. Los procesos de optimización en este caso requieren una
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verificación más estricta, puesto que debe tratar de garantizarse un comportamiento adecuado tanto en
los puntos de emersión como a lo largo de los stints.

P
=
f
(B

)
x1

x2

xk

Pd
A1

A2

A2 A
k

Ak
Agoal

x0

xgoal
mı́n
B

∑|B|
i=1Ai(f(B),Pd)

Figura 2.3: Diagrama del problema de seguimiento de trayectorias. Buscamos el camino P defino por un
conjunto de direcciones B que minimice la desviación respecto al camino deseado Pd. Tal desviación puede
medirse como una distancia d o una función del área encerrada A. Este problema de seguimiento de trayectorias
se resuelve como una restricción sobre el problema del camino de ḿınimo tiempo, que permite alcanzar el
waypoint de destino xgoal.

Para determinar la separación o desviación respecto a la trayectoria deseada se pueden aplicar diversas
fórmulas para su cálculo. En principio, se trata del cómputo del área de un trapezoide recta entre el camino
deseado y el resultante, computada para cada pareja de puntos de emersión consecutivos, tal y como muestra
la Figura 2.3.

2.3.1 Relajación de la restricción de seguimiento
En la mayoŕıa de estas aplicaciones, la falta de flexibilidad en la trayectoria se traduce en un pero
aprovechamiento de las corrientes por parte del glider. Una ligera relajación de las condiciones, por ejemplo,
se traduce en una ruta más adecuada en términos del tiempo invertido.

Se puede definir un pasillo alrededor del camino deseado. De esta forma es posible relajar a medida la
restricción de seguimiento de la trayectoria. De hecho, las soluciones que se obtienen para que pasillo de
mayor tamaño definen una curva de Pareto de soluciones no dominadas, para el objetivo de seguimiento de
trayectorias y del camino de ḿınimo tiempo entre los extremos del camino deseado.

2.4 Planificación Multi-glider
Con frecuencia nos encontramos escenarios en los que varios robots deben cooperar para resolver una
determinada tarea. Surgen entonces problemas que no pueden tratarse de forma independiente para cada
veh́ıculo. Ejemplos de este tipo de aplicaciones son el muestreo en formación o la coordinación para facilitar
las tareas de recuperación de los gliders tras finalizar una misión conjunta.

Otra problema multi-glider, con una aplicación clara en misiones con múltiples veh́ıculos, es el de la
recogida eficiente de los mismos. Un barco debe recoger la flota formada por k veh́ıculos en el menor tiempo
posible, puesto que con ello se reduce el coste económico de la recogida —al reducir el gasto de combustible.
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2.5 Muestreo de Estructuras
Un conjunto interesante de aplicaciones son aquellas en las que se necesita muestrear una estructura que
evoluciona en el tiempo. La planificación en estos casos debe tener en cuenta de forma simultánea la previsión
de las condiciones marinas y la evolución del proceso a muestrear, de forma que se maximicen las posibilidades
de obtener una buena caracterización.

2.5.1 Estructuras Coherentes Lagrangianas
Igualmente, es posible obtener Estructuras Coherentes Lagrangianas, que pueden ser estáticas o dinámicas a su
vez. Éstas se obtienen a partir del análisis de estabilidad de la corrientes oceánicas, utilizando los Exponentes
de Lyapunov en Tiempo Finito (FTLE).

Figura 2.4: Exponentes de Lyapunov en Tiempo Finito (FTLE) computados sobre un campo de corrientes
oceánicas sintético que forma un doble giro —superpuesto con flechas blancas. Los valores de FTLE
representan la estabilidad de cada región en el campo, tal que las regiones inestables —como los bordes
de los giros— aparecen en rojo y las estables en azul —como el centroide de los giros.

La Figura 2.4 muestra el campo de FTLE con las corrientes de un doble giro generado sintéticamente.
Claramente observamos como las zonas del borde de los giros son altamente inestables. Esto es debido a que
si el veh́ıculo estuviera en estas zonas, un ḿınimo error en su localización podŕıa significar que acabaŕıa en
posiciones muy diferentes pasado un tiempo T , asumiendo el modelo de movimiento puntual de un derivador.
Dada la incertidumbre en la localización de los gliders bajo el agua, en la medida de lo posible es interesante
evitar estas zonas duran la planificación de rutas.

2.5.2 Giros Mesoescalares
Los giros son un tipo de estructura que se encuentra a distintas escalas espaciales y temporales en el océano.
Por ello son de alto interés en los estudios del comportamiento del océano. Para poder caracterizarlos es
necesario muestrearlos siguiendo una trayectoria que se focalice en los caracteŕısticas claves del giro, para un
correcta caracterización. Este es el caso de un patrón de muestreo en forma de molino, donde se realizan
transectos en forma de ĺıneas que cruzan el centroide del giro desde un extremo a otro de su borde. Estas ĺıneas
se seguirán resolviendo el problema de seguimiento de trayectorias, discutido con anterioridad. Este patrón de
muestreo resulta conveniente para estas estructuras, frente a otros patrones comunes en exploración, como el
de lawnmower.
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Planificación de Rutas

El objetivo central de esta tesis es proponer algoritmos que permitan la optimización de rutas para gliders
oceánicos aprovechando las condiciones de las corrientes marinas en el entorno.

