
remote sensing

Article

Hardware Implementation of the CCSDS 123.0-B-2
Near-Lossless Compression Standard Following an HLS
Design Methodology

Yubal Barrios * , Antonio Sánchez , Raúl Guerra and and Roberto Sarmiento

����������
�������

Citation: Barrios, Y.; Sánchez, A.;

Guerra, R.; Sarmiento, R. Hardware

Implementation of the CCSDS

123.0-B-2 Near-Lossless Compression

Standard Following an HLS Design

Methodology. Remote Sens. 2021, 13,

4388. https://doi.org/10.3390/

rs13214388

Academic Editor: Chiman Kwan

Received: 9 September 2021

Accepted: 28 October 2021

Published: 31 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC),
35017 Las Palmas de Gran Canaria, Spain; ajsanchez@iuma.ulpgc.es (A.S.); rguerra@iuma.ulpgc.es (R.G.);
roberto@iuma.ulpgc.es (R.S.)
* Correspondence: ybarrios@iuma.ulpgc.es (Y.B.)

Abstract: The increment in the use of high-resolution imaging sensors on-board satellites motivates
the use of on-board image compression, mainly due to restrictions in terms of both hardware (compu-
tational and storage resources) and downlink bandwidth with the ground. This work presents a com-
pression solution based on the CCSDS 123.0-B-2 near-lossless compression standard for multi- and
hyperspectral images, which deals with the high amount of data acquired by these next-generation
sensors. The proposed approach has been developed following an HLS design methodology, ac-
celerating design time and obtaining good system performance. The compressor is comprised by
two main stages, a predictor and a hybrid encoder, designed in Band-Interleaved by Line (BIL)
order and optimized to achieve a trade-off between throughput and logic resources utilization. This
solution has been mapped on a Xilinx Kintex UltraScale XCKU040 FPGA and targeting AVIRIS
images, reaching a throughput of 12.5 MSamples/s and consuming only the 7% of LUTs and around
the 14% of dedicated memory blocks available in the device. To the best of our knowledge, this is the
first fully-compliant hardware implementation of the CCSDS 123.0-B-2 near-lossless compression
standard available in the state of the art.

Keywords: hyperspectral imaging; compression algorithms; FPGA; hardware implementations;
space missions; on-board data processing; CCSDS

1. Introduction

Hyperspectral imaging sensors are gaining interest in the space industry since they
provide useful information at different wavelengths for some Remote Sensing applications,
such as surface characterization and monitoring, or target detection and tracking. Nonethe-
less, these sensors acquire a huge amount of data that not only will eventually exceed the
storage capacity on-board satellites, but also are costly to process on-board, considering
the current hardware resources available for space missions. In addition, transmission
of raw images to ground is not viable due to the limited downlink bandwidths [1]. It is
expected that these constraints become more stringent during the next years, since next-
generation hyperspectral imaging sensors will increase both the pixel resolution and the
scene size [2,3], even incorporating the acquisition of multispectral video. For all these
reasons, both academia and companies linked to the space industry are developing effi-
cient solutions for on-board image compression, taking advantage of the high correlation
between adjacent wavelengths in 3D images.

Since on-board hyperspectral image compression solutions should take into account,
in addition to the target compression ratio, certain constraints defined by the space mis-
sion, such as low-complexity and high throughput (even supporting real-time processing),
specific approaches need to be developed to work in that environment. In this way, the Con-
sultative Committee for Space Data Systems (CCSDS), a worldwide organization comprised

Remote Sens. 2021, 13, 4388. https://doi.org/10.3390/rs13214388 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6186-9971
https://orcid.org/0000-0002-2142-7885
https://orcid.org/0000-0002-4303-3051
https://orcid.org/0000-0002-4843-0507
https://doi.org/10.3390/rs13214388
https://doi.org/10.3390/rs13214388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214388
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214388?type=check_update&version=2

Remote Sens. 2021, 13, 4388 2 of 18

by the main space agencies, has published different data compression standards thought
for space applications with a reduced computational complexity, without compromising
the compression performance.

In this context, there is currently a trend involving the use of Field-Programmable
Gate Arrays (FPGAs) as processing units on-board satellites [4], for example to implement
data compression algorithms. FPGAs have reconfiguration capabilities (e.g., implemented
designs can be modified online to adapt it to new requirements that appear during the
mission lifetime or to solve a malfunction, caused by radiation effects), high performance,
low-power consumption, and cost reduction compared to Application-Specific Integrated
Circuits (ASICs) [5,6]. Moreover, FPGAs allow task parallelism if no data dependencies are
present, providing hardware acceleration and, consequently, real-time capabilities.

Regarding design flow, FPGA development has been commonly addressed at Regis-
ter Transfer Level (RTL), but with the increasing complexity of electronic systems, other
approaches appear to reduce both the development time and the re-design costs, without
compromising the design behavior. In this way, the High-Level Synthesis (HLS) methodol-
ogy emerges as a suitable option, allowing to model the system behavior in a high-level
language (e.g., C/C++), which is then automatically transformed into its equivalent RTL
description [7]. The HLS tool should guarantee that the resultant RTL description matches
the functional behavior and the design constraints defined by the user at higher abstraction
levels, but at the same time achieving the target in terms of throughput, area, and/or power
consumption. If design goals are not reached, the developer can come back to a previous
stage of the design flow to modify the algorithm accordingly without incurring additional
costs, accelerating in this way the design verification. Design time can be reduced even
more if existing software descriptions in the same programming language are available,
using them as a starting point and being adapted to be hardware-friendly. Different opti-
mizations can be specified by the user in design loops for accelerating throughput, such
as pipelining or unrolling. It is also possible to manually refine the generated RTL model,
if clock-cycling accuracy is required for certain statements. Another advantage of the
HLS design flow is the possibility of performing an exhaustive design space exploration,
testing the behavior of different solutions at the beginning of the development flow, fea-
ture relevant for highly-configurable designs [8]. These advantages make HLS models
an interesting option for prototyping purposes, being able to demonstrate the viability of
hardware implementations under restricting timing conditions.

In this work, an FPGA implementation of the recent CCSDS 123.0-B-2 for the near-
lossless compression of multi- and hyperspectral images is presented, targeting a Xilinx
Kintex UltraScale FPGA. The hardware implementation is done by following an HLS design
methodology. The rest of the paper is structured as follows: Section 2 explains in detail
the CCSDS 123.0-B-2 compression algorithm, including both the prediction and the hybrid
encoder stages. Section 3 describes the different steps of the hardware implementation
by means of HLS techniques, including optimizations applied to each module. Next,
implementation results are presented in Section 4, analyzing the resources consumption
and the latency of the two different coding methods. Finally, Section 5 summarizes the
main conclusions of this work.

2. CCSDS 123.0-B-2 Algorithm

Among the standards published by the CCSDS, the CCSDS 123.0-B-2 [9–11] focuses
on the near-lossless compression of multispectral and hyperspectral images, defining an
algorithm comprised of two main stages: a highly configurable predictive preprocessor for
spectral and spatial decorrelation (see [10] for more details about predictor parameters)
and an entropy coder, which represents the output bitstream with the smallest possible
number of bits. Concretely, three different entropy coders are proposed, though only one
of them is new in Issue 2 of the standard, which is named hybrid encoder. This encoder
is optimized for low bit rates, outperforming the entropy encoders defined in Issue 1, the
sample-adaptive, and the block-adaptive ones.

