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FPGA-based embedded systems are gaining relevance for implementing a wide 

range of applications. Part of this success is due to their balanced compromise 

between performance and flexibility, but also because of their capability for 

exploiting the dynamic reconfigurability. Some of the most remarkable ad-

vantages of the dynamic reconfigurability are: power/size/cost reduction; hard-

ware reusability; obsolescence avoidance and application portability. 

 bstract A 
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The conservative deployment of the dynamic reconfigurability in FPGAs is cen-

tered on swapping one module by another, or by an improved version of itself. 

Moving beyond this strategy, it is possible to concentrate the dynamic reconfig-

urability strengths for dynamically adjusting the performance of a design. This 

issue could be very convenient in those FPGA-based embedded systems running 

on variable environments, since it would permit the variation of the number of 

processing elements involved in the execution of the application at run time. 

The ability of varying the number of resources, by increasing or decreasing its 

number, is known as scalability. 

With the aim of contributing to the dynamic reconfigurability, this Thesis is fo-

cused on exploring the strengths and weaknesses of developing scalable de-

signs, in which the scalability level might be adjusted and managed at run time. 

First of all, in order to study the possible positive or negative effects derived 

from adapting the performance of an application dynamically, this Thesis pro-

poses a set of scalable hardware architectures for two high performance but 

very different applications: video coding and hyperspectral linear unmixing. 

However, despite the fact that these hardware solutions might be scaled dy-

namically, they do not incorporate any mechanism for being reconfigured by 

themselves. In fact, the reconfiguration management must be supervised by 

another mechanism. Therefore, with the objective of alleviating this fact, this 

Thesis also proposes a flexible module for controlling, managing and checking 

the dynamic reconfigurability procedure. As a whole, these contributions (the 

scalable designs and the reconfigurability mechanism) are focused on filling the 

gap in the development of FPGA-based context-aware embedded systems. 
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Los sistemas empotrados basados en FPGAs están cobrando mayor relevancia 

en un amplio número de aplicaciones. Parte del éxito de las FPGAs se debe al 

equilibrio que ofrecen entre flexibilidad y rendimiento, pero también a su capa-

cidad para ser reconfiguradas dinámicamente. Entre algunas de las ventajas más 

relevantes de la reconfiguración dinámica destacan: la reducción de potencia, 

 esumen R 
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tamaño y coste de los dispositivos, así como el incremento de la reutilización del 

hardware, evitar la obsolescencia e incrementar la portabilidad de las aplicacio-

nes. 

El modo más tradicional de utilizar la reconfiguración dinámica en FPGAs se 

basa en la sustitución de módulos, y/o en la incorporación de versiones mejora-

das de los mismos. Sin embargo, es posible ir más allá y aprovechar las ventajas 

que ofrece la reconfiguración dinámica para ajustar el rendimiento de un dise-

ño. Esto podría ser muy útil para aquellos sistemas empotrados que han de tra-

bajar en entornos variables, ya que permitiría variar el número de elementos de 

proceso dedicados a la ejecución de la aplicación. La habilidad de variar el nú-

mero de recursos de un diseño, a través del aumento o descenso de recursos 

dedicados, se conoce como escalabilidad. 

Con el objetivo de aportar mejoras en el campo de la reconfiguración dinámica, 

esta Tesis Doctoral se centra en explorar las ventajas e inconvenientes que ofre-

ce el desarrollo de diseños escalables, en los que el nivel de escalabilidad se 

pueda adaptar y gestionar en tiempo de ejecución. Primeramente, con el fin de 

estudiar los posibles efectos positivos o negativos derivados de la adaptación 

dinámica del rendimiento de una aplicación, esta Tesis propone un conjunto de 

arquitecturas hardware escalables para dos aplicaciones de alto rendimiento, 

bien distintas entre sí: codificación de vídeo y desmezclado hiperespectral lineal. 

Sin embargo, y a pesar del hecho de que estas soluciones hardware puedan ser 

escaladas dinámicamente, por sí mismas no incorporan ningún mecanismo para 

ser reconfiguradas por sí mismas.  De hecho, el control del proceso de reconfi-

guración ha de ser supervisado por otro mecanismo. Por lo tanto, con el objeti-

vo de solventar este problema, esta Tesis también propone un módulo flexible 

para controlar, gestionar y comprobar el proceso de reconfiguración dinámica. 

De manera global, este conjunto de aportaciones (los diseños escalables y el 

mecanismo de reconfiguración) persiguen contribuir a llenar un vacío existente 

en el desarrollo de sistemas empotrados autónomos basados en FPGAs. 
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1 Introduction 

 

This chapter presents the most significant strengths and weaknesses asso-

ciated to the dynamic reconfigurability. Based on that, the motivations as well 

as the goals of this Thesis are outlined. In the end, the organization of this work 

is disclosed. 

 

1 hapter C 
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1.1 OUTLINE 

The technological evolution experienced in the last decades has motivated 

that smart electronic devices showed up in the market. That is the main reason 

why consumers and vendors claim for more functional and versatile devices. 

These demands require increasing parameters such as performance, flexibility, 

portability, connectivity and efficiency, but also combining them under the same 

device. On the other side, the development industry prioritizes aspects as the 

non-recursive costs, area and power savings. From the industry and the aca-

demia, the efforts for solving this dichotomy between flexibility and perfor-

mance have been focused on proposing new designing techniques and method-

ologies that promote the development of balanced and efficient solutions. Thus, 

despite the fact that ASIC devices are still being the primary target technology in 

the market, such as [HR12], [Mcc13] and [UBM13] studies demonstrate, their 

hegemony is based on developing rigid and efficient designs. Therefore, they 

are too strict for implementing portable, flexible and efficient embedded sys-

tems in order to fulfill with users’ expectations. A popular alternative is using 

reconfigurable hardware, in which the most common technology is the Field 

Programmable Gate Array (FPGA) [WIN10]. The reconfigurable technology 

might change the functionality of a hardware design over time more than once 

by customizing the logic and connections at run time. Therefore, the exploita-

tion of the benefits offered by the FPGA devices facilitates the development of 

more powerful embedded systems capable of fulfilling with the high-demanding 

expectations of consumers, vendors, but also the data-intensive applications 

[INS12].  

1.2 EXPOSING THE PROBLEM 

As a consequence of the normalization and standardization processes, car-

ried out along the last years, the dominance of computing systems in the mar-

ket is being replaced by a new market of smart embedded systems, mobile de-

vices and large-scale data centers [DBB+13]. The clearest example of this fact is 

reflected by the growth of mobile computing devices, evidenced by the spread 

of tablets, mobile devices and smart phones. At the same time that software 
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and hardware devices have improved their characteristics, the transmission 

supports have also been improved since the wireless networks have grown eve-

rywhere, and the up and downlinks bandwidths as well as the transmission data 

transfers rates have augmented significantly in a short period of time [ITU11]. 

These circumstances have motivated that multimedia field has become one of 

the most active in the industry, due to its relevance in the consumer market 

[KM12][Jak13]. However, these enhancements introduce certain level of com-

plexity referred to the performance or functionality adaptation of devices to the 

demands of their running applications under environmental variations, such as 

frequently happens in wireless networks, or the Internet. In addition, the capa-

bility of providing a real time response to those dynamic changes, it is being day 

by day a determinant aspect for many systems. Unfortunately, traditional hard-

ware/software co-design methodologies and tools do not facilitate the combi-

nation of both solutions (embedded systems performance with run time hard-

ware adaptability capabilities) [INS13], since the hardware designs tend to be 

designed using ASICs. Consequently, in all those situations in which the running 

constraints are relaxed, compared to those ones imposed during the early de-

signing and development stages, many of the available resources remain idle 

and underused. Accordingly, the combination of all these issues (adaptability 

and real time constraints) opens the window to a new framework, which re-

quires a review of traditional concepts related to embedded computing systems 

on chip (SoCs), but also of the relationship and the interaction between these 

systems, the users and the environments.  

Thus, Field Programmable Field Arrays (FPGAs) have gained popularity 

along these recent years in numerous sectors of the market [HO10] [Boa12]. 

Part of this success is due to their combination of the best features of pure 

software solutions, like traditional General Purpose Processors (GPPs), and 

hardware solutions, like gate arrays, under the same device. The balanced 

tradeoff between flexibility and performance [KTR08], and their reconfiguration 

capability, become FPGAs into good candidates for the development of embed-

ded SoCs. In addition, some of these market devices offer the possibility of a 
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dynamic reconfigurability, which means modifying their configuration whereas 

the rest of the system remains working.  

Moving beyond the conservative exploitation of the dynamic reconfigura-

bility in FPGAs, based on the substitution of one module by another, or even 

swapping it by an improved version of itself; it is possible to take advantage of 

the dynamic reconfigurability strengths for adjusting the system functionality or 

modifying the number of processing elements involved in the execution of the 

running application. More specifically, the capability of incrementing or decre-

menting some of the properties (physical, structural or behavioral) of a module 

is known as scalability. 

Unfortunately, the dynamic reconfigurability is still an immature technolo-

gy, in which there are certain methodological and technological deficiencies that 

make its use on manufactured products still poor [UBM13].  

1.3 MOTIVATION OF RESEARCH 

As soon as the technology and the fabrication processes have evolved, the 

complexity of hardware devices has increased rapidly by including higher num-

ber of resources on the same die [XWP10]. A very clear example of this fact is 

the explosion of more dense and powerful devices in the market, such as mod-

ern FPGAs [GBI11].  

Nowadays, one of the main trends goes through combining programmable 

logic technology, such as an FPGA, with traditional processing elements, like a 

microprocessor, which works well for a wide range of complex embedded sys-

tems. Some commercial solutions that follow this strategy are Intel Atom [AT-

OM13], Microsemi SmartFusion [MSF13], Xilinx’s Zynq [XZY13], and Altera SoC 

FPGA [ASOC13]. One of the causes why the FPGAs are attractive is the right mix 

of performance, flexibility, and price. A primary benefit of FPGAs for processing 

is their reconfigurability that offers a mechanism for hardware upgrades and 

product differentiation, which extend product life in a world of evolving inter-

faces and standards. In addition, this feature remains much more adaptable to 

design changes than the processor-only or ASIC approach [INS13]. 
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Furthermore, the parallel nature of FPGAs allows that multiple tasks oper-

ate in a truly concurrent fashion using dedicated processing elements. In this 

sense, by using the dynamic reconfigurability is possible to explore the benefits 

of the scalability in a hardware design. This means, allowing for varying the 

number of hardware resources performing simultaneously in the same FPGA. 

Moreover, in order to maximize the benefits of merging the processor and 

FPGA, designers must address several considerations. Thus, apart from the 

computational requirements of these applications, the final systems must be 

able to fulfill the expectations of both the users and the industry, where the 

most relevant are listed below:  

1. Flexibility: it allows the implementation of multiple and diverse designs 

and functionalities. Even more, it also means supporting different kinds of 

solutions for overcoming the same problem. 

2. Portability: this characteristic is related to the fact that one solution might 

migrate to a different technology without having to redesign it completely 

from the scratch. 

3. Adaptability: it facilitates the adjustment of the behavior or the perfor-

mance of the system, in order to accomplish with the proposed tasks, ac-

cording to the environmental fluctuations. 

4. Multitasking: this feature allows that several functions, tasks and/or ap-

plications run onto the same device, but in all the cases achieving a 

tradeoff between performance and flexibility. 

5. Efficiency: in hardware solutions, this term is intimately related to the 

clock frequency, the memory data bandwidth, the usability of the availa-

ble resources, and power and silicon savings. 

6. Autonomy and independency: these properties introduce certain degree 

of intelligence to the device, in the sense that it might be able to operate 

without any other external and complex system. A clear example of appli-

cations that should exploit these characteristics are all those that are exe-

cuted on satellites or even those located on places with difficult accesses. 
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1.3.1 Scalability exploration in FPGAs 

The future of high performance computing is likely to rely on the ability to 

efficiently exploit huge amounts of parallelism. In this sense, there exist differ-

ent parallelization strategies; such as Instruction Level (ILP) [RF93], Task Level 

(TLP) [GP95] and Data Level Parallelism (DLP) [PGT07]. The first two paralleliza-

tion strategies are widely used on systems based on General Purpose Processor 

(GPP) units. Nevertheless, the TLP and DLP strategies are most extended on 

Graphical Processing Units (GPUs) or reconfigurable devices. The goal of using 

these parallelization strategies lies on distributing the computation in space 

rather than in time all over the device. This policy allows to increase the number 

of parallel processing elements that performs operations concurrently and, as a 

result, the computation of the overall implemented application is accelerated.  

Taking advantage of these parallelization policies more flexible approaches 

are possible by adjusting the level of parallelism according to the necessities of 

the system; in other words, scaling the solution. Thus, the flexibility of the sys-

tem is enormously increased, since this adjustment increases the hardware re-

usability, the adaptability and the efficiency. Some of examples of high-

parallelized and scalable solutions can be found in [OTR+10], [BBD09] and 

[EBS+11].  

1.3.2 High performance computing applications 

All high performance computing applications are characterized by their 

huge amount of information to process, their long latency for processing the 

data, but also by the necessity of ensuring consistent and reliable results. As it 

was previously mentioned, one of the best ways to face these challenges is to 

provide highly parallelized solutions, in which the exploitation of the scalability 

might play a relevant role on the consecution of this issue. In this sense, by 

combining the flexibility and the reconfigurability features of the FPGAs, togeth-

er with the powerful of the TLP or/and the DLP strategies, it is possible to accel-

erate and adapt the performance of high performance computing applications.  
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With the objective of covering diverse applications for demonstrating this 

affirmation, this Thesis has selected two well-differentiated application do-

mains. One of them is focused on video and imaging applications, more specifi-

cally, one of the latest video coding standards, the H.264/AVC [ITU-T07] and its 

extension the Scalable Video Coding standard [ITU-T09] (SVC). The second 

choice is related to space applications, more precisely those that benefit from 

processing hyperspectral images captured by a remote sensing sensor [PBB+09]. 

This kind of image is used for many applications such as Earth observation 

[HAA+12], environmental studies [TL11], and geology [MWR+12], among many 

others.  

1.3.2.1 The deblocking filter algorithm 

The H.264/AVC standard allows reducing the transmission rates up to 50% 

and 35% compared to MPEG-2 and MPEG-4 standards [KA03][OBL+04]. Howev-

er, the better performance of the H.264/AVC and the SVC standards, the higher 

complexity they demand. Hence, the current trend to deal with this emerging 

complexity goes through executing several tasks of the encoding/decoding loop 

simultaneously, or parallelizing the execution of those tasks with higher compu-

tational cost, in terms of the complexity of their operations or the amount of 

data that they have to process [Por05]. 

As it has been demonstrated in different studies, like [HJK+03], [SMW07], 

[WDG+10] and [SCL+11], the deblocking filter algorithm represents one of the 

most time consuming, complex and critical tasks in the encoding and decoding 

loop for both the H.264/AVC and the SVC standards. Therefore, this is a perfect 

candidate to be implemented in hardware, such as a large amount of publica-

tions demonstrates [HCH03], [CCH06], [TVM09], [MBT+11], [SFZ12] and 

[LZZ+12]. 

A common approach to cope with stringent computational requirements in 

an energy efficient manner is custom hardware acceleration by means of appli-

cation specific integrated circuits (ASICs). Despite the fact that these devices are 

much more efficient than general purpose processors, they are inflexible. Video 

systems are preferably adaptable because the application or the characteristics 
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of the application can be modified and are often not established or known be-

forehand. An interesting option to reconcile the conflicting requirements of 

computational power and flexibility is using FPGAs. The research community is 

investigating the benefits of using this kind of reconfigurable hardware. In some 

cases, the scalability or the parallelization relies upon a whole H.264/AVC en-

coder or decoder, such as in [RSK12] and [Eec07] works. In other cases, the 

scalability is directly applied over the deblocking filter, like occurs in [KHL10] and 

[VCK10].  

1.3.2.2 Hyperspectral linear unmixing 

According to the trends of the spatial industry [Boa12], the use of FPGAs in 

current missions is increasing due to their size, high function densities and fast 

working speeds, and reduced power consumption [FLG13]. Thus, many applica-

tions related to these issues have been implemented on FPGAs [LVG+13], in 

order to get a compromise between performance and costs. 

Into the wide range of purposes of those space missions, hyperspectral 

remote sensing applications are gaining relevance due to they make possible to 

analyze surfaces remotely. These kinds of applications present two main chal-

lenges. First of all, the amount of information collected by the hyperspectral 

remote sensor is huge [SD11], like in the case of the AVIRIS [AVI07]. Then, the 

spatial resolution of the sensor is not able to distinguish distinct materials when 

they are close each other. This fact causes the appearance of mixed pixels. In 

order to identify and separate those mixed pixels into their components, spec-

tral linear unmixing algorithms [BPD+12] have gained in popularity. Further-

more, some of them have been implemented in FPGAs, like is the case of 

[SJR10], [DP11], [GMR+12], [MZM+13] and [VDL+13]. 

However, all these solutions do not maximize the benefits of using the dy-

namic reconfigurability, and suffer from some of the following issues:  

 Modularity: A whole design should be separated in several modules 

according to their primary task, since this policy allows an easier up-

gradeability and reliability for future improvements. 
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 Scalability: The exploitation of the scalability feature facilitates 

hardware reusability, but also area and power savings. 

 Homogeneity: The behavior and connectivity of all the modules of a 

design must remain unaltered, and be always the same, inde-

pendently of the scalability level demanded in the system. 

 Dynamic and partial reconfiguration: Combining traditional dynami-

cally reconfigurable designs, with the concepts of the scalability and 

partial dynamic reconfigurability (DPR), it would be possible to modi-

fy the number of processing elements (increasing or decreasing their 

number) that are running in parallel. 

 Run time reconfigurability management: Despite the fact that the 

reconfiguration on an FPGA might be done statically and/or dynami-

cally by using external interfaces; context-aware or/and self-adapting 

embedded systems require an internal reconfiguration process for 

loading the required configurations without the intervention of any 

external control. In this way, there are several internal reconfigura-

tion engines, such as [CLF08], [AM09], [FFC+11], and [KOM11]. How-

ever, the control and management of the dynamic reconfigurability 

process is not completely solved yet. 