3.1 Revisión
En la bibliograf́ıa se han planteado diferentes soluciones al problema de la planificación de trayectorias para
veh́ıculos marinos no tripulados, en general, y gliders en particular. Como aproximaciones más significativas
podemos encontrar los métodos basados en grafos (A* y variantes), el muestreo probabiĺıstico (RRT) y las
técnicas basadas en optimización (bioinspiradas, teoŕıa de sistemas, campos de potencial).

El pilotaje manual de un glider, explicado con anterioridad, se utilizará como elemento base para comparar
los algoritmos de planificación de caminos desarrollados en este trabajo. Aqúı modelamos el pilotaje manual
con una aproximación que fija las direcciones ψe del glider directamente hacia el destino xgoal en cada punto
de emersión. A esta aproximación la denominamos DtG (Direct to Goal). Desde la localización xi de un
punto de emersión, se fija la dirección ψg igual al rumbo ψd directo al destino xgoal. El problema de esta
aproximación es que es ciega, es decir, no tiene en cuenta el efecto de las corrientes.

3.2 Algoritmos propuestos
A lo largo de este trabajo de tesis se han desarrollado un conjunto de algoritmos de planificación especialmente
adaptados a las caracteŕısticas de los gliders. A continuación se incluye una descripción de sus principales
caracteŕısticas.

3.2.1 Adaptación del A*
Se ha adaptado el algoritmo clásico para operar en base a la simulación de las trayectorias posibles del glider
sobre el mapa de corrientes. El A* se utiliza comúnmente para resolver el problema del camino más corto,
pero utilizando el modelo de movimiento puntual restringido es posible resolver el problema del camino de
ḿınimo tiempo.

El funcionamiento del algoritmo A* se ilustra en el diagrama de la Figura 3.1. Podemos ver como la
dirección ψg que se fija para el glider debe ser tal que permita seguir el rumbo ψe, tal que el veh́ıculo pueda
ir del nodo actual a otro nodo de la rejilla del grafo de búsqueda. Es por eso que se requiere del modelo de
movimiento restringido. El problema fundamental de esta aproximación es que en zonas de corrientes fuertes,
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ψe

xi−2

xi−1 xi

xgoalfmı́n

Figura 3.1: Algoritmo A* clásico sobre una rejilla uniforme que define el dominio del espacio de búsqueda Ω.
Los ángulos de rumbo ψe están restringidos por la rejilla, produciendo trayectorias en ĺınea recta entre nodos
y tiempos de emersión no constantes para los problemas de planificación de caminos para gliders.

el cono de accesibilidad se puede estrechar hasta el punto de que no sea posible llegar a ningún nodo vecino
desde el nodo actual.

El algoritmo A* emplea un grafo impĺıcito, que se construye evaluando el modelo de movimiento restringido
en la función que genera los nodos sucesores —o vecinos— del nodo actual. Como se mencionó anteriormente,
en algunos casos el número de vecinos puede ser muy bajo o, incluso nulo, debido al efecto de las corrientes
oceánicas.

El algoritmo A* emplea una heuŕıstica para acelerar la búsqueda del camino óptimo, siendo aśı más rápido
que el algoritmo de Dijkstra. Para computar la heuŕıstica h(n), estimamos la máxima velocidad Ucmáx =
máx
x∈P

(‖Uc(x, t)‖) de las corrientes oceánicas a lo largo del camino P seguido por el glider. Puesto que P
no se conoce de antemano, estimamos Ucmáx usando un dominio Ω centrado espacial y temporalmente en la
localización actual y tiempo. Dada Ucmáx y la velocidad nominal del glider Ug, computamos una subestimación
temporal del coste de alcanzar el destino desde al localización actual x, del nodo n, usando la distancia
d = ‖x− xgoal‖ al destino,

h(n) = d

Ug + Ucmáx

(3.1)

que es una función heuŕıstica conservativa pero admisible. Además, mientras usemos la misma estimación de
Ucmáx para cada nodo n en el grafo, esta heuŕıstica también es consistente.

3.2.2 CTS-A*
El patrón de movimiento del glider es recogido con precisión en este algoritmo, de manera que los resultados
tienen un mayor plausibilidad. A diferencia del A*, el CTS-A* genera tiempos constantes entre emersiones,
al igual que los gliders. Para ello, en la generación de sucesores del grafo impĺıcito de búsqueda, emplea el
modelo de movimiento puntual no restringido.