Remote Sens. 2021, 13, 4388 3 of 18

Although there are some preliminary hardware implementations of both the prediction
and the hybrid encoder stages available in the state-of-the-art [12,13], to the best of our
knowledge, the solution presented in this work is the first compliant implementation of
the standard (i.e., a fully configurable predictor plus the hybrid encoder) on FPGA. The
performance of its predecessor, the Issue 1 of the standard [14], has been widely analyzed
on different FPGA implementations, targeting different strategies to optimize either the
area consumption and the configuration capabilities [15,16], or the throughput by using a
single compression instance [17–19] or by defining task-parallelism strategies [20,21].

Next, an introduction to the different stages of the CCSDS 123.0-B-2 near-lossless
compression standard is provided, including theoretical notation and some explanations
extracted from [9].

2.1. Prediction Stage

The predictor estimates the value of the current input sample making use of previously
preprocessed samples in its vicinity and, consequently, taking advantage of the spatial and
spectral correlation, as shown in Figure 1. The quantity of previous bands P use to predict
a sample is a user-defined parameter, in the range of 0–15.

current band z

z

y

x

current sample

s
z-P,y-1,x-1

s
z-P,y-1,x

s
z-P,y-1,x+1

s
z-P,y,x-1

s
z-P,y,x

s
z-1,y-1,x-1

s
z-1,y-1,x

s
z-1,y-1,x+1

s
z-1,y,x-1

s
z-1,y,x

s
z,y-1,x-1

s
z,y-1,x

s
z,y-1,x+1

s
z,y,x-1

s
z,y,x

current band z

z

y

x

current sample

s
z-P,y-1,x-1

s
z-P,y-1,x

s
z-P,y-1,x+1

s
z-P,y,x-1

s
z-P,y,x

s
z-1,y-1,x-1

s
z-1,y-1,x

s
z-1,y-1,x+1

s
z-1,y,x-1

s
z-1,y,x

s
z,y-1,x-1

s
z,y-1,x

s
z,y-1,x+1

s
z,y,x-1

s
z,y,x

P previous

bands

Figure 1. Spatial and spectral vicinity used during the prediction.

The predictor top-level hierarchy is summarized in Figure 2, highlighting the new
modules to support near-lossless compression. First of all, a local sum σz,y,x is computed,
which is a weighted sum of samples in the spatial vicinity of the current one (i.e., in
the current band z). The vicinity used to compute this local sum is determined by the
selected local sum type, distinguishing four possible options: the neighbor-oriented mode
employs samples at the left, top-left, top and top-right directions, while the column-oriented
mode just uses the sample right above. Issue 2 of the standard introduces narrow local
sums, which avoid the use of the sample at the left of the current one in the same band
(i.e., s′′z,y,x−1), which is replaced by the sample in that position but in the previous band
(i.e., s′′z−1,y,x−1), favoring in this way optimization strategies on hardware for improving
throughput. Equations (1) and (2) describe how the local sums are calculated under the
wide and the narrow neighbor-oriented modes, respectively. In a similar way, Forms
(3) and (4) allow for computing local sums under the wide and narrow column-oriented
modes, respectively. smid in Equations (2) and (4) represents the mid-range sample value.
Sample representative values s′′z,y,x are used to compute the local sums, if near-lossless

Remote Sens. 2021, 13, 4388 4 of 18

compression is selected; otherwise, input samples are directly employed. Local sums are
also computed for each one of the P previous bands used for prediction.

Local
Sum

Local
Differences

Prediction

Local
decompressor

Weights
updating

Quantizer Mapper-
𝑠*,,,-(𝑡) ∆*(𝑡) 𝑞*(𝑡) ẟ𝑧(𝑡)

𝑊*(𝑡)
𝜎*(𝑡)

𝑈*(𝑡)

𝑠′′*(𝑡)

𝑠̂*(𝑡)

Figure 2. CCSDS 123.0-B-2 predictor overview.

σz,y,x =


s′′z,y,x−1 + s′′z,y−1,x−1 + s′′z,y−1,x + s′′z,y−1,x+1, y > 0, 0 < x < Nx − 1

4s′′z,y,x−1, y = 0, x > 0

2(s′′z,y−1,x + s′′z,y−1,x+1), y > 0, x = 0

s′′z,y,x−1 + s′′z,y−1,x−1 + 2s′′z,y−1,x, y > 0, x = Nx − 1

(1)

σz,y,x =



s′′z,y−1,x−1 + 2s′′z,y−1,x + s′′z,y−1,x+1, y > 0, 0 < x < Nx − 1

4s′′z−1,y,x−1, y = 0, x > 0, z > 0

2(s′′z,y−1,x + s′′z,y−1,x+1), y > 0, x = 0

2(s′′z,y−1,x−1 + s′′z,y−1,x), y > 0, x = Nx − 1

4smid y = 0, x > 0, z = 0

(2)

σz,y,x =

{
4s′′z,y−1,x, y > 0

4s′′z,y,x−1, y = 0, x > 0
(3)

σz,y,x =


4s′′z,y−1,x, y > 0

4s′′z−1,y,x−1, y = 0, x > 0, z > 0

4smid, y = 0, x > 0, z = 0.

(4)

Once the value of the local sum is available, the local differences can be computed, which
are defined for every pixel except for the first one, i.e.,

t(0), being t = x + y · Nx. (5)

The central difference takes into account samples in the same position that the current
one in the P previous bands, and it is computed as

dz−i,y,x = 4s′′z−i,y,x − σz−i,y,x (6)

with i ranging from 1 to P. The directional differences are computed according to Equa-
tions (7)–(9), using for each case the value of the adjacent sample in that direction in the
current band z, (respectively, the sample on the top, left, and top-left of the current one).

dN
z,y,x =

{
4s′′z,y−1,x − σz,y,x, y > 0

0, x > 0, y = 0
(7)

Remote Sens. 2021, 13, 4388 5 of 18

dW
z,y,x =


4s′′z,y,x−1 − σz,y,x, x > 0, y > 0

4s′′z,y−1,x − σz,y,x, x = 0, y > 0

0, x > 0, y = 0

(8)

dNW
z,y,x =


4s′′z,y−1,x−1 − σz,y,x, x > 0, y > 0

4s′′z,y−1,x − σz,y,x, x = 0, y > 0

0, x > 0, y = 0.

(9)

These differences are grouped into the local differences vector Uz,y,x, which is built
depending on the selected prediction mode. If the reduced mode is chosen, just the central
differences in the P previous bands are included. If the full mode is selected, the directional
differences are also included in Uz,y,x. The optimal combination of the local sum and
prediction modes is highly dependent on the employed HSI sensor and the image nature,
and it should achieve a trade-off between the compression performance and the logic
resources’ utilization.