1.4 RESEARCH GOALS 

The development of this research attends to different interests, but all of 

them focused on contributing to relieve some of the lacks in the dynamic recon-

figurability. Thus, the main goal behind this research is to offer solutions in or-

der to facilitate the development of autonomous and flexible FPGA-based em-

bedded systems on chip (SoC); but at the same time doing and efficient, dynam-

ic and intelligent use of the available hardware resources at run time. In this 

sense, it is necessary to introduce the hardware reconfigurability feature as the 

base for being able to focus the solutions toward adaptable and scalable envi-

ronments with real time constraints within consistent, generic and flexible 
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working scenarios. With the goal of achieving this purpose, this research work is 

focused on reaching the following objectives:  

 Contextualize this work by highlighting the strengths and weaknesses of 

using reconfigurable hardware for implementing high performance 

computing applications. In this way, it is possible to establish the fun-

damentals in which the rest of this research work lies on. 

 Provide a set of hardware architectures characterized by their modulari-

ty, flexibility, and scalability for performing data and computationally in-

tensive applications. The approaches belonging to this set of solutions 

do neither necessarily participate nor exploit from the dynamic recon-

figurability feature of the FPGAs. The expected contributions of these 

architectural proposals are related to the characteristics that high per-

formance applications should fulfill before they are able to benefit from 

the dynamic reconfigurability. 

o In this sense, as a first step, a review and an analysis of the 

state-of-the-art of the architectural solutions related to the se-

lected application should be established. At this point is im-

portant to pay attention to the parallelization strategies exploit-

ed in the collected designs, but also the technique applied for 

improving the final performance of the system. 

o Select the most time consuming or intensive tasks, within the 

selected applications, in order to accelerate their execution by 

taking advantage of the benefits of using reconfigurable hard-

ware designs. 

o The next step is to study different ways to parallelize the select-

ed application, considering that the solution must be homoge-

neous and scalable. 

o Create (design and develop) a specific hardware solution for 

each one of the selected applications capable for adapting the 

number of hardware resources dynamically used at run time. 
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This feature is very important in order to adapt the final perfor-

mance of the solution to different situations. On the one hand, 

the scalability has to be exploited on a deblocking filter algo-

rithm, as part of a video codec standard application. On the oth-

er hand, another but different data intensive application has to 

be analyzed, a linear unmixing algorithm as part of a hyperspec-

tral image processing application. 

 Explore the scheduling and management tasks related to the reconfigu-

rability in order to adapt the performance and/or functionality of dy-

namically reconfigurable embedded systems at run time.  

 Identify the most general and relevant situations that might occur dur-

ing the execution of a dynamically reconfigurable system. Based on this 

information, determine the necessary specifications and procedures 

that are required for controlling the hardware reconfigurability process 

in order to prevent the system from failures. 

 Design a scheduling unit responsible for receiving reconfiguration re-

quests from the rest of the system, and acting in consequence in order 

to provide a successful reconfiguration process. In this sense, this unit 

has to be able to organizing the information involved in the process, an-

alyzing different strategies to use, and deciding the most efficient in or-

der to determine how to proceed with the reconfigurable hardware. 

 Integrate the scheduling unit as part of a more complex entity, a dynam-

ic resource manager (DRM), in order to complete all the hardware re-

configuration process in self-adapting or context-aware FPGA-based 

embedded SoCs. 

 Demonstrate the viability of all these goals by joining them all together 

under the same system. Thus, a dynamically reconfigurable FPGA-based 

embedded system will be proposed, in which one of the scalable designs 

previously mentioned will run. Moreover, the scalability adaptations of 

the application will be controlled by the DRM. 
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1.5 ORGANIZATION OF THIS DOCUMENT 

The present document is structured into six chapters, including this intro-

ductory one dedicated to present the problematic and the motivations for de-

veloping this PhD. Every chapter is dedicated to a specific contribution of this 

PhD research work.  

Chapter 2: Dynamic reconfigurability 

This chapter covers basic concepts regarding the reconfigurability, in an at-

tempt to offer a clue about the sense of using this feature/technique. This will 

answer a series of easy questions such as why, where and how the reconfigura-

bility might be used. In the beginning, the evolution of the dynamic reconfigura-

bility is reviewed, starting from its origins to the present days. Thus, the final 

objective of this chapter is to contextualize the present research work, by high-

lighting the relevance of taking advantage of the dynamic reconfigurability, but 

also exposing the weaknesses and lacks of this field that make difficult moving 

this feature from the academia to the market. 

Chapter 3: Exploiting scalability for video coding applications: H.264/AVC 

and SVC 

Within the set of data-intensive applications, the latest video codecs 

standards play a relevant role into the development of modern multimedia ap-

plications. The most extended video standards are the H.264/AVC and its exten-

sion, the SVC. Both of them are very intensive in computation, since they need 

to perform many operations repeatedly and, in most of the cases, complex 

ones. Their importance might be shown through an overview of the state-of-

the-art in this field. Thus, one of the goals of this chapter is to review the previ-

ous proposals on this area, and then presenting the proposed work. The main 

trend is moving toward generic solutions, which are capable of solving the same 

kind of problems, but in this case with different dimensions by adjusting some 

settings parameters. In other words, the behavior or the performance of the 

solution should be scaled. In consequence, this chapter presents a scalable 

hardware solution for the deblocking filter algorithm. This element has been 
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selected due to it is the most computational intensive block within the afore-

mentioned decoders. 

Chapter 4: Exploiting the scalability for hyperspectral image processing: 

linear unmixing 

This chapter explores the viability of the scalability for processing a differ-

ent high performance computing application than the one studied in the previ-

ous chapter. First of all, a review of the state-of-the-art in this kind of algorithms 

is presented in order to contextualize the proposed work. Then, as a part of the 

research work of this Thesis, two different scalable approaches are developed 

for a linear unmixing algorithm (more specifically the Modified Vertex Compo-

nent Analysis (MVCA) algorithm), in charge of extracting endmembers from a 

hyperspectral image. The scalability is determinant for saving resources, silicon 

area, cost and gaining in flexibility in to the embedded SoCs design. Whether 

those scalability changes want to be applied at run time, it is mandatory to use 

the dynamic reconfigurability.  

Chapter 5: Dynamic Resource Manager 

Due to the fact that the scalability is a necessary condition for exploiting 

the dynamic reconfigurability, but not sufficient, this chapter outlines the re-

quirements that one hardware embedded design should fulfill in order to max-

imize the benefits of the dynamic reconfigurability. However, controlling the 

dynamic reconfiguration process is not trivial, and its complexity is ever growing 

when context-aware embedded SoCs are considered. With the goal of contrib-

uting to overcome this challenge, and after reviewing some of the proposals 

present in the state-of-the-art, this chapter contributes by proposing a dynamic 

resource manager. This element is responsible for scheduling the tasks involved 

in the reconfiguration process, and ensuring their correct execution in the sili-

con. It is a complementary element of the whole architecture focused on organ-

izing the hardware reconfigurability. In addition, the behavior of the presented 

contribution is independent from the intrinsic characteristics of all the reconfig-

urable applications implemented in the embedded SoC, though it has to store 

certain information of them.  
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Chapter 6: Conclusions and future work 

Finally, the collection of the contributions provided in this PhD, and their 

relevance into the dynamic reconfigurability field, are summarized. At the end 

of this document, further research works are proposed, which might comple-

ment and enhance some of the aspects developed in this PhD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Dynamic reconfigurability 

 

This chapter covers basic concepts regarding the reconfigurability in order 

to offer a clue about what is the sense of using this feature in embedded sys-

tems. Thus, the final objective of this chapter is to contextualize the present re-

search work, and also expose the weaknesses and lacks of this field that make 

difficult moving this feature from the academia to the market solutions. 

2 hapter C 
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2.1 OUTLINE 

The impressive ascent in relevance of the high performance computing 

world in our society is indisputable. In a short period of time, this sector has 

quickly progressed and, in order to cope with their stringent demands, different 

hardware devices have been developed. However, not every target device is apt 

for fulfilling the demands associated to many of these high performance appli-

cations. Unlike traditional solutions, dynamically reconfigurable architectures 

appear as ideal candidates to deal with these necessities.  

Some of the most relevant advantages of using the dynamic reconfigurability 

might be summarized as follow: 

1. First, the fact that reconfigurable devices might be repeatedly config-

ured allows reusing the same die for different matters, reducing costs 

and minimizing the time-to-market. 

2. The reconfigurability by its own allows to modify a system, including fu-

ture releases in a post-fabric stage. Moreover, the dynamic reconfigura-

bility accelerates the reconfigurable hardware adjustment by updating 

the system at run-time, in many cases supporting real time constraints. 

3. Another advantage directly related to the dynamic reconfigurability in-

cludes the possibility of implementing diverse functionalities in the 

same device, and swapping among them according to the system re-

quirements. 

Within the wide range of hardware choices, and according to the infor-

mation shown in Table 2.I, the reconfigurable hardware balances performance, 

power consumption, flexibility, design time and final costs. Therefore, although 

Application Specific Integrated Circuits (ASICs) and General Purpose Processors 

(GPPs) represent fully functional systems, they are not appropriated to assume 

the stringent demands of computationally intensive applications, in terms of 

flexibility, performance and time-to-market. Another implementing device 

widely used nowadays is the Graphic Processing Unit (GPUs).  
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For these reasons, the research activity has developed useful reconfigura-

ble hardware systems and platforms capable of supporting more powerful ap-

plications along these years, not only focusing on FPGAs but also on custom and 

semi-custom reconfigurable architectures. 

Table 2.I Characterization of several technologies 

Device Performance Cost 
Power 

consumption 
Flexibility Design (NRE) 

ASIC High High Low Low High 

DSP Medium Medium Medium High Medium 

GPP Low Low Medium High Low 

GPU High High High Medium Medium 

Reconfigurable HW Medium Medium Medium Medium Medium 

2.2 RECONFIGURABLE ARCHITECTURES FOR DATA AND COMPUTA-

TIONALLY INTENSIVE APPLICATIONS 

Within reconfigurable hardware devices, and according to the granularity 

aspect, it is possible to differentiate two types of devices. These are Coarse-

Grained and Fine-Grained Reconfigurable Arrays, CGRAs [TSV07] and FGRAs 

[TSS07] respectively. The former are usually designed as custom or semi-custom 

devices, whereas in the FGRA group the Field Programmable Gate Arrays 

(FPGAs) are the most extended and commercially available devices.  

The granularity of a reconfigurable fabric reflects the size of the smallest 

block unit of which a device is made, based on its data width and computational 

capability. According to this definition, the granularity is broadly divided into 

two categories: fine and coarse-grained. The former uses basic logic blocks with 

a data width of small number of bits; whereas the coarse-grained architectures 

consist of more complex and bigger block units working at word-level. When a 

fine-grained approach is used, it is possible to manipulate bitwise, so every sin-

gle bit can be separately routed/used. A coarse-grained design, in contrast, usu-

ally does not allow bitwise manipulation, being word or sub-word manipulation 

the more general approach. Traditionally, the FPGAs are defined as fine-grain 

devices, whereas on the other side there are the CGRAs. In short, CGRAs can be 

seen as statically or dynamically reconfigurable coarse-grained FPGAs, with di-

rect interconnections between processing elements (PEs) that need to be pro-
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grammed explicitly. Bit-level programmability is less efficient than the coarse-

grain one in terms of routing area and configuration overhead. However, fine-

grain devices are well suited for application at bit or irregular sized data manipu-

lation. On the contrary, coarse-grain devices reduces the configuration time, as 

well as they decrement placement and routing complexity tasks. Despite the 

fact that FPGA-design is faster and easier than the CGRA, the research commu-

nity is focusing their efforts on both directions. 

From a system level point of view, and following the classification pro-

posed in [VK09], these reconfigurable architectures (CGRAs and FPGAs) might 

be classified, according to their role into a more complex system, as: external 

processing unit, co-processor, reconfigurable functional unit or embedded pro-

cessor. A graphical structure of these four cases is represented in Figure 2.1 

1. External processing unit: The system is separated into two cores. On the 

one hand, the processor is responsible for running software tasks and control-

ling the whole system. On the other hand, the reconfigurable architecture is 

separated from the processor and communicated with it by using the I/O facili-

ties of the processor. Therefore, the reconfigurable array acts as a peripheral to 

the processor. This kind of scheme is suitable for all those cases in which the 

communication between both cores is not continually needed.  

2. Co-processor: This structure shares the same memories between the 

processor and the reconfigurable architecture, but also they have the same 

connection with the rest of the system. 

3. Reconfigurable Unit: This system is similar to the co-processor one, but 

with the exception that in this case the reconfigurable architecture belongs to 

the processor. Therefore, it is a functional unit in the system. 

4. Embedded processor: On the contrary than in the reconfigurable unit 

system, in this case the processor is embedded as part of the reconfigurable 

architecture. Here, the processor might be a soft or a hard-wire core within the 

reconfigurable architecture. This system-level system is a trend in nowadays 

FPGAs, since this pattern makes them more coarse-grained. 
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Figure 2.1 Reconfigurable hardware architectures according to their role on a more complex 

system 

On the other hand, according to the reconfigurable hardware design itself, 

three different categories of reconfigurable designs might be established: 

1. Array of functional units (FUs): These architectures are created from 

chains of interconnected functional units, which are replicated to create more 

complex structures, such as 2D-arrays. This kind of structure is totally depend-

ent on some external resources. For example, it is managed and controlled by a 

host processor situated off-the-chip, which also supervises the reconfiguration 

process. Its data or configuration contexts are also stored on external memo-

ries. Regarding to this, it is very important to design an efficient communication 

channel between the host and the array of FUs, in order to accelerate data 

transfers among them. Consequently, an array of functional units is a useful and 

flexible system when the running application meets two important conditions: it 
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is very intensive in computation and, simultaneously, it is quite independent of 

the processor without constant interruptions to the processor.  

2. Coprocessor or hybrid architectures: The design complexity is something 

higher than on the previous category, because the constraints are higher too. 

The whole system is formed by two main parts: a processor core, which is usual-

ly a RISC or a VLIW processor, and a reconfigurable hardware core. Both cores 

are often tightly coupled and the control of the whole system is handled and 

managed by the processor core. The communication protocol and the intercon-

nection network among processor-reconfigurable hardware and memory-

reconfigurable hardware are critical decisions, since a bad selection could de-

termine a slow data transfer. In this case, some internal memories are incorpo-

rated to the architectural structure. Reconfigurable hardware core has associat-

ed some configuration caches, while the data are stored into SRAM-memories. 

Generally, these structures allow certain level of autonomy, operating without 

an external intervention. 

3. Array of processors: These systems are formed by a set of hard or soft 

interconnected processors. The power of this architectural structure is obtained 

at the cost of an important increment of the design complexity. All these pro-

cessors may operate independently in parallel one to the other, executing dif-

ferent tasks. Although they also may combine their resources to execute the 

same functions. The major difficulties associated to these systems are the man-

agement of the data dependences among processors running in parallel and the 

assignment of the instructions to its proper processor. It is difficult to design 

these architectural structures because there are a lot of variables implicated 

into the correct execution of the processors. This architectural structure is use-

ful for implementing parallel applications with low data dependences. 

Regarding the inherent properties of the reconfigurable hardware solu-

tions, these ones are almost ideal candidates for implementing data intensive 

and high performance computing applications. In this sense, the state-of-the-art 

of the reconfigurable hardware is full of CGRA or FPGA solutions for accelerating 

these kinds of applications. Briefly, Table 2.II summarizes the research activity in 

this field during the last decades. 
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Table 2.II Characterization of several reconfigurable hardware architectures 

Ref. Name Tech. 
Hardware 

design 
level 

Granu-
larity 

Reconfigu-
rability 

Topology App. 

[RTF+00] RAMP N/A 
Array of 

FUs 
Coarse 

Partial 
dynamically 

2-D 
Mesh 

Multime-
dia 

[SCM00] 
[BG99] 

PipeRench 500nm 
Hybrid 
arch. 

Coarse 
Partial 

dynamically 
Hierar-
chical 

Stream-
based 

[BG01] DreAM 350nm 
Array of 

FUs 
Coarse 

Partial 
dynamically 

Hierar-
chical 

Mobile 
signal 

processing 

[BEM+03] XPP 90nm 
Array of 

FUs 
Coarse 

Partial 
dynamically 

2-D 
Mesh 

Multime-
dia 

[HSM03] Montium 130nm 
Hybrid 
arch. 

Coarse 
Fully 

dynamically 
1-D 

Mesh 
Multime-

dia 

[KAD03] ARDOISE 
Atmel 

AT40K4
0 

Hybrid 
arch. 

Fine 
Partial 

dynamically 
1-D 

Mesh 
Image 

processing 

[EFX+04] 
[CFF+99] 

RaPiD 180nm 
Array of 

FUs 
Coarse 

Fully 
dynamically 

1-D 
Bus 

Data 
intensive 

[BLM+04] RAW 180nm 
Array of 

processors 
Coarse Static 

2-D 
dynamic 
network 

Data 
intensive 

[KRL+06] 
3D-

SoftChip 
180nm 

Array of 
processors 

Coarse 
Fully 

dynamically 
2-D 

Mesh 
Signal 

processing 

[LCB+06] XiRISC 130nm 
Hybrid 
arch. 

Fine 
Fully 

dynamically 
2-D 

config. 
Multime-

dia 

[PNK+06] MorphoSys 130nm 
Hybrid 
arch. 

Coarse 
Fully 

dynamically 
2-D 

Mesh 
Data 

intensive 

[SBB06] QUKU 
Xilinx 

V4 
Hybrid 
arch. 

Fine 
Fully 

dynamically 
2-D 

Mesh 
Data 

intensive 

[HCE07] FLEXWAFE 
Xilinx 

V2 -Pro 
Array of 

processors 
Fine 

Fully 
dynamically 

1-D 
Mesh 

Stream-
based 

[KBW+07] ECA 90nm 
Array of 

FUs 
Coarse 

Partial 
dynamically 

NoCs 
Multime-

dia 

[LPC07] MORA 90nm 
Array of 

FUs 
Coarse 

Fully 
dynamically 

Hierar-
chical 

Multime-
dia 

[SWS05] DAPDNA-2 130nm 
Hybrid 
arch. 