El diagrama de la Figura 3.2 ilustra como ahora se considera un conjunto de direcciones ψg y para cada
una de ellas se integra el modelo de movimiento no restringido. La posición resultante de la emersión tras el
tiempo ts se lleva a una rejilla sólo con la finalidad de mantener constante el uso de memoria del algoritmo.
Aśı, mantenemos los tiempos entre emersiones constantes y simulamos la verdadera trayectoria del glider
realizando los perfiles yo-yo mientras navega sumergido entre emersiones.

En el Algoritmo 3.1 se muestra el procedimiento de generación de sucesores, en el que se considera un
muestreo uniforme de direcciones ψg —con una determinada discretización— y para cada una se integra el
modelo de movimiento no restringido. Este algoritmo también controla el etiquetado de los nodos, que se
encarga de guardar las localizaciones de las emersiones en los nodos. Se guardan en base al coste acumulado
y una función que puede ser la distancia más cercano al nodo o la propia heuŕıstica.
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ψg

xi−2

xi−1

xi

xgoalfmı́n

Figura 3.2: Diagrama de funcionamiento del algoritmo Constant-Time Surfacing A*. En cada localización de
emersión xi diferentes direcciones ψg son consideradas, integrando la trayectoria del glider durante el tiempo
entre emersiones ts, o múltiplos s· ts.

Algorithm 3.1 Generación de sucesores en el CTS-A*.
Require: Nodo actual n, el número k de direcciones (bearings) a muestrear y el tiempo entre emersiones ts

para integrar la trayectoria. La integración de la trayectoria require el paso de integración dt, la velocidad
nominal del glider vg(ψg) para una dirección ψg, y el campo de velocidades de las corrientes oceánicas
vc(x). Si un nodo vecino m tiene el mismo coste g′ que la nueva trayectoria xψg , se usa una función
d(x, n). Si d(x, n) = h(n), podemos usar f(n) en lugar de g(n), con una sola condición.

Ensure: Lista de sucesors S y actualización del etiquetado de nodos considerando el coste g(x) y la distancia
d(x,m) de la localización x emparejada con el nodo m.

Algorithm: successors(n, k, ts) return S
1: S = ∅
2: for all 1 to k do
3: ψg ∼ [0, 2π) . muestrear bearing
4: s = 0
5: repeat
6: xψg

= trajectory(ts, dt,vg(ψg),vc(x),xn)
7: m = NN(xψg ) . nodo m más cercano a xψg

8: s = s+ 1
9: until m 6= n

10: g′ = g(n) + s· ts
11: if m /∈ C ∪ O then . m no descubierto hasta ahora
12: mx = xψg

13: else
14: if g′ < g(m) then . menor coste
15: mx = xψg

16: else if g′ = g(m) then . igual coste, pero
17: if d(xψg

,m) < d(mx,m) then . mejor localización
18: mx = xψg

19: end if
20: end if
21: end if
22: S = N ∪ {m} . añadir m a la lista de sucesors S
23: end for
24: return S
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3.2.3 ABS

Para aliviar el coste computacional del CTS-A*, se emplea un muestreo en base a una función de densidad
de probabilidad (PDF) que tiene en cuenta tanto la dirección predominante de la corriente como el rumbo
fijado para el glider. Esto mejora el muestreo uniforme de las direcciones ψg adoptado en la versión básica del
algoritmo CTS-A*.

−π −π

2
ψc = 0 ψd = π

2
π

ψe [rad]

ω = 1

Figura 3.3: Combinación de distribuciones PDF fψc(ψe) y una distribución PDF fψd
(ψe) que considera el

rumbo ψd = π
2 directo al destino, modelada con (3.2). SR ∈ [50, 150] % .

En la estrategia de muestreo adaptativo de direcciones (ABS) es posible modelar la PDF considerando la
velocidad efectiva Ue y el rumbo ψd al destino. Primeramente, Ue se modela con el modelo de movimiento
restringido.

Se construye otra PDF fψd
(ψe) considerando la diferencia entre el rumbo ψe y ψd. Proponemos la

siguientes distribución Normal para modelarla,

N (ψe; µ, σ2) = 1√
2πσ2

exp
{
− (ψe − µ)2

2σ2

}
ψe ∈ [0, 2π] (3.2)

con media µ = ψd in rad y varianza σ2.
Componiendo ambas PDFs, obtenemos la PDF propuesta tal y como se muestra en la Figura 3.3 para

varios ratios de velocidad SR. A partir de esta nueva PDF, una vez normalizada se muestrean los rumbos
ψe, y a partir de ellos se tienen las direcciones ψg que se usarán para integrar el modelo de movimiento
no restringido tal y como se indica en el algoritmo CTS-A*. Aśı, podemos emplear un menor número de
direcciones, reduciendo el tiempo de cómputo, pero manteniendo o mejorando la calidad de la solución,
puesto que exploramos en las direcciones más prometedoras.
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3.2.4 Adaptación del RRT
En este algoritmo se generan de forma rápida las trayectorias más probables que puede seguir el glider en
una exploración dirigida de su entorno. El algoritmo RRT es aplicable en la planificación de caminos para
gliders. Es importante indicar que este algoritmo no busca la solución óptima, sino una solución factible en
poco tiempo de cómputo en problemas de gran dimensionalidad.

En la práctica, hemos observado que en el problema de planificación de rutas para gliders, al menos se
requieren dos árboles de búsqueda, una lanzado desde la localización inicial x0 y otro desde el destino xgoal
que irá en sentido contrario —i.e. utilizando los valores de corrientes invertidos. Esta aproximación sólo es
válida con campos de corrientes estáticas, ya que de ser dinámicas no seŕıa posible determinar en que instante
de tiempo se lanza el árbol desde el destino, pues para ello hay que resolver el problema.

3.2.5 Optimización
Este algoritmo permite afrontar planificaciones complejas a partir de un sistema de inicialización adecuado al
problema seguido por un esquema de optimización iterativo.

Para resolver el problema de ḿınima distancia restante al destino, definimos una función objetivo basada
en el punto final xn−1 de integración de la trayectoria del glider para todas las direcciones B comandadas
desde el waypoint inicial x0,

xn−1 = f(x0,B, C,G) (3.3)
donde C es el mapa de corrientes oceánicas y G es la configuración del glider —i.e. la velocidad nominal Ug
y otros parámetros usados en el modelo de movimiento no restringido. Puesto que queremos minimizar la
distancia restante al waypoint destino xgoal, construimos nuestra función objetivo como la distancia restante
entre xn−1, dado por (3.3), y xgoal. Es decir, la función objetivo f ′ es

f ′(x0,B, C,G) = ‖xgoal − f(x0,B, C,G)‖ (3.4)

donde ‖· ‖ es una distancia métrica, que en nuestro caso es la longitud del arco del great circle que pasa por
xn−1 y xgoal, ya que navegamos una geometŕıa esférica que aproxima a La Tierra; para misiiones cortas, con
distancias pequeñas, podemos usar otra aproximación o incluso la distancia Eucĺıdea (véase la Sección A.2).

3.2.5.1 Optimización Iterativa

En el caso del problema del camino de ḿınima distancia, no se conoce el tiempo que se tardará en llegar al
destino, pues es lo que buscamos resolver. Por tanto, tampoco conocemos el número de direcciones ψg ∈ B,
que forman parte de la función objetivo. Para solucionar este problema planteamos un método de optimización
iterativo.

El principal problema de las técnicas de optimización es que requieren una buena solución inicial para no
verse atrapadas en ḿınimos locales. En el caso de entornos con obstáculos se requiere de un procedimiento
de inicialización que encuentra una solución suficientemente buena, para luego ser optimizada.

En general, para entornos libres de obstáculos se puede utilizar la aproximación del DtG como solución
inicial. Sin embargo, en presencia de obstáculos proponemos un algoritmo para la fase de inicialización que
emplea una versión gruesa del algoritmo CTS-A*. Con ella conseguimos evitar obstáculos y aśı proporcionar
una solución inicial al algoritmo de optimización.

3.3 Planificación de Rutas sobre Estructures Oceánicas
A parte de las técnicas comentadas hasta ahora, es posible planificar rutas teniendo en cuenta estructuras
oceánicas presentes en el océano, en lugar de todas las corrientes. Para ello podemos aplicar técnicas de



14 3 Planificación de Rutas

identificación y seguimiento de dichas estructuras, como veremos a continuación.

3.3.1 Análisis de Estabilidad
El análisis de estabilidad del campo vectorial de corrientes oceánicas permite determinar qué zonas son
estables y cuáles inestables, utilizando tanto corrientes estáticas como dinámicas. Para ello computamos el
campo FTLE con la siguiente expresión,

σTt0(x) = 1
|T |

ln
√
λmáx(∆) (3.5)

que representa el FTLE más grande para un tiempo de integración finito T , asociado al punto x y el instante
de tiempo t0.

Figura 3.4: Análisis de Estabilidad computando el campo FTLE de un vórtice Stuart. Las regiones inestables
se corresponden con LCSs, las cuales aparecen en tonos rojos en los bordes de los giros/vórtices.

El resultado del FTLE puede verse en la Figura 3.4 para un vórtice Stuart, generado sintéticamente.
Podemos observar claramente como las zonas del borde de los giros son altamente inestables. Este información
no es fácil de apreciar directamente sobre el campo de corrientes, especialmente si es dinámico, como en este
caso. De ah́ı surge la utilidad de computar el campo FTLE. A partir de este campo, es posible segmentar las
zonas inestables y aśı obtener Estructuras Coherentes Lagrangianas (LCSs). Aśı, es posible planificar rutas
evitando estas zonas, puesto que su inestabilidad indica que el siguiente punto de emersión puede variar
bastante del esperado, es decir, aumentar su incertidumbre.

3.3.2 Giros Oceánicos
Otro tipo de estructuras muy comunes en el océanos son los giros. Nos encontramos giros de distintas escalas
espaciales y temporales. Aśı, los giros mesoescalares son interesantes para el estudio de múltiples procesos
oceánicos.

Se ha realizado un modelado tridimensional de un giro mesoescalar en sectores. Este modelo se puede
incorporar a un Algoritmo Genético para realizar el seguimiento de la estructura, tras su identificación. Se ha
desarrollado una técnica para dar los primeros pasos en el muestreo de estas estructuras móviles, optimizando
la estrategia de muestreo de una determinada zona del giro —v.g. centroide, borde, etc.—, aśı como su
caracterización, lo cual tiene especial utilidad en la asimilación de datos por parte de modelos oceánicos.
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Resultados Experimentales

4.1 Camino de Ḿınimo Tiempo
Para el camino de ḿınimo tiempo hemos probado los algoritmos DtG, RRT, A*, CTS-A* con M = 18
muestras, y Optimización Iterativa.

Se han lanzado 20 casos de test que muestran como el DtG y RRT no son capaces de encontrar ninguna
solución en algunos casos. Por contra, el A*, CTS-A* y el método de Optimización Iterativa, siempre encuentra
solución, siendo la de éste último ligeramente mejor que los métodos basados en grafos.

4.2 Camino de Ḿınima Distancia Restante al Destino
Para el camino de ḿınima distancia restante al destino hemos probado los algoritmos DtG, A*, CTS-A* con
M = 18 muestras, y Optimización; no se prueba el algoritmo RRT porque manejamos corrientes dinámicas.

Figura 4.1: Captura de un caso de test para 4 d́ıas; la última predicción se repite para rellenar las no disponibles.
La figura muestra el camino sobre las corrientes oceánicas (las corrientes que exceden la velocidad del
glider Ug = 0,4m/s están resaltadas ) desde el waypoint inicial al de destino . La distancia desde
el waypoint inicial al de destino es 344,6km. La distancia restante para alcanzar el destino es, para cada
algoritmo: Optimización = 68,9km; CTS-A* = 85,1km; A* = 169,4km; DtG = 217,6km.

Se han lanzado 65 casos de test, divididos en corrientes débiles y fuertes. La mejora respecto al DtG, que se
muestra en el Cuadro 5.2, es claramente mayor con corrientes fuertes. Asimismo, el algoritmo de Optimización
es el que deja al veh́ıculo más cerca del destino, después del tiempo de misión T dado.

15
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4.3 Evitación de Obstáculos
Para la evitación de obstáculos se han seleccionado escenarios extráıdos del mar de Canarias, donde la presencia
de las islas permite definir configuraciones complejas de resolver para la planificación.

Se han analizado los algoritmos tanto para misiones largas con corrientes estáticas, como misiones cortas
con corrientes dinámicas. Esto es equivalente a decir que se ha probado la evitación de obstáculos para el
problema del camino de ḿınimo tiempo y el de ḿınima distancia restante al destino, respectivamente.

(a) Caso I. (b) Caso II.

Figura 4.2: Comparativa del problema de Mı́nima Distancia Restante al Destino para el problema de Evitación
de Obstáculos. Comparativa de 2 casos de test realizados Ug = 0,4m/s. La distancia restante al waypoint
de destino is (SL si Stop in Land): (a) Optimización-CTS-A* = 13,3km, Optimización = 22,1km, CTS-
A* = 20,6km, A* = 25,9km, DtG = 157,1km (SL); (b) Optimización-CTS-A* = 0,0km, Optimización
= 69,7km (SL), CTS-A* = 3,2km, A* = 8,7km, DtG = 80,0km (SL); Respectivamente, la distancia total
desde el waypoint inicial al de destino es: 176,5km, 125,8km.

Los resultados se han separado para zonas de costa y offshore, comparando cada técnica con la del
método Optimización-CTS-A*, que aplica el método de inicialización inteligente utilizando una versión gruesa
del algoritmo CTS-A*, tal y como se explica en la Sección 4.3.5.2. Observamos como lejos de costa el resultado
sin esta fase de inicialización es equivalente a la usada en el método de Optimización, lo cual indica su validez
en todos los escenarios. En zonas costeras, esta inicialización mejora cerca de 20km la solución del método
de Optimización. Además, se consiguen resultados en torno a ≈ 5km mejores que con las técnicas basadas
en grafos. Más lejos aún queda la aproximación DtG.

En la Figura 4.2 se muestran 4 casos de evitación de obstáculos cerca de islas. Podemos observar como
en algunos casos de test la mayoŕıa de técnicas quedan atrapadas; nótese que las técnicas basadas en grafos
pueden verse atrapadas debido las corrientes en torno a determinadas zonas.

4.4 Seguimiento de Trayectorias
En el caso del seguimiento de trayectorias se ha comprobado la capacidad de las soluciones propuestas para
mantener la ruta del glider sobre la ruta deseada. También se ha comprobado la mejora en el rendimiento que
se consigue relajando ligeramente las condiciones del seguimiento.

Con la relajación de la condición de seguimiento de la trayectoria obtenemos varias soluciones, que definen
una curva de Pareto. La curva de Pareto muestra los dos objetivos contrapuestos uno frente al otro, i.e. el
tiempo viajado (eje y) frente al promedio de la distancia al camino deseado (eje x) —que es la ĺınea recta en



4.5 Planificación Multi-glider 17

este ejemplo. Todos los caminos intentan mantener el veh́ıculo cerca de la ĺınea recta, pero esta restricción se
relaja en cada simulación incrementando el tamaño del pasillo alrededor de la ĺınea. Como muestra la figura,
mientras más estrecho es el pasillo, mayor es el tiempo viajado. Mientras tanto, al agrandarse el pasillo, nos
aproximamos al camino de ḿınimo tiempo de la optimización sin restricciones.

Figura 4.3: Ensamblaje de problema de seguimiento de trayectorias para realizar una misión de muestreo y
caracterización de un giro mesoescalar. La trayectoria de molino se descompone en ĺıneas rectas que cruzan
el giro múltiples veces desde diferentes direcciones, para las cuales se resuelve el problema de seguimiento de
trayectorias usando el método de Optimización Iterativa. Se muestran las direcciones del glider en cada
punto de emersión, junto con las corrientes oceánicas desde el waypoint inicial al de destino .

Finalmente, es posible concatenar múltiples problemas de seguimiento de trayectorias, como muestra el
patrón en forma de molino de la Figura 4.3. Éste está compuesto por múltiples trayectorias en forma de ĺıneas
rectas que deben ser seguidas. Aśı, con la solución a este problema se pueden realizar aplicaciones de muestreo
de giros siguiendo, por ejemplo, este patrón de molino.

4.5 Planificación Multi-glider

Para la planificación multi-glider se han seleccionado escenarios en los que los gliders deb́ıan mantener una
posición relativa fija con respecto a un veh́ıculo ĺıder. También se han planteado problemas de optimización
del tiempo de recuperación de múltiples unidades desplegadas.

Para la recuperación de múltiples gliders tras una misión, planteamos el problema de su recogida eficiente
con un barco. Este problema requiere la planificación coordinada de los caminos de todos los gliders de la
flota, para aśı reducir el tiempo de recogida y, por consiguiente, el gasto económico de la mismo, atendiendo
al combustible consumido por el barco.

En la Figura 4.4 se muestran varias soluciones para el problema de recogida eficiente utilizando el método
de Optimización. Se busca la recogida de ḿınimo tiempo, a la vez que se intenta resolver el problema de
ḿınima distancia restante al destino para un peŕıodo de 4 d́ıas. Los gliders viajan a Ug = 1km/h, con un
tiempo entre emersiones de ts = 8h. En (a), tenemos las solución con planificación de caminos individual.
Por el contrario, las otras dos figuras muestran los resultados usando planificación de caminos multi-glider.
En (b), todos los gliders intentan encontrarse en un punto para la recogida. Finalmente, en (c), el camino del
barco se incluye en el proceso de optimización. Esta última aproximación es la que da mejores resultados.
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(a) Individual. (b) Encontrarse juntos. (c) Camino del barco.

Figura 4.4: Planificación de caminos multi-glider y coordinación para una flota de 5 gliders que tienen que ser
recuperados del mar por un barco en el ḿınimo tiempo. El barco tiene que viajar: (a) 192,0km; (b) 167,5km;
(c) 165,4km, respectivamente.

4.6 Seguimiento y Muestreo de Estructuras Oceánicas Móviles
Finalmente, hemos realizado algunos simulaciones preliminares de la técnica comentada en la Sección 4.4.2,
para realizar el seguimiento y muestreo de estructuras oceánicas móviles. Concretamente, hemos modelado
giros mesoescalares e intentamos seguirlos al mismo tiempo que se muestran determinadas zonas de interés
de los mismos.

Figura 4.5: Ejemplo en el que el contorno de un giro mesoescalar se sigue usando nuestra aproximación con
un Algoritmo Genético y el modelo discreto del giro.

La Figura 4.5 muestra una captura de las corrientes oceánicas y la trayectoria optimizada al final de la
misión; nótese que el giro mueve mientras se muestrea. En este ejemplo se intenta muestrear de manera
óptima un región situada en el borde del giro.
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Conclusiones

En esta tesis se ha abordado el estudio del problema de la planificación automática de rutas para gliders a
partir de modelos de predicción numérica. Se ha demostrado que es posible mejorar las capacidades operativas
de estos veh́ıculos introduciendo herramientas de asistencia al pilotaje.

5.1 Aportaciones Originales
Como principales aportaciones conviene destacar el conjunto de algoritmos de planificación desarrollados. Las
herramientas complementarias generadas constituyen asimismo aportaciones válidas que facilitan el trabajo
en este ámbito de manera importante.

Además de lo anterior, en la tesis se han realizado diferentes análisis cuyas conclusiones pueden considerarse
contribuciones en śı mismas, como es el caso de la revisión bibliográfica comentada, los estudios sobre las
alternativas de modelado o el análisis de aplicabilidad de las técnicas de optimización.

De hecho, tras el análisis bibliográfico hemos visto que el problema del camino de ḿınimo tiempo no es
común en la robótica de veh́ıculos móviles terrestres, donde el problema de planificación de caminos más
común es el del camino más corto. La principal diferencia radica en el hecho de que en el camino de ḿınima
tiempo no sólo afecta la distancia entre origen y destino, sino también la velocidad del veh́ıculo, que en el
caso de la planificación de rutas para gliders se ve afectada por las corrientes Uc.

El algoritmo A* se usa ampliamente para el problema del camino más corto. Varios autores lo han
adaptado al problema del camino de ḿınimo tiempo para gliders (Garau et al., 2005, 2009; Soulignac, 2010).
Básicamente, se incorpora el modelo de movimiento restringido, para encontrar el camino óptimo dentro
de la rejilla del grafo de búsqueda del algoritmo. La discretización de la rejilla obliga a usar el modelo de
movimiento restringido, el cual en presencia de corrientes puede llevar a caminos donde no se puede expandir
ningún nodo. Además, el tiempo entre un nodo y su vecino no es constante ni igual al tiempo entre emersiones
ts, no reflejando aśı la forma en que navega un glider. Igualmente, tampoco se integra la trayectoria del perfil
yo-yo. El análisis de estas limitaciones es una primera contribución de este trabajo de tesis.

El estudio de la literatura de planificación de caminos para gliders, aśı como la de problemas de planificación
de caminos con costes variables y asimétricos, muestra pocas contribuciones en este área. Los problemas más
similares —i.e. que manejan costes asimétricos variables— son: el Problema del Viajante Canadiense (CTP),
rutas de tráficos dinámicas, y mapas de coste o planificación con costes.

En teoŕıa de grafos, el CTP es una generalización del problema del camino más corte a grafos parcialmente
observables, i.e. el grafo se obtiene mientras es explorado (Papadimitriou, 1991). El concepto de observabilidad
parcial cubre los costes variables del problema del camino de ḿınimo tiempo para gliders. De manera similar, en
los problemas de rutas de tráfico dinámicas, la densidad de veh́ıculos produce costes variables para viajar dentro
de la red de rutas. Esto es equivalente a los mapas de coste, que habitualmente se asocian a la planificación
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de caminos basada en relieve. De hecho, podŕıamos construir un mapa de coste a partir del campo vectorial
de corrientes oceánicas, pero esto seŕıa equivalente a aplicar el modelo de movimiento restringido usado por el
A*. Aunque, en nuestra humilde opinión, esta es la categoŕıa en que se ubican los problemas de planificación de
caminos, en realidad no representan la navegación del glider ni ciertas caracteŕısticas de su funcionamiento con
facilidad. Más concretamente, estos problemas no incluyen la restricción de emersiones de tiempo constante.

Antes que un análisis teórico del problema y los algoritmos de planificación de caminos, este trabajo
adopta un enfoque pragmático con el estudio de métodos aplicables a la planificación de rutas para gliders.
Hemos adaptado métodos clásicos basados en grafos como el A*, y técnicas de muestreo probabiĺıstico como
el RRT, siguiendo trabajos previos de Rao and Williams (2009). Debido a las limitaciones del A* y el RRT,
hemos desarrollado varias técnicas novedosas para eliviar sus defectos. Aplicamos el modelo de movimiento
no restringido y reflejamos la restricción de emersiones separadas un tiempo constante. Hacemos estos tanto
para el algoritmo CTS-A* como para las diferentes variantes de los métodos de optimización descritos en la
tesis.

Hemos realizados varios experimentos para evaluar la validez, optimalidad y tiempo de cómputo. Para casi
todos los casos de test, los mejores caminos son encontrados con los métodos de optimización, que además es
el más rápido. El CTS-A* también encuentra caminos muy cerca del óptimo, aunque con algo más de tiempo
de cómputo. Con la estrategia de muestra ABS se reduce su tiempo de cómputo, puesto que permite reducir
el número de muestras para las direcciones que se integran desde cada nodo. Además, un versión gruesa del
CTS-A* se usa en la fase de inicialización de los métodos de optimización para evitar obstáculos en entornos
costeros.

Los resultados experimentales también muestran que la técnica de optimización es fácil de adaptar a un
buen número de problemas de planificación de caminos para gliders. Esto incluye el seguimiento de trayectorias,
las planificación multi-glider y el seguimiento de estructuras oceánicas móviles. Sin embargo, las ventajas de
nuestro esquema de optimización residen en las particularidades de los gliders. Por ello, tales beneficios se
perdeŕıan si se aplica a la planificación de rutas con otro tipo de veh́ıculo. Es en las emersiones separadas
un tiempo constante donde encontramos la razón de esta falta de generalización. La optimización se realiza
en el espacio de direcciones, en lugar de en el espacio de localizaciones. En consecuencia, gracias los tramos
entre emersión de ts ≈ 8h, la dimensionalidad del problema de optimización se reduce drásticamente, lo cual
ayuda a obtener tiempos de cómputo bajos. Claramente, si usásemos veh́ıculos con una tasa de control —i.e.
con un tiempo ts menos—, el número de direcciones |B| aumentaŕıa, perdiendo esta ventaja.

En el caso de aproximaciones como los métodos basados en grafos, éstos tienen que manejar la gran
dimensionalidad del problema, definido en 4 dimensiones en el caso más general —i.e. 3 dimensiones espaciales
y tiempo. Además, varias direcciones ψg deben considerarse al generar los sucesores cuando se expande un
nuevo nodo en la rejilla de búsqueda. Como resultado, el tiempo de cómputo es grande en estas aproximaciones.

Hemos usado modelos de movimiento puntuales en nuestros algoritmos de planificación de caminos, puesto
que resulta una elección razonable, dada la incertidumbre de los modelos oceánicos y la localización de los
gliders. Además, nos consideramos cambios de cabeceo θ o ĺımites de profundidad [zmı́n, zmáx], puesto que
generalmente no se modifican en la práctica. En algunos casos simulamos la deriva del glider mientras espera
en superficie, pero normalmente sólo cuando el resultado se usa posteriormente para asistir en el pilotaje de
gliders en misiones reales. En cualquier caso, también hemos evaluado un modelo cinemático de equilibrio de
fuerzas y comparado sus resultados con los puntos de emersión del glider RU27 en la misión trans-Atlántica.
Como ya se ha mencionado, la precisión de estos modelos no se requiere para la planificación de rutas con
gliders, aumentaŕıan el tiempo de cómputo del planificador sin ningún beneficio tangible, y requieren un mayor
número de parámetros —muchos de ellos dif́ıciles de cuantificar.

Finalmente, hemos avanzado en los primeros pasos en el muestreo de estructuras oceánicas móviles. En
particular, hemos desarrollado una técnica para seguir giros mesoescalares y mejorar la estrategia de muestreo
(véase la Sección 4.4.2). Este problema tiene enorme interés en la asimilación de datos, y su uso para mejorar
el modelado de estas estructuras en los modelos oceánicos.









Contributions to Underwater Glider Path Planning
Path or Motion Planning is a Robotics discipline that deals with the search of
feasible or optimal paths. For most vehicles and environments, it is not a trivial
problem and therefore we find a great diversity of algorithms to solve it, not
only in Robotics and Artificial Intelligence, but also as part of the Optimization
literature, with Numerical Methods and Bio-inspired Algorithms, like Genetic
Algorithms and Ant Colony Optimization.
The particular case of variable cost scenarios is considerably difficult to address
because the environment where the vehicle moves varies over time. The present
thesis work studies this problem and proposes a number of practical solutions
for Underwater Robotics applications. The thesis focuses on Autonomous
Underwater Glider (AUG) Path Planning, considering its motion model and the
effect of ocean currents. Gliders are a type of Autonomous Underwater Vehicle
(AUV) that moves with a relatively slow nominal speed when compared with
ocean currents. For this reason, they conform an interesting research field from
the perspective of path planning. Ocean current maps provide the snapshot
of this physical parameter at different time instants, which along with other
physical parameters, are computed with Ocean Models. In those zones close
to the coastline they exhibit a high temporal variability, so we have to perform
path planning in a variable cost environment, where the cost function is also
asymmetric.
This work attacks the problem using different approaches. Starting with classical
path planning algorithms adapted to the problem, like A*, up to optimization
techniques, Genetic Algorithms, Probabilistic Sampling methods, among others.
The thesis also provides a number of proposals to solve this particular problem.
For instance, some variants of A* combined with probabilistic sampling tech-
niques and several proposals of optimization algorithms within the configuration
space of the feasible bearings the vehicle can follow from each surfacing point,
are described and analyzed. A thorough comparison of these techniques is
covered by this document, with the intention of assessing which ones are more
suitable for the given problem, as well as analyzing their computational cost.
Finally, the work explores sampling strategies for movable ocean structures.
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