Then, a weighted sum of the elements in the local differences vector is computed,
making use of an internal weight vector, Wz,y,x. A weight vector is separately maintained
for each band, and the resolution of each weight value is defined by Ω, a user-defined
parameter in the range 4 ≤ Ω ≤ 19. The weight values are updated with each new sample
based on the prediction residual, the local differences, and some user-defined parameters,
with the aim of refining the prediction for future samples. The inner product of the Uz,y,x

and Wz,y,x components, denoted as predicted central local difference, d̂z,y,x, is used to calculate
the high-resolution predicted sample, s̆z(t), which is also employed next to compute the double-
resolution predicted sample, s̃z(t). Once the value of s̃z(t) is calculated, it is used to obtain the
predicted sample as

ŝz,y,x =

⌊
s̃z(t)

2

⌋
, (10)

which is the estimated value for an input sample, taking into account image statistics
(i.e., the value of preprocessed samples in both the spatial and the spectral vicinity).
Alternatively, the predicted sample can be simplified as [11]

ŝz,y,x ≈
⌊

d̂z,y,x + 2Ωσz,y,x

2Ω+2

⌋
, (11)

supposing that the value of the register size R is high enough to avoid overflow in the
computation of s̆z(t). In this way, it is possible to obtain the predicted sample value without
previously calculating both the high- and the double-resolution terms.

The prediction residual ∆z(t) (i.e., the difference between the predicted and the current
sample) feeds the quantizer under near-lossless compression, or it is directly mapped into
an unsigned integer δz,y,x and passed to the entropy coder under lossless compression. The
quantizer employs a uniform bin size with a value of 2mz(t) + 1, mz(t) being the maximum
error limit defined by the user. mz(t) = 0 implies lossless compression, where the input
image can be fully reconstructed. By increasing mz(t), the compression ratio improves at
the cost of introducing quantization noise, which affects the quality of the reconstructed
image. The quantizer index qz(t) is computed as

qz(t) = sgn(∆z(t))
⌊
| ∆z(t) | +mz(t)

2mz(t) + 1

⌋
. (12)

That maximum error limit mz(t) is controlled by defining a maximum absolute error
az and/or a relative error limit rz. These errors can be identical for the whole image
(i.e., band-independent) or different for each band z (i.e., band-dependent), in case the
specific spectral channels should be preserved with higher fidelity, depending on the target
application. The value of each error option is limited by its dynamic range, Da or Dr

Remote Sens. 2021, 13, 4388 6 of 18

considering absolute and/or relative errors, respectively. Da and Dr should be in the range
1 ≤ Da, Dr ≤ min(D− 1, 16), with D being the dynamic range of the input samples. The
maximum error is defined as

mz(t) = az(t) (13)

or

mz(t) =
⌊

rz(t) | ŝz(t) |
2D

⌋
, (14)

according to the type of error limits selected, absolute, and/or relative. In the case that
both error limits are used, mz(t) takes the most restrictive value.

Using absolute errors guarantees that the maximum absolute difference between
sz(t) and qz(t) is limited to a certain magnitude, while relative errors allow samples to be
reconstructed with different precision and, consequently, reconstructing with a lower error
those samples with lower magnitude. Backward compatibility is guaranteed with Issue 1
of the standard, in the case that mz(t) = 0 (i.e., lossless compression), being qz(t) = ∆z(t).

Sample representatives, introduced at the beginning of this subsection, are also needed
to reduce the impact of the quantization, approximately reconstructing the original samples
sz(t), in the same way that the decompressor does. For this reason, s′′z (t) is used to compute
the predicted sample, instead of sz(t). Three user-defined parameters are used to control
the deviation of the sample representatives values from the quantizer bin center s′z(t) (i.e.,
the discretized value of the predicted sample, taking into account the selected quantization
step): the sample representative resolution Θ; the damping φz, which limits the effect of
noisy samples during the calculation of s′′z (t); and the offset ψz, which tunes the sample
representative value towards s′z(t) or ŝz(t). Then, the clipped version of the quantizer bin
center s′z(t) is obtained following

s′z(t) = clip(ŝz(t) + qz(t)(2mz(t) + 1)), {smin, smax}, (15)

with smin and smax being the lower and upper limits in the range of possible sample values,
which is directly dependent on the dynamic range D.

The range of allowed values for both φz and ψz is limited between 0 and 2Θ − 1, it
also being possible to define a different value for each band z. Setting φz and ψz to 0
ensures that s′′z (t) is equal to s′z(t), while higher values of one and/or both of them result
in values closer to ŝz(t). Non-zero values for φz and ψz tend to provide higher compression
performance if hyperspectral images have a high spectral correlation between adjacent
bands, as it is claimed in [10]. In the same way, s′z(t) = sz(t) if mz(t) = 0. The sample
representative, s′′z (t), is obtained as

s′′z (t) =

{
sz(0), t = 0⌊

s̃′′z (t)+1
2

⌋
, t > 0,

(16)

with s̃′′z (t) being the double-resolution sample representative, which is calculated as

s̃′′z (t) =
⌊

4(2Θ − φz) · (s′z(t) · 2Ω − sgn(qz(t)) ·mz(t) · ψz · 2Ω−Θ) + φz · s̆z(t)− φz · 2Ω+1

2Ω+Θ+1

⌋
, (17)

taking into account the value of the quantization bin center and the high-resolution pre-
dicted sample, in addition to some user-defined parameters.

2.2. Hybrid Entropy Coding

The hybrid encoder is a new alternative introduced in Issue 2 of the CCSDS 123
standard [9]. This encoder is aimed at improving compression ratios with low-entropy
quantized mapped residuals, which are expected to be frequent in near-lossless compres-
sion mode, especially when high error values are specified by the user.

Remote Sens. 2021, 13, 4388 7 of 18

The hybrid encoder follows an interleaved strategy, switching between two possible
operation modes, denoted as high-entropy and low-entropy modes, with the aim of obtaining
the lowest possible bit rate. A single output codeword is generated by each processed
sample under the high-entropy mode, while the low-entropy method may encode multiple
samples in a single codeword. The selected mode depends on code selection statistics (a
counter and an accumulator) that are updated with every new sample. Values of already
processed samples are added to the accumulator, while the counter registers the number of
samples that have been previously encoded. Both statistics are rescaled at certain points
depending on some user-defined parameters by dividing by two, preserving the average
estimated value. Each time these statistics are rescaled, the LSB of the accumulator Σz(t)
must be encoded in the output bitstream.

The high-entropy method is selected if the condition

Σz(t) · 214 ≥ T0 · Γ(t) (18)

is met, where Σz(t) and Γ(t) are the accumulator and counter values in the target band z,
respectively, and T0 represents a threshold specified in the standard [9] that determines
if the sample under analysis should be encoded using the high-entropy technique or the
low-entropy one.

Under the high-entropy mode, the hybrid encoder works in a similar way than the
sample-adaptive one defined in Issue 1, but encoding the codeword in reverse order. In this
way, Reversed-Length-Limited Golomb Power-of-2 (RLL-GPO2) codes are used to code
input samples individually, depending on the image statistics, which are independently
computed for each band z.

On the other side, the low-entropy mode uses one of the 16 variable-to-variable length
codes for coding each mapped residual, δ(t), one corresponding to each code index, i.
During encoding, each low-entropy code has an active prefix, APi, which is a chain of input
symbols, initialized as a null sequence. For each δ(t), the corresponding APi is updated
by appending an input symbol lz(t) that depends on the δ(t) value. The selection of the
appropriate active prefix is based on

Σz(t) · 214 < Ti · Γ(t), (19)

where Ti represents the threshold of the largest code index i that can be used for coding the
low-entropy residual.

After doing so, if APi is equal to a complete input codeword in the input-to-output
codewords table for the corresponding code index, i, the associated output codeword
should be appended to the compressed bitstream and APi is reset to the null sequence. The
input symbol, ιz(t), is calculated as

ιz(t) =

{
δ(t), δ(t) ≤ Li

X, δ(t) > Li,
(20)

where X denotes the escape symbol. If δ(t) exceeds Li, the residual value δ(t)− Li − 1
is directly encoded to the bitstream using the RLL-GPO2 coding procedure used in the
high-entropy mode, but with a k value equal to 0. In this case, Li is the input symbol limit
for that specific code, which is predefined in the standard.

When the last δ(t) is processed, the current active prefixes may not match any of the
complete input codewords in their corresponding tables. To be able to include them in
the bitstream, the standard also includes 16 input-to-output flush codewords tables that
contain the corresponding possible incomplete input codewords for each code index, i.

Remote Sens. 2021, 13, 4388 8 of 18

Finally, a compressed image tail is appended at the end of the output bitstream, after
all the mapped residuals have been encoded. This field contains the necessary information
to decode the compressed bitstream in reverse order. It contains the flush codeword, in
increasing order, for each of the 16 active prefixes, in addition to the final value of Σz(t) in
each spectral band. Then, the bitstream is filled with padding bits until a byte boundary is
completed, adding a ‘1’ bit followed by as many zero bits as necessary. This ’1’ bit is used
by the decoder to identify the number of padding bits that shall be discarded before starting
the decompression process. The compressed bitstream is completed with a header that
specifies the user-defined parameters employed by the encoder (summarized in Table 1)
that must be known for a correct decompression.

Table 1. Hybrid encoder parameters.

Parameter Allowed Values Description

Umax [8:32] Unary Length Limit
γ∗ [max(4,γ0 + 1):9] Rescaling Counter Size

γ0 [1:8] Initial Count Exponent

3. Hardware Design

The presented solution has been developed by using an HLS methodology. Concretely,
the recent Xilinx Vitis HLS tool (v2020.2) has been employed to model the algorithm
behavior in C/C++ for obtaining the equivalent VHDL description that forms the final IP
core, since this tool provides optimized HLS solutions for Xilinx FPGA devices. The HLS
model was conceived from the beginning of its development keeping in mind limitations
regarding synthesizable C/C++ constructions (e.g., memory allocations, careful use of
pointers, etc.), just requiring some optimizations in the memory accesses after an initial
debugging. The focus of the implementation is to obtain a reduced initiation interval at the
cost of a moderate hardware occupancy, taking advantage of the low-complexity nature of
the algorithm. For this reason, we force the HLS tool to obtain the lowest initiation interval
by applying the pipeline pragma at the task level, taking into account data dependencies
between sub-stages. Bit-accurate data types have been used to develop the different
functional modules instead of standard C/C++ data types, allowing in this case to reduce
logic resources’ consumption.

The design processes the hyperspectral images in the Band Interleaved by Line (BIL)
order, which is used by push broom sensors, obtaining a line of samples in the spatial
domain for all the spectral channels before acquiring the next one. The different modules
have been developed following a dataflow-oriented strategy, managing an image sample
each time and allowing in this way to pipeline the processing of consecutive samples. A
global overview of the whole design is shown in Figure 3, including the different interfaces
used for configuration and interconnection among modules. In addition to the main
compression chain, comprised by the predictor and the hybrid encoder, two extra modules
are included: the header generator, which creates the necessary fields to allow a correct
decompression, parallel to the compression datapath; and the bitpacker, which takes the
output of both the header generator and the hybrid entropy coder to form the output
bitstream, including the encoder image tail.

Remote Sens. 2021, 13, 4388 9 of 18

Header
Generator

Bitpacker

Predictor Hybrid
Encoder

Intermediate FIFO

ẟ𝑧(𝑡)

encoder_params

input_params

predictor_params

input_params

encoder_params
input_params

predictor_params

Input	samples

𝑠*,,,-(𝑡)

header

bitstream

Compressed	
image

custom

AXI4-Stream

AXI4-Lite

Figure 3. Top-level hierarchy of the HLS design.

3.1. Predictor

The predictor includes all the necessary units to generate a mapped prediction residual
δz(t) from a given input sample sz,y,x. The top-level module receives the user-defined
predictor parameters, together with the image size and the dynamic range D through an
AXI4-Lite interface in compile time, providing an interface that is suitable for configuration
ports that work at low data rates. This configuration can be changed also in run-time, but
the IP operation should stop between consecutive compressions until the new configuration
is written in the defined AXI4-Lite configuration registers. Input samples are received by
using a lightweight AXI4-Stream interface, a communication protocol which is intended
for burst transfers at high data rates, including also a simple handshaking protocol for
synchronization purposes, comprised by a VALID and READY signals. At the output,
mapped prediction residuals δz(t) are stored in an intermediate FIFO, which then feeds the
hybrid encoder.

The internal processing is done by a total of nine units, as shown in Figure 4. Two
memories are created at the top level, which are then used by the different submodules:
topSamples, which stores the previous spectral line (Nx · Nz samples), needed to perform
both the local sum and the directional local differences (if the full prediction mode is
selected); and currentSamples, responsible for storing Nx · P samples to compute the central
local differences. Thus, as long as the image is being processed, samples which are not
needed anymore to calculate the central local differences because they fall more than P
bands behind the sample being currently processed are moved from currentSamples to
topSamples. In the same way, samples in topSamples are replaced each time a spectral line
is fully predicted, prior to start the processing of the next line. The sample at the same
position as the current one but in the previous band (sz−1,y,x) is also stored in a register,
since it is used to calculate the double-resolution predicted sample s̃z(t).

Read
samples

𝑠*,,,-(𝑡)

Neighbouring FIFOs

Compute
differences

Compute
weights

High	
Resolution

Computation

𝑈*(𝑡)

𝑊*(𝑡)

Prediction

Quantizer

Local
decompressor

Quantizer
bin center

Mapper

output_FIFO

𝑠̆*(𝑡)

∆*(𝑡)

𝑞*(𝑡)

𝑞*(𝑡)

𝑠′*(𝑡)

ẟ𝑧(𝑡)

TopSamples
CurrentSamples

FullWeights

𝑠′′*(𝑡)

Figure 4. Block diagram of the predictor implementation.

Remote Sens. 2021, 13, 4388 10 of 18

First of all, previously preprocessed samples, which are stored in currentSamples and
topSamples, and the current one are ordered in five FIFOs in the Read_samples module,
corresponding to the current position and the vicinity needed to perform both the local
sum and the directional local differences (i.e., samples at the left, top-left, top and top-right
positions). These FIFOs have a depth of P + 1.

Then, both the local sum and the local differences are computed in the Compute_differences
module. The selection of the local sum and prediction mode is defined at compile-time by
user-defined parameters. The local differences are calculated simultaneously in a single clock
cycle independently of the selected prediction mode, since there are not data dependencies.

Once the local differences vector Uz(t) is available, the predicted local difference d̂z(t)
is computed as the inner product between Uz(t) and the weight vector Wz(t). After that, all
the components to calculate the high-resolution predicted sample are available, obtaining
s̆z(t) in the High_resolution_prediction unit. The result of this operation is truncated taking
into account the value of the register size R, though this calculation can be omitted if it is
guaranteed that the size of the operation result never exceeds R.

Taking s̆z(t) as input, the double-resolution predicted sample s̃z(t) is calculated in the
Prediction module, using a right shift operation to implement the division by a power of
two. The predicted sample is immediately obtained applying the Formula (10). Finally, the
output of this unit is the prediction residual, which is calculated as

∆z(t) = sz,y,x − ŝz,y,x. (21)

As this submodule only employs basic arithmetic and logic operations, its process
takes a single clock cycle.

If mz(t) 6= 0 (i.e., near-lossless compression), the next step in the processing chain
is the Quantizer unit; otherwise, it is bypassed. This module is a critical point in the
datapath, since it makes use of a division that it is not efficiently implemented by HLS tools,
considerably delaying the latency. In the proposed solution, a new approach is presented,
substituting the division by a multiplication by the inverse of the division, operation that is
highly optimized by using the internal DSPs of the FPGA. For this purpose, a Look-Up
Table (LUT) is previously defined with the result of the division 1

X in a fixed-point (i.e.,
integer precision), X being the different divisor values in the range of error limits defined
by the target application. The required LUT size would be of 2Da − 1 words if only absolute
errors are used, 2Dr − 1 words if only relative errors are used, and the minimum of both
values if both error types are used. To avoid rounding issues for certain divisors, the
computation of the inverse values of denominator is done in excess. Following this strategy
also in the divisions performed in the Mapper, the responsibility of generating the unsigned
mapped residuals δz(t), a reduction of around the 30% of the predictor latency, is observed,
compared with the version that implements directly the division.

The Quantizer_bin_center and the Local_decompressor units are responsible for per-
forming the sample reconstruction, in order to properly estimate the value of the sample
representative s′′z,y,x, used during the processing of the next image samples. While the
first calculates the bin center s′z(t) in one clock cycle, as indicated in Equation (15), the
latter estimates the value of s′′z,y,x only if the user-defined parameter Θ 6= 0; otherwise,
s′′z,y,x = sz,y,x. The calculation of the sample representative value is optimized for a hard-
ware implementation, substituting power-of-two operations and the division reflected in
Equation (16) by logical shifts. Since the rest of parameters used for the calculation are
previously known, including the sign of the quantized index qz(t), this step is also executed
in only one clock cycle.

Finally, the prediction chain is closed with the Compute_weights module, which per-
forms both the weights initialization or their update, depending on the current image
coordinates. The latency of the weight update directly depends on the selected prediction
mode, which defines the number of components in the weights vector. However, this
process is done simultaneously for the different weight components, since there are not
data dependencies among them. In addition, the proposed solution takes into account

Remote Sens. 2021, 13, 4388 11 of 18

data dependencies with adjacent samples during the weight update when the compression
is done in BIL order, trying to reduce the impact of those dependencies in the global
throughput. An extra memory is defined in the design, denoted as FullWeights, whose
size is Nz · Cz and which is used to store the state of the weights vector at each band z,
recovered then to process the next image pixel in the same band.

3.2. Hybrid Encoder

This module receives the encoder parameters, the image size, and the pixel resolution
D through an AXI4-Lite interface. Then, the input samples are received from the inter-
mediate FIFO, where the predictor writes the prediction residuals δ(t) as soon as they
are generated. The output interface is based on a basic AXI4-Stream interface that uses
the VALID and READY signals for dataflow control (i.e., a simple handshaking protocol),
in addition to the LAST signal that indicates the transmission of the last codeword. The
variable-length codes (a single codeword for each high-entropy code or a codeword com-
prised by multiple low-entropy codes) are sent grouped in words of W_BUFFER bytes, a
parameter defined by the user. An extra flag, named End-of-Processing (EOP), is used to
inform the Bitpacker that the encoder has finished generating the bitstream. In addition,
both the final state of the 16 low-entropy codes and the accumulator values for each band z
are saved in FIFOs, which are accessed by the Bitpacker in order to properly generate the
image tail.

The top-level block diagram of the hybrid encoder is shown in Figure 5, which is com-
prised of four modules: the Statistics module, the responsibility for initializing, updating
and rescaling both the counter and the accumulator; the Method Selection unit that imple-
ments Equation (18) and consequently decides which encoding method is selected; and
the Bitstream Generator, which solves the bottleneck of outputting the resultant codeword
generated by the hybrid encoder in a bit-by-bit manner (it being possible to complete more
than one byte in the same iteration or even leave an incomplete byte), thus adapting data
rates; and the two main modules that compute the high- and low-entropy methods, as
described below.

Statistics Method
Selection

High-
Entropy

Low-
Entropy

ẟ𝑧(𝑡) ẟ𝑧(𝑡)
Σ𝑧(𝑡)
𝚪(𝑡)

Σ𝑧(𝑡 − 1)
𝚪(𝑡 − 1)

encoder_params

active_prefixes

encoder_params

input_params

thresholds

ẟ𝑧(𝑡)
Σ𝑧(𝑡)
𝚪(𝑡)input_FIFO

input_params high-
entropy
codeword

low-
entropy
codeword

Bitstream
Generator

bitstream

R
O
M

Figure 5. General overview of the hybrid encoder architecture.

3.2.1. High-Entropy

This unit is responsible for encoding the mapped residual δ(t) using a high-entropy
codeword, when Equation (18) is satisfied. This process employs RLL-GPO2 codes, for
which the procedure is based on the next assumptions:

1. If δ(t)/2k < Umax, the codeword is comprised of the k least significant bits of δ(t),
followed by a one and δ(t)/2k zeros. The parameter k is known as code index.

2. Otherwise, the high-entropy codeword consists of the representation of δ(t) with D
bits, with D being the dynamic range of each input pixel, followed by Umax zeros.

Remote Sens. 2021, 13, 4388 12 of 18

The high-entropy module is divided into two main parts: the computation of the k
value and the writing of the resultant codeword in the output bitstream. The calculation
of k has been done in an iterative way, accelerated by following a pipelining strategy and
avoiding the use of complex arithmetic operations, such as divisions, which are not fully
optimized by HLS tools.

3.2.2. Low-Entropy

This module encodes the mapped residual δ(t) when Equation (18) is not satisfied.
For doing so, the mapped residuals are set into one of the 16 group of values identified
by a code index, i. The management of the input-to-output and flush input-to-output
codeword tables in hardware result in computationally inefficient hardware, if the process
is implemented as described in the standard. To overcome this issue, the information
present in these tables, as well as the searching patterns, have been reorganized. For doing
so, the information present in the input-to-output codeword table for each code index, i,
and its corresponding flush input-to-output codeword table have been merged into two
arrays, named APli and APvi. Additionally, the corresponding APi is implemented as
an index used to move inside APli and APvi arrays (i.e., as an offset), and hence, it is
initialized as 0 instead to a null sequence. For each δ(t), in this new version, the lz(t) is
calculated as

lz(t) = min(δ(t), Li + 1). (22)

As described in the standard, if δ(t) exceeds Li, the residual value δ(t)− Li − 1 is
directly encoded to the bitstream as it is done in the high-entropy mode, with a k value
equal to 0. After calculating lz(t), APi is updated as

APi = APi + lz(t) + 1. (23)

Then, l and v are obtained as APli(APi) and APvi(APi), respectively. Two actions can
be carried out depending on the l value:

1. If l value is not 0, v value is written to the bitstream using l bits and APi is reset to 0.
2. If l value is equal to 0, APi is updated to v value (APi = v).

After processing all the δ(t) values, the remaining active prefixes are added to the
bistream by directly coding the current APvi(APi) values using APli(APi) bits. Following
this simple strategy, the number of memory accesses and operations needed to process and
update the active prefixes, and to obtain the output codewords according to the input ones
is strongly optimized.

3.3. Header Generator

This unit is responsible for generating the appropriate header fields to allow a correct
decompression of the generated bitstream. The length of this header directly depends
on the compression configuration. Image, predictor, and encoder parameters are sent to
this module through an AXI4-Lite interface, while the generated header is sent through a
lightweight AXI4-Stream interface to the Bitpacker. The performance of this module is done
in parallel to the main compression datapath, since its behavior is essentially sequential
and compensating in this way the global latency of the system.

3.4. Bitpacker

The last step of the compression chain is the Bitpacker, which takes the output of both
the Header Generator and the Hybrid Encoder modules to generate the compressed image,
formed by the header, the codewords, and the image tail, created also in this module. The
unit has two input data interfaces, one to receive the header coming from the Header
Generator and the other through it receives the bitstream from the Hybrid Encoder. Both
input interfaces, implemented with AXI4-Stream interfaces, include the necessary control
signals for dataflow management. Taking into account the value of the VALID signals of
both input interfaces, the IP is able to identify if it should be ready to receive a header

Remote Sens. 2021, 13, 4388 13 of 18

or a bitstream, appending it correctly at the output interface, also implemented with an
AXI4-Stream interface. When the EOP flag generated by the Hybrid Encoder is asserted,
the Bitpacker recognizes that both the header and the bitstream have been received, and
it is time to generate the image tail, as it is indicated by the standard. For this purpose,
it accesses the two FIFOs where the final state of both the 16 low-entropy codes and the
accumulator values for each band z have been stored.

4. Experimental Results

The proposed solution has been initially verified by simulation during the different
development stages (i.e., algorithmic, post-HLS, and post-synthesis levels), in order to
ensure its correct behavior once it is mapped on hardware. A software model has been
used as golden reference, comparing bit by bit the output of the hardware solution for each
one of the tests performed with the results provided by that golden reference. A total of 124
tests have been performed by combining seven different images, including AVIRIS scenes
and synthetic images to debug corner cases, with multiple configuration sets, ensuring
that at least the different local sum and prediction options are covered in both lossless
and near-lossless modes. In the latter case, both absolute and relative errors were used, in
band-dependent and band-independent modes.

Then, the proposed compression solution has been mapped on a Xilinx KCU105 de-
velopment board, which includes a Kintex UltraScale FPGA (XCKU040-2FFVA1156E). The
baseline configuration is summarized in Table 2, restricting supported image dimensions
to the ones of the AVIRIS scenes, since they are the ones used for validation purposes. The
value of D is also fixed to target the AVIRIS sensor. The rest of the parameter values have
been selected after an exhaustive parameter tuning on software, where up to 15,000 tests
were launched to find the configuration that achieves best results in terms of compression
performance under lossless mode. Therefore, the absolute error value can be modified,
depending on the target application.

Area consumption of the whole compression chain is summarized in Table 3, spec-
ifying the resources utilization of each stage. As it can be observed, the predictor is the
critical module in terms of both memory and logic resources usage, consuming the 12.7%
of BRAMs and the 4.1% of LUTs available in the target device. These results were ex-
pected, since the prediction stage is the one that performs more complex operations, such
as the modified divisions performing under near-lossless compression in the feedback
loop. The consumption of DSPs supposes around the 3.3% of the total available in the
device. These resources are mainly used to perform the different multiplications present
in the design, such as the the multiplication by the precomputed inverse performed in
both the quantizer and the mapper, and the dot product between the local differences
vector Uz,y,x and the weights vector Wz,y,x, both performed in the prediction stage; or to
compute Equations (18) and (19), calculated under the low-entropy mode in the hybrid
encoder. It is remarkable that the storage usage of this module is directly proportional to
the image size, since the more restrictive memory is topSamples and, as it was mentioned
in Section 3.1, its dimension depends on Nx and Nz values. Anyway, the configuration
used for this experiment targets AVIRIS, which provides a scene large enough in both the
spatial and the spectral domain to characterize the compression solution, fitting well in
an equivalent FPGA in terms of logic resources to the recent space-qualified Xilinx Kintex
UltraScale XQRKU060 device. In addition, the target device still has enough logic and
memory resources available to target high hyper- and ultraspectral scenes or to include
additional functionality to the compression chain in the space payload.

Remote Sens. 2021, 13, 4388 14 of 18

Table 2. Main configuration parameters of the CCSDS 123.0-B-2 proposed solution used for synthesis
purposes.

Parameter Value

Image parameters

Columns, Nx 677

Lines, Ny 512

Bands, Nz 224

Dynamic Range, D 16

Encoding Order BIL

Predictor parameters

Bands for Prediction, P 3

Local Sum Mode Narrow Neighbour-Oriented

Prediction Mode Full Prediction

Weight Resolution, Ω 16

Sample Adaptive Resolution, Θ 2

Sample Adaptive Offset, ψz 1

Sample Adaptive Damping, φz 1

Error Method Absolute

Absolute Error Bitdepth, Da 8

Absolute Error Value, Az 4

Encoder parameters

Unary Length Limit, Umax 16

Rescaling Counter Size, γ∗ 5

Initial Count Exponent, γ0 1

All the modules that conform the compression chain have been successfully synthe-
sized with a targeted maximum clock frequency of 125 MHz, the maximum reached by the
predictor, which is the limiting stage.

In addition to the compression chain explained in Section 3, the test-setup is completed
with a MicroBlaze embedded microprocessor, part of the Xilinx IP catalog, to manage IP
initialization and test behavior, the necessary AXI infrastructure to interconnect the differ-
ent modules and a Direct Memory Access (DMA) unit, which handles data transactions
between the compression chain and the off-chip memory, where the input image is located
prior to starting the tests. The access to that external memory is done through a dedicated
DDR4 memory controller. These transactions are transparent for the CPU, working in its
main thread without requiring its intervention for data transfers. Input images are loaded
into the external RAM from an SD card, by using the Xilinx xilffs library, which runs into the
MicroBlaze soft processor and provides the necessary software functions to interact with
that storage device. A specific AXI module is also used to manage module initialization
and configuration through AXI4-Lite interfaces. Integrated Logic Analyzers (ILAs) are
also integrated as part of the set-up during the on-chip debugging stage, monitoring the
different I/Os of the developed compression chain to validate its correct behavior. An
overview of the whole test set-up is shown in Figure 6. The inclusion of these modules in
the design implies a resources utilization overhead of 15% of LUTs, 9% of registers, and
13% of dedicated memory, compared to the area consumed by the whole compression
chain, previously summarized in Table 3. On the other side, DSP usage remains constant.

Remote Sens. 2021, 13, 4388 15 of 18

Table 3. Resource utilization of the CCSDS 123.0-B-2 compressor on Xilinx Kintex UltraScale
XCKU040.

36 Kb BRAM DSP48E Registers LUTs

Predictor 76 (12.7%) 54 (2.8%) 6054 (1.3%) 10,087 (4.1%)

Hybrid Encoder 9 (1.5%) 9 (0.5%) 2498 (0.5%) 4286 (1.8%)

Header generator 0 (0%) 0 (0%) 2976 (0.6%) 2478 (1.0%)

Bitpacker 0 (0%) 0 (0%) 387 (0.1%) 334 (0.1%)

Total 85 (14.2%) 63 (3.3%) 11,915 (2.5%) 17,185 (7.0%)

The whole validation set-up also runs at a clock frequency of 125 MHz, except the
DDR4 controller, which is fed with a dedicated clock at 300 MHz for high-speed access to
the off-chip memory. The bottleneck of the processing chain is the predictor, due to the
feedback loop implemented to support near-lossless compression, generating a prediction
residual δ(t) every seven clock cycles. The other modules have a latency of one clock
cycle including the hybrid encoder, since it always selects the high-entropy method when
AVIRIS scenes are compressed; otherwise, its latency will be variable, depending on the
number of samples that are coded by using the low-entropy technique. The latency of
the header generator, which has a sequential behavior, is overlapped with the rest of the
compression solution by executing both processes simultaneously. Therefore, the latency
of the whole compression chain is 13 clock cycles to fully process an input sample. Taking
into account that the presented solution has a linear behavior, the throughput of the system
is imposed by the predictor, and it can be calculated as following the reflected, considering
a sample of a 16-bit input pixel of an AVIRIS scene

Throughput =
1

Tpredictor · 1
f
=

1
7 · 1

125·106

= 17.86 (MSamples/s), (24)

with Tpredictor being the number of clock cycles taken by the predictor to generate a mapped
residual δ(t) and f the system clock frequency, fixed to 125 MHz.

PL

External RAM

CPUSoftware
Application

AXI	Interconnect

DMA
AXI4-Lite	
Peripheral
Controller

Compression
Engine Integrated

Logic
Analyzer

AXI4-Lite
(configuration)

AXI4-Stream
(data	flow)

AXI4-Lite
(configuration)

DDR4
Controller

Figure 6. Validation set-up.

Remote Sens. 2021, 13, 4388 16 of 18

Although this throughput could prevent the use of this solution in real-time applica-
tions, it can be easily improved by placing multiple instances of the compression chain
in parallel, since there is enough margin in terms of resources utilization, as reflected in
Table 3. The proposed strategy is based on compressing N image portions simultane-
ously, by using N compression engines working in parallel. This mechanism is also robust
against radiation effects, since an error in one image segment implies that it is lost but not
the rest of the image, which can be recovered during the decompression. Although this
scheme increases the system complexity, since it requires a splitter at the beginning of the
compression chain, which would be responsible for dividing the image into portions and
sending them to the different compression engines, it is considered acceptable taking into
account the logic resources available in the target device. This scheme has been successfully
evaluated in [22], obtaining different results in terms of compression performance and
reconstructed image quality, depending on the partitioning pattern. The compression ratio
can be affected if intermediate statistics (e.g., sample vicinity used during the prediction or
the weight vectors) are not shared among compression engines, but it would be needed to
achieve a trade-off between losses in the compression ratio and the architectural complexity
that implies to share those statistics among instances.

Regarding the power consumption, the Vivado tool reports a total of 2.48 W, with
1.98 W being the derived from the developed implementation (i.e., device dynamic con-
sumption) and the remaining 0.5 W the device static consumption, which represents the
transistor leakage power just for powering the device. The more consuming resources
are the interface with the external DDR4 memory (0.844 W, the 42% of total dynamic
consumption), and the clock generation and distribution (0.742 W, 37% of the total).

Finally, Table 4 shows a comparison between the presented work and a previous
FPGA implementation of the CCSDS 123.0-B-1 compression standard, which only supports
lossless compression, fully developed in VHDL [16]. Although the VHDL implementation
and the results of the solution presented in [16] are provided for the Band-Interleaved
by Pixel (BIP) order, the one that is able to achieve the processing of one sample per
clock cycle, results for the BIL order are used in this comparison, for a more realistic
comparison with the approach presented in this work. As it can be observed, there is an
increment in the logic resources utilization due to the introduction of the quantization
feedback loop in the presented approach, to be able to compress in near-lossless mode.
The use of the new hybrid encoder instead of the sample-adaptive one described in Issue
1 of the standard also implies a higher logic resources usage. This is added to the fact
that generally HLS implementations are not capable of mapping the developed model in
the available resources in an optimal way, as it is done in an RTL description. This area
overhead is around +188% of LUTs and +15% of BRAMs. The high amount of difference
in the use of DSPs, around +79%, is derived from the quantizer inclusion, which uses
multiplications, this being the resource that performs these arithmetic operations. In
addition, both architectural modifications also imply a reduction of −70% in terms of
throughput. The main strength of the presented work is the development time thanks to
using an HLS design methodology, obtaining a functional model +75% faster (i.e., in less
time) than following an RTL strategy. In this way, the benefits of HLS are demonstrated to
provide a behavioral description of the final system that, though it does not reach a fully
optimized model in terms of area utilization and timing constraints, it serves as a starting
point for prototyping purposes. It is intended that future FPGA implementations of the
CCSDS 123.0-B-2 near-lossless compression standard takes the presented approach as the
worst case, since it is expected that VHDL descriptions always obtain better results in terms
of resources usage and throughput than one developed following an HLS design strategy.

Remote Sens. 2021, 13, 4388 17 of 18

Table 4. Comparison between CCSDS-123 VHDL and HLS implementations.

Implementation Development Encoder LUTs FFs DSPs BRAMs Freq. Throughput
Time (Months) (MHz) (MSamples/s)

SHyLoC 2.0 [16] 24 Sample 5975 3599 13 74 152 59.4

This work 6 Hybrid 17,185 11,915 63 85 125 17.86

5. Conclusions

In this work, a hardware implementation of the 123.0-B-2 compression standard from
the CCSDS has been presented, which was accomplished following an HLS design method-
ology. This standard is conceived for the lossless to near-lossless compression of multi- and
hyperspectral images, featuring a reduced computational complexity which is well suited
for space missions. From an architectural point of view, the design has been partitioned in
several components (predictor, hybrid encoder, header generator, and bitpacker) interconnected
through AXI communication buses. These units have been designed using a dataflow-
oriented strategy, thus allowing a pipelined operation. In addition, several optimizations
have been adopted in order to improve processing performance, such as the implementa-
tion of division operations as multiplications or the reformulation of low entropy coding
tables, among others. The whole design has been designed using the recent Xilinx Vitis
HLS tool, and implemented and validated on a Xilinx Kintex UltraScale XCKU040 FPGA.
Resource utilization of 7% of LUTs and around 14% of BRAMs has been reported, with a
processing performance of 12.5 MSamples/s and a reduced power consumption. These
results demonstrate the viability of this solution for on-board multi- and hyperspectral
image compression even for real-time applications, if multiple compression instances work
in parallel. In this way, we present, to the best of our knowledge, the first fully-compliant
hardware implementation of the CCSDS 123.0-B-2 near-lossless compression standard
available in the state-of-the-art.

The next steps are focused on optimizing the predictor latency by a hand-made VHDL
description to enhance the throughput of the whole compression solution, since it is the
main bottleneck of the implementation. In addition, the implementation of Single Event
Effect (SEE) mitigation techniques, such as hardware redundancy or EDAC mechanisms to
detect and correct errors in the internal memory, will be evaluated, in order to provide to
the design robustness against radiation effects on on-board electronics.

Author Contributions: Conceptualization, Y.B. and A.S.; methodology, Y.B.; software, Y.B. and R.G.;
validation, Y.B.; formal analysis, Y.B. and A.S.; investigation, Y.B., A.S. and R.G.; writing—original
draft preparation, Y.B., A.S., R.G. and R.S.; supervision, R.S.; project administration, R.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors want to thank CNES and ESA for providing the CCSDS 123.0-B-2
compression software, used as a reference to develop our C++ and Python models of the standard.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qian, S.E. Introduction to Hyperspectral Satellites. In Hyperspectral Satellites and System Design; CRC Press, Taylor & Francis

Group: Abingdon, UK, 2020; Chapter 1, pp. 1–52.
2. Benediktsson, J.A.; Chanussot, J.; Moon, W.M. Very High-Resolution Remote Sensing: Challenges and Opportunities [Point of

View]. Proc. IEEE 2012, 100, 1907–1910. [CrossRef]
3. Fu, W.; Ma, J.; Chen, P.; Chen, F. Remote Sensing Satellites for Digital Earth. In Manual of Digital Earth; Guo, H., Goodchild, M.F.,

Annoni, A., Eds.; Springer: Singapore, 2020; pp. 55–123. [CrossRef]
4. Montealegre, N.; Merodio, D.; Fernández, A.; Armbruster, P. In-flight reconfigurable FPGA-based space systems. In Proceedings

of the 2015 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Montreal, QC, Canada, 15–18 June 2015; pp. 1–8.
[CrossRef]

http://doi.org/10.1109/JPROC.2012.2190811
http://dx.doi.org/10.1007/978-981-32-9915-3_3
http://dx.doi.org/10.1109/AHS.2015.7231177

Remote Sens. 2021, 13, 4388 18 of 18

5. Boada Gardenyes, R. Trends and Patterns in ASIC and FPGA Use in Space Missions and Impact in Technology Roadmaps of the
European Space Agency. Ph.D. Thesis, UPC, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, Barcelona, Spain, 2011.

6. Habinc, S. Suitability of Reprogrammable FPGAs in Space Applications. Gaisler Research. 2002. Available online: http:
//microelectronics.esa.int/techno/fpga_002_01-0-4.pdf (accessed on 2 September 2021).

7. Coussy, P.; Gajski, D.D.; Meredith, M.; Takach, A. An Introduction to High-Level Synthesis. IEEE Des. Test Comput. 2009, 26, 8–17.
[CrossRef]

8. Cong, J.; Liu, B.; Neuendorffer, S.; Noguera, J.; Vissers, K.; Zhang, Z. High-Level Synthesis for FPGAs: From Prototyping to
Deployment. IEEE Trans. -Comput.-Aided Des. Integr. Circuits Syst. 2011, 30, 473–491. [CrossRef]

9. Consultative Committee for Space Data Systems. Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image
Compression, CCSDS 123.0-B-2; CCSDS: Washington, DC, USA, 2019; Volume 2.

10. Blanes, I.; Kiely, A.; Hernández-Cabronero, M.; Serra-Sagristà, J. Performance Impact of Parameter Tuning on the CCSDS-123.0-B-2
Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression Standard. Remote Sens. 2019,
11, 1390. [CrossRef]

11. Hernandez-Cabronero, M.; Kiely, A.B.; Klimesh, M.; Blanes, I.; Ligo, J.; Magli, E.; Serra-Sagrista, J. The CCSDS 123.0-B-2
Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression Standard: A comprehensive
review. IEEE Geosci. Remote Sens. Mag. 2021, in press. [CrossRef]

12. Barrios, Y.; Rodríguez, P.; Sánchez, A.; González, M.; Berrojo, L.; Sarmiento, R. Implementation of cloud detection and processing
algorithms and CCSDS-compliant hyperspectral image compression for CHIME mission. In Proceedings of the 7th International
Workshop on On-Board Payload Data Compression (OBPDC), Online Event, 21–23 September 2020; pp. 1–8.

13. Chatziantoniou, P.; Tsigkanos, A.; Kranitis, N. A high-performance RTL implementation of the CCSDS-123.0-B-2 hybrid entropy
coder on a space-grade SRAM FPGA. In Proceedings of the 7th International Workshop on On-Board Payload Data Compression
(OBPDC), Online Event, 21–23 September 2020; pp. 1–8.

14. Consultative Committee for Space Data Systems. Lossless Multispectral and Hyperspectral Image Compression, Recommended Standard
CCSDS 123.0-B-1; CCSDS: Washington, DC, USA, 2012; Volume 1.

15. Santos, L.; Gomez, A.; Sarmiento, R. Implementation of CCSDS Standards for Lossless Multispectral and Hyperspectral Satellite
Image Compression. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 1120–1138. [CrossRef]

16. Barrios, Y.; Sánchez, A.; Santos, L.; Sarmiento, R. SHyLoC 2.0: A versatile hardware solution for on-board data and hyperspectral
image compression on future space missions. IEEE Access 2020, 8, 54269–54287. [CrossRef]

17. Tsigkanos, A.; Kranitis, N.; Theodorou, G.A.; Paschalis, A. A 3.3 Gbps CCSDS 123.0-B-1 multispectral & Hyperspectral image
compression hardware accelerator on a space-grade SRAM FPGA. IEEE Trans. Emerg. Top. Comput. 2018, 9, 90–103.

18. Fjeldtvedt, J.; Orlandic, M.; Johansen, T.A. An Efficient Real-Time FPGA Implementation of the CCSDS-123 Compression Standard
for Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3841–3852. [CrossRef]

19. Bascones, D.; Gonzalez, C.; Mozos, D. FPGA Implementation of the CCSDS 1.2.3 Standard for Real-Time Hyperspectral Lossless
Compression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1158–1165. [CrossRef]

20. Orlandic, M.; Fjeldtvedt, J.; Johansen, T.A. A Parallel FPGA Implementation of the CCSDS-123 Compression Algorithm. Remote
Sens. 2019, 11, 673. [CrossRef]

21. Bascones, D.; Gonzalez, C.; Mozos, D. Parallel Implementation of the CCSDS 1.2.3 Standard for Hyperspectral Lossless Compres-
sion. Remote Sens. 2017, 9, 973. [CrossRef]

22. Barrios, Y.; Rodríguez, A.; Sánchez, A.; Pérez, A.; López, S.; Otero, A.; de la Torre, E.; Sarmiento, R. Lossy Hyperspectral Image
Compression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive Computing Platform. Electronics 2020, 9, 1576.
[CrossRef]

http://microelectronics.esa.int/techno/fpga_002_01-0-4.pdf
http://microelectronics.esa.int/techno/fpga_002_01-0-4.pdf
http://dx.doi.org/10.1109/MDT.2009.69
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.3390/rs11111390
http://dx.doi.org/10.1109/MGRS.2020.3048443.
http://dx.doi.org/10.1109/TAES.2019.2929971
http://dx.doi.org/10.1109/ACCESS.2020.2980767
http://dx.doi.org/10.1109/JSTARS.2018.2869697
http://dx.doi.org/10.1109/JSTARS.2017.2767680
http://dx.doi.org/10.3390/rs11060673
http://dx.doi.org/10.3390/rs9100973
http://dx.doi.org/10.3390/electronics9101576

	Introduction
	CCSDS 123.0-B-2 Algorithm
	Prediction Stage
	Hybrid Entropy Coding

	Hardware Design
	Predictor
	Hybrid Encoder
	High-Entropy
	Low-Entropy

	Header Generator
	Bitpacker

	Experimental Results
	Conclusions
	References