Coarse 
Partial 

dynamically 
2-D 

Stream-
based 

[BGN08] 
[BCR+06] 

Butter 
Altera 

Stratix-
II 

Array of 
FUs 

Coarse 
Fully 

dynamically 
configu-

rable 
Signal 

processing 
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Ref. Name Tech. 
Hardware 

design 
level 

Granu-
larity 

Reconfigu-
rability 

Topology App. 

[PSD08] DART 130nm 
Hybrid 
arch. 

Medium 
Fully 

dynamically 
Hierar-
chical 

Multime-
dia 

[MSV+08] ADRES 90nm 
Hybrid 
arch. 

Coarse 
Fully 

dynamically 
2-D 

Mesh 
Data 

intensive 

[LH09] SmartCell 130nm 
Array of 

FUs 
Coarse 

Partial 
dynamically 

Hierar-
chical 

Data 
intensive 

[HSC+10] 
Sonic-on-

chip 

Altera 
Flex 

10k50 

Array of 
processors 

Coarse 
Fully 

dynamically 
1-D 
Bus 

Image 
processing 

[PMB11] SYSCORE 90nm 
Array of 

FUs 
Coarse Static 

2-D 
Mesh 

Biosignal 
processing 

[AA12] BiLRC 90nm 
Array of 

FUs 
Coarse Static 

2-D 
Mesh 

Image 
processing 

[PDM12] ReMORPH 
Xilinx 

Spartan 
6 

Hybrid 
arch. 

Coarse 
Partial 

dynamically 
2-D 

Mesh 
Stream-
based 

The CGRA usage has been limited due to the lack of commercial CGRA cir-

cuits. Thus, some works such as [FVM+11] and [PLS+11] propose a virtual and 

dynamic CGRA implemented on top of an FPGA. In this way, it is possible to use 

commercial-off-the-shelf FPGA devices combined with the advantages of cus-

tomized CGRAs [PLS+11]. 

Despite the fact that several vendors provide a variety of FPGA devices, not 

all of all them support the dynamic reconfigurability [DH03]. Xilinx FPGAs have 

been selected for developing this research work, since modern families, such as 

the Virtex-5, permit exploiting the dynamic reconfiguration, but also because 

Xilinx is the most sold in the market [UBM13] and provides a set of support tools 

[XIL12]. 

2.3 OVERVIEW OF THE FPGA STRUCTURE 

An FPGA is a flexible device designed to be configured after manufacturing 

and composed by programmable blocks of different types, which are distributed 

all over the die in columns. This 2D array of blocks includes general Configurable 

Logic Blocks (CLBs), block RAM memory (BRAM) and multipliers or Digital Signal 

Processor blocks (DSPs), surrounded by a programmable routing fabric that al-
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lows blocks to be programmable interconnected. There are also programmable 

Input/Output Blocks (IOBs) that connect the chip to external devices, like Figure 

2.2 shows. CLBs and DSPs, similar to a processor’s Arithmetic Logic Unit (ALU), 

can be programmed to perform arithmetic and logic operations like add, multi-

ply, subtract, compare, etc. Unlike a processor, in which the architecture of the 

ALU is fixed and designed in a general-purpose manner to execute various oper-

ations, the CLBs can be programmed in such a way that it can provide function-

ality as simple as that of a transistor or as complex as that of a microprocessor 

depending on the operations needed by the application. In addition, routing 

paths in FPGAs consists of horizontal and vertical channel tracks of varying 

lengths that can be interconnected via electrically programmable switches. De-

pending of the length of these wires, Figure 2.3 depicts, the FPGA distinguishes 

between local tracks (those ones that connect adjacent elements), and global 

tracks (those wires used for providing an indirect connectivity between far 

neighboring elements). 

Advancements in silicon, software, and the design of specific and efficient 

intellectual property (IPs) cores have proven Xilinx FPGAs to be good solutions 

for accelerating applications on high performance embedded computers 

[XWP10]. High performance embedded computers are computers that are in-

corporated in equipment or an appliance to perform specific compute and data 

intensive tasks. Some industries demand using these kinds of systems, such as 

defense, communication, medical imaging and financial services. Due to the 

interest of this Ph.D. has been focused on particular intensive data applications 

for embedded systems, the proposed solutions have been implemented on a 

Xilinx Virtex-5 FPGA. Therefore, the rest of this section is specifically focused on 

describing in detail several aspects of this particular device. 
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Figure 2.2 Structure of an FPGA 

 
Figure 2.3 Programmable local and global routing tracks on a mesh topology 

2.3.1 Traditional design flow 

One of the most important advantages of using FPGAs compared to other 

technologies is the fact that there are several Computer Aided Design (CAD) 

tools that facilitate the design flow. These tools are usually provided by design 

LOGIC LOGIC 

LOGIC LOGIC 

LOGIC 

LOGIC 

Global tracks 

Local tracks 
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automation companies or even by the academia. A generic design flow of an 

FPGA includes these steps [PM11]: 

- System design: the designer has to decide what portion of his function-

ality has to be implemented on the FPGA and how to integrate that 

functionality with the rest of the system. 

- I/O integration with the rest of the system: I/O streams of the FPGA are 

integrated with the rest of the system onto a physical Printed Circuit 

Board (PCB). 

- Design description: designer describes design functionality either by us-

ing schematic editors or by using one of the various Hardware Descrip-

tion Languages (HDL), like Verilog or VHDL. 

- Synthesis: once the design has been defined, the CAD tools are used to 

implement the design on a given FPGA. Synthesis includes generic opti-

mization, slack optimizations and power optimizations followed by 

placement and routing. The implementation includes partition, place 

and route. The output of the design implementation phase is a bit-

stream file. 

- Design verification: the design is loaded into a simulator in order to 

check whether the behavior of the design is correct. Then, the design is 

loaded onto the target FPGA and tested in real environment. 

More in detail, the FPGA vendor tools are constituted by the following stages:  

- Synthesis: generates files describing the design terms of generic digital 

logic elements. After synthesis stage the XST tool writes the generic 

netlist in an ngc file. 

- Translation: it takes synthesized modules (ngc) together with physical 

macros and User Constrain Files (ucf), and generates a single Native Ge-

neric Database (ngd) file. This operation is performed by the Xilinx 

NGCBuild utility. 
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- Technology mapping: it transforms a technology-independent netlist in-

to one that only contains logic cells supported by the targeted FPGA ar-

chitecture. Xilinx map utility reads the ngc file and maps the contained 

netlist, generating a Native Circuit Description (ncd) file. 

- Packing: it is the process of grouping several LUTs and registers into one 

logic block. 

- Placement and routing: it determines all the positions of the logic blocks 

onto the silicon of the specific FPGA and constructs paths that connect 

elements among them. 

- Bitstream generation: the fully routed design is converted into a struc-

ture of bits (bitstream) and downloaded to the FPGA. 

2.3.2 Bitstream structure 

Unlike other technologies, which implement hardware directly into silicon, 

any errors in the final FPGA-based product can be easily corrected by simply 

reprogramming the device. A bitstream is a chain of zeros and ones responsible 

for changing the connectivity and functionality of the logic of the circuitry; that 

is, configuring the device. The contents of the logic block are programmed to 

control its functionality, while the routing switches are programmed to perform 

the desired connections. This sequence of data might affect to the whole FPGA 

(like in a static reconfiguration), or/and just to a region of it (dynamic reconfigu-

ration). 

The very first Xilinx FPGAs were completely fine-grained devices; but the 

complexity of these elements has been growing day by day due to the combina-

tion of fine-grain blocks units together with medium or coarse-grain blocks, such 

as DSPs or Microprocessors. However, independently of the complexity of these 

resources, the configuration process of all of them follows the same scheme 

[UG191]. Thus, all these elements are divided into smaller configuration units. 

This policy allows increasing the configuration flexibility of these resources, but 

at the same time the reconfiguration process becomes more complex and slow-
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er. These small configuration units are known as configuration frames. From the 

Virtex-4 family ahead, a frame is as height as a clock region, and as wide as a 

configuration column (Figure 2.4). The number of columns of frames depends 

on the resources distribution within the FPGA. In addition, these frames are 

responsible for configuring the CLBs, BRAMs, DSPs and IOBs, but they also are in 

charge of configuring the central row of a clock region, in which the main clock 

is located (GCLK). 
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Figure 2.4 Virtex-5 LX110T layout separated in clock regions 

The format of the bitstream follows a pattern structured in three sections: 

header, body and tail. The header collects synchronization information, and 

configuration commands. The body is the core of the bitstream, since it contains 

the configuration information of the resources available in the FPGA (configura-

tion frames). Then, the tail of the bitstream stores the CRC (Correction eRror 

Code) of the whole bitstream.  

In order to specify the correspondence between a configuration frame, and 

a physical location in the silicon, the frames’ address is stored in a series of in-
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ternal resources specifically focused on the reconfigurability. Within all these 

registers, the most relevant ones are: 

FAR (Frame Address Register):  this register stores the physical address 

within the FPGA where the configuration frame should be loaded. 

FDRI (Frame Data Register Input): It is a writing register, which configures 

the addressing data of the FAR register. 

FDRO (Frame Data Register Output): this is an only read register that al-

lows getting the configuration frames information (those ones that are already 

loaded in the FPGA), starting from the FAR address. 

2.3.2.1 Configuration frame addressing 

The number of configuration bits necessary for programming an FPGA de-

pends on the family and model of the target FPGA. All the Xilinx Virtex-5 FPGAs 

define a configuration frame with 41 words of 32-bits length each, which is 

translated into 1321 configuration bits per frame. More in detail, the configura-

tion address, specified in the aforementioned FAR register is separated into 6 

sections, everyone with different and specific information. The less 21 signifi-

cant bits [0:20] are reserved for determining the exact position of the configura-

tion frame within the surface of the FPGA. The following three bits [21:23] iden-

tify what kind of resource it is going to be configured. Xilinx identify three dif-

ferent blocks: connectivity and configuration blocks, BRAM content, and special 

interconnection blocks. This process is detailed in Figure 2.5. 
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Figure 2.5 Columns distribution of every section of the FPGA, and the structure of every 

column in frames 
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2.3.3 Reconfiguration interfaces 

An important aspect related to reconfigurable embedded systems is the 

method they use for loading partial bitstreams on to the device when a new 

configuration is requested. Actually, Xilinx provides two methods for reconfigur-

ing a device; one of them is external and the other one is internal [XAP138]. The 

former group offers three different alternatives for loading a bitstream: one is 

using the Serial configuration port, other through the popular JTAG, and the last 

one is the SelectMap port. On the other hand, within the internal methodolo-

gies there is just one choice known as ICAP port (Internal Configuration Access 

Port). This port has to be combined with an embedded microcontroller or a 

state machine in order to control its behavior. However, within all these choices 

only the last one, the ICAP port, suits the necessities of autonomous embedded 

systems, since it is the one that permits exploiting the advantages of dynamic 

and partial reconfiguration [SBB+06] [BHH+07]. Despite the fact that Xilinx pro-

vides an IP for using the ICAP port, several research works propose improved 

versions of it in which the performance and/or the operation frequency are 

enhanced, such as [SDK09], [CMN+09], and [OMP+10] works. All these works 

have in common the fact that they wrap the ICAP IP, and then manipulate and 

manage the configuration bitstreams and the internal registers.  

The reconfiguration process using the parallel ICAP interface makes uses of 

a control driver (HWICAP), which is provided by Xilinx. This self-reconfiguration 

process requires a control unit that handles the accesses to the configuration 

memory. Thus, traditional strategies use a microprocessor for performing this 

role. Then, the communication between the microprocessor and the peripherals 

of the system is done using the OPB (On-chip Peripheral Bus), though the mi-

croprocessor itself uses the PLB (Processor Local Bus) for accessing to the inter-

nal memory or controlling the static modules of the running application. A gen-

eral scheme of a complete system is depicted in Figure 2.6. 
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Figure 2.6 FPGA architecture 

2.4 MANAGEMENT OF SCALABLE AND DYNAMICALLY RECONFIGU-

RABLE HARDWARE 

Both the dynamic/static reconfigurability operations and the data transfers 

need to be controlled. These tasks can be done statically or dynamically. The 

former is similar to the way in which operations from static code are scheduled 

and issued on a processor, whereas dynamically management is similar to the 

way in which out-of-order processors issue instructions when their operands 

become available. Any of these strategies might be developed for controlling 

the tasks previously mentioned. 

The dynamic reconfigurability opens the window to the design of autono-

mous embedded systems, where the swapping between elements or their mod-

ification might be managed automatically, according to predetermined criteria 

established by the designer/developer. 

This reconfigurability paradigm, in which several scalable designs are able 

to compete by hardware resources, is affordable from different perspectives: 
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- From a system point of view: at high level it is necessary to develop a set 

of mechanisms that facilitate a seamless execution of the reconfiguration pro-

cedure onto the FPGA, according to a set of environment variables or configura-

tion parameters. 

- From the design point of view: at middle-level it is deserved the devel-

opment of scalable and reusable designs that allow the adaptation of the com-

putational workload among different processing elements depending on the 

environmental requirements. This means, designing regular and homogeneous 

solutions in terms of their structure and behavior. 

- From the implementation perspective: at low-level it is necessary to ex-

plore methodologies, mechanisms and tools able to alleviate current restrictions 

of the commercial tools focused on dynamic reconfigurability. 

Dynamically scheduled reconfigurable architectures can deliver higher per-

formance than statically scheduled ones for control-intensive code with unpre-

dictable behavior. 

2.5 CONCLUSIONS 

The interest of the research community on reconfigurable architectures 

has considerably grown along this last decade. Nowadays, the vast design space 

makes difficult to find optimum reconfigurable architectures because this pro-

cess involves satisfying many trade-offs in choosing values for each parameter. 

Some of the most remarkable advantages of the dynamic reconfiguration might 

be summarized as: power/size/cost reduction; hardware reusability; obsoles-

cence avoidance and application portability. However, an intelligent system is 

needed to manage the reconfiguration process itself in order to save power and 

meet timing constrains in real time systems. Unfortunately, the exploration of 

partial reconfiguration for a design requires significant knowledge on the tar-

geted device from the designers and developers side. 
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3 Exploring scalability for video 

coding applications: H.264/AVC 

and SVC 

 

This chapter describes the designing and development of a scalable archi-

tecture for the DF algorithm, which is part of the H.264/AVC and the SVC stand-

ards. This proposal differs from the common DF solutions of the state-of-the-art 

into two aspects. First, the modularity of the design has been conceived to take 

advantage of the scalability. Second, this hardware solution follows a novel data 

parallelization technique. Both features allow to adjust the performance of the 

DF according to the system requirements. 

C 3 hapter 
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3.1 OUTLINE 

Deblocking filter is one of the most complex functional cores of the 

H.264/AVC and SVC codecs. Its computational cost is heavily dependent on the 

video profile and the selected scalability levels. Moreover, its performance is 

typically constrained by data dependences. For this reason, developers have 

been focused on designing faster architectures by taking advantage of hardware 

possibilities and parallelization techniques. This PhD thesis proposes a novel 

scalable deblocking filter architecture which can be easily adapted to different 

video configurations, thanks to its modular and regular structure. The scalability 

property avoids redesigning the whole architecture, in case the environment or 

the configuration settings change. Therefore, design productivity is increased, 

but also savings in terms of area and power are achieved by using only the logi-

cal resources needed by each application. Furthermore, this approach relies on 

a novel macroblock level parallelization strategy which reduces the amount of 

clock cycles needed to filter a video frame, against traditional strategies. The 

proposed architecture is completely flexible, since the parallelism might be 

adapted according to the application requirements. Implementation results in 

an FPGA Virtex-5 demonstrate the performance benefits of this flexible solution 

compared to some rigid state-of-the-art deblocking filter approaches. 

3.2 EXPOSING THE PROBLEM 

Nowadays, the H.264/AVC video coding standard is one of the most widely 

spread codecs for multimedia applications. This fact is due to its overwhelming 

features compared to its predecessors, such as a better rate-distortion perfor-

mance. Unfortunately, the strengths of this codec come at the price of increas-

ing the complexity of the operations, as well as the computation. According to 

[WDG+10], [SCL+11], [HJK+03] and [SMW07], one of the most time consuming 

tasks in H.264/AVC and SVC codec standards is the deblocking filter (DF) pro-

cess. Its main task is to reduce blocking artifacts, appearing in this kind of video 

standards as a consequence of the data processing performed in previous func-

tional blocks of the system. The DF achieves a visual quality improvement of the 
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reconstructed image by smoothing the borders between objects within an im-

age. 

Many DF state-of-the-art proposals have been designed with the aim of re-

ducing the number of memory accesses and/or accelerating the execution by 

applying new techniques and filtering patterns. Independently whether the so-

lutions are implemented in hardware or software, they are characterized by 

their lack of parallelism at data-level. The underlying fact, that it is the responsi-

ble of this inefficiency; it is the way in which these hardware approaches tend to 

process the data, commonly known as raster-scan pattern where the data units 

are read and filtered in ascendant order and one by one. Despite the fact that 

this technique reduces the control complexity, at the same time it restricts the 

acceleration possibilities. 

The idea of taking advantage of the macroblock-level parallelism has at-

tracted a considerable interest within the research community because it allows 

parallelizing time-consuming tasks onto different processors. Nonetheless, the 

development of effective designs capable of exploiting the benefits of using 

parallel processors is not trivial. In this sense, there have been several software 

proposals motivated due to the fact that these kinds of solutions requires less 

design time than hardware designs. These solutions are mainly focused on mul-

tiprocessor structures, where different processors are dedicated to execute 

different tasks, or even to run the same tasks but processing different data. In 

any of these cases, the level of parallelism is increased by means of modelling 

the processing pattern to a wavefront pattern, instead of a raster scan one. 

Some examples of these structures have been presented in [TJG09], [AJM+09] 

and [WKK10], in which a full H.264/AVC decoder has been implemented in a 

multiprocessor architecture. However, hardware-based architectures have as-

sociated some characteristics such as high performance, high operating fre-

quency and lower energy consumption in comparison to the software ones, 

which favour the development of parallel hardware designs. On the one hand, 

there exist many hardware DF solutions focused on improving specific aspects 

of the DF algorithm execution. Sometimes, authors work on reducing the num-
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ber of memory accesses (e.g., [WL06], [LLL07], [LCC10] and [CJC+12]), increasing 

the clock frequency (e.g., [JLY+10] and [KT10]), reducing or simplifying the num-

ber of operations (e.g., [LYC+10] and [KGT+12]), or processing several data sim-

ultaneously (e.g., [VJG09], [KCC10] and [ZYD+12]). In most of the cases, these 

approaches are rigid, since they have been designed for performing in the worst 

case of well-known and invariable conditions. A direct consequence of these 

kinds of rigid solutions is the impossibility of getting high efficiency rates when 

the environmental settings are relaxed. Thus, the design of parallel hardware-

based architectures is being very popular, and they have been implemented on 

FPGAs or customized platforms (ASICs or SoCs), being [YDZ11] and [SZC+11] a 

proof of this. 

This work introduces a novel macroblock (MB) level parallelization of the 

DF algorithm which exploits the benefits of a wavefront pattern. This technique 

has been mapped on a coarse grain hardware architecture based on a modular 

two dimensional structure, in which all modules are connected with its immedi-

ate neighbor. As a consequence, several modules might work simultaneously, 

like in a multiprocessor system, but they overcome the lack of efficiency from 

the general purpose microprocessor cores and the power inefficiency of GPUs. 

Furthermore, data transactions between elements can profit of the regularity, 

modularity and local communications of this kind of structures. As a result, the 

communication schemes, the distributed memory accesses, and the synchroni-

zation and control tasks are simplified compared to other parallel solutions. The 

scalability characteristic of the proposed DF architecture permits to vary the 

number of hardware resources by adding or removing elements from the FPGA 

easily. Moreover, an appropriate data delivery policy and a data distribution 

strategy play a relevant role in the overall solution, since they are responsible of 

adapting the workload to a specific configuration. In this sense, they must be 

adaptable but also general enough to support different levels of scalability 

without negatively impact on the final performance. 

In order to exploit the benefits of the suggested wavefront strategy, the 

proposed DF solution has been developed as a modular design, with a regular 
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structure and behavior. This solution makes easy to distribute the workload into 

several units, minimizing the control and synchronization tasks as will be ex-

plained ahead. This architecture is able to exploit benefits of the proposed en-

hanced wavefront strategy. Therefore, the architectural requirements are close-

ly related to the parallelization analysis offered above. For the sake of clarity, 

these are summarized here: 

 MB-level parallelism by following an improved wavefront pattern 

proposed. 

 Reduced number of accesses to external memory. 

This solution includes one important feature and one requirement, both 

closely related to the proposed MB-level parallelization method and the pro-

posed modular design. The architecture is flexible enough for modifying the 

level of parallelization freely, according to the environmental demands. The 

important feature is the scalability, being the solution adaptable to different 

video formats and scenarios. However it requires that both, the upper and the 

left neighbors, have to be ready before processing each MB to fulfill data de-

pendences. 

Since the proposed architecture filters several MBs in parallel; it can be 

considered a coarse grained solution. In addition, for a low complexity solution, 

achieving scalability imposes regularity and modularity as characteristics. In fact, 

the objective is to adapt the performance of the architecture just by changing 

the number of homogeneous basic modules working in parallel. Consequently, 

the proposed DF may be arranged as a two dimensional array of processing 

elements with a mesh topology. Furthermore, instead of relying on a centralized 

control module, which should be completely redesigned for each possible size of 

the array, control logic has been distributed among modules. 

3.3 THE DEBLOCKING FILTER ALGORITHM 

Video coding standards typically lose information during the encoding pro-

cess, since it is the best way to reach high compression rates. Due to this fact, 

and also because of the distortion added by other functional blocks during the 
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decoding process itself, the appearance of the reconstructed image tends to be 

rough. This effect is known as blocking effect, since the edges between objects 

in the image look like blocks. Regarding to this, the target of the DF is to smooth 

the image by reducing blocking distortion, which improves the visual appear-

ance of the decoded pictures. More in detail, this section is focused on the DF 

algorithm that complains with the H.264/AVC standard. Its main concepts are 

also valid for the latest standards such as the SVC and the HEVC. 

The decoding procedure of one image brings a huge amount of information 

that need to be processed. With the idea of simplifying the operations as much 

as possible to the codec, the image is split into smaller portions. These parti-

tions are subdivided in several levels, with lower amount of information. In this 

sense, into a H.264/AVC compression system an image is divided into slices, 

then into macroblocks (MBs), blocks and finally into line of pixels (LOP). A MB is 

composed by a matrix of 16×16 pixels of luminance, and two smaller matrices of 

chrominance (red and blue) of 8×8 pixels each one. These matrixes are arranged 

in groups of 4×4 pixels, named blocks and numbered from zero to 23 (16 blocks 

correspond to the luminance information, and 4 more for each chrominance). 

Finally, each strip of 4 pixels in a block is named line of pixels, where each pixel 

is numbered from zero to three (pixel0 – pixel3) according to the order in which it 

is processed. 

3.3.1 Deblocking filter constrained behavior 

The DF is a MB-based filter algorithm, since it takes a MB as a reference to 

arrange data. Then, the edges of all MBs contained in an image are processed, 

except all the external borders of it. In this context, a left edge limits the begin-

ning of every block in a MB. As it is shown in Figure 3.1, in a MB we can distin-

guish eight vertical (V0 – V7) and eight horizontal edges (H0 – H7), four of them 

correspond to the luminance information, and the other four belong to the 

chrominances. 
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Figure 3.1 Vertical and horizontal edges of a MB 

The H.264/AVC video coding standard obligates to process the vertical 

edges of a MB before the horizontal ones, with the condition of respecting the 

data dependences all the time. The particularity of these data dependences are 

explained further in this section and in detail in section 3.4. However, the stand-

ard does not determine in which order these edges, and consequently the in-

volved blocks, should be filtered. This freedom permits generating filtering or-

ders, in which the blocks of a MB are processed in a different order form the 

standard pattern. Because of this fact, in this work we have selected the pattern 

shown in Figure 3.2, which implies that every MB will be sequentially filtered, 

starting processing blocks horizontally from left to right, row by row (vertical 

edges filtering), and then vertically from top to bottom, column by column (hor-

izontal edges filtering). This pattern simplifies the control of the filtering unit 

itself. 
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Figure 3.2 Proposed filtering order within a MB 
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Independently of the filtering pattern selected, the standard imposes 

strong dependences between the current data unit to be filtered and its adja-

cent left and top neighbors. In order to facilitate the identification of the current 

data and the neighboring data, it is generally accepted referring to them as qn 

and pn respectively. Therefore, as Figure 3.3 shows, blocks located on the edges 

V0, V4 and V6 (see Figure 3.1), need their left neighbor in order to be filtered. The 

same happens with blocks located on the edges H0, H4 and H6 (see Figure 3.1), 

i.e., they need their upward blocks. 

p0p1p2p3 q0 q1 q2 q3

q1 X X X

q2 X X X

q3 X X X
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Figure 3.3 Pixels notation during the horizontal and vertical filtering 

3.3.2 Filtering process: Boundary Strength and filter units 

Regarding to the filtering process itself, the DF is a highly adaptive algo-

rithm since its filtering operations vary according to several parameters. The 

adjustment is performed by two elements into two stages. The first one is the 

Boundary Strength unit (BS), and the next one is the Filter unit. The former cal-

culates the filtering strength, which determines the number of pixels that 

should be processed by the latter. 

The BS always returns a value of the strength between zero and four. Zero 

means that data goes through the filter unaltered, and four means the strongest 

filtering. This value is calculated based on the configuration characteristics of 
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the input blocks (the current one and its neighbors), as it is depicted in Figure 

3.4. 

q or p are 

Intra coded?

Current block and 

neighbor block. 

Configuration information

Border of MB?

Coeff.≠0? Diff. Of mvs ≠0?

Diff. Ref?
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NO NO
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Figure 3.4 Boundary Strength’s calculation 

The Filter unit receives as inputs the BS value, the input blocks (the current 

one, denoted by qn, and its neighbor, represented by pn) and three parameters 

used as thresholds (α, β and cl). The two first parameters (α, β) are used as 

thresholds in the standard, and they mainly rely on the quantization parameter 

(QP). The later parameter, cl, is used for avoiding the undesired blurring effect, 

and its values depend on the QP, but also from the strength value. Before the 

input blocks are processed, the filter evaluates the following expressions: 

|     |     

|     |     

|     |     

Whether the inputs do not fulfil with the expressions above, the input 

blocks will pass through the filter, without considering the BS value. In any other 

case, the filter performs logic operations with the pixels, according to the BS 

value. The operations are detailed in Table 3.I. 
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Table 3.I Filtering operations according to the boundary strength values 

Boundary Strength 
values 

Filtering operations 

     
q0’= q0; q1’= q1; q2’= q2; q3’= q3 

p0’= p0; p1’= p1; p2’= p2; p3’= p3 

       

q0’= q0 – Δ0;  Δ0= min(MAX(-c0, Δ0i), cl) 
p0’= p0 + Δ0;  Δ0i= [4+4·(q0 – p0)+(p1 – q1)] >> 3 

If |q2 – q0| < β then: 
q1’= q1 + Δq1; 

Δq1 = min(MAX(-cl, Δq1i), cl) 
Δq1i = (q2 – 2·q1 +((p0+q0+1) >> 1)) >> 1 

If |p2 – p0| < β then: 
p1’= p1 + Δp1; 

Δp1 = min(MAX(-cl, Δp1i), cl) 
Δp1i = (p2 – 2·p1 +((p0 + q0 + 1) >> 1)) >> 1 

 
 

     

If ((|q2 – q0| < β ) & (|p0 – q0| < (α >> 2) + 2) & luminance) 
then: 

q0’=(q2 + 2·q1 + 2·p0 + p1 + 4) >> 3 
q1’ = (q2 + q1 + q0 + p0 + 2) >> 2 

q2’ = (2·q3 + 3·q2 + q1 + q0 + p0 + 4) >> 3 

If ((|p2 – p0| < β ) & (|p0 – q0| < (α >> 2) + 2) & luminance) 
then: 

p0’=(p2 + 2·p1 + 2·q0 + q1 + 4) >> 3 
p1’ = (p2 + p1 + p0 + q0 + 2) >> 2 

p2’ = (2·p3 + 3·p2 + p1 + p0 + q0 + 4) >> 3 

If ((|q2 – q0| > β ) & (|p0 – q0| > (α >> 2) + 2) & luminance) 
then: 

q0’ = (2·q1 + q0 + p1 + 2) >> 2 

If ((|p2 – p0| > β ) & (|p0 – q0| > (α >> 2) + 2)or chrominance) 
then: 

p0’ = (2·p1 + p0 + q1 + 2) >> 2 
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3.3.3 A detailed analysis of the deblocking filter data de-

pendences 

Before starting to analyze different parallelization techniques, it is crucial 

to understand the DF data dependences. In fact, this knowledge is the key to 

maximize the efficiency of any strategy. Even more, the importance of this issue 

lies on the fact that it constraints the level of parallelism that can be achieved. 

According to the DF algorithm, and considering different data granularity 

(LOP, block or MB) the data dependences might be analyzed from a bottom-up 

or a top-down perspective indistinctly. Following the former sequence, Figure 

3.3 clearly depicts the dependences between the current LOP (q0 – q3) and its 

neighbors (p0 – p3). The horizontal filtering acts over vertical edges, and the ver-

tical one over horizontal edges. However, before starting the vertical filtering of 

the current LOP, it is mandatory to complete processing of all the horizontal 

current LOPs, since these operations transform the values of every pixel. Mov-

ing to an upper level, the set of the current LOPs conforms a block. At block-

level the data dependences remains the same. These situations are perfectly 

depicted in Figure 3.5.a and Figure 3.5.b. That is, the current block needs infor-

mation from its left block neighbor for performing the horizontal filtering, and 

from its top neighbor in order to complete the vertical filtering. At the same 

time, the whole MB is formed by blocks, so the external borders of the current 

MB need information from its neighbor MBs, as shown in Figure 3.5.c. 

Whether an image is divided into its MBs, the dependences among MBs 

follow the same pattern as the one shown in Figure 3.6. For instance, MB7 needs 

information from its left neighbor (MB6) in order to be filtered horizontally, and 

information from its top neighbor (MB1) to complete its vertical filtering. Even 

more, before MB7 receives information from MB1, the upper right (MB2) has to 

be filtered, at least horizontally since this action modifies the right column of 

blocks of MB1. 
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Figure 3.5 Bottom-up dependences at data-level; a) Horizontal filtering at LOP and block-

level; b) Vertical filtering al LOP and block-level; c)Data dependences at block and MB-level 
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Figure 3.6 Deblocking filter data dependences at MB-level 

These data dependences are completely independent from the architec-

ture. That means that any software or hardware DF implementation must re-

spect them to be H.264/AVC compliant. 
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3.4 PROPOSED MB-LEVEL PARALLELIZATION STRATEGY 

The DF might be parallelized at different levels. From the data unit point of 

view, it is possible to distinguish a LOP-level, a block-level or a MB-level parallel-

ization strategies. However, based on several fundamentals, this work has been 

focused on exploiting the strengths of processing at MB-level. First of all, ac-

cording to the overall DF behavior, but also considering the H.264/AVC struc-

ture, the DF is a MB-based filter algorithm. Secondly, working at block or at LOP 

level the level of parallelization is constrained due to the data dependences 

within the MB. However, in the case that the parallelization is exploited at MB-

level, there exists a higher degree of freedom, since there is no limit to the 

number of MBs that might be processed in parallel as long as the data depend-

ences among MBs are respected. This is possible by using different processing 

patterns beyond the traditional and sequential raster-scan. 

Into the DF state-of-the-art there are significant and recent works that 

proposes different MB-level parallelization strategies, such as [WYC09], 

[PHC+11] and [SBK+09]. All of them allow processing several MBs simultaneous-

ly by issuing the workload onto several processing elements (PEs). The differ-

ence among these proposals lies on how the data are distributed among the 

available PEs. Thus, the limited error propagation, presented in [WYC09], divides 

each image frame into as many rectangles as PEs are there in the system. Then, 

every PE filters all the MBs of a rectangle by following a raster-scan order. Final-

ly, the borders between the rectangles need to be filtered before considering 

that the frame is completed. 

Another MB-level solution has been presented in [PHC+11]. This proposal 

is efficient just in case the boundary strength values move between one and 

three (normal filtering), within a MB. That criterion permits exploiting two levels 

of parallelism. At lower level, several pixels in a MB might be filtered simultane-

ously, due to the specific relationships among them during the filtering opera-

tions. At higher level (MB-level) several MBs might be processed simultaneously 

following the explained procedure. 
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On the other hand, [YDZ11] and [SBK+09] make use of a wavefront parallel-

ization strategy, widely exploited on multiprocessor systems. This processing 

pattern allows to use several PEs, although they do not start processing at the 

same time in order to respect the data dependences. A PE has to remain idle 

until its previous neighbor completes filtering two MBs. After that, the PE begins 

processing. 

Finally, [SZC+11] proposes a MB-level parallelization that permits using 

multiple PEs. Every PE is responsible for filtering a full column of MBs, as part of 

an image. When the vertical filtering of the image is completed, the same pat-

tern is followed but in the horizontal way. Unfortunately, this technique is not 

compatible with the H.264/AVC standard. 

Going deeper into the data dependences, the filtering direction fixes the 

relationship between MBs and PEs, as Figure 3.7 depicts. The grey arrows repre-

sent the internal MB relationship into each PE (the vertical filtering must start 

after the horizontal one finishes). The black arrows show the inter-dependences 

between two consecutive MBs located in the same row of the image.  Here, the 

upper vertical neighbor is not required until the vertical filtering operations start 

processing the current MB. Then, the dotted vertical arrows highlight the data 

dependences between two consecutive rows. In order to establish a generic 

measurement for evaluating the DF execution, the MBcycle parameter has been 

introduced in this PhD thesis in order to represent the time required to process 

a whole MB by a PE. 
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Figure 3.7 MB dependences according to the direction of the filtering execution 
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From these information is easy to conclude that the freedom to parallelize the 

DF algorithm is always limited by data dependences. Then, independently of the 

execution strategy followed by DF implementation, in terms of the number of 

PEs involved into the filtering process (sequential whether one PE is performing, 

and parallel whether more than one PE is enabled), the final solution must fulfil 

with the aforementioned restrictions. 

However, in parallel systems all the controlling tasks are complex, mainly 

due to the amount of independent elements that are running simultaneously. 

This situation is represented in Figure 3.7, where not all the PEs remain in the 

same state by attending to the filtering execution direction (even rows are syn-

chronized among them, and the same happens between the odd rows). With 

the objective of simplifying the whole synchronization, the easiest decision is to 

move every row half a MBcycle to the right. This new execution pattern obligates 

to all the PEs to be at the same state all the time. The resultant MB-level paral-

lelization scheme is represented in Figure 3.8, which facilitates control tasks and 

the exploitation of the parallelization and the modularity of the DF. However, in 

order to guarantee the data dependences, it has been necessary to take some 

decisions that directly impact on the DF design. The most important one relies 

on separating horizontal and vertical filtering stages by following a sequential 

MB filtering. Therefore, this strategy allows starting filtering MB7 vertically after 

MB1 has been horizontally filtered. 

0H 0V 1H 1V 2H 2V 3H 3V 4H 4V

5H 5V 6H 6V 7H 7V 8H 8V 9H 9V

10H 10V 11H 11V 12H 12V 13H 13V 14H 14V
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6HV 7HV 8HV 9HV

MBcycle MBcycle

 
Figure 3.8 Proposed wavefront pattern in which the filtering execution among rows is syn-

chronized 

As a result, this MB-level parallelization saves MBcycles with respect to tradi-

tional wavefront strategies since allows a higher parallelism by reducing the 
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delay between two consecutive rows, as Figure 3.9 shows. That means that con-

secutive PEs might start processing after one MBcycle, instead of waiting two 

MBcycles. 
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Figure 3.9 Proposed wavefront pattern filtering a SQCIF (8×6MBs) frame with six PEs 

The figure above considers that the number of PEs were equal to the 

height of the image in MBs. Nevertheless, this assumption is rarely true and it is 

a very ideal case of use. More realistic scenarios limit the number of PEs to a 

few of them, such that the number of PEs is lower than the number of MBs in an 

image column. This consideration varies the way that the rows of MBs are ar-

ranged among the PEs in order to be processed, by dividing the image into hori-

zontal stripes, as height as the number of PEs are available. Then into each 

stripe, every row is assigned to one specific PE. Despite the fact that Figure 3.10 

divides the image according to the proposed wavefront pattern, the same hap-

pens with the traditional wavefront, though considering the time slot of every 

PE. 
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Figure 3.10 Defragmentation of a full image according to the number of PEs 

Observing Figure 3.10 we can extract two ideas. First of all, the number of 

MBcycles has been increased compared with the ideal case in which the number 

of PEs is higher or equal to the height of an image in MBs, but it is still lower 

than using a raster-scan. The second one is related to the proportional relation-
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ship between the height of the image and the number of PEs. In case they are 

multiples, the utilization of the PEs is very efficient; otherwise the number of 

MBcycles necessary for processing the whole image increases, since the system 

has to wait until the last enabled PE finishes its processing whereas the rest of 

PEs remain idle. 

3.4.1 MB-level parallelization patterns comparison 

This subsection establishes a comparison between the raster-scan, the tra-

ditional wavefront [Kun88] [Sir13] [AMS+02], the error propagation strategy 

[PHC+11] and the proposed wavefront patterns. The comparison among these 

strategies highlights the gain of using one method over the other, expressing 

the results in MBcycles. More in detail, the equations collected in Table 3.II ex-

press how to calculate the total number of MBcycles in all the possible situations, 

with each of these patterns. 

In order to simplify the nomenclature of the expressions, the size of the 

image has been represented as frameWidthMB×frameHeightMB, where 

frameWidthMB corresponds to the width of the image in MBs, and frame-

HeightMB refers to the height. The floor function maps the largest previous 

integer of its bracket expression. The mod function is the residual value after 

the division between frameHeightMB and nPE. 

According to this metric, any wavefront methodology (the traditional one and 

the proposed one) is always faster than the raster-scan pattern; and the pro-

posed wavefront is better than the traditional one, such that equation (2) 

shows: 

                    {
(     )                             

((                     )    )          
 (2) 

Attending to (2), both wavefront methodologies (the traditional and the pro-

posed one) spend the same number of MBcycles for processing an image when 

the result from the mod function is equal to one. Regarding the improved wave-

front pattern and the error propagation methodology, the proposed wavefront 

gains [             (     )] MBcycles. 
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Table 3.II Number of MBcycles for filtering a whole frame by using different techniques 

Technique Case of use Formula (Total number of MBcycles) 

Raster-scan Always frameWidthMB×frameHeightMB 

Traditional 
wavefront 

nPE = frameHeightMB               [  (     )] 

nPE<frameHeightMB 
and (nPE>1) 

frameHeight 
mod nPE=0 

                   (
             

   
)

 [  (     )] 

 

Otherwise 

                    (
             

   
)

             
 [  ((                     )   )] 

Error prop-
agation 

nPE=frameHeightMB                 

nPE<frameHeightMB 
and (nPE>1) 

frameHeight 
mod nPE=0 

                  (
             

   
)

              

Otherwise N/A 

Proposed 
wavefront 

nPE=frameHeightMB              (     ) 

nPE<frameHeightMB 
and (nPE>1) 

frameHeight 
mod nPE=0 

                    (
             

   
)

 (     ) 

Otherwise 

                    (
             

   
)

             
 [(                     )   ] 

Table 3.III shows a numerical comparison among these methodologies, by 

processing different images with a different number of PEs. The results demon-

strate the direct relationship between the size of the image and the number of 

PEs. In case of using five PEs, and being processing a 4CIF image both wavefront 

patterns, the traditional one and the proposed one, requires the same number 

of MBcycles to complete the image. In case of the error propagation strategy, 

these values are not available since the documentation does not explain how 

the workload is rearranged. However, the improvement of using the proposed 

wavefront is higher when several images are processed one after another, just 
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in case the system does not restrict what PE starts filtering the MB0 of any im-

age. This fact allowed accumulating the gain in a factor of [number_of_images × 

((frameHeightMB mod nPE) -1)]. Consequently, it is possible to determine the 

best number of PEs for each input format. 

Table 3.III MB-level parallelization comparison for filtering a full image in terms of MBcycles 

Parallelization 
strategy 

Equations for calculating the total num-
ber of MBcycles to process one image 

Image (frameWidthMB × 
frameHeightMB) 

QCIF 
(11×9) 

CIF 
(22×18) 

4CIF 
(44×36) 

Raster-scan Only one nPE all the time 99 396 1584 

Traditional 
wavefront 

If nPE = frameHeightMB 27 56 114 

if (frameHeightMB mod nPE) =0 & (nPE  = 3) 37 136 532 

if (frameHeightMB mod nPE) ≠ 0 & (nPE  = 5) 28 92 352 

Error propaga-
tion 

If nPE = frameHeightMB 18 36 72 

if (frameHeightMB mod nPE) =0 & (nPE  = 3) 44 154 572 

if (frameHeightMB mod nPE) ≠ 0 & (nPE  = 5) N/A N/A N/A 

Proposed 
wavefront 

If nPE = frameHeightMB 19 39 79 

If (frameHeightMB mod nPE) = 0 &( nPE = 3) 35 134 530 

If (frameHeightMB mod nPE) ≠ 0 & (nPE  =5) 25 90 352 

These comparisons are referred to the processing tasks itself; i.e., just con-

sidering the PE executions. They neither consider the initial data loading nor the 

final data downloading. This criterion tries to isolate the MB-level parallelization 

strategies from the final architectural implementation of the DF. 

3.5 PROPOSED SCALABLE DEBLOCKING FILTER ARCHITECTURE 

This section describes all the actors involved into the proposed scalable ar-

chitecture, in order to introduce then the behavior of the whole system, includ-

ing also the scalability aspects. 

3.5.1 Basic architectural description 

In order to process a video sequence following one or other parallelization 

strategy, first of all the information must be read from memory. The proposed 

architecture interacts with the rest of the system through two data memories, 

shown in Figure 3.11. Therefore, the DF reads the unfiltered MBs, necessary for 



3 Dynamically Reconfigurable Architectures for video coding and hyperspectral imaging systems 

  

 

52 
 

  

 

removing the block artifacts, from an external memory (Shared Input Memory). 

This memory is shared with other functional blocks involved into the H.264/AVC 

encoding/decoding process. Once the MBs are fully filtered, the DF architecture 

writes them into another external memory (Reconstructed Output Memory), 

overwriting the information corresponding to the previous frame’s MBs. 

Taking a look into the proposed DF architecture, there are several modules 

in which all of them perform different and specific tasks: controlling, data distri-

bution and processing. Such as Figure 3.12 shows, there exist five modules re-

ferred as IC, IM, PE, OM and OC that compose the whole design. These ones are 

deeply explained along this section. 

The proposed DF has been characterized as coarse-grain architecture from 

a data-level perspective, since the data units consist on a bunch of pixels. How-

ever, this feature does not avoid providing a flexible and a modular design. 

Proposed DF 
architecture

Shared Input 
Memory

Reconstructed 
Output Memory

wr_en

data

addr

Unfiltered_MB

addr

wr_en

filtered_MB

addr

rd_en

data

addr

rd_en

Other H.264/AVC 
functional blocks

 
Figure 3.11 High-level schematic of the proposed DF architecture 

IC IM1

PE11

IM2

PE12

PE22

OM2OC OM1
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Unfiltered MBs

Filtered MBs

 
Figure 3.12 Coarse-grained and modular DF architecture 
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Whether the final design is going to implement the proposed wavefront 

strategy, in the sense that more than one MB might be filtered simultaneously; 

then, the PE in charge of the DF has to have a regular behavior and communica-

tions patterns all the time. Consequently, the PE always performs its tasks in the 

same way and it is always interconnected to its neighbors following the same 

structure. This implies that PEs must spend the same time for processing any 

kind of MB, independently of the MB type or the filtering strength applied. 

Moreover, the designed PE of the proposed DF architecture implements a se-

quential filtering approach, which obligates to perform horizontal filtering oper-

ations firstly, and after them, the vertical ones. In this particular case, the PE 

contains only one filter unit, such that the PE starts processing luminance com-

ponents, and continues with the chrominances one after another. This re-

striction makes easier to respect the data dependences between MBs. 

In turn, data dependences entail a specific allocation strategy for MBs. The 

position of a MB within a video frame determines the specific processing ele-

ment where is going to be filtered. Moreover, the mapping policy is compatible 

with the architecture scalability, since data dependences are respected for any 

possible DF size. In order to share partially filtered MBs among processing ele-

ments, specific communication channels have been included throughout the 

entire array. Finally, in all the architectures designed with a mesh topology, the 

number of memory accesses is inherently reduced. Against the GPU-based solu-

tions, processing elements exchange directly semifiltered data corresponding to 

shared neighbors, without requiring external memory accesses. 

3.5.1.1 Modules description 

Firstly, the Input and Output Controllers (IC and OC), responsible of data 

exchange with the rest of the system, are analyzed. Afterwards, elements be-

longing to the communication and the data arrangement structure are detailed; 

they are the Input Memories (IM) and the Output Memories (OM). Finally, the 

PE, responsible of carrying out filtering tasks, is described. 
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3.5.1.1.1 Input and Output Modules 

These two modules act as an interface between the architecture itself, and 

other external elements within the video encoder/decoder. 

3.5.1.1.1.1 Input Controller 

The Input Controller (IC) reads from the External Memory the MBs to be 

processed by the DF. This task requires generating the reading sequence, by 

defining the order in which MBs are sent to the architecture, according to data 

dependences. Specific logic has been implemented inside the IC with this pur-

pose. Basically, it consists of a set of counters, comparators, and arithmetic logic 

in charge of generating counting boundaries. Reading address for each MB also 

depends on the initial offset within the memory. 

A suitable reading sequence depends upon the size of the architecture. 

Hence, the IC logic is able to adapt the generated sequence, just by changing 

some generic configuration parameters. In addition, this module introduces an 

ID number in every MB, acting as a header. This value facilitates the identifica-

tion of every MB, in terms of its position into a video frame. 

3.5.1.1.1.2 Output controller 

Once MBs have been filtered, the Output Controller (OC) sends these MBs 

to an external output buffer. However, as a difference with respect the IC, this 

module does not have to generate any writing sequence to access the external 

memory. It reads the ID set in every MB, and keeps the order. Memory interfac-

es of both Input and Output Controllers are implemented using a bus-based 

approach. Actually, both modules might be joined into one unique module. 

3.5.1.1.2 Data Transmission Modules 

A communication structure has been designed in order to make feasible 

the parallel operation of several PEs at the same time. These elements feed to 

each PE with the appropriate MB that has to be processed and send it back to 

the external memory once it has been processed. 
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3.5.1.1.2.1 Input Memories 

The Input Memory (IM) is a module in charge of transmitting unfiltered 

MBs from the Input Controller to each column of PEs. Therefore, the IMs never 

access to the external memory. Actually, the IC reads the unfiltered MBs from 

the external memory and sends those data to the DF architecture. Thus, the first 

IM receives the unfiltered MBs and follows a push-forwarding policy until all the 

IMs are full. That means the IM1 does not start filling its data buffer until all its 

right neighboring IMs have filled their FIFOs. Once all the IMs’ FIFOs are com-

pleted, the unfiltered MBs are transmitted to their corresponding columns of 

PEs placed below them. The mechanism responsible of deciding the MBs routing 

through the array is explained ahead. 

The main component of each IM is a FIFO memory. This memory has to be 

dimensioned, so that it is able to store all of the MBs that need to be processed 

simultaneously by the column of PEs below. Therefore, despite the inherent 

scalability of the architecture, IMs have to be oversized to the maximum possi-

ble size of the array. Finally, this module also includes control logic to synchro-

nize all the PEs. 

3.5.1.1.2.2 Output Memories 

Output Memories (OM) receive filtered MBs from each column of PEs, and 

transmits them to the Output Controller. Thus, these modules also include FIFO 

memories, but in this case they are to store processed MBs that are subse-

quently transmitted to its immediate left OM, or to the OC. Unfortunately, all 

the memories inside this module also suffer from the over dimensioning prob-

lem explained above. 

3.5.1.1.3 Processing Element 

One of the targets of this architecture has been simplifying the control and 

the synchronization issues, and also keeping independent different tasks. Some 

of these characteristics have been explained along this section, through the 

exploration of the previous modules. However, now it is the turn to the PE, 

which is the core of this architecture since it is responsible of executing the DF 
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algorithm. Thus, the PE is composed by two modules, a router and a functional 

unit. The former, despite its name is not a common router, but its main task is 

also to distribute data. The latter is in charge of processing data according to the 

DF algorithm explained at the beginning of this chapter. 

3.5.1.1.3.1 Router 

The main interface between a PE and all its neighboring modules includes 

an element named router. This is an intermediate element between the data 

transmission modules (IMs and OMs) and the processing core of the architec-

ture, the functional unit. Its main tasks involve the reception and transmission 

of unfiltered and filtered MBs, respectively.  During the reception of unfiltered 

MBs, the router keeps MBs that will be processed by its attached functional 

unit, and transmit the others to the subsequent routers placed into the same 

row. Memory elements have not been included inside these elements, since the 

input data is directly passed through its functional unit. Also, during filtered MB 

sending process, data are directly read by the routers and stored in internal FU 

memories. The block in charge of generating the Reading sequence is the Input 

Controller, described above. 

3.5.1.1.3.2 Functional Unit 

A Functional Unit (FU) is the processing core of the proposed architecture, 

since it filters MBs. Hence, each FU behaves as a DF unit itself. Its structure, 

shown in Figure 3.13, consists in several elements of different nature. 

Within the whole FU, the most important elements are the BS unit, in 

charge of determining the filtering strength, and the Filtering unit itself, which is 

able to process two LOPs at a time, one of them corresponds to the current LOP 

and the other one is its neighbor). In addition, two transposers have been in-

cluded to prepare blocks in advance for the next filtering step (from the hori-

zontal to the vertical, and vice-versa). The following memories have also been 

included in each proposed FU. 
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1. Q1/Q2: These memories store unfiltered MBs received from the router, 

as well as the intermediate results of the current MB between the horizontal 

and the vertical filtering stages.  

Filtering unitBS unit

Transposer

Transposer

Memory 
Q1

Memory 
Q2

Memory 
P1

Memory 
P2

Qin

Qout Pout

Pin

Semifiltered MB 
from north FU

Unfiltered MB 
from the Router

Semifiltered MB 
to south FU

Filtered MB 
to the Router

 
Figure 3.13 Functional Unit’s architecture 

2. P1/P2: These memories store the vertical semifiltered neighbor MB re-

ceived from the previous FU, and the horizontal neighbor that has been filtered 

by the same FU one MBcycle before. 

The use of a pair of data memories of each type comes from the necessity of 

storing and loading data simultaneously every MBcycle. That means that the filter 

unit loads data from Memory Q1 and Memory P1 in MBcycle(n), and from 

Memory Q2 and Memory P2 every MBcycle(n+1). 

As for the behavior of the proposed FU, it operates in two separate and con-

secutive phases, splitting into horizontal and vertical filtering stages. This proce-

dure satisfies the restrictions derived from the parallelism and data dependence 

analysis. Moreover, another advantage offered by the use of such a highly regu-

lar and modular architecture as the one proposed in this work, is the possibility 
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of swapping the PE by any other that achieves better performance or executes a 

different filtering algorithm. 

3.5.1.1.4 Data formats and output memory accesses 

In order to keep the advantages that the modularity and the flexibility of this 

architecture provide, it is important to reduce the number of memory accesses 

as much as possible. In this way, as it is natural, the higher number of PEs, the 

higher data requirements. This fact might generate bottlenecks that reduce the 

overall performance. However, within this architecture the data transmitted 

through the array is arranged according to a new concept named Extended 

Macroblock (EM). In the scope of this work, an EM is a data unit which includes 

the Lines of Pixels (LOPs) to be filtered, but also information required during 

filtering process. In this way, several independent memory accesses are avoid-

ed, since all necessary information is requested at a time. The full EM is com-

posed of 32-bits words, which includes motion vectors and quantization param-

eter values, as shown in Figure 3.14. This strategy, together with the connectivi-

ty and the behavior of the whole architecture, reduces the number of accesses 

to the external memory. 

Regarding semifiltered information shared between FUs, it is not necessary 

to transmit the full EM. Only the motion vectors and quantization values corre-

sponding to the lower edge of a MB are transmitted, reducing the information 

sent through the array of FUs. 

However, all filtered LOP values are transmitted, since the lower FU is the 

one that finish filtering the MB, and also the one that sends the full filtered MB 

to the Output Memory. Therefore, MB life cycle inside the DF is as follows. Each 

MB arrives to a certain FU, in MBcycle(n-1). In that FU it is filtered, firstly horizon-

tally together with its left neighbor, and then vertically, with the upper one. 

Then, this semifiltered MB remains in this FU, acting like a left neighbor during 

the horizontal filtering of the next MB, during MBcycle(n). At the same time, a MB 

is being filtered, and the result is transmitted to the next FU. There, it is involved 

during vertical filtering of the element below. 
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Figure 3.14 Extended Macroblock structure 

Finally, it is send completely filtered to the OM, during MBcycle(n+1). In ad-

dition, semifiltered values are transmitted point-to-point from an FU to the fol-

lowing one, while in case of an unfiltered data loading the process does not 

finish until a new MB arrives to the last FU. Compared with state-of-the-art ap-

proaches, the number of external accesses is reduced since semifiltered infor-

mation is directly transmitted from neighboring FUs, instead of having to read it 

from the external memory. 

3.5.2 Architectural behavior 

Hardware DF approaches based on a raster-scan pattern are not easily 

scalable; first of all because of the data dependences, which constraint the level 

of parallelism. Even, if this was possible, it is hard to isolate the processing ele-

ment as a regular unit, and replicate it on the device like a multicore structure in 

order to parallelize the system execution. Another inconvenient is that many 

hardware DF proposals are rigid, completely static with an invariable structure 

and characteristics; independently of the final device or environment in which 
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they work due to they have been developed to perform efficiently under specif-

ic settings, i.e. the worst possible case. This fact motivates that many resources 

remain idle when the environmental conditions are more favourable (smaller 

frame rate, base layer bitstream, small video sequence, and so on). A direct 

consequence of this situation is a reduction of the overall efficiency of the sys-

tem, and it also imposes an unnecessary waste of power consumption and sili-

con. As an alternative, some research works are focused on exploiting the MB-

level parallelism implicit into the DF algorithm; i.e. the parallel strategies ex-

plained before are present within the DF state-of-the-art. 

Thanks to the implemented MB distribution strategy and the modularity of 

the proposed design, it is possible to consider the scalability as another degree 

of freedom within the wide range of flexibility provided by the proposed archi-

tecture. 

Considering these features, a sequence of different scalabilities for the 

proposed DF architecture is depicted in Figure 3.15. This representation shows 

all of the elements of this modular structure, but also how all of them are repli-

cated according to the grown direction of the processing array (m×n). In this 

way, Figure 3.15.a represents the smallest configuration of this DF architecture, 

composed by one module of each type. This configuration behaves as a tradi-

tional raster-scan approach with only one filter unit. Then, with the increment 

into the number of columns in the array, from 1×1 to 2×1 as Figure 3.15.b de-

picts, the architecture is obligated to replicate all the modules, except the input 

and output control modules (IC and OC respectively). Furthermore, in any cir-

cumstance both modules, IC and OC, never are scaled. Both of them remain 

static. On the other hand, in case the array increases its number of rows, as 

Figure 3.15.c shows, only the PE is replicated, whereas the output modules (OM 

and OC) are just moved down to let enough space to the newest PEs. As it can 

see, the proposed DF architecture is a combination of different modules, not 

only processing elements, in charge of other tasks, like data arrangement and 

distribution, or communication with the rest of the system. Data transmission 

channels have been also included in Figure 3.15. The external communication 
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with the rest of the system is restricted to two one-directional connections and 

some control lines throughout the IC and OC, while each module into the archi-

tecture connected exclusively with its next neighbors. 

In addition, its main feature is the capability to be part of more complex 1D 

or 2D structures of m×n FUs. This is due to the inclusion of previously defined 

redundant memory schemes, as well as the suitable control logic. 
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Figure 3.15 Three scalability levels of the proposed DF architecture; a) 1×1; b) 2×1; c) 3×2 

Independently of the implemented dimension of the whole system in 

terms of rows and columns of modules, from now on configuration, all PEs are 

synchronized and executing the same task at the same time. That is, all of them 

always stay in the same execution state. This synchronization allows distinguish 

two execution stages: Phase H associated to the horizontal filtering, and Phase V 

regarding vertical filtering. However these stages involves not only to the PEs, 

but also to the rest of the modules present into the architecture, keeping the 

synchronization of the whole system. Hence, each IM retains the first n received 

MBs, transmitting the followings to the subsequent module. On router's side, 

during Phase V, each router keeps only the first received MB, transmitting the 

followings to the rows below. During Phase H, each router transmits filtered MB 

from its FU only when its neighbor above has already transmitted its data. The 

same policy has been implemented in OMs. Each one transmits its filtered MBs 

to the IC only when previous OM is empty. 
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Implemented data transmission policy, together with the reading sequence 

adaptation to each array size, allows a seamless architecture scaling process. In 

fact, all these modules can be reused without redesigning them, for any archi-

tectural configuration. More in detail, Table 3.IV details the tasks distribution for 

each module, structuring the tasks in phases. Thus, during Phase H, the IM re-

ceives and stores MBs, which come from the OC and will be filtered during the 

following MBcycle. In addition, Routers send the MB filtered during previous 

MBcycle to the OM. Then, and still in Phase H, OM store those MBs. Afterwards, 

in Phase V, unfiltered MBs, previously stored in Phase H in the IMs, are trans-

mitted to the routers, and from them, to their attached Functional Units. At this 

point, OMs transmit filtered MBs to the external memory. 

Table 3.IV Task distribution of each element 

Filtering 
Elements of the Architecture 

IM Router FU OM 

Phase H Receiving MB(t+1) from IC 
Sending Filtered 

MB(t-1) 
Filtering H MB(t) 

Receiving Filtered 
MB(t-1) 

Phase V 
Transmitting MB(t+1) to 

Routers 
Receiving MB(t+1) Filtering V MB(t) 

Transmitting Fil-
tered MB(t-1) 

Data transmission policy through the array has been also carefully de-

signed considering scalability restrictions. To share this semifiltered information, 

point to point connections between FUs have been included. In addition, by-

passing signals have been included from one column to the following one, 

through both Input and Output Memories. Therefore, each element exchanges 

control signals only with its next neighbors. Following this policy, a centralized 

control module is unnecessary, which avoids redesigning the control in case of 

architectural changes. 

The modular structure of this architectural proposal, together with its in-

ternal data distribution strategy through the array and the regularity of each 

kind of module, make possible the exploitation of the scalability. This opens the 

window to a higher degree of flexibility, reusability and adaptability by means of 

varying the number of FUs which are concurrently processing according to the 

environmental scenario. 
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3.5.3 MB reading sequence and allocation strategy 

Dependences among MBs restrict the amount of them that can be pro-

cessed concurrently into the starting stage, and also define which MBs can be 

processed simultaneously along the time. In fact, only MBs with the results of its 

upper and left neighbors available can be filtered concurrently. Due to the en-

hanced wavefront scheme proposed in this work, even those that share semi-

filtered MBs between its horizontal and vertical filtering steps might start per-

forming, such as it is depicted in Figure 3.16. In this figure three PEs have been 

considered, and those MBs included in the same diagonal dotted bar, such as 

MB4, MB11 and MB18 will be processed simultaneously. 

MB0 MB1 MB2 MB3 MB4 MB5 MB6 MB7 MB24 MB25

0 MB8 MB9 MB10 MB11 MB12 MB13 MB14 MB15 MB32

MB16 MB17 MB18 MB19 MB20 MB21 MB22 MB23

MB24 MB25 MB26 MB27 MB28 MB29 MB30 MB31

MB32 MB33 MB34 MB35 MB36 MB37 MB38 MB39

MB40 MB41 MB42 MB43 MB44 MB45 MB46 MB47

00
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PE0

PE1

PE2

MB26

MB33

MB40

Region 2

Null MBs

Proposed wavefront execution pattern

 
Figure 3.16 Filtering process of a SQCIF image in stripes, including null MBs at the beginning 

However, the proposed pattern only requires that left neighbor is availa-

ble, while upper neighbor can be transmitted between horizontal and vertical 

filtering stages. This is possible by imposing certain restrictions to the design. 

The following enumerated limitations are directly deduced by analyzing the 

proposed parallelization. 

1. The PE always behaves in the same way, independently of its position 

into the array. 

2. The filtering approach has to be sequential (the horizontal filtering is 

executed before the vertical one) into the FU.  
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3. All the FUs should synchronize and execute the same kinds of filtering 

operations and tasks. 

4. A full row of MBs is always filtered by the same PE. This constraint re-

duces the number of memory accesses and the data transactions, since the left 

neighbor is already stored in the FU. 

In the case of the last element in each column, the subsequent PE corre-

sponds with the first of the following column. Bypassing signals have been in-

cluded from one column to the following one, through both Input and Output 

Memories. In addition, the first MB in a video frame (MB0) is always filtered in 

the first PE (PE0), independent to the enabled architectural configuration. 

At the beginning and at the end of the frame, it is necessary to include a 

sequence of null MBs, to fill the PEs until they receive the current MB. This pro-

cedure avoids that some PEs start processing before the others. Then, after 

receiving this kind of MB, a PE remains inactive its filtering tasks, until it receives 

a new valid MB. Actually, a null MB is a specific sequence of simple control in-

formation without pixels data. Despite the fact that the inclusion of these null 

MBs reduces the final performance, since all the PEs must be active, this limita-

tion has been set for the sake of simplicity of the control logic. 

The algorithm parallelization and the allocation strategies entail reading 

sequence of MBs from the external memory. The initial MB of the first strip, it is 

the first being requested to the external memory, followed by subsequent MBs 

included in the same strip. Afterwards, the next strips are read using the same 

procedure. The length of each diagonal strip corresponds to the total number of 

FUs in the architecture that is m×n. When the number of rows within a video 

frame is larger than the number of PEs in the architecture, the image is split in 

disjoint regions, as Figure 3.16 depicts. Each of those regions is sent subse-

quently to the processing array.  Then, each region of rows is processed in or-

der, starting from Region 1 until the last one, as it was explained in previous 

sections. Furthermore, a FIFO memory has been included in the Input Controller 

to store semifiltered data, in order to deal with data dependences between 

border elements included in those disjoint regions. In this context, the semi-
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filtered MB term refers to an MB that has not been filtered for all of its neigh-

bors yet. In the case of the purely wavefront approach, in order to filter a cer-

tain MB, it is required that its semifiltered neighbors had been sent in advance 

to the FU, before it starts working. 

Finally, an overview of the architectural behavior of a 2×1 array configura-

tion is represented in Figure 3.17, where the time scheduling of a 5×4 MBs 

frame is processed by the system, but considering the behavior of the afore-

mentioned components (IC, OC, IM, OM, PE). According to the notation used in 

Figure 3.17, 0H and 0V represents the horizontal and vertical filtering stages of 

the MB0, respectively. Furthermore, green yellow and blue backgrounds high-

light those MBs that belong to the top and left edges of the frame. In the case of 

the left MBs (blue background; MB0, MB5, MB10, MB15), they do not require left 

neighbors during their horizontal filtering processes. In the same way, the top 

MBs (yellow backgrounds; MB0-MB4) lack of top neighbors during the vertical 

filtering procedure. However, when the PE1 starts processing the second, third 

or higher strip of MBs, it needs the top neighbors that have been previously 

processed by others PEs. It is in these moments when the semifiltered MBs gain 

relevance (represented in Figure 3.17 with the lightest colour). These special 

MBs move through the array following a predefined pattern, as Figure 3.18 de-

picts. Due to the fact that a semifiltered MB contains less information than an 

extended MB, it might be transmitted along all the components of the array 

easily and quickly. As Figure 3.18.a shows, in a 2×1configuration all the semi-

filtered MBs transmitted by FU21 must be received by FU11. However, in order to 

keep a regular structure, the FUs must behave in the same way, independently 

of their position into the array. Thus, these MBs are sent to the OM, and then 

pushed up to the FUs, IM, IC, until coming into the FU11. Similarly, Figure 3.18.b 

represents how the semifiltered MBs are moved through a 2×2 array configura-

tion. In the case of filtering the frame shown in Figure 3.17, the FU11 and the 

FU21 filter the first two rows of MBs, whereas the FU21 the third and the FU22 the 

fourth one. Therefore, the FU21 will need the semifiltered MBs generated by 
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FU21, such as MB5-MB9, in order to proceed with the vertical filtering of MB10-

MB14. 
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3.6 IMPLEMENTATION AND RESULTS 

Once the fundamentals of our DF architecture have been explained, this 

section is focused on analyzing the performance of the proposed hardware de-

sign, and establishing a comparison with other DF state-of-the-art solutions in 

order to determine the goodness of our proposal. 

The architecture has been described at RTL level, using hardware descrip-

tion languages and synthesizing the code on a Xilinx Virtex-5 FPGA (V5-LX110T), 

using ISE 13.3 Xilinx tools. Synthesis results shown in Table 3.V help to figure out 

the silicon area of every module, and also the number of logic resources for 

implementing different configurations. In the V5-LX110T is possible to imple-

ment a 3×3 array, because although the resources in term registers and LUTS 

are enough for 4×4 array, there is a shortage of the Block RAMs. However, as we 

will see later, a 3×3 array is appropriate for processing UHDTV video. As was 

expected, the PE module is the most demanding in terms of resources, requiring 

up to 78% of the FPGA. Attending to these, it is noticed that the resource over-

head introduced by the communication (IM and OM), and the control (IC and 

OC) modules is small compared with the contribution of the PE. 

Table 3.V Synthesis results on a Xilinx V5-LX110T 

Resources 

Modules of the proposed DF architecture 
Configurations on the 
proposed architecture 

IC+OC IM OM PE Total 
PE/Total 

(%) 
1×1 2×2 3×3 

Slices Reg. 399 183 99 2363 3044 77.62% 3196 10493 22510 

Slices LUTs 590 148 161 2710 3609 75.09% 3609 11477 24622 

BRAM 36Kb 8 2 4 12 26 50% 24 64 128 

In fact, control and distribution modules together suppose about 25% over 

the total synthesis results. The resources mismatching between the architectur-

al configuration 1×1, and the total sum of all the modules individually is due to 

the inclusion of bus-macros to interconnect one module to another, avoiding 

using routing paths. These bus macros are dedicated and unidirectional lines for 

transmitting data, and they place around the module is fixed. Thus, Figure 3.19 

depicts a screenshot with the floorplanning of one PE with its associated bus 
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macros. In this case, the bus macros have been highlighted in yellow on top and 

bottom of the figure, whereas the logic resources have been represented in 

green. 

Despite the fact that the latest Xilinx design flow, from the v12 release on-

ward, eliminates the use of fixed bus macros, in this design they are necessary. 

This is because the newest Xilinx solution does not provide enough flexibility to 

our proposed design and it is unsuitable for this kind of scalable architecture. 

 
Figure 3.19 Floorplanning of one PE with its bus macros on top and bottom 

This architecture is characterized by the ratio between the constant area 

occupied by the control module (IC and OC together) and the area demanded by 

the scalable modules, which varies according to different configurations. This 

ratio gives information about how the scalability impacts on the whole system 

area. The way to measure this is by comparing the logic resources of control 

module replicated m×n times faced to an m×n configuration of the proposed 

architecture. The experiment evaluates a cluster of configurations, starting from 

1×1 and finishing with a 16×16. Results are shown in Figure 3.20, where the X on 

the bottom right and Y on the bottom left axes represent the configuration pa-
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rameters m and n, respectively. On the other side, the Z axis denotes all the 

values of the ratio. In Figure 3.20 the colours of the surfaces represent different 

values, moving from the poorest values represented in blue (1×1 configuration) 

that it is equivalent to a 0.162, to the dark red (16×16) equivalent to a 0.216. 

Other configurations like the 2×2, 3×3, 4×4 reaches the following values 0.195, 

0.205, and 0.208 respectively. As conclusions, the scalability is got at an afford-

able price. 

On the one hand, the behavioral simulation results confirm that the num-

ber of clock cycles that a simple FU requires to complete one MB filtering as-

cends to 240, whereas after the post place and route stage the working fre-

quency reported by the tool is 124 MHz. This frequency is more than enough to 

process most of the video standards having only a few PEs in the system. 

 
Figure 3.20 Area efficiency surface for several m×n array configurations 

In this sense, Figure 3.21 represents the relationship between the number 

of PEs in the system and the frequency required to process eight traditional 

video formats for multimedia applications (SQCIF, QCIF, CIF, 4CIF, 16CIF, 

HDTV@720, HDTV@1080p and UHDTV), being real time complaint (30 frames 

per second). The required frequency is calculated by following the equation (3): 
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The dotted red lines showed on Figure 3.21 in the last three windows 

(HDTV@720, HDTV@1080p and UHDTV) are the top limit for the architecture. 

Results demonstrate that the proposed architecture is capable of pro-

cessing all the video formats with just one PE, with the exception of an UHDTV 

that demands at least 8 PEs. In this extreme case is important to use, at least, 

eight PEs otherwise the real time is not guaranteed. In any case, this limit is 

taking in account that the architecture should be compliant with: 

 
Figure 3.21 Number of PEs versus the clock frequency according to different video formats 

1. Filtering order constraint. The latest video standards obligate to fulfil 

with a determined filtering order at MB-level, in the sense that any MB has to 

be filtered horizontally firstly, and then vertically. 

2. Filtering approach. The implemented structure of the FU is the simplest 

one, in terms of the number of filter units, since there is only one unit involved. 

As a consequence, the control and the whole design of the FU are easier to im-

plement, but at cost of decreasing the final performance due to the MB pro-

cessing is completely sequential. That means the luminance has to be filtered 

first, and then is the turn to the chrominances components one after another. 
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3. Synchronization pattern. Independently of the filtering strength applied 

on a block, every filtering operation spends the same number of clock cycles. 

This fact ensures the proper synchronization among all the FUs of the pro-

cessing array. Thus, the horizontal filtering requires 120 clock cycles, and the 

vertical filtering other 120 cycles. These numbers include filtering operations, 

but also data distribution and transposition operations. 

Once the number of PEs is higher than the height of the image in MBs, the 

minimum clock frequency necessary to process a real time video sequence is 

the same than the case when both parameters (number of PEs and image 

height) are equal. This fact makes that, for a SQCIF format does not make sense 

using more than six PEs, because the maximum number of MB-level in parallel is 

fixed by the actual height of the image in MBs. An excess on the number of PEs 

is translated into a waste of resources, and consequently an inefficient configu-

ration. 

These results demonstrate the benefits of exploiting the enhanced wave-

front strategy over a scalable application like ours. Furthermore, these results 

highlight the powerful of designing a modular and scalable architecture. In this 

particular example, the case study has been focused on the DF algorithm, but 

the designed framework moves forward and it could be reused for solving dif-

ferent nature problems. 

The modular structure of this architecture allows the reuse of all the ele-

ments to implement other kinds of tasks, changing the design of the processing 

core (FU). For doing this, it would be necessary to adapt the FU (or redesign it), 

and adjust the synchronization and control policies regarding the speed of the 

data transfers and rearrange the data distribution among the modules. In addi-

tion, the input and output control modules (IC and OC respectively) could be 

reused as an interface between the proper architecture and the rest of the sys-

tem, but also the reconfigurable input and output memories within (IM and OM 

respectively) might be reused in order to distribute the data through the array 

of FUs. As for the routers, these elements may be reused depending on the 

characteristics or necessities of the task to implement. 
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The proposed scalable DF architecture has been implemented in a final 

embedded system in where two on-chip shared memories have been included 

in order to supply data to the system. The DF directly demands MBs to the input 

shared memory through the IC module, at a rate of 64-bit word per clock cycle. 

Once the data is into the DF architecture, the unfiltered MBs pass through the 

corresponding elements at the same rate (64-bit word per clock cycle). The in-

put shared memory has been dimensioned to be able to store up to 75 MBs, 

which is above the amount of MBs to be concurrently filtered by the largest DF 

structure, sized 8×8 that requires 64MBs in order to start processing data. This 

on-chip memory avoids accesses to external memories, and the DF is never 

stalled, even in the case of using large configuration structures. 

Previously to the filtering stage, in which PEs process the unfiltered MBs, 

those data must be stored in the IMs in an initial loading stage. In this sense, a 

latency of m×n×54 clock cycles is therefore required in order to full the FIFOs of 

all the IMs. Due to the inherent parallel nature of the proposed DF design, the 

loading stage of IMs, with the first MBs of a new frame, and the filtering stage of 

the last MBs of the previous one are overlapped. Since a MBcycle corresponds to 

240 clock cycles, until four MBs might be loaded to the IMs without any cost, 

reducing the inter-frame latency penalty. In addition, when the DF was integrat-

ed as part of an embedded system using the aforementioned FPGA, the final 

working frequency was set to 124 MHz, without any behavioral degradation. 

3.6.1 State-of-the-art comparison 

Until now, the proposed architecture has been based on an absolute pa-

rameter (MBcycle). However, this is an architectural parameter, which does not 

give specific information about how fast is the design after its implementation. 

In addition, an accurate comparison with other proposals demands information 

related to an implementation parameters. In this sense, the maximum clock 

frequency and the number of clock cycles, which are necessary for filtering a full 

MB by FU, are parameters that characterize accurately the real performance of 

a specific design. 
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However, authors publish different aspects of their designs and there are 

no common criteria. This disparity of criteria makes difficult to compare differ-

ent approaches in terms of area, power and throughput. Nevertheless, Table 

3.VI collects relevant information from different DF implementations belonged 

to the state-of-the-art since 2006 until nowadays, which describes the main 

features and results of these solutions. The third column (N filters per PE) shows 

the number of filter units contained in every PE, according to the DF design. The 

difference between MB-level parallelization and Scalable design is based on the 

internal design of the PE. For example, authors in [LAM09] define a DF design in 

which the PE might be replicated in order to process several LOPs simultaneous-

ly, but at the end every MB is processed sequentially following a typical raster-

scan pattern. Otherwise, [CM07] is a DF solution based on PEs that process MBs 

and might be replicated allowing parallel processing. As a result, we can deter-

mine that an approach that exploits a MB-level parallelization is scalable but not 

the opposite. Thus, a scalable design is not necessarily parallelized at MB-level. 

The last three columns collect performance information completely dependent 

on the technology and the design. N clock cycles per MB represents the total 

number of clock cycles necessary to process a complete MB, and Frequency is 

the maximum processing speed that these designs are able to process. Finally, 

the last column, Platform, is the vendor and family of FPGAs selected to imple-

ment the DF designs. 

The analysis of the information collected in Table 3.VI shows that just the 

approach [Ern07], apart from our proposal, is focused on exploiting a MB-level 

parallelization; and this one together [CM07] and [LAM09] are scalable at LOP-

level. Within the range of frequencies reached by these solutions varying from 

42 MHz to 170.95 MHz, our proposal is in the average values. The same happens 

evaluating the number of clock cycles per MB, since into the diversity of values 

moving from 53 clock cycles until numbers higher than 600 cycles, our proposal 

needs 240 clock cycles. In general, the FU of our scalable DF is not the fastest 

processing unit into the state-of-the-art, neither the slowest, but it has the pos-

sibility of being scalable. 
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Despite of the fact that [ERN07] is another scalable solution that takes ad-

vantage of the MB-level parallelization, its control is completely centralized and 

its scalability requires several modifications in the design every time that a new 

PE is added. On the contrary, the distributed control and the homogeneity of 

the modules of our proposal transform the scaling process into an easy task. 

Table 3.VII shows some DF approaches of the state-of-the-art implemented 

using ASIC technology. Although this technology is more specific and optimized 

than any FPGA design, the scalable proposed DF is better than the expected 

results when it is directly compared to the ones with only one filter in their de-

signs. Furthermore, all these approaches follow a raster-scan pattern in order to 

filter a full video frame, which limits the parallelization-level in a short future. 

However, it is important to highlight that our FU is susceptible to be improved 

by means of adopting some memory management techniques, improving the 

datapath, pipelining, etc. Moreover, it could be possible to explore more in de-

tail the inter-parallelism and the techniques used by all these solutions, but that 

is not the purpose of this work. 

Table 3.VI and Table 3.VII describe the main characteristics of many DF ap-

proaches belonged to the recent state-of-the-art; however the establishment of 

a fair comparison among all of them is still complicated. Moreover, another way 

to analyze the strengths and weaknesses of all of this collection of DF approach-

es is to use the number of frames per second that they are able to process, 

when an HDTV@1080p image is processed. 

Another interesting comparison measure is the efficiency (EF) [TP09], since 

it permits to figure out the level of resource utilization. Then, the higher effi-

ciency the better. This parameter is defined following the expression (4): 

    
    

                          
     (4) 

A complete comparison might be seen on Table 3.VIII, where different 

kinds of works have been considered, including both FPGA and ASIC-based ap-

proaches. The last three columns show generic measurements such as the 

throughput (macroblocks processed in a microsecond - MBs/µs), the throughput 
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per area (macroblocks per second and area – MBs/(Kgates·second)) and the 

efficiency. 

Table 3.VI FPGA-based DF state-of-the-art comparison 

Ref. 
filter  
per 
PE 

MB-level 
parallelism 

Scalable 
design 

clock cycles 
per MB 

Freq 
MHz 

Resources 
Kgates 

FPS 
HDTV 
1080p 

Platform 

[WL06] 4 
No 

Raster-scan 
No 608 42.8 19.59 8.76 

Xilinx 
Virtex-II 

[CM07] 1 
No 

Raster-scan 
Yes 

LOP-level 
4480 100 1.78 2.78 

Xilinx 
Virtex-E 

[ERN07] 4 
Yes 

Traditional 
wavefront 

Yes 
MB-level 

140 43.08 155.57 38.27 
Xilinx 

Virtex-5 

[RSB07] 1 
No 

Raster-scan 
No 256 135 40.60 65.59 

Xilinx 
Virtex-II 

Pro 

[PH08] 1 
No 

Raster-scan 
No 5376 72 21.2 1.67 

Xilinx 
Virtex-II 

[CAC09] 4 
No 

Raster-scan 
No 53 166.56 24.87 623.46 

Altera 
Statrix-IV 

[LAM09] 16 
No 

Raster-scan 
No 105 150 161.15 177.68 

Altera 
Statrix-II 

[KJ10] 1 
No 

Raster-scan 
Yes 

LOP-level 
192 103 233.63 66.72 

Xilinx 
Virtex-4 

[SCA10] 4 
No 

Raster-scan 
No 260 145.54 13.11 69.62 

Altera 
Statrix-II 

[MBT+11] 4 
No 

Raster-scan 
No 55-71 170.95 70.37 299.47 

Xilinx 
Virtex-5 

Proposal 
1×1 

1 
Yes 

Improved 
wavefront 

Yes 
MB-level 

240 124 33.83 64.26 
Xilinx 

Virtex-5 

Xilinx Virtex: 180nm; VirtexE-Virtex2-Viertex2P: 130nm; Virtex4: 90nm; Virtex5:65nm 

Altera StratixII: 90nm; StratixIII: 65nm; StratixIV: 40nm 
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Table 3.VII Standard cell-based DF state-of-the-art comparison 

Ref. 
filter 

per PE 

MB-level paral-

lelism 

Scalable 

design 

clock 

cycles 

per MB 

Freq. 

MHz 

Resour. 

Kgates 

FPS 

HDTV 

1080p 

Tech. 

[LLL07] 1 
No 

Raster-scan 
No 236 100 21.1 52.70 0.18μm 

[MBT+11] 1 
No 

Raster-scan 
No 222-210 200 18.7 112.05 0.18μm 

[XC08] 1 
No 

Raster-scan 
No 204 200 21.4 121.94 0.18μm 

[CCG09] 1 
No 

Raster-scan 
No 260 225 38.4 107.63 0.13μm 

[MC09] 1 
No 

Raster-scan 
No 192 70 12.3 43.35 0.18μm 

[Lin09] 2 
No 

Raster-scan 
No 100-48 196 22.9* 243.78 0.13μm 

[TVM09] 2 
No 

Raster-scan 
No 348-228 100 19.9 35.74 0.18μm 

[ZZZ+09] 2 
No 

Raster-scan 
No 136 200 17.9 182.91 90 nm 

[LCC10] 1 
No 

Raster-scan 
No 212 100 12.2 58.67 0.18μm 

[KT10] 1 
No 

Raster-scan 
No 246-226 400 19.2* 202.24 0.18μm 

[Che10] 4 
No 

Raster-scan 
No 76-48 135 41.6 220.93 0.18μm 

[CXL10] 2 
No 

Raster-scan 
No 96 150 23.9 194.34 0.13μm 

[CCC10] 1 
No 

Raster-scan 
No 196-100 200 19.8 220.93 0.18μm 

Proposal 

1×1 
1 

Yes 

Improved 

wavefront 

Yes 

MB-

level 

240 124 

33.83 64.26 

65 nm 
Proposal 

2×2 
107.60 257.05 

*Without considering SRAMs 
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Table 3.VIII Throughput and efficiency for different DF hardware approaches 

Ref. Tech Family 

clock 

cycles per 

MB 

Freq. 

MHz 

Resources 

Kgates 

Through 

MBs/µs 

Through 

/ Area 
EF 

[WL06] FPGA Xilinx V2 608 42.80 19.59 0.07 3.59 0.08 

[LLL07] ASIC 0.18 μm 236 100 21.10 0.42 20.08 0.20 

[LCC10] ASIC 0.18 μm 212 100 12.20 0.47 38.66 0.39 

[JLY+10] ASIC 0.18 μm 246 400 19.20 1.63 84.69 0.21 

[CM07] FPGA Xilinx VE 4480 100 1.78 0.02 12.54 0.13 

[ERN07] FPGA Xilinx V5 140 43.08 155.57 0.31 1.98 0.05 

[RSB07] FPGA Xilinx V2P 256 135 40.60 0.53 12.99 0.10 

[PH08] FPGA Xilinx V2 5376 72 21.20 0.01 0.63 0.01 

[CAC09] FPGA 
Altera 

Stratix-III 
53 265.67 66.39 3.14 126.34 0.28 

[LAM09] FPGA 
Altera 

Statrix-II 
105 150 161.15 1.43 8.86 0.06 

[KJ10] FPGA Xilinx V4 192 103 233.63 0.54 2.30 0.02 

[SCA10] FPGA 
Altera 

Stratix-IV 
260 145.54 13.11 0.56 42.69 0.29 

[MBT+11] FPGA Xilinx V5 71 170.95 70.37 2.41 34.22 0.20 

[CZF+08] ASIC 0.18 μm 222 200 18.70 0.90 48.18 0.24 

[XC08] ASIC 0.18 μm 204 200 21.40 0.98 45.81 0.23 

[CCG09] ASIC 0.13 μm 260 225 38.40 0.87 22.54 0.10 

[MC09] ASIC 0.18 μm 192 70 12.30 0.36 29.64 0.42 

[Lin09] ASIC 0.13 μm 100 196 22.90 1.96 85.59 0.44 

[TVM09] ASIC 0.18 μm 348 100 19.90 0.29 14.44 0.14 

[ZZL+09] ASIC 0.09 μm 136 200 17.90 1.47 82.16 0.41 

[Che10] ASIC 0.18 μm 76 135 41.60 1.78 42.70 0.32 

[CXL10] ASIC 0.13 μm 96 150 23.90 1.56 65.38 0.44 

[CCC10] ASIC 0.18 μm 196 200 19.80 1.02 51.54 0.26 

1×1 FPGA Xilinx V5 240 124 33.83 0.52 15.27 0.12 

2×2 FPGA Xilinx V5 60 124 107.60 2.07 19.21 0.15 

3×3 FPGA Xilinx V5 27 124 230.83 4.59 19.90 0.16 

4×4 FPGA Xilinx V5 15 124 402.03 8.27 20.56 0.17 



3 Dynamically Reconfigurable Architectures for video coding and hyperspectral imaging systems 

  

 

78 
 

  

 

3.7 CONCLUSION AND FURTHER RESEARCH 

This paper presents a scalable deblocking filter architecture implemented 

on hardware. It exploits an optimized MB-level wavefront parallelization strate-

gy. This characteristic provides the necessary flexibility to allow an easy reuse of 

the design among different profiles and scalability levels of the latest video 

standards video standard. The homogeneous design of its FUs provides the 

enough flexibility and regularity to be able to explore different levels of scalabil-

ity, since varying the number of FUs is possible accelerate filtering process of a 

reconstructed image. This customizable parallelism offers the opportunity to 

adapt the design to different environments and devices, by changing some ge-

neric parameters which impact on the final performance in terms of area and 

speed. 

Further research is focus on improving the proposed design in several as-

pects. One goal is to reduce the number of internal memories, without degrad-

ing the behavior or increasing the complexity of control tasks. Furthermore, we 

would like to explore the possibility to extend this architecture to other func-

tional blocks into the SVC decoder. 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Exploiting the scalability for 

hyperspectral image processing: 

linear unmixing  

 

Hyperspectral imaging instruments capture and collect hundreds of dif-

ferent wavelength data. As a result, tons of information must be stored and pro-

cessed. This characteristic makes this application very suitable for being imple-

mented as a scalable system. This chapter explores the viability of the scalability 

for an endmember extraction algorithm. The scalability is determinant for saving 

resources, silicon area, cost and gaining in flexibility as part of the embedded 

SoCs design. Whether those scalability changes want to be applied at run time, it 

is mandatory to use the dynamic reconfigurability. 

4 hapter C 
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4.1 OUTLINE 

Hyperspectral imaging is an emerging and fast growing area in remote 

sensing. The process of the data acquisition by a hyperspectral sensor results in 

tons of information that must be stored and processed efficiently, reaching a 

balanced compromise between flexibility and high performance at the same 

time. On one hand, modern FPGAs are perfect hardware candidates to fulfill 

with these purposes. On the other hand, the exploitation of the scalability on 

hardware architectures actively contributes to increase two main aspects: paral-

lelization and reusability. However, this is an unexplored research area within 

hyperspectral image processing. In this context, this chapter presents three 

different scalable architectures, implemented on an FPGA, which perform the 

Modified Vertex Component Analysis (MVCA) algorithm, as part of the hyper-

spectral linear unmixing processing chain. As a consequence, not only high per-

formance but flexible and reusable designs have been designed. Moreover, final 

results demonstrate the influence of the implemented parallelization method-

ology over the final performance, but also how this one varies according to the 

enabled scalability level. 

4.2 EXPOSING THE PROBLEM 

The human being curiosity has motivated the development of a global in-

dustry based on the Earth’s surface observation, but remotely from the space. 

This technology has permitted a better understanding about environmental 

issues. However, there exist several difficulties regarding the treatment of these 

kinds of images due to the large amount of information collected during the 

image capturing process, especially for the case of hyperspectral remote sen-

sors. Furthermore, the next generation of remote sensing hyperspectral sensors 

will allow capturing more hyperspectral cubes per second with much more in-

formation per cube. At this respect, the European Space Agency (ESA) has al-

ready flagged up in 2011 that “data rates and data volumes produced by pay-

loads continue to increase, while the available downlink bandwidth to ground 

station is comparatively stable” [Tra11].  
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Hyperspectral sensors collect image data simultaneously in dozens or hun-

dreds of narrow, adjacent spectral bands. These measurements make possible 

to derive a continuous spectrum for each image cell. The resulting data volume, 

instead of being a 2-dimensional image, is a 3-dimensional one (or hyperspectral 

cube) with two spatial and one spectral dimensions. The high spectral resolu-

tions of these kinds of images demands fast processing solutions, in order to 

perform a more efficient exploitation of hyperspectral data sets in various appli-

cations. Consequently, designing solutions able to take advantage of the ever 

increasing dimensionality of sensed hyperspectral images for real time applica-

tions has gained a significant relevance during the last decade. 

For the particular case of Earth Observation satellites, these on-board sys-

tems should at least accomplish the following three mandatory characteristics. 

First, they must allow high computational performance, since all the state-of-

the-art algorithms for compressing and/or processing a hyperspectral image 

have a huge associated computational burden. Second, they should have a 

compact size and reduced weight and power consumption, due to the inherent 

nature of remote sensing satellites. Last, but not least, they must be resistant to 

damages or malfunctions caused by ionizing radiation, present in the harsh en-

vironment of outer space. Furthermore, it would be highly desirable that these 

high performance on-board processing systems could also show a high degree 

of flexibility. In this way, they could be adapted to varying mission needs, faults, 

and/or to the requirements of processing algorithms and standards in a future. 

Over the last few years, reconfigurable hardware solutions such as FPGAs 

have been consolidated as the standard choice for on-board remote sensing 

processing [LVG+13]. Their success lies on their smaller size and weight com-

pared with traditional cluster-based systems, as well as to their lower power 

dissipation figures when they are compared with GPUs. Furthermore, the in-

creasing number of FPGAs with tolerance to ionizing radiation in space turns 

these devices into robust hardware solutions. Because of these reasons, the 

present work has been focused on FPGAs. 
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On the other hand, in all those cases in which the number of resources is 

limited and there are no choices for increasing its amount, or even for replacing 

the damaged ones, the scalability is a desirable characteristic to be exploited as 

part of a flexible solution. Furthermore, designing scalable approaches is a use-

ful technique for parallelizing its execution. In this sense, the combination of 

hardware design techniques, together with the FPGAs’ nature facilitates the 

adaptation of those designs to different constrained scenarios, avoiding rede-

signing the whole system. 

The large amount of information collected in a hyperspectral image makes 

necessary to create diverse kinds of processing tasks, in which the spectral un-

mixing plays an important role. The lack of spatial resolution of the sensor pro-

vokes that a single pixel in an image might contain several substances. At this 

point, the spectral unmixing algorithms estimate the fraction of the pixel area 

covered by each material present in the scene. A classical methodology for ana-

lyzing hyperspectral images is based on linear unmixing models. These ones 

assume that all the hyperspectral pixels are composed by linear combinations of 

certain spectral information contained in the image. Despite the fact that these 

models are not the most accurate ones within the unmixing area, since they 

obviate the spatial information, they are the most widely used due to their 

computational lightness and clear conceptual meaning. Within the wide spectra 

of linear unmixing algorithms, the vertex component analysis (VCA) [NB05] is 

one of the most successful and popular since it reaches better results than oth-

ers. This algorithm is very intensive in computation, and this is the reason be-

cause it is a well-suited candidate to be accelerated on hardware. Furthermore, 

the modified virtual component analysis (MVCA) algorithm [LHC+12a] behaves 

very similar than the VCA algorithm, simplifying some of the VCA operations. 

This work develops hardware acceleration on FPGAs, and scalable designs for 

improving the performance execution and the resources’ reusability. More in 

detail, this chapter explores, proposes and analyses several scalable hardware 

solutions in order to overcome the computational complexity of the MVCA algo-

rithm. This will be the base for developing a reconfigurable solution for a linear 

unmixing algorithm that will be presented in the next chapter. 
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4.2.1 Fundamentals of hyperspectral imaging 

A hyperspectral image is an image in which one point (pixel) is described by 

many values. Traditional images are composed by sequences of pixels described 

by only one value of intensity (such as always happens in a grey-scale image), or 

by three different colours components (like in a RGB image, traditionally used 

on modern screens or displays). However, in hyperspectral images every spot is 

described by a complete array of spectral values. All these values correspond to 

the light contribution detected in that point of the picture but measured in dif-

ferent and tiny spectral bands. Typically, a hyperspectral sensor works in a lim-

ited number of spectral bands. They might vary from dozen to hundreds, where 

the spectral range is not usually constrained to the visible spectrum, being pos-

sible to include infrared and ultraviolet measurements. 

These kinds of images are depicted as a cube, formally named as hyper-

cube or hyperspectral cube, composed by overlapped images corresponding to 

the same surface but in different spectrum (x, y coordinates with many spectral 

bands, λ). Hence, every layer is a 2D image observed in a particular wavelength. 

This cube might be sized as width (samples, x) by height (lines, y) by length 

(bands, λ), as Figure 4.1 shows. 

 
Figure 4.1 Hyperspectral cube 

Mathematically, the hypercube can be represented by a matrix, as the expres-

sion (1) shows: 

columns (x) 

rows (y) 
bands (λ) 
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(        )  (        )

   
(        )  (        )

]   [         ] (1) 

where the index m is the number of pixels on the x dimension (columns), 

the index n is the number of pixels on the y dimension (rows), and N is the 

number of spectral bands. The hyperspectral image contains        pixels 

of   bands each and    represents a pixel in all N bands. The separation in 

wavelengths of these bands is determined by the current sensor technology. 

The lowest bands’ distance, and hence the highest spectral resolution, the bet-

ter results are expected by the application. Nevertheless, higher resolutions 

mean more information to be processed, and consequently the data processing 

demands are considerably increased. 

4.2.2 Linear unmixing of hyperspectral imaging 

The nature of a hyperspectral image is determined, among others, by two 

main factors. One of them is the number of bands considered (or spectral reso-

lution), and the other one is the purity of every pixel (or sample). In general, it is 

possible to classify every pixel in one of the following categories: a pure pixel, or 

a mixed pixel. A pure pixel contains information just for one specific material, 

whereas a mixed pixel reveals information from several materials. According to 

this, a mixed pixel might be considered as a combination, in different propor-

tions, of different materials. Every material should be pure, and it is named as 

endmember, and the quantity in which every material contributes to the final 

pixel is known as abundance. This idea is graphically represented in Figure 4.2.a, 

in which a mixed pixel is formed by a combination of three different materials, 

every one contributing in different proportions. More in detail, Figure 4.2.b rep-

resents the spectral signatures of the ground, tree and field pure pixels. The 

spectral signature of a pixel corresponds with its radiance information in all the 

considered spectral bands, and it characterizes to each observed object. Then, a 

spectral signature might be considered as an N-dimensional vector, where N is 

the number of spectral bands, and it can be used as a fingerprint for identifica-

tion purposes. 
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Figure 4.2 Composition of a mixed pixel; a) 4x4 pixels' scene; b) mixed pixel based on three 

endmembers (pure pixels) 

Depending on the mixing scales at each pixel and the geometry of the sce-

ne, the observed mixture is either linear or nonlinear. Linear mixing holds when 

the mixing scale is macroscopic and the incident light interact with just one ma-

terial. Despite the linear mixing/unmixing models simplicity, they reach an ac-

ceptable approximation of the light scattering mechanisms in many real scenar-

ios. Mathematically, a hyperspectral image might be represented as a matrix 

with N bands and R pixels (             [          ]), in which every 

column of the matrix is the spectral signature of the pixel   , and the rows are 

the hyperspectral image. Then, a mixed pixel according to the linear unmixed 

model might be represented as equation (2): 

  ∑        
   
    (2) 

Thus, each captured pixel (  [          ] ) in a hyperspectral image 

can be represented as the linear combination of a finite set of pure pixels, or 

endmembers (  ), weighted by an abundance factor (  ). The total number of 

endmembers of an image is p, and   represents a source of additive noise intro-

duced by the acquisition process. In order to do this, spectral linear unmixing 

process consists of three main stages, as Figure 4.3 depicts: 1) the estimation of 

the number of endmembers (p) present in the hyperspectral image, 2) the de-
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termination of those endmembers, and 3) the estimation of the corresponding 

abundances for each pixel. 

Pixel characterization

Abundances maps

Pre-processed hyperspectral cube

Endmember calculation
Spectral dimensionality 
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Figure 4.3 Hyperspectral image processing 

4.1.1.1 Endmembers calculation and dimensional reduction 

The number of endmembers present in a given scene is often much smaller 

than the number of available spectral bands. Therefore, spectral vectors gener-

ally lie on a lower-dimensional (linear) subspace. Some well-known signal sub-

space identification algorithms are Virtual Dimensionality (VD) [CD04], and Hy-

perspectral signal Subspace identification by minimum error (HySime) [BN08] 

for the first stage shown in Figure 4.3. Then the Maximum Noise Fraction (MNF) 

[Gor00], the Noise Adjusted Principal Components (NAPC) [Rog94] and/or the 

Principal Component Analysis (PCA) [Jol02] are algorithms focused on the spec-

tral dimensionality reduction. 

4.1.1.2 Endmembers extraction 

There exists a wide collection of endmembers extraction algorithms, since 

they are the core of the hyperspectral imaging analysis. It is in this stage where 

the pure pixels are selected according to the image information. Despite the fact 

that in this field there are several types of algorithms, the most popular ones 

are the geometric approaches because of the simplicity of the concept. Some of 
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them require previously a dimensionality reduction, using Principal Component 

Analysis (PCA) or others. 

4.1.1.3 Abundances calculation 

This step consists of estimating the influence of every endmember in the 

composition of every pixel of the hyperspectral image. This stage normally uses 

Least Square Error (LSE) methods in order to derive fractional abundances. Fur-

thermore, Fully Constrained Linear Spectral Unmixing (FCLSU) [SMP+10] is an 

extended algorithm used for the abundances estimation, which imposes two 

constraints to the abundances. Firstly, all the abundances has to be non-

negative (             ); and the second constraint obligates that the sum 

of abundances for a given pixel is equal to one (∑   
   
     ). 

4.2 ENDMEMBER EXTRACTION ALGORITHMS  

Geometrical approaches exploit the fact that linearly mixed vectors are in a 

simplex set or in a positive cone, since assume the endmembers are the most 

different pixels in the entire image [BP11]. This means that in a graphical repre-

sentation, where each pixel is represented in a space form by N axis (each axis 

corresponding to a spectral band) the endmembers are the most extreme pixels 

(Figure 4.4). The pattern conformed by the edge pixels (endmembers-

            ), which enclose to all the rest of pixels of the image, is known as 

simplex. Significant algorithms within this category are: Pixel Purity Index (PPI) 

[Boa94], N-FINDR [Win99], and the Vertex Component Analysis (VCA) [NB05] 

[          ] algorithms.  
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Figure 4.4 Linear unmixing algorithm’s model: simplex with three endmembers 

4.1.1 Pixel Purity Index (PPI) 

Pixel Purity Index (PPI) might use the minimum noise fraction transform 

[BKG95] as an optative pre-processing step to reduce dimensionality and to 

improve the signal-to-noise ratio (SNR). The algorithm begins calculating the 

pixel purity score for each point in the image cube. In order to do this, the algo-

rithm generates a large number of random vectors, named as skewers. Then, 

every spectral vector (pixel) of the image is projected onto skewers. The next 

step is to identify and store the extreme points of the projection onto each 

skewer direction (Figure 4.5), and increment the accumulative counter corre-

sponding to that pixel. The process is repeated many times, and at the end the 

pixels with highest scores are declared as pure.  
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Figure 4.5 PPI model in a two-dimensional space 

4.1.1 N-FINDR 

This algorithm is based on the fact that in p-1 spectral dimensions, the p-

volume defined by a simplex formed by the purest pixels is larger than any other 

volume defined by any other combination of pixels. Therefore, this method 

finds the set of pixels that maximizes the volume of the simplex, potentially 

inscribed within the dataset. In order to refine the initial estimated volume, a 

trial volume is calculated for every pixel in each endmember position by replac-

ing that endmember and recalculating the volume. If the replacement results in 

a higher volume, then the pixel replaces the endmember. This procedure is re-

peated until there are no more endmembers replacements.  

4.1.2 Vertex Component Analysis (VCA) 

As PPI and N-FINDR algorithms, Vertex Component Analysis also assumes 

the presence of pure pixels in the data. VCA basically consists in finding the p 

more extreme pixels of the scene. The number of endmembers p is known in 

advance and the spectral matrix   [          ] has been dimensionally re-

duced to p spectral bands, using a dimensional reduction algorithm; for in-

stance, Principal Component Analysis (PCA) [Jol02].  
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Generally, VCA iteratively projects data onto a direction orthogonal to the 

subspace spanned by the endmembers already determined. The new endmem-

ber signature corresponds to the extreme of the projection. As a result, VCA 

models the data using a positive cone (simplex Sp), whose projection onto a 

properly chose hyperplane is another simplex whose vertices are the final 

endmembers (Figure 4.6). After projecting the data onto the selected hyper-

plane, the VCA projects all image pixels to a random direction, and it uses the 

pixel with the largest projection as the first endmember. 

As a first step of the VCA process, the algorithm sets a random endmember 

  . This step initializes a p×p auxiliary matrix which stores the estimated 

endmember signatures (  [         ]
  in Figure 4.7 – step 1).  The other 

endmembers are identified in sequence by iteratively projecting the data onto a 

direction orthogonal to the subspace spanned by the endmembers already de-

termined (given by a vector named f). The most extreme pixel in this projection 

is the new endmember (  ). Then, the process is repeated until the p endmem-

bers have been extracted. 

 
Figure 4.6 VCA algorithm’s representation 

The whole procedure is described in the commented pseudo-code shown 

in Figure 4.7.  
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Figure 4.7 VCA pseudo-code 

The loop is composed of four main operations (Figure 4.7 – step 2): 

Step 3: A vector f orthonormal to current endmember is generated (I is the 

identity matrix, E+ is the pseudo-inverse matrix of E and w is a p×1 zero-mean 

random Gaussian vector). 

Step 4: Spectral matrix Y  is projected onto vector f. 

Step 5: Find the new endmember as the extreme of the projection of the 

matrix Y over f. 

Step 6: The new endmember is added to the matrix E. 

The algorithm finishes processing once all the all endmembers are deter-

mined (  [       ]).  

4.1.1 Modified Vertex Component Analysis (MVCA) 

Despite the fact that the VCA performs much better than PPI and/or com-

parable to N-FINDR [NB05]; it is, although effective, a high computational de-

manding algorithm. Among all the tasks that comprise the VCA algorithm, two 

of them highlight for being the most intensive in computation. The first one is 

the pseudo-inverse computation (E+) in the generation of vector f, and the oth-

er is the projection of the hyperspectral image onto the direction pointed by the 

vector f  (      ). As an alternative, but with lower computational complex-

ity, the MVCA algorithm is able to reproduce the results provided by the VCA. 

Furthermore, the MVCA algorithm is able to obtain the same levels of perfor-

mance with simpler operations and a negligible amount of flops when compared 

VCA ALGORITHM COMMENTED PSEUDOCODE 

(comments begin with %) 

INPUTS: p, Y = [r1, r2, …, rR] % Y is composed by R hyperspectral pixels of p frequency 

bands each 

1: E = [e0 | 0 | … | 0 |];  % e0 = [0, …, 0, 1]T and E is a p×p auxiliary matrix 

2: for i = 1 to p do 

   3: f = ((I - EE
+
)w)/ (||(I - EE

+
)w||); % f is a random vector orthonormal to the 

subspace spanned by the columns of E 

 4: v = f
T
Y; % Y is projected onto the direction indicated by f 

 5: index = arg maxindex = 1, …, R |v[:,index]|; % the projection extreme is found 

 6: E[:,i] = Y[:,index]; % endmembers are updated 

7: end for 
OUTPUT: E = [e1, e2, …, ep] 
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to the VCA algorithm [LHC+12a]. These improvements come by introducing cer-

tain modifications into the processes by which vector f is calculated and by 

which the hyperspectral image is projected onto the direction pointed by vector 

f. Regarding the first one (the calculation of vector f), three modifications are 

introduced: 

1. The norm of vector f is not forced to be equal to the unity. Conse-

quently, the operations performed in the VCA algorithm in order to 

normalize vector f are skipped in the proposed MVCA algorithm. This 

modification does not change the endmembers obtained by the VCA 

algorithm, since a different norm varies the values contained in matrix 

v (computed at Figure 4.7 - step 4), but it does not alter the position 

(given by the variable index calculated at step 5) that indicates the pro-

jection extreme within this matrix. 

2. As far as the underlying reason for generating a random w vector is on-

ly to get a not null projection in the first iteration, MVCA fixes the vec-

tor w to[          ]. This light modification allows to reduce the 

computational cost of the MVCA algorithm and to avoid the need of a 

hardware-based random number generator.  

3. The third modification introduced into the vector f calculation is the 

most important one, in terms of computational cost savings and ease 

of implementation. This modification is based on changing the mecha-

nism adopted in the VCA algorithm for the calculation of a vector or-

thogonal to the subspace spanned by the endmembers that have been 

already determined. In particular, f is computed by first obtaining an 

orthogonal set of   vectors,   [          ], from the set 

  [          ] defined by the   endmembers that have been al-

ready computed. This is achieved by applying the Gram–Schmidt or-

thogonalization algorithm, which guarantees the set U spans the same 

  -dimensional subspace as E: 

      ∑     (     )
     
                           (2) 

where proj stands for the projection operator, defined as (3): 
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    (     )  
       

       
                ∑      

   
     (3) 

As far as U spans the same i-dimensional subspace of E, an additional vec-

tor ui+1 is also orthogonal to all the vectors included in E and U, avoiding the 

computation of the pseudo-inverse of matrix E. Vector ui+1  is computed by fol-

lowing the procedure stated at equation (4): 

    ∑     (    )
 
    (4) 

Once f has been computed, the hyperspectral image Y must be projected 

onto the direction indicated by this vector. In order to further reduce the com-

putational complexity of the endmember extraction process, this projection is 

performed in the MVCA algorithm using integer rather than floating point 

arithmetic. This criterion is based on the idea that this modification should not 

alter the position of the projection extreme (although the value of the projec-

tion itself will definitively change). Moreover, as it will be demonstrated in this 

paper, the adoption of integer arithmetic for computing the indicated orthogo-

nal projection leads to faster and less resource demanding designs. 

Regarding the MVCA pseudo-code represented in Figure 4.8 is important to 

highlight two aspects related to its main loop (step 6). In the beginning of the 

first iteration (  = 1), no endmembers have been already computed and there-

fore, the first column of U is initialized to e0 at step 7 of the MVCA algorithm. In 

the second iteration, the first endmember has been already calculated and the 

next column of U is initialized with this endmember (the second columns of E 

and U contain the first valid endmember and the first valid component of the U 

set respectively). As a result, the projections indicated in equation (2) should 

only be computed (steps 8-11) from the third to the p-th iteration of the main 

loop. In addition, it is also remarkable the inclusion of the proj_acc vector in 

order to reuse previously computed projections in the calculation of vector f 

(equation (4)). In this sense, and as far as U does not contain any valid vector in 

the first iteration, proj_acc is reinitialized at step 15 during the first iteration. 
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Figure 4.8 MVCA pseudo-code 

4.2 FPGA-BASED MVCA SCALABLE ARCHITECTURES 

This section describes the two scalable architectures proposed for the im-

plementation of the MVCA algorithm on an FPGA. Both are based on the previ-

ously developed reference architecture [LHC+12a]. Due to the fact that these 

three architectures share most of their kernels, a general view of the architec-

ture modules is first introduced. Then, the details of each computing kernel are 

disclosed, highlighting the differences between the two scalable architectures 

and the reference one. 

4.4.1 Reference architecture 

The original architecture in this work, which computes the endmembers of 

a hyperspectral image according to the MVCA algorithm, is outlined in Figure 

4.9. As it is seen from this figure, the MVCA architecture distinguishes two kinds 

of kernels or modules: three of them dedicated to computing tasks, and two 

extra modules devoted to format conversion operations. The computing kernels 

MVCA ALGORITHM COMMENTED PSEUDOCODE 

(comments begin with %) 

INPUTS: p, Y = [r1, r2, …, rR]; % Y is composed by R hyperspectