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Abstract: Birds have historically suffered adverse effects by toxic elements, such as As, Pb, Hg,
and Cd. However, reports on exposure to a wide range of elements, including rare earth elements
and other minor elements of emerging concern, and the potential consequences for wildlife are still
scarce. This study evaluates blood concentrations of 50 elements and their related effects on lutein
and vitamin levels in the Eurasian blackbird (Turdus merula) and wild rock pigeon (Columba livia),
inhabiting different scenarios of contaminant exposure. Blood concentrations of As, Cd, and Pb
(and Mn in T. merula) were increased in both species captured in the mining area, compared to
the control site. T. merula also showed increased As, Cd, and Pb concentrations in blood in the
agricultural–urban area, as compared to the control area, together with the highest Hg levels, which
could be related to agricultural practices and industrial activities. Decreases of 33 and 38% in the
plasma retinol levels in T. merula inhabiting the mining and the agricultural–urban areas, respectively,
as compared to the control site, were associated with increased Pb, As, and Cd exposure. This could
be due to a metal-driven suppressive effect in retinol metabolism and/or its over-use for coping with
metal-related oxidative stress.

Keywords: metal exposure; biochemistry; industrial emissions; urbanization; wild pigeon; blackbird

1. Introduction

Avifauna is a group of vertebrates that have historically suffered the adverse effects
of contaminants [1–5]. Metalloids and metals including arsenic (As), lead (Pb), mercury
(Hg), and cadmium (Cd) are known to be toxic and have been ranked in the first positions
within the Substance Priority List by the Agency of Toxic Substances and Disease Registry
(ATSDR) [6]. These toxic elements are extensively reported in tissues of different bird
species, due to their bioaccumulation capacity and the negative effects they may cause,
including alterations in growth, reproductive success, behavior, immune function, and
biochemistry [2,4,7–13]. In addition to the metals/metalloids classically studied, rare earth
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elements (REE) and other minor elements (ME) are of emerging concern because of their
use in modern technology worldwide, leading to emissions and electronic waste [14,15].
However, reports on exposure to these elements and the potential consequences for wildlife
populations have only recently been studied and are still scarce [16–18]. Therefore, addi-
tional research is needed to evaluate toxic elements exposure, spatiotemporal trends, and
related adverse effects for different avian species.

Vitamins and carotenoids are dietary nutrients with a wide range of physiological
functions in the antioxidant and immune systems, vision, reproduction, and growth [5].
Carotenoids are essential for immune function, coloration, and breeding; some carotenoids
are precursors of vitamin A [19] and their role as antioxidants is still under debate [20,21].
Retinol is the active form of vitamin A and plays critical roles in antioxidant and immune
functions, as well as cell differentiation, proliferation, and growth [5,22,23]. Regarding α-
Tocopherol, it is the major form of vitamin E and has a potent role as antioxidant, protecting
membranes from lipid peroxidation, together with other functions (e.g., anti-inflammatory
properties, stimulation of immune responses, and phagocytic functions) [5,24,25]. Toxic-
element (As, Pb, Cd, and Hg)-driven effects on these vitamins in birds have been reported
in different studies, as compiled in a recent review [5]. However, discrepancies have been
found in the literature, and further studies are highly recommended to better understand
the relation between exposure to metals and vitamin concentrations in different species,
considering factors such as diet, age, and gender [5]. In this sense, to the best of our knowl-
edge, this is the first study reporting 50 elements in blood and evaluating their potential
effects on lutein and vitamin levels in the plasma of any Turdidae or Columbidae species.

Toxicological studies focused on widespread and common species are advantageous
because they can be broadly used in standardized monitoring schemes over large regions,
thus enabling comparisons among different countries, ecosystems, or environmental gradi-
ents. The Eurasian blackbird (Turdus merula) is a medium-sized, sedentary passerine with a
wide distribution along the Palearctic region. Blackbirds originally inhabited woodlands
and open forests, but have colonized a broad range of ecosystems in recent decades and are
among the most common bird species in shrublands, farmlands, and urban areas [26,27]. In
Spain, blackbirds occurs along all national territory, from coastal areas to 1500 m.a.s.l., being
absent only in extremely arid, non-vegetated areas [28]. This species has an omnivorous
diet, based mainly on ground-dwelling invertebrates, such as caterpillars, earthworms,
snails, and fleshy fruits, when plentifully available [29,30]. Thus, the ubiquitous character
and omnivorous diet, shown by the blackbird, together with their already reported ability
to bioaccumulate contaminants [31], make them a potentially good model species to assess
the exposure to toxic elements in highly impacted mining areas [32]. The rock pigeon
(Columba livia) (hereafter, pigeon) is native to Eurasia and most countries of Africa, but
it has been historically introduced around the world [33]. Its diet is mostly based on
grain, though it may include other sources of protein, such as small invertebrates [34].
Pigeons often inhabit cities and rural areas but may be found in other ecosystems, such as
farmlands and open forests, usually associated with man-made constructions (old farm-
houses, bridges, and open-pit mines, among others). Therefore, the use of this species as a
bioindicator of metal exposure can provide very useful information to assess the effects of
mining activities in birds inhabiting human-dominated landscapes [35–37].

This study aims to evaluate blood concentrations of 50 elements (i.e., ATSDR’s list
toxic elements, trace elements, REE, and ME) and their related effects on lutein and vitamin
levels in blackbirds and pigeons inhabiting different scenarios of contaminant exposure
in the southeast of the Iberian Peninsula (i.e., agricultural–urban area, mining area, and
control area). We expect increased Pb, As, and other element concentrations in the mining
area, based on previous findings in different wild bird species [16,17,38] that may lead to
physiologic effects, including reduced hematocrit and vitamin alterations [16,18]. Thus, the
potential effects of toxic element exposure on hematocrit levels and body measurements
are also tested.
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2. Materials and Methods
2.1. Study Area and Pollution Scenarios

The three pollution scenarios investigated were located in the province of Murcia,
in the southeast of the Iberian Peninsula (37◦ 45′ N, 0◦ 57′ W) (Figure 1). This region is
characterized by a Mediterranean semi-arid climate, with a strong water deficit during
spring and summer and scarce rainfall occurring predominantly in winter. Irrigation
agriculture is the main land use in lowlands and plateaus, whereas rainfed crops, pine
forests, and Mediterranean shrublands extend over highlands and mountain areas.
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Figure 1. Map showing the investigated scenarios in the province of Murcia, Spain. The sampling
areas are represented by a rhombus, triangle, and circle for control, mining, and agricultural–urban
areas, respectively. The sampling areas for the different species are shown in different color: black
figures for Turdus merula and grey figures for Columba livia.

We selected three different scenarios of contaminant exposure in the study area,
according to the main land use: agricultural–urban area (only for blackbird), mining area,
and control area. The agricultural–urban area is placed in the center of the study province,
on the outskirts of the city of Murcia (2 km away from the metropolitan area) and is
represented by a mosaic of traditional tree farming (mostly citric crops) and scattered but
moderately populated rural villages. Pesticides and other plant-protection agrochemicals
are applied in this area through non-industrial methods (i.e., manual spraying). The
mining area is represented by an ancient mining site (Cartagena-La Unión Mining District),
placed in the south of the province of Murcia, where extraction activity was maintained
until 1992 [39]. High contaminant exposure has been reported for wildlife inhabiting
this area [40,41], even altering certain physiological functions, which could compromise
long-term population viability [18]. To date, toxic metals are still spread from headwaters
to lowlands during torrential rain episodes, thus impacting surrounding ecosystems [39].
In regards to the control area, it is located between the two other pollution scenarios and is
represented by the Special Protection Area (SPA) “Sierras de Altaona y Escalona”, which is
a mountainous zone dominated by rainfed traditional farming and Mediterranean forest.
No contaminants have been previously found to affect wildlife in this area [38]. Human
population density in this area is extremely low, with some scattered small rural villages in
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the territory, and the landscape is dominated by small tree crops (citrus, almond, and olive
trees) scattered in a shrubland and forest matrix.

2.2. Bird Sampling, Measurements, and Trace Element and Vitamin Analysis

Blackbirds (n = 42) were trapped by mist netting during the breeding season (June
and July) of 2017 in the three described pollution scenarios. Nets (16-mm mesh size)
were deployed from dawn to midmorning (7–12 am) beside vegetation, and conspecific
playbacks were used, in order to maximize capture probabilities. Once captured, each
bird was individually marked with a numbered aluminium ring (Ministerio de Medio
Ambiente, ICONA, Madrid, Spain). Birds were aged and sexed on the basis of the available
literature, by exploring moult limits on covert feathers and sexual dimorphism in plumage
colour, respectively [42,43]. Except juveniles (young birds in their first summer), we were
able to sex all trapped birds. We grouped birds into two age groups: juveniles (EURING
age code 3) and breeding adults (birds in their second summer or older; EURING age code
4 or higher).

Pigeons (n = 27) were captured from March to May 2018 in the mining and control
area. To trap the birds, mining open pits and old farmhouses were visited at night to locate
wild pigeons on roosting and breeding sites. When detected, pigeons were caught by using
a LED torch and handheld net with a 10 mm mesh-size [44]. Once captured, wing length
and body mass were recorded for each bird and, whenever possible, they were aged and
sexed, on the basis of the available literature [42]. Sex was difficult to determine, due to the
great overlapping in body size and features between both sexes. Birds were also grouped
into two age classes: juveniles (EURING age code 3) and breeding adults (EURING age
code 4 or higher).

During handling and sampling for both species, best practice guidance was followed
according to Espín et al. [45]. Individuals were examined prior to blood sampling, and
all were considered clinically healthy. Blood samples (approximately 0.8 mL) were col-
lected by puncturing the jugular (in blackbirds) and brachial (in pigeons) veins with 30G
needles and 1 mL-syringes and stored in heparinized Eppendorf tubes under refrigerated
conditions, until processed in the laboratory. One Eppendorf tube with whole blood was
frozen at −80 ◦C until element analysis. Another Eppendorf tube with whole blood was
centrifugated to separate plasma and red blood cell, and the tubes were frozen at −80 ◦C
for biochemical analysis. The duration of the handling process per individual was ca.
15 min, and all birds were released exactly in the same location where they were caught.
The sampling was approved by the Ethical Committee for Animal Experimentation at the
University of Murcia (codes 193/2015 and 446/2018) and authorized by the “Consejería de
Agua, Agricultura y Medio Ambiente, Región de Murcia” (AUF/2017/0039).

A total of 50 elements (Table 1) were selected to be analyzed in whole blood, ac-
cording to their toxicity and/or their frequent use in the manufacturing of electronic
products [14,15]. Analyses were done using an Agilent 7900 ICP-MS equipment (Agilent
Technologies, Santa Clara, CA, USA), following a procedure developed for human blood,
which had been previously validated using certified reference materials [46]. Additional
details were provided by Espín et al. [17]. Retinol, α-tocopherol, and lutein concentrations
were measured in plasma samples by a HPLC-DAD-FLD system (Agilent 1200 Series),
according to Rodríguez-Estival et al. [47]. Further information was provided in Espín
et al. [18].
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Table 1. Ranges and medians for element concentrations a (ng/mL, w.w.) in whole blood of the Eurasian blackbird
(Turdus merula) and wild rock pigeon (Columba livia). Limits of quantification (LOQ) given together with the proportion of
samples <LOQ.

Element Group b LOQ T. merula (n = 42) C. livia (n = 27)

Range
(min—max) Median %<LOQ Range

(min—max) Median %<LOQ

Aluminum (Al) 2 38.426 <LOQ—2010 16.9 95 <LOQ—365 15.0 96
Antimony (Sb) 2 0.010 <LOQ—7.04 0.0060 95 N/A <LOQ 100
Arsenic (As) 2 0.008 <LOQ—44.2 2.56 2 0.686—72.2 2.33 0
Barium (Ba) 2 1.016 4.64—44.2 15.0 0 <LOQ—56.4 7.12 44

Beryllium (Be) 2 0.050 <LOQ—0.597 0.0208 88 <LOQ—0.543 0.0317 96
Bismuth (Bi) 4 0.050 <LOQ—0.464 0.0204 95 N/A <LOQ 100

Cadmium (Cd) 2 0.010 <LOQ—2.61 0.254 19 <LOQ—1.08 0.328 19
Cerium (Ce) 3 0.050 <LOQ—1.92 0.554 40 <LOQ—1.12 0.0258 96

Chromium (Cr) 1, 2 0.229 <LOQ—12.3 1.10 12 <LOQ—11.3 0.138 81
Cobalt (Co) 1, 2 0.011 0.350—2.72 1.01 0 <LOQ—1.52 0.821 30
Copper (Cu) 1, 2 1.724 137—310 200 0 153—299 225 0

Dysprosium (Dy) 3 0.005 <LOQ—0.0409 0.0027 88 <LOQ—0.0294 0.0026 89
Erbium (Er) 3 0.050 N/A <LOQ 100 N/A <LOQ 100

Europium (Eu) 3 0.005 <LOQ—0.0122 0.0035 71 <LOQ—0.0103 0.0019 96
Gadolinium (Gd) 3 0.005 <LOQ—0.0523 0.0036 62 <LOQ—0.0610 0.0027 93

Gallium (Ga) 4 0.050 <LOQ—0.365 0.127 29 <LOQ—0.292 0.173 33
Gold (Au) 4 0.005 <LOQ—2.08 0.0025 95 N/A <LOQ 100

Holmium (Ho) 3 0.005 <LOQ—0.0064 0.0024 95 <LOQ—0.0061 0.0030 93
Indium (In) 4 0.005 <LOQ—0.0402 0.0035 60 <LOQ—0.0419 0.0027 85

Iron (Fe) 1 24.645 246,000—410,000 330,000 0 221,000—476,000 400,000 0
Lanthanum (La) 3 0.100 <LOQ—0.285 0.0539 81 <LOQ—0.591 0.0435 96

Lead (Pb) 2 0.361 5.36—1350 114 0 <LOQ—252 30.6 7
Lutetium (Lu) 3 0.005 N/A <LOQ 100 N/A <LOQ 100

Manganese (Mn) 1, 2 0.371 7.84—53.8 16.8 0 10.5—94.9 17.9 0
Mercury (Hg) 2 0.010 4.34—197 33.7 0 <LOQ—24.4 0.0070 74

Molybdenum (Mo) 1 0.148 3.23—40.6 18.1 0 <LOQ—29.1 14.1 4
Neodymium (Nd) 3 0.005 <LOQ—0.282 0.0023 83 N/A <LOQ 100

Nickel (Ni) 1, 2 7.946 N/A <LOQ 100 <LOQ—158 4.18 93
Niobium (Nb) 4 0.005 <LOQ—0.256 0.0032 76 <LOQ—0.320 0.0025 96
Osmium (Os) 4 0.005 N/A <LOQ 100 <LOQ—0.0059 0.0030 70

Palladium (Pd) 2 0.010 N/A <LOQ 100 <LOQ—0.0611 0.0050 74
Platinum (Pt) 4 0.005 N/A <LOQ 100 <LOQ—0.0772 0.0047 56

Praseodymium (Pr) 3 0.005 <LOQ—0.0798 0.0029 90 N/A <LOQ 100
Ruthenium (Ru) 4 0.005 <LOQ—0.0114 0.0031 95 <LOQ—0.0111 0.0025 89
Samarium (Sm) 3 0.005 <LOQ—0.0626 0.0027 95 <LOQ—0.0491 0.0020 96
Selenium (Se) 1, 2 0.153 93.6—10,700 520 0 139—621 330 0

Silver (Ag) 2 0.100 <LOQ—3.09 0.0833 64 <LOQ—0.697 0.0393 89
Strontium (Sr) c 2 0.439 28.5—162 58.7 0 22.4—153 49.5 0
Tantalum (Ta) 4 0.005 <LOQ—0.219 0.0047 60 N/A <LOQ 100
Terbium (Tb) 3 0.005 N/A <LOQ 100 N/A <LOQ 100
Thallium (Tl) 2 0.050 <LOQ—0.914 0.0750 33 <LOQ—0.748 0.0456 59
Thorium (Th) 2 0.050 <LOQ—0.0599 0.0281 93 <LOQ—0.182 0.0329 93
Thulium (Tm) 3 0.005 N/A <LOQ 100 N/A <LOQ 100

Tin (Sn) 2 0.010 <LOQ—5.42 0.170 45 <LOQ—2.74 0.0051 85
Titanium (Ti) 4 0.757 <LOQ—23.4 14.5 43 <LOQ—62.6 0.521 67
Uranium (U) 2 0.050 N/A <LOQ 100 <LOQ—0.0785 0.0302 96
Vanadium (V) 2 0.050 <LOQ—1.29 0.0358 67 <LOQ—8.41 2.20 7
Ytterbium (Yb) 3 0.005 <LOQ—0.0147 0.0020 76 <LOQ—0.0103 0.0034 78

Yttrium (Y) 3 0.005 <LOQ—0.195 0.0038 62 <LOQ—0.198 0.0026 96
Zinc (Zn) 1, 2 51.031 4030—5980 4950 0 2190—7320 5600 0

a For calculating medians, <LOQ values were replaced by a random number between 0 and LOQ. b Element categories: 1 = Essential
trace elements, 2 = ATSDR’s list toxic elements, 3 = Rare earth elements, and 4 = Other minor elements. c Stable Sr is considered to be of
relatively low toxicity, and only Sr-90 is included in the ATSDR’s Substance Priority List.
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2.3. Statistical Procedures

Most of the elements showed some values below the limit of quantification (<LOQ),
and for many of them, this proportion was relatively high (Table 1). For calculations,
we substituted <LOQ values by a random number between 0 and LOQ [48]. For all
50 elements, we first calculated ranges and medians for both species (Table 1). For the
statistical comparison, we only selected those elements (14 in T. merula, 11 in C. livia)
where the proportion of <LOQ values was less than 20% [48] (Table 2). Three of those
elements (Cu, Fe, and Mo) were normally distributed (by visual inspection of a histogram
and Kolmogorov-Smirnov test for normality), while the rest of the elements were log10
transformed to make them better conform to normal distribution. Log10-transformation
was also performed for the retinol and lutein values of T. merula, as well as for the tocopherol
values of C. livia.

Table 2. Mean (±95% confidence limits) concentrations (ng/mL, w.w.) of the elements in the blood, hematocrit, body
measurements, and plasma biochemistry of the Eurasian blackbird (Turdus merula; n = 42) and wild rock pigeon (Columba
livia; n = 27) in the agricultural–urban area, mining area, and control area. Linear models (LM) for comparison of means.
Tukey’s test: means with the same letter are not statistically different.

Mean LM

T. merula Variable Agric.-urban (CL) Mining (CL) Control (CL) F df p

Arsenic (As) * 2.87 a (1.34–6.15) 3.81 a (2.01–7.21) 0.494 b (0.238–1.03) 9.98 2,39 0.0003
Barium (Ba) * 8.81 a (6.57–11.8) 17.6 b (13.7–22.5) 16.5 b (12.5–21.9) 7.57 2,39 0.0017

Cadmium (Cd) * 0.185 a (0.0722–0.474) 0.523 a (0.237–1.15) 0.0147 b (0.00597–0.0364) 18.5 2,39 <0.0001
Chromium (Cr) * 0.716 (0.362–1.41) 1.28 (0.720–2.26) 0.650 (0.338–1.25) 1.49 2,39 0.24

Cobalt (Co) * 1.04 (0.809–1.33) 1.15 (0.931–1.41) 0.808 (0.637–1.03) 2.56 2,39 0.090
Copper (Cu) 219 (198–239) 206 (188–223) 188 (168–208) 2.46 2,39 0.099

Iron (Fe) 336,000 (310,000–363,000) 327,000 (304,000–349,000) 336,000 (310,000–361,000) 0.22 2,39 0.81
Lead (Pb) * 109 a (80.4–148) 779 b (603–1010) 13.4 c (9.98–17.9) 224 2,39 <0.0001

Manganese (Mn) * 14.8 a (12.0–18.3) 21.9 b (18.3–26.1) 14.9 a (12.1–18.2) 5.79 2,39 0.0063
Mercury (Hg) * 77.5 a (46.0–131) 21.5 b (13.9–33.4) 29.6 b (17.9–48.8) 7.49 2,39 0.0018

Molybdenum (Mo) 26.6 a (23.5–29.7) 11.1 b (8.47–13.7) 19.8 c (16.8–22.8) 30.5 2,39 <0.0001
Selenium (Se) * 1020 a (578–1810) 415 b (257–671) 788 ab (455–1360) 3.32 2,39 0.047
Strontium (Sr) * 66.1 a (55.7–78.4) 50.2 b (43.5–58.0) 79.7 a (67.7–94.0) 9.46 2,39 0.0004

Zinc (Zn) * 5040 (4760–5340) 4940 (4710–5190) 4820 (4560–5090) 0.69 2,39 0.51
Hematocrit (%) 41.9 (38.2–45.5) 37.2 (34.2–40.3) 39.1 (35.6–42.6) 1.96 2,39 0.15
Body mass (g) 82.8 (79.3–86.3) 84.5 (81.6–87.5) 80.9 (77.6–84.3) 1.31 2,39 0.28

Wing length (mm) ** 122 (120–124) 124 (123–126) 123 (120–125) 1.55 2,26 0.23
Retinol (µM/mL) * 8.92 a (7.59–10.5) 9.54 a (8.26–11.0) 14.3 b (12.3–16.7) 11.3 2,37 0.0002

Tocopherol (µM/mL) 47.3 a (37.9–56.8) 31.7 b (23.2–40.1) 45.0 ab (35.9–54.1) 3.79 2,37 0.032
Lutein (µM/mL) * 15.1 a (9.55–23.9) 6.40 b (4.24–9.66) 12.2 ab (7.82–18.9) 4.47 2,37 0.018

C. livia Variable Agric.-urban (CL) Mining (CL) Control (CL) F df p

Arsenic (As) * N/A 12.5 (6.47–24.2) 1.93 (1.16–3.20) 21.4 1,25 <0.0001
Cadmium (Cd) * N/A 0.478 (0.145–1.58) 0.0799 (0.0320–0.200) 5.99 1,25 0.022

Copper (Cu) N/A 224 (199–249) 215 (196–235) 0.31 1,25 0.58
Iron (Fe) N/A 408,000 (371,000–446,000) 391,000 (362,000–420,000) 0.58 1,25 0.45

Lead (Pb) * N/A 90.6 (35.8–229) 9.02 (4.43–18.4) 16.5 1,25 0.0004
Manganese (Mn) * N/A 23.0 (16.0–33.2) 18.9 (14.3–25.0) 0.78 1,25 0.39
Molybdenum (Mo) N/A 15.9 (11.9–19.8) 13.1 (10.0–16.1) 1.34 1,25 0.26

Selenium (Se) * N/A 397 (322–490) 312 (266–366) 3.58 1,25 0.070
Strontium (Sr) * N/A 38.8 (29.3–51.5) 59.3 (47.7–73.6) 5.96 1,25 0.022
Vanadium (V) * N/A 2.34 (0.985–5.54) 1.28 (0.661–2.48) 1.29 1,25 0.27

Zinc (Zn) * N/A 5400 (4610–6330) 5170 (4580–5850) 0.20 1,25 0.66
Hematocrit (%) *** N/A 64.0 (55.7–72.3) 57.6 (54.1–61.1) 2.25 1,18 0.15

Body mass (g) N/A 341 (311–371) 330 (307–353) 1.25 1,25 0.42
Wing length (mm) ** N/A 233 (229–237) 230 (226–234) 1.20 1,13 0.29

Retinol (µM/mL) N/A 7.96 (6.17–9.74) 9.53 (8.17–10.9) 2.09 1,25 0.16
Tocopherol (µM/mL) * N/A 32.5 (21.2–49.9) 33.0 (23.8–45.8) 0.00 1,25 0.95

Lutein (µM/mL) N/A 10.5 (4.88–16.2) 13.9 (9.58–18.2) 0.96 1,25 0.34

* Geometric means, values log10 transformed for the analyses and back-transformed for the table. ** Sex was included as an explanatory
variable in the model and 12 individuals of T. merula and 11 individuals of C. livia could not be determined for sex, decreasing the sample
size. *** There were seven missing hematocrit values in C. livia.
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We analyzed differences in element levels, hematocrit, body measurements, and blood
biochemistry among sampling sites, via linear models (LM) with area, sex, and age (only for
T. merula) as explanatory factors. In most cases, sex and age showed no significant effects
(p > 0.05), and site alone was left in the models as an explanatory factor to use with the full
sample size (age and sex both had some missing values). However, sex was retained in the
wing length models of both species, due to the significant sexual size dimorphism. For the
values that showed significant differences among three sites (only for T. merula), we further
ran Tukey’s test, adjusted for the number of pairwise comparisons. Alpha level was set to
0.05 in all analyses.

Finally, we selected major non-essential toxic trace elements, which showed increased
values, relative to the control site (As, Cd, Hg, Mn, and Pb for T. merula; As, Cd and Pb for
C. livia), for studying their associations to hematocrit and biochemical measures in plasma.
Because these element levels were largely intercorrelated, a principal component analysis
was performed to reduce the number of variables and to avoid collinearity problems in
our models. For the consequent analyses, we included principal components that showed
eigenvalues >1, i.e., PC1 and PC2, in T. merula (eigenvalues: PC1 2.5 and PC2 1.5; explaining
78% of variation) and PC1 in C. livia (eigenvalue: PC1 2.0; explaining 65% of variation). For
both species, PC1 got positive loadings from all the elements and highest loadings from As,
Cd, and Pb. In T. merula, PC2 got strong positive loading from Hg and negative loading
from Mn. In the LMs, we used PCs, body mass, and wing length as explanatory factors
for hematocrit and biochemical parameters. Model estimates and confidence limits for
log10-transformed values were back-transformed to the original scale for tables and figures.

Associations between blood elements, hematocrit (HT), plasma biochemistry, wing
length, and mass were inspected by using the Pearson correlation test. All the analyses
were run with SAS statistical software 9.4.

3. Results

In both bird species, most elements (especially REE and ME) in blood samples showed
levels below LOQ in more than 20% of the individuals (Table 1), indicating generally low
levels and suggesting limited toxic effects at the population level. For those elements where
the proportion of <LOQ values was below 20%, mean concentrations by sampling area
are shown in Table 2. Turdus merula showed increased levels of As, Cd, Pb, and Mn in
the mining site, as compared to the control site, values of Pb being notably high (Table 2).
Toxic elements As, Cd, and Pb were also increased in the agricultural–urban site, together
with relatively high Hg values (Table 2). Trace elements Mo, Se, and Sr, instead, showed
relatively low values in the mining site, although the level of Se was not significantly
different from the control value (Table 2). Agricultural–urban site further showed lower Ba
levels, as compared to the other sites (Table 2). Following a similar pattern, C. livia showed
increased As, Cd, and Pb and decreased Sr levels in the mining site (Table 2). Finally, the
levels of three toxic metals (As, Cd, and Pb) were directly compared between the two
species within the mining site: As showed higher values in C. livia (F1,25 = 5.71, p = 0.025),
Pb showed higher values in T. merula (F1,25 = 150, p < 0.0001), and Cd showed no difference
(F1,25 = 0.12, p = 0.73).

Hematocrit, body mass, or wing length of T. merula were not dependent on the
sampling site (Table 2), but males showed 4.8% longer wings than females (F1,26 = 23.4,
p < 0.0001). Retinol levels were smaller in the agricultural–urban and mining site, as
compared to the control (Table 2). The mining site also showed lower tocopherol and
lutein levels than the other sites, but both measures differed significantly only from the
agricultural–urban site (Table 2). None of the morphological or biochemical parameters
showed significant between-site differences in C. livia (Table 2).

Hematocrit showed a positive relationship with PC2 (Hg+, Mn−) in T. merula and PC1
(As+, Cd+, Pb+) in C. livia, but both effects were only marginally significant (p = 0.051 and
p = 0.075, respectively; Table 3). In T. merula, retinol was negatively associated with PC1
(As+, Cd+, Pb+) and lutein was positively associated with PC2 (Hg+, Mn−) (Table 3 and Figure 2).
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Tocopherol and lutein levels further decreased with increasing body mass (Table 3 and
Figure 2). In C. livia, none of the biochemical parameters were associated with PC1
(As+, Cd+, Pb+) or morphological measures (Table 3). Correlations among all parameters
are shown for both species in Table A1 (Appendix A).

Table 3. Linear models for explaining variation in hematocrit value and the biochemical plasma variables of Turdus merula
and Columba livia. Principal components (PC1 and PC2) describe variations in the concentration of major toxic metals in
blood (see methods). Statistically significant effects are shown in bold.

F (Estimate ± SE)

T. merula n PC1 (As+, Cd+, Pb+) PC2 (Hg+, Mn−) Body mass Wing length

Hematocrit (%) 42 0.08 (0.19 ± 0.65) 4.07 (1.62 ± 0.80) ◦ 0.00 (−0.01 ± 0.17) 2.18 (−0.37 ± 0.25)
Retinol (µM/mL) a 40 14.1 (−0.052 ± 0.014) *** 0.65 (−0.013 ± 0.016) 0.20 (−0.0016 ± 0.0035) 0.01 (0.00058 ± 0.0053)

Tocopherol (µM/mL) 40 0.79 (−1.52 ± 1.70) 1.39 (2.37 ± 2.01) 8.85 (−1.26 ± 0.42) ** 0.00 (−0.038 ± 0.64)
Lutein (µM/mL) a 40 0.22 (−0.017 ± 0.035) 7.84 (0.12 ± 0.041) ** 7.18 (−0.023 ± 0.087) * 0.67 (−0.011 ± 0.013)

C. livia n PC1 (As+, Cd+, Pb+) Body mass Wing length

Hematocrit 20 3.82 (2.05 ± 1.05) ◦ 0.00 (0.00056 ± 0.041) 2.63 (0.33 ± 0.20)
Retinol (µM/mL) 27 0.32 (−0.23 ± 0.40) 0.05 (0.0036 ± 0.017) 2.02 (0.12 ± 0.084)

Tocopherol (µM/mL) a 27 1.07 (0.043 ± 0.042) 0.08 (0.00050 ± 0.0017) 1.51 (−0.011 ± 0.0086)
Lutein (µM/mL) 27 0.02 (−0.21 ± 1.36) 0.05 (−0.012 ± 0.057) 0.27 (0.15 ± 0.28)

a Variable was log10 transformed for the analysis. ◦ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.0001.
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Figure 2. Biochemical markers in the plasma of Turdus merula, relative to the body mass and 1st and 2nd principal
components (PC1 and PC2), describing the levels of toxic metals in blood (directions for the main factor loadings are
shown in parentheses). Prediction line and 95% confidence limits come from the models of Table 3 (log-transformed values
transformed back to the original scale). Plus signs denote the original data points.
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4. Discussion
4.1. Element Concentrations in Blood

Blood concentrations of As, Cd, and Pb (and Mn in T. merula) were increased in
both T. merula and C. livia captured in the mining area, compared to the control site. The
higher exposure to the most toxic elements for both species in the ancient mine site was
expected. This mining area has been exploited for more than 2500 years (mainly for Pb,
Zn, Cu, Mn, Ag, Fe, and Sn extraction) [49,50], and similar results have already been
observed in several biomonitoring studies developed along the years (1993–2020) in other
bird species, including red-necked nightjars (Caprimulgus ruficollis) and eagle owls (Bubo
bubo) [16,17,38,40,51,52]. The Pb concentrations detected in blood of T. merula in the mining
area are of special concern, being 58 times higher than the levels found in birds from the
control area. These Pb levels (arithmetic mean = 835 ng/mL w.w.) are indicative of a
high level of exposure and are similar to [53,54] or higher than those reported in T. merula
and T. migratorius in polluted environments in France and USA, respectively [31,55–57]
(Figure 3). On the other hand, C. livia showed blood Pb levels (arithmetic mean = 102
ng/mL w.w.) similar to or lower than those reported in C. livia and Zenaida macroura in
polluted environments in the Netherlands, Morocco, and USA [56,58–60] (Figure 3).
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Regarding As blood concentrations in T. merula and C. livia in the mining area (arith-
metic means = 6.7 and 29.3 ng/mL w.w., respectively), T. merula showed similar levels,
but C. livia showed higher levels than those reported in red-winged blackbirds (Agelaius
phoeniceus) and marsh wrens (Cistothorus palustris) in the USA (4.64 and 3.73 ng/mL) [61].
The concentrations of As and Pb were compared between the two species within the mining
site, and Pb values were higher in T. merula, while As showed higher values in C. livia. These
results could be related to their different diets. T. merula has an omnivorous diet, based
mainly on ground-dwelling invertebrates and fleshy fruits (when plentifully available),
while the diet of C. livia is grain-based [29,30,34]. In this line, previous studies have shown
that soil-dwelling invertebrates are more likely to accumulate Pb than plants [62], and
birds consuming omnivorous and invertebrate diets show higher Pb concentrations than
granivore species [63]. On the other hand, As uptake by plants will depend on its concen-
tration and speciation in soils, and plants growing in contaminated sites have shown high
As levels (1.14–98.5 mg/kg), compared to uncontaminated areas (0.06–0.58 mg/kg) [64].
A study analyzing soil samples and plants, naturally growing in our study’s mining site,
showed high concentrations of As in soil (mean = 860 mg/kg), which correlated with As
levels in plant leaves (mean = 23.5 mg/kg) [65]. Different plants for human and animal
consumption have been reported to accumulate As concentrations in grain, represent-
ing their edible tissues an important source of dietary As in humans [66,67]. Therefore,
the mostly grain-based diet of C. livia could explain the higher blood As concentrations
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in this species, compared to T. merula. In addition, different detoxication mechanisms
for As can also explain these results, since methylating capacity is highly dependent on
species [2], and a lower dietary content of methionine or protein can also result in a lower
As methylation [68].

Concentrations of Cd in T. merula and C. livia in the mining area (arithmetic means = 0.67
and 0.55 ng/mL w.w., respectively) were lower than those found in Agelaius phoeniceus,
Cistothorus palustris, and tree swallows (Tachycineta bicolor) in the USA (13.5, 26.9, and
3.58 ng/mL, respectively) [61], and these levels are considered low in birds [17,38,51,61].
Mn concentrations in T. merula (arithmetic mean = 23.4 ng/mL w.w.) in the mining site
were similar to the levels observed in Northwestern crows (Corvus caurinus) (28–33 ng/mL
w.w.) in the USA [69].

On the other hand, the blood levels of Mo and Se (only in T. merula), as well as Sr (in
both species), were lower in the mining area. Pollutant-related indirect effects, including
poor quality and quantity of food or changes in the diet (due to resource limitations),
may contribute to lower essential elements (Mo and Se) and Sr concentrations in the
mining-impacted area. Previous studies have also found reduced Mo and Sr levels in
red-necked nightjars and eagle owls inhabiting the mining area [16,17]. Although Sr is
classically considered a non-essential element, further studies are needed to understand its
essentiality, since its supplementation has been shown to increase calcified bone volume
and limit bone resorption, which prevents from bone mass loss [70–72].

T. merula also showed increased As, Cd, and Pb concentrations in blood in the
agricultural–urban area, as compared to the control area, together with the highest Hg
levels. Contamination sources in this agricultural–urban area could include agricultural
practices and industrial activities [73]. Individuals from this area also showed the highest
Se concentrations. The accumulation of Se in tissues under Hg exposure has been well
documented, since, at proper concentrations, Se can form a complex with Hg and protects
against its toxicity [74,75]. In the present study, a significant positive correlation was found
between Se and Hg levels in blood in T. merula (r = 0.62; p < 0.001; Table A1).

4.2. Element-Driven Effects on Lutein and Vitamin Levels, as well as Hematocrit and
Body Measurements

Blood Pb concentrations in T. merula inhabiting the mining area were within the range
related to subclinical signs, with 43% of birds exceeding the benchmark value for physio-
logical effects in Anseriformes and Falconiformes (i.e., 200 ng/mL w.w.), 33% exceeding the
level considered of clinical poisoning (i.e., 500 ng/mL), and 14% (6 individuals) exceeding
the threshold related to severe clinical poisoning in Anseriformes and Falconiformes (i.e.,
1000 ng/mL) [76]. Although it is well known that different avian species may have different
sensitivity to metals, the blood Pb concentrations achieved in individuals from the mining
area may have important consequences to their heath. In this sense, eagle owls living in the
same mining site showed up to a 79% inhibition of δALAD in blood at Pb concentrations
above 190 ng/mL [77], red-necked nightjars showed a 4–44% decrease in hematocrit values
at blood concentrations ranging 200–>1000 ng/mL [17], and the blood Pb levels of 30 and
150 ng/mL in eagle owls and griffon vultures (Gyps fulvus), respectively, depleted the
levels of different antioxidants in red blood cells and induced lipid damage in erythro-
cytes [38,78]. These concentrations could have also adversely affect bird reproduction; e.g.,
experimentally-dosed red-legged partridges (Alectoris rufa) showed a lower hatching rate,
reduced sperm motility, and acrosome integrity at blood Pb levels of 758 and 920 ng/mL in
females and males, respectively [79].

In this study, a decrease of 33 and 38% in the plasma retinol levels in T. merula
inhabiting the mining and the agricultural–urban areas, respectively, as compared to the
control site, was associated with increased Pb, As, and Cd exposure. This could be due to a
metal-driven suppressive effect in retinol storage and metabolism [5]. In line with this, it
has been suggested that metals can disrupt the expression of genes involved in retinoid
homeostasis and interfere with proteins/enzymes involved in its transport, esterification,
and hydrolysis [5,80]. In addition, as retinol also functions as antioxidant, an over-use of
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this molecule to cope with metal-related oxidative stress could also explain this result [5].
This metal-driven decrease tendency in retinol levels is consistent with the results observed
by other authors in different bird species exposed to Pb, As, Cd, and Hg in both field and
experimental studies [18,81–85], and it could have adverse consequences to birds’ growth
and development [5].

In spite of the direct effects of Pb, As, and Cd on retinol levels, such direct effects
were not found in tocopherol and lutein concentrations in plasma. The decreased levels
of tocopherol and lutein in T. merula in the mining area, compared to the agricultural–
urban area (decrease of 33 and 58%, respectively; significant difference) and the control
site (decrease of 30 and 48%, respectively; non-significant difference), could be related to
differences in diet among the study areas. Birds probably have access to nutrient-rich items
in the agricultural–urban and the control sites, while the diet in the mining area could be
poorer in tocopherol and lutein, due to metal-related indirect effects. In this sense, plasma
tocopherol and lutein were positively correlated (r = 0.68, p < 0.001; Table A1), and they
were inversely related to body mass (Figure 2). Birds in better conditions (with larger fat
stores) could show lower circulating carotenoids because they get stored in fat tissue [86].
Moreover, it has been reported that lutein supplementation increased the birds’ fat reserves,
possibly indicating that carotenoids interfere with the lipid metabolism [87]. Previous
studies have observed that metal-polluted environments negatively affect lutein levels in
different bird species, due to lower access to carotenoid-rich diet [8,85]. In addition, Mn
concentrations in T. merula are negatively associated to lutein levels, thus increased blood
Mn in the mining area could have produced a decrease in plasma lutein levels. Excessive
Mn may increase free radicals, and fighting against them would again deplete antioxidants,
such as lutein, in the body. Mn concentrations (and the effect on lutein levels in birds)
have rarely been reported [16,18]. However, Mn toxicity on pigment content, including
decreased carotenoid levels, has been found in different plant species [88,89].

Despite C. livia showing increased As, Cd, and Pb concentrations in the mining
area; the levels of retinol, tocopherol, and lutein in plasma did not differ between study
sites and were not affected by metals. Only blood As concentrations were positively
correlated with tocopherol levels, which could be related to a protective response (as
tocopherol is a potent antioxidant) to cope with As-related oxidative stress [5]. Interspecific
differences in the metabolism of vitamins/carotenoids, or in the tolerance to metals, could
be the reason underlying these contradictory results. In this regard, results from previous
studies suggest that some species can be less susceptible to metal-related disturbances
in physiological parameters [8,38,77,78,83,85]. This could be related to among-species
variations in regulation mechanisms and vitamin upregulation thresholds [5]. Moreover,
the smaller sample size, the lower the Pb concentrations in blood and the fact that pigeons
could not be sampled from the agricultural–urban area may partly explain the lack of
effects of metals on physiology in this species.

5. Conclusions

Local contamination in the mining area contributes to increased concentrations of As,
Cd, and Pb (and Mn in T. merula) in the blood of T. merula and C. livia, while potential
differences in food quality and quantity in that environment may account for the decreased
blood Sr in both species, as well as the decreased blood Mo, Se, plasma tocopherol, and
lutein in T. merula.

Hematocrit and morphological parameters were unaffected by the mining-impacted
environment. However, increased Pb, As, and Cd exposure were associated with decreased
plasma retinol levels in the T. merula inhabiting the mining and agricultural–urban areas
(33 and 38% decrease, respectively), as compared to the control site. This could be due to a
metal-driven, suppressive effect in retinol storage and metabolism, and/or an over-use of
retinol, to prevent metal-related oxidative stress. This retinol depletion could have adverse
consequences in the growth and development for this species.
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According to the results found in this study, C. livia could be less susceptible to
metals (none of the biochemical parameters were associated to toxic metals) than T. merula.
However, additional studies evaluating other biochemical parameters and with higher
number of samples are needed to support these findings.
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Appendix A

Table A1. Pearson correlations between blood elements, hematocrit (HT), plasma biochemistry, wing length, and body mass of Turdus merula (above diagonal, n = 42; for retinol, tocopherol,
and lutein n = 40) and Columba livia (below diagonal, n = 27; for hematocrit n = 20).

As Ba Cd Co Cr Cu Fe Hg Mn Mo Pb Se Sr V Zn HT Ret Toc Lut Mass Wing

As −0.062 0.69
***

0.65
*** 0.18 0.27 0.27 0.42 ** 0.062 −0.20 0.54

*** 0.47 ** −0.19 N/A 0.11 0.028 −0.54
*** −0.22 −0.10 0.25 0.29

Ba N/A −0.072 0.056 0.13 0.086 −0.26 −0.28 0.46 ** −0.13 0.12 −0.12 0.39 * N/A 0.069 −0.29 0.28 −0.13 −0.17 −0.14 −0.15

Cd 0.42 * N/A 0.50
*** 0.26 0.031 0.0035 0.25 0.23 −0.34

*
0.71
*** 0.20 −0.34

* N/A −0.0024 −0.011 −0.48
** −0.25 −0.18 0.36 * 0.25

Co N/A N/A N/A 0.41 ** 0.18 0.013 0.39 * 0.25 −0.22 0.29 0.42 ** −0.034 N/A 0.25 −0.14 −0.20 −0.20 0.0017 0.19 0.15
Cr N/A N/A N/A N/A 0.17 0.071 0.092 0.19 −0.24 0.11 0.12 −0.11 N/A 0.22 −0.25 −0.012 −0.28 0.040 0.14 0.21
Cu 0.30 N/A 0.29 N/A N/A 0.30 0.16 0.052 0.010 0.23 −0.056 0.11 N/A 0.22 0.11 −0.22 0.036 −0.022 0.018 −0.041

Fe 0.37 N/A 0.42 * N/A N/A 0.63
*** 0.16 −0.23 −0.21 −0.090 0.26 −0.14 N/A 0.30 0.58

*** −0.059 0.28 0.31 * −0.063 −0.012

Hg N/A N/A N/A N/A N/A N/A N/A −0.21 0.41 ** −0.15 0.62
*** 0.17 N/A 0.084 0.29 −0.17 0.12 0.30 0.12 −0.17

Mn 0.16 N/A 0.21 N/A N/A 0.34 0.28 N/A −0.15 0.44 ** −0.30 −0.075 N/A 0.20 −0.25 −0.063 −0.21 −0.33
* 0.11 −0.13

Mo 0.38 N/A 0.21 N/A N/A 0.50 ** 0.53 ** N/A 0.35 −0.43
** 0.26 0.39 * N/A 0.061 0.16 0.10 0.25 0.28 −0.22 −0.29

Pb 0.56 ** N/A 0.39 * N/A N/A 0.17 0.46 * N/A 0.16 0.48 * −0.27 −0.51
*** N/A 0.13 −0.064 −0.47

** −0.25 −0.34
* 0.26 0.24

Se −0.054 N/A 0.17 N/A N/A 0.37 0.49 ** N/A 0.14 0.40 * 0.39 * 0.27 N/A 0.18 0.062 −0.0013 0.046 0.28 0.12 0.18
Sr −0.034 N/A −0.044 N/A N/A 0.58 ** 0.36 N/A 0.50 ** 0.42 * −0.14 −0.029 N/A −0.0032 −0.088 0.13 −0.013 −0.048 −0.16 −0.24
V 0.35 N/A 0.28 N/A N/A 0.19 0.37 N/A 0.075 0.56 ** 0.54 ** 0.29 0.14 N/A N/A N/A N/A N/A N/A N/A

Zn 0.19 N/A 0.41 * N/A N/A 0.61
***

0.86
*** N/A 0.36 0.59 ** 0.42 * 0.51 ** 0.42 * 0.50 ** 0.19 0.17 0.25 0.22 −0.13 0.054

HT 0.20 N/A 0.55 * N/A N/A 0.24 0.65 ** N/A 0.19 0.088 0.22 0.47 * −0.22 0.17 0.61 ** −0.048 0.29 0.21 −0.034 −0.23
Ret −0.29 N/A 0.23 N/A N/A −0.094 0.20 N/A −0.24 −0.17 0.038 0.26 −0.17 0.062 0.26 0.61 ** 0.47 ** 0.39 * −0.26 −0.20

Toc 0.42 * N/A 0.0023 N/A N/A 0.26 0.29 N/A 0.35 0.21 0.013 −0.25 0.19 −0.030 0.10 0.26 −0.13 0.68
***

−0.50
** −0.15

Lut 0.16 N/A −0.14 N/A N/A −0.032 0.15 N/A −0.027 −0.0090 −0.030 −0.20 0.023 0.027 0.15 0.10 0.31 0.54 ** −0.43
** −0.22

Mass 0.12 N/A 0.52 ** N/A N/A −0.025 0.32 N/A 0.082 −0.073 0.12 0.12 −0.063 0.26 0.41 * 0.15 0.28 −0.072 0.025 0.20

Wing 0.033 N/A 0.30 N/A N/A −0.27 0.13 N/A −0.18 −0.32 0.063 0.12 −0.39
* 0.17 0.16 0.41 * 0.40 * −0.24 0.098 0.68

***

HTC = hematocrit (%), Ret = retinol in plasma (µM/mL), Toc = tocopherol in plasma (µM/mL), Lut = lutein in plasma (µM/mL), Wing = wing length (mm), Mass = body mass (g). As, Ba, Cd, Co, Cr, Hg, Mn,
Mo, Pb, Se, Sr, Zn, RET, and LUT were log10-transformed for the analysis in T. merula. As, Ba, Cd, Co, Cr, Hg, Mn, Mo, Pb, Se, Sr, V, Zn, and TOC were log10-transformed for the analysis in C. livia; * p < 0.05,
** p < 0.01, *** p < 0.001. N/A = not applicable.
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