
Published in Image Processing On Line on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://edit.ipol.im/pub/algo/sm_horn_schunck

PREPRINT June 13, 2012

Horn-Schunck Optical Flow with a Multi-Scale Strategy

Enric Meinhardt-Llopis1, Javier Sánchez2

1 CMLA, ENS Cachan, France (enric.meinhardt@cmla.ens-cachan.fr)
2 CTIM, University of Las Palmas de Gran Canaria, Spain (jsanchez@dis.ulpgc.es)

Abstract

The seminal work of Horn and Schunck [8] is the first variational method for optical flow
estimation. It introduced a novel framework where the optical flow is computed as the solution
of a minimization problem. From the assumption that pixel intensities do not change over
time, the optical flow constraint equation is derived. This equation relates the optical flow
with the derivatives of the image. There are infinitely many vector fields that satisfy the
optical flow constraint, thus the problem is ill-posed. To overcome this problem, Horn and
Schunck introduced an additional regularity condition that restricts the possible solutions. Their
method minimizes both the optical flow constraint and the magnitude of the variations of
the flow field, producing smooth vector fields. One of the limitations of this method is that,
typically, it can only estimate small motions. In the presence of large displacements, this
method fails when the gradient of the image is not smooth enough. In this work, we describe
an implementation of the original Horn and Schunck method and also introduce a multi-scale
strategy in order to deal with larger displacements. For this multi-scale strategy, we create a
pyramidal structure of downsampled images and change the optical flow constraint equation
with a nonlinear formulation. In order to tackle this nonlinear formula, we linearize it and solve
the method iteratively in each scale. In this sense, there are two common approaches: one
that computes the motion increment in the iterations, like in [9, 11]; or the one we follow, that
computes the full flow during the iterations, like in [1]. The solutions are incrementally refined
over the scales. This pyramidal structure is a standard tool in many optical flow methods
[5, 6, 1, 2, 12, 9, 11].

Source Code

A standalone ANSI C implementation is available (version 3.01). This file contains two main
programs: horn schunck classic.c, which implements the original Horn and Schunck method;
and the implementation of the multi-scale approach, in file horn schunck pyramidal.c. This
latter implementation is best suited for general image sequences.

1 Introduction

Let I(x, y, t) be a video sequence, and let (x(t), y(t)) be the trajectory of a material point projected to
the image plane. The brightness constancy assumption states that the pixel intensities, I(x(t), y(t), t)
remain constant in time:

dI

dt
= 0. (1)

1https://edit.ipol.im/pub/algo/sm_horn_schunck/phs_3.tar.gz

1

http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://edit.ipol.im/pub/algo/sm_horn_schunck
https://edit.ipol.im/pub/algo/sm_horn_schunck/phs_3.tar.gz
https://edit.ipol.im/pub/algo/sm_horn_schunck/phs_3.tar.gz

This identity must hold for the trajectories of every point in the image domain, whose velocities
at one instant define a vector field

h = (u, v) =

(
dx

dt
,
dy

dt

)
. (2)

Thus, the vector field h satisfies pointwise the following linear condition, which is derived from
the brightness constancy assumption by applying the chain rule:

∇I · h + It = 0, (3)

with ∇I = (Ix, Iy). This is the optical flow constraint equation. This equation cannot be solved
pointwise, since the number of parameters to be estimated is larger than the number of linearly
independent equations. This indeterminacy is called the aperture problem: there is not enough
information to recover the optical flow at one point by only looking at first order derivatives of the
image intensity. This is illustrated in figure 1.

Figure 1: Optical flow constraint.

The optical flow constraint equation represents a line perpendicular to the image gradient. Thus,
given this constraint alone, it is only possible to estimate the magnitude of the motion in the gradient
direction as:

h = −It
∇I
|∇I|2

, (4)

which is the smallest motion satisfying the optical flow constraint.

2 The Classical Horn and Schunck Method

The proposal of Horn and Schunck consists in formulating the problem of optical flow estimation as
a variational problem, where the desired vector field h is defined as the minimizer of a certain energy
functional J(h). This functional has two terms: a data attachment term, given by the optical flow
constraint, and a regularity term that is based on the gradient of the flow:

J(h) =

∫
Ω

(Ixu+ Iyv + It)
2 + α2

(
|∇u|2 + |∇v|2)

)
, (5)

where α is a parameter to control the weight of the smoothness term compared to the optical flow
constraint. α is squared so that its units are units of grey-level. This parameter can be seen as

2

the gradient below which the method discards intensity variations considered as noise. This energy
model uses quadratic functionals in both terms. This assumes that the image noise and the flow
derivatives are expected to follow a Gaussian distribution. A direct consequence of this kind of
functionals is that the method is very sensitive to the presence of noise and the computed flow fields
are very smooth. These shortcomings has led to the appearance of many research works that try to
deal with these limitations. The use of L1 functionals, for instance, like in [6, 13, 12], has shown to
be a better approach.

The minimization of the above functional yields the following Euler-Lagrange equations:

I2
xu+ IxIyv = α2div(∇u)− IxIt,
IxIyu+ I2

yv = α2div(∇v)− IyIt. (6)

The Laplacian can be approximated with the following expressions:

div (∇u) ≈ (ū− u),

div (∇v) ≈ (v̄ − v), (7)

where (ū, v̄) are local averages of (u, v). Solving for (u, v) and arranging the equations, we obtain
the following system of equations:

(
α2 + I2

x + I2
y

)
(u− ū) = −Ix (Ixū+ Iyv̄ + It) ,(

α2 + I2
x + I2

y

)
(v − v̄) = −Iy (Ixū+ Iyv̄ + It) . (8)

Writing these equations for each pixel of the input images, we obtain a sparse system of linear
equations that can be solved efficiently with an iterative scheme.

2.1 Numerical Scheme

The partial derivatives, Ix, Iy and It, are approximated using forward differences and averaging
between two consecutive frames:

Ix ≈
1

4
(Ii,j+1,k − Ii,j,k + Ii+1,j+1,k − Ii+1,j,k + Ii,j+1,k+1 − Ii,j,k+1 + Ii+1,j+1,k+1 − Ii+1,j,k+1) ,

Iy ≈
1

4
(Ii+1,j,k − Ii,j,k + Ii+1,j+1,k − Ii,j+1,k + Ii+1,j,k+1 − Ii,j,k+1 + Ii+1,j+1,k+1 − Ii,j+1,k+1) ,

It ≈
1

4
(Ii,j,k+1 − Ii,j,k + Ii+1,j,k+1 − Ii+1,j,k + Ii,j+1,k+1 − Ii,j+1,k + Ii+1,j+1,k+1 − Ii+1,j+1,k+1) , (9)

with Neumann boundary conditions. The local averages (ū, v̄) are estimated from the eight neighbors
of (u, v) as:

ū ≈1

6
(uni−1,j + uni+1,j + uni,j−1 + uni,j+1) +

1

12
(uni−1,j−1 + uni+1,j−1 + uni−1,j+1 + uni+1,j+1),

v̄ ≈1

6
(vni−1,j + vni+1,j + vni,j−1 + vni,j+1) +

1

12
(vni−1,j−1 + vni+1,j−1 + vni−1,j+1 + vni+1,j+1), (10)

with Neumann boundary conditions. The coefficients of this discretization are the same as in [8].
In order to have a correct discretization of the Laplacian, these should be chosen so that the sum

3

of coefficients are equal to the coefficient associated with (u, v). The solution of the above sparse
system of linear equations can be obtained by means of the following iterative scheme:

un+1 :=ūn − Ix
Ixū

n + Iyv̄
n + It

α2 + I2
x + I2

y

,

vn+1 :=v̄n − Iy
Ixū

n + Iyv̄
n + It

α2 + I2
x + I2

y

. (11)

This iterative scheme is the Jacobi method for solving the linear system 8. To stop the iterative
process before a fixed number of iterations, a stopping criterion based on two consecutive values of
h = (u, v) can be used. If hn, hn+1 are successive approximations of the vector field, the stopping
criterion is

1

N

∑
i,j

(
un+1
i,j − uni,j

)2
+
(
vn+1
i,j − vni,j

)2
< ε2. (12)

This criterion is based on the change of the solution in each iteration. The advantage of this is
that it is fast and easy to compute. Another alternative is the use of the residual.

In this section, we have explained the numerical scheme of the original optical flow method
explained in [8]. We have implemented it following the Horn and Schunck proposal. The enclosed C
files contain this implementation in file horn schunck classic.c.

In the following section, we modify the original method in order to handle larger displacements.
We introduce a pyramidal scheme, which is the standard approach in most of nowadays variational op-
tical flow methods. The implementation of this method is included in file horn schunck pyramidal.c.

3 The Horn and Schunck Method for Recovering Large Dis-

placements: A Pyramidal Approach

The optical flow constraint equation (3) is only suitable when the partial derivatives can be correctly
approximated. This is the case when the motion field is small enough or the gradient of the image is
linear. However, in the presence of large displacements, these conditions are not typically preserved,
and it is common to replace it with a nonlinear formulation:

I1(x)− I2(x + h) = 0. (13)

This constraint still accounts for the brightness constancy assumption with the advantage that
h can have arbitrary large values. A linearization of this equation is equivalent to the optical flow
constraint equation (3). Substituting this in the energy model yields the following functional:

J(h) =

∫
Ω

(I1(x)− I2(x + h))2 + α2
(
|∇u|2 + |∇v|2

)
dx. (14)

This model is essentially the same as (5) with the difference that the attachment term is non-
linear. It provides a behavior similar to the original continuous formulation of Horn-Schunck: the
solutions are expected to be very smooth, provided that the regularization term is unchanged. The
minimization of the energy functional yields the following Euler-Lagrange equations:

0 =− (I1(x)− I2(x + h)) I2x(x + h)− α2div (∇u) ,

0 =− (I1(x)− I2(x + h)) I2y(x + h)− α2div (∇v) . (15)

4

These equations are nonlinear in h, because of the warping I2(x + h). We can use first order
Taylor expansions to linearize it,

I2(x + hn+1) = I2(x + hn) +∇I2(x + hn)(hn+1 − hn), (16)

where hn is close to hn+1. Note that, if hn = 0, and we combine equations (13) and (16), then the
resulting formula boils down to the optical flow constraint equation (3). The main difference with
respect to the original continuous model is that the temporal derivative is replaced by the difference
between the two images. A problem that arises with this linearization is how to determine the value
of hn.

This compels us to introduce two mechanisms: on the one hand, we make use of a multi-scale
approach in order to reduce the distance between the objects in the images, so that hn is not far
from hn+1; on the other hand, in each scale, hn is iteratively refined to assure the convergence to
hn+1. This last mechanism can be implemented using the motion increment, dh, from hn to hn+1,
like in [9, 6, 11], or directly updating the value of hn in each iteration, like in [1]. In this work, we
follow the latter strategy.

To obtain a linear system of equations, we substitute the nonlinear terms in the Euler-Lagrange
equations by their Taylor expansions:

0 =
(
I1(x)− I2(x + hn)−∇I2(x + hn)(hn+1 − hn)

)
I2x(x + hn) + α2div (∇un) ,

0 =
(
I1(x)− I2(x + hn)−∇I2(x + hn)(hn+1 − hn)

)
I2y(x + hn) + α2div (∇vn) . (17)

The proposed algorithm consists in solving for hn+1 this linear system of equations iteratively
many times at each scale.

3.1 Pyramidal Structure

In order to estimate large displacements, we embed the optical flow method in a multi-scale strat-
egy. The idea behind a multi-scale approach is to create a coarse-to-fine structure that enables the
estimation of the flow field at coarser scales and then to refine the solution at finer scales. There
are two basic approaches, which theoretically amount to the same thing: the first one is to create a
pyramid of downsampled images and the second one is to use a linear scale-space of images at the
same resolution [1]. Both approaches provide similar results, but the former has the advantage of
working with smaller images, improving the run time of the algorithm.

Our algorithm implements a pyramid of downsampled images. The pyramid is created by reducing
the images by a factor η ∈ (0, 1). Before downsampling, the images are smoothed with a Gaussian
kernel of a standard deviation that depends on η. For a set of scales s = {0, 1, ..., Nscales − 1}, the
pyramid of images is built as

Is(ηx) := Gσ ∗ Is−1(x). (18)

After the convolution, the images are sampled using bicubic interpolation. The value of σ depends
on η and is calculated as

σ(η) := σ0

√
η−2 − 1, with σ0 := 0.6. (19)

Intuitively, when η is close to 1 (no downsampling), σ approaches 0, so the image does not
change much; and when η is close to 0 (abrupt downsampling), σ is large, so the image becomes
very smoothed. The value of σ0 was found empirically from several values of η and different image
sequences. Then, starting at the coarsest scale, the system of equations is solved in each scale to get

5

successive approximations to the optical flow. Every intermediate solution is used as the initialization
in the following scale. To transfer the values from a coarser scale, the flow field is updated as

hs−1(x) :=
1

η
hs(ηx). (20)

The motion to be detected must be small at the coarsest scale. Thus, it is necessary to create as
many scales so that (1/η)Nscales−1 is larger than the magnitude of the largest expected displacement.
In this respect, one drawback of the pyramidal approach is that, typically, the method cannot estimate
the motion of small objects undergoing large displacements, since these may disappear in the coarsest
scales.

3.2 Numerical Scheme

In each scale, the Euler-Lagrange equations are solved using a numerical scheme based on the SOR
method (Successive Over-Relaxation). This means that we need to introduce another fixed point
iteration level, inner iterations r, for the convergence of the SOR method. This is embedded into the
outer iterations, n, of the Taylor expansions. The Laplacian is approximated with finite differences
as

div
(
∇un,r+1

)
≈1

6
(un,r+1

i−1,j + un,r+1
i+1,j + un,r+1

i,j−1 + un,r+1
i,j+1)

+
1

12
(un,r+1

i−1,j−1 + un,r+1
i+1,j−1 + un,r+1

i−1,j+1 + un,r+1
i+1,j+1)− un,r+1

i,j ,

div
(
∇vn,r+1

)
≈1

6
(vn,r+1
i−1,j + vn,r+1

i+1,j + vn,r+1
i,j−1 + vn,r+1

i,j+1)

+
1

12
(vn,r+1
i−1,j−1 + vn,r+1

i+1,j−1 + vn,r+1
i−1,j+1 + vn,r+1

i+1,j+1)− vn,r+1
i,j . (21)

First order derivatives of the images are computed by means of central differences. In the classical
method, derivatives are computed using forward differences (see equation (9), which may lead to a
de-localisation of the derivatives. Henceforth, we use the following notation:

I1 := I1(x)

I2 := I2(x + hn)

I2x := I2x(x + hn)

I2y := I2y(x + hn). (22)

Note that hn remains fixed during the inner iterations. The numerical scheme is given by

0 =
(
I1 − I2 −∇I2(hn,r+1 − hn)

)
I2x + α2div

(
∇un,r+1

)
,

0 =
(
I1 − I2 −∇I2(hn,r+1 − hn)

)
I2y + α2div

(
∇vn,r+1

)
. (23)

Then, grouping terms and expressing the above equations with respect to the flow field at iteration
(n, r + 1) we obtain the following fixed-point iterations:

un,r+1
i,j :=(1− w)un,ri,j + w

((
I1 − I2 + I2xu

n
i,j − I2y(vn,ri,j − vni,j)

)
I2x + α2A(un,r+1

i±1,j±1)
)

I2
2x + α2

,

vn,r+1
i,j :=(1− w)vn,ri,j + w

((
I1 − I2 − I2x(un,r+1

i,j − uni,j) + I2yv
n
i,j

)
I2y + α2A(vn,r+1

i±1,j±1)
)

I2
2y + α2

. (24)

6

where w is the relaxation parameter of the SOR method, with 0 < w < 2 (we choose 1.9 by default).
In each scale of the pyramid, the SOR scheme, corresponding to index r, is iterated until the flow
converges to a steady-state solution or a maximum number of iterations is reached. Estimated values
in instant r + 1 are used whenever they are available. This allows us to use a single array to store
the optical flow. n stands for the outer iterations and is related with the Taylor expansions. Thus,
we have two nested iterations, one for the convergence of the numerical scheme and another for the
successive refinements of the Taylor linearization. Once the SOR scheme has converged, we go to
the next outer iteration n+ 1.

The value of A(un,r+1
i±1,j±1) is computed from the neighbors of ui,j as

A(un,r+1
i±1,j±1) :=

1

6
(un,r+1

i−1,j +un,r+1
i+1,j +un,r+1

i,j−1 +un,r+1
i,j+1) +

1

12
(un,r+1

i−1,j−1 +un,r+1
i+1,j−1 +un,r+1

i−1,j+1 +un,r+1
i+1,j+1). (25)

At the coarsest scale, hNscales−1 can be initialized to (0, 0), provided that the motion field is very
small. There are some additional numerical issues to be taken into account:

• To warp the image I2 by a flow field h, I2(x + h) is evaluated using bicubic interpolation.

• To upscale a vector field h by a factor of η, bicubic interpolation is used on each component of
the motion field.

• The original images are normalized between 0 and 255 together, so that the value of α is
independent of the brightness shift of the images.

4 Explanation of the Parameters

In this subsection we explain the parameters of the method and suggest reasonable default values.
The algorithm depends on five parameters: the regularization weight (α), the stopping criterion
threshold (ε), the downsampling factor (η), the number of scales (Nscales) and the number of outer
iterations(Nouter).

• α is the regularization parameter. It determines the smoothness of the output. The bigger
this parameter is, the smoother the solutions we obtain. In the experiments, we observe that
a default value can be set to 15. This parameter has units of gray-level. It can be interpreted
as the expected standard deviation of the Gaussian noise present in the original images.

• ε is the stopping criterion threshold used in the numerical scheme, which is a trade-off between
precision and running time. A small value will yield more accurate solutions at the expense of
a slower convergence. Its default value can be set to 0.0001, which, in general, provides good
convergence rates with a low running time.

• η is the downsampling factor. It is used to downscale the original images in order to create
the pyramidal structure. Its value must be in the interval (0, 1). With η = 0.5, the images
are reduced to half their size in each dimension from one scale to the following. Higher values
may slightly improve the results but more scales are necessary to attain the same size of
displacements. In our experiments, a default value of 0.65 seems to provide a good performance.

• Nscales is used to create the pyramid of images. If the flow field is very small (about one
pixel), it can be set to 1. Otherwise, it should be set so that (1/η)N−1 is larger than the
expected size of the largest displacement. A value of Nscales = 5 with η = 0.5 allows the
method to estimate motions up to 16 pixels (if η = 0.95, then Nscales must be set to 56 to
get the same displacements). Nscales can be calculated with the following formula: Nscales :=
−log(max motion)/log(η)+1. In the experiments, its value is computed automatically so that
the initial scale corresponds to an image of size about 16.

7

Parameter Description Default value
α regularization parameter 15
ε stopping threshold 0.0001
η downsampling factor 0.65
Nscales number of scales Automatic
Nouter number of outer iterations 5

• Nouter represents the number of outer iterations. This is a parameter that assures the stability
of the method. It also affects the running time, so it is a compromise between speed and
accuracy. In the experiments, we found that Nouter = 5 provides a good performance.

5 Algorithm

5.1 Classical Horn-Schunck Method

The original Horn and Schunck method can be implemented by algorithm 1.

Algorithm 1: Horn-Schunck optical flow

Input: I, α, ε
Output: h = (u, v)
Compute Ix, Iy, It1

u← 02

v ← 03

n← 04

while n < Nmaxiter and stopping criterion > ε do5

Compute ū, v̄ using equation (10)6

u← ū− Ix
Ixū+ Iyv̄ + It
α2 + I2

x + I2
y7

v ← v̄ − Iy
Ixū+ Iyv̄ + It
α2 + I2

x + I2
y8

Compute stopping criterion9

n← n+ 110

end11

The stopping criterion is calculated with the formula given in (12), and depends on consecutive
approximations, hn and hn+1.

5.2 Pyramidal Horn-Schunck Method

Typically, Algorithm 1 is suitable for the detection of small displacements. To detect large dis-
placements, we follow the multi-scale approach explained above. For this, we have implemented a
procedure that calculates the flow field in each scale and an algorithm that creates and handles the
pyramidal structure. The procedure updates iteratively the vector field h from the previous scale
approximation. The initial value for h is given by the enclosing multiscale procedure and it is zero at
the coarsest level. The procedure that calculates the optical flow in each scale is given in algorithm
2. The pyramidal structure is implemented in algorithm 3. These algorithms are implemented using
float precision numbers.

8

Procedure horn schunck optic flow(I1, I2,h, α, ε,Nmaxiter, Nouter)

Compute I2x , I2y1

for n← 1 to Nouter do2

Compute I2(x + h), I2x(x + h), I2y(x + h) using bicubic interpolation3

un ← u4

vn ← v5

r ← 06

while r < Nmaxiter and stopping criterion > ε do7

Compute A(u),A(v) using equation (25)8

u← (1− w)u+ w
((I1−I2+I2xu

n−I2y (v−vn))I2x+α2A(u))
I22x+α29

v ← (1− w)v + w
((I1−I2−I2x (u−un)+I2yv

n)I2y+α2A(v))
I22y+α210

Compute the stopping criterion11

r ← r + 112

end13

end14

Algorithm 3: Pyramidal Horn-Schunck optical flow

Input: I1, I2, α, ε, η,Nmaxiter, Nouter, Nscales

Output: h
Normalize I1, I2 between 0 and 2551

Convolve I1, I2 with a Gaussian of σ := 0.82

for s← 0 to Nscales − 1 do3

Downscale images I1, I2 by η4

end5

hNscales−1 ← (0, 0)6

for s← Nscales − 1 to 0 step −1 do7

horn schunck optic flow(I1, I2,h
s, α, ε,Nmaxiter, Nouter)8

if s > 0 then9

hs−1(x)← 1
η
hs(ηx)10

end11

end12

6 Examples

Let us start by showing the effect of the parameters with some simple examples. The simplest
possible example is a video sequence of the form

I(x, y, t) = ax+ by + ct, (26)

that is, the video is described globally by an affine function. In that case, the basic method gives an
accurate result in one iteration for α=0. This is due to the fact that an affine function is differentiated
accurately by any finite difference scheme, and the first iteration in that case amounts to

h =
−c

α2 + a2 + b2
(a, b), (27)

which, for α = 0 gives a movement in the direction of the ramp with the correct magnitude. When
α is smaller than the gradient of I, the first iteration provides already a good approximation of

9

Figure 2: Color wheel used for representing the flow fields.

Figure 3: Ramp sequence. Left, the first image; Middle, the second image; Right, the optical flow.

the correct movement. In the experiment shown on Figure 3, a correct displacement of 70 pixels is
recovered accurately on the first iteration.

A slightly more realistic setting is a smooth blob that moves 3 pixels to the right (figure 4). In that
case, the first iteration of the method gives a vector field that satisfies the optical flow constraint at
each point, but is not globally coherent due to the aperture problem. Successive iterations propagate
the information towards the rest of the image until a constant vector field is achieved. Notice that
this constant vector field is effectively the minimum of the energy functional in that case, because
its energy vanishes.

First, let us study the effect of the parameter α on the first iteration, depicted on figure 5. It only
has an effect on regions of the input image where the gradient is smaller than α. In those regions, the
data term is not used (so, in the first iteration, the produced field is forced to vanish). As explained
in [8], the value of this parameter can be interpreted as the expected error in the image gradient.
For this synthetic experiment, the only error is the numeric noise due to the smoothing by Fourier

Figure 4: Smooth blob moving 3 pixels to the right.

10

Figure 5: Optical flows obtained for the blob sequence for Niter = 1 and different values of α: left
flow with α = 2.56; middle flow with α = 0.256; and right flow with α = 0.

Figure 6: Evolution of the flow field for increasing number of iterations (Niter).

transform (of about 10−15), which becomes visible at α = 0.
The images in figure 6 show how the iterations propagate the correct flow information isotropically

all over the image. The black lines on these images are the level lines ‖∇h‖ = c for c = 1, 2, 3 and
the iterations run until 300.000.

These experiments show an interesting feature of the method: if the image and the required flow
are smooth enough, the correct solution can be recovered, regardless of the magnitude of the flow.
The smoothness of the image can be enforced by convolving it with a Gaussian.

To study the effect of the parameters, we run the algorithm for a range of values of each parameter,
keeping the values of the others at their default values. We use three illustrative sequences (figure
7): Baboon, where the flow is smooth and small, (a rotation); Book, where the flow has large
displacements and occlusions; and Urban2, from the Middlebury benchmark database.

The first graph in figure 8 shows that the iterations generally converge for ε around 0.001. For
smaller values, the running time increases without any improvement on the result. In these graphics,
we use the average end-point (EPE) and average angular (AAE) errors, as defined in [3]. The second
graphic in figure 8 shows that the best value of the regularization parameter α depends on the input
data. For example, to recover a smooth movement it is good to set α = 20, and to find a movement
with many occlusions it is best to set α around 5.

11

Baboon sequence Ground truth Optical flow

Book sequence Ground truth Optical flow

Urban2 sequence Ground truth Optical flow

Figure 7: Results for the Baboon, Book and Urban2 sequences. The level lines in the Baboon flows,
represent the flows whose magnitude is equal to one.

Figure 8: Effect of the ε and α parameters. Notice that the optimal value for the parameter α differs
from image to image.

12

Table 1: EPE and AAE for default parameters using the Middlebury test sequences.
Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

EPE 0.151 0.219 0.847 0.327 0.241 0.561 1.071 0.451
AAE 2.768o 3.105o 7.586o 3.427o 7.913o 5.086o 10.614o 7.594o

Table 2: EPE and AAE for the best optical flows using the Middlebury test sequences.
Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

EPE 0.150 0.219 0.842 0.327 0.235 0.561 0.941 0.407
AAE 2.767o 3.105o 7.608o 3.364o 7.684o 5.086o 8.830o 6.723o

In the first column of figure 9, we see the effect of the scale step parameter. A conclusion that can
be drawn is that when the scale step is small enough (near 0.8), the optimizing effect of the warps
is less apparent. In the second column of the same figure, we observe that increasing the number of
warps per scale always improves the result, but there are diminishing returns due to the dramatic
rise of running times.

6.1 Middlebury Database

This subsection shows several tests with the sequences in the Middlebury benchmark database [3].
This database contains two types of data: those for which the ground truths are made public (called
“Test sequences”), and those for which the ground truths are not public (“Evaluation sequences”).
Other benchmarks, [4, 10, 7], are not described in this article but can be tested through the demo
system.

6.1.1 Test Sequences

For the test sequences, we have run the algorithm with the same parameter set: α = 15, ε = 0.0001,
η = 0.65 and 5 warpings. We have also computed the optical flows adapting the value of α in order
to find a better result.

Figure 10 shows the 10th frame of the sequence, the ground truth, the solution with fixed param-
eters and the best solution we have found. These sequences are composed of more than two frames,
but the ground truth is only available for the 10th frame.

In table 1 we show the EPE and AAE for the Middlebury test sequences when fixed parameters
are used, which correspond to the optical flows in the third column of figure 10. In the fourth column
of the figure, we show the best optical flows found and its corresponding α. The numerical results
are shown in table 2.

6.1.2 Evaluation Sequences

Finally, in figures 11 and 12 we show several examples using the Middlebury evaluation sequences.
We have used the following parameter set: α = 15, ε = 0.0001, η = 0.65 and 5 warpings.

Acknowledgements

This work has been partly founded by the Spanish Ministry of Science and Innovation through the
research project TIN2011-25488, by the Centre National d’Etudes Spatiales (CNES, MISS Project),
by the European Research Council (advanced grant Twelve Labours) and by the Office of Naval
research (ONR grant N00014-97-1-0839).

13

Figure 9: Effect of the scale step parameter (left column) and the number of warps (right column)
for the Baboon, Book and Urban2 sequences.

14

Frame 10 Ground truth Optical flow Best optical flow

Dimetrodon
α = 13

Grove2
α = 15

Grove3
α = 14

Hydrangea
α = 17

RubberWhale
α = 11

Urban2
α = 15

Urban3
α = 9

Venus
α = 9

Figure 10: Middlebury test sequences.

15

Army Mequon Schefflera Wooden

Figure 11: Middlebury evaluation sequences.

Grove Urban Teddy Yosemite

Figure 12: Middlebury evaluation sequences.

16

Image Credits

All images by the authors except:

Middlebury benchmark database.

Middlebury benchmark database.

Lynn Quam.

Synthetic image. Book sequence frame 25. Computer Laboratory, Cambridge.

Standard test image.

References

[1] Luis Álvarez, Joachim Weickert, and Javier Sánchez. Reliable estimation of dense optical flow
fields with large displacements. International Journal of Computer Vision, 39(1):41–56, 2000.
http://dx.doi.org/10.1023/A:1008170101536.

[2] P. Anandan. A computational framework and an algorithm for the measurement of visual
motion. International Journal of Computer Vision, 2:283–310, 1989. 10.1007/BF00158167.

[3] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and Richard Szeliski.
A database and evaluation methodology for optical flow. In International Conference on Com-
puter Vision, pages 1–8, 2007. http://dx.doi.org/10.1109/ICCV.2007.4408903.

[4] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow techniques. Inter-
national Journal of Computer Vision, 12:43–77, 1994. 10.1007/BF01420984.

[5] Michael J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and
piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75 – 104, 1996.
http://dx.doi.org/10.1006/cviu.1996.0006.

[6] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical
flow estimation based on a theory for warping. In T. Pajdla and J. Matas, editors, European
Conference on Computer Vision (ECCV), volume 3024 of Lecture Notes in Computer Science,
pages 25–36, Prague, Czech Republic, May 2004. Springer. http://dx.doi.org/10.1007/978-3-
540-24673-2 3.

[7] B. Galvin, B. McCane, K. Novins, D. Mason, and S. Mills. Recovering motion fields: An
evaluation of eight optical flow algorithms. In British Machine Vision Conference, pages 195–
204, 1998.

[8] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelligence,
17:185–203, 1981. http://dx.doi.org/10.1016/0004-3702(93)90173-9.

[9] E. Memin and P. Perez. Dense estimation and object-based segmentation of the optical-flow
with robust techniques. IEEE Transactions on Image Processing, 7(5):703–719, May 1998.

[10] Amar Mitiche and Patrick Bouthemy. Computation and analysis of image motion: A synopsis
of current problems and methods. International Journal of Computer Vision, 19:29–55, 1996.
10.1007/BF00131147.

17

[11] Nils Papenberg, Andrés Bruhn, Thomas Brox, Stephan Didas, and Joachim Weickert. Highly
Accurate Optic Flow Computation with Theoretically Justified Warping. International Journal
of Computer Vision, 67(2):141–158, April 2006. http://dx.doi.org/10.1007/s11263-005-3960-y.

[12] Javier Sánchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation.
Image Processing On Line, Preprint, 2012.

[13] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l1 optical flow.
In Proceedings of the 29th DAGM conference on Pattern recognition, pages 214–223, Berlin,
Heidelberg, 2007. Springer-Verlag.

18

	Introduction
	The Classical Horn and Schunck Method
	Numerical Scheme

	The Horn and Schunck Method for Recovering Large Displacements: A Pyramidal Approach
	Pyramidal Structure
	Numerical Scheme

	Explanation of the Parameters
	Algorithm
	Classical Horn-Schunck Method
	Pyramidal Horn-Schunck Method

	Examples
	Middlebury Database
	Test Sequences
	Evaluation Sequences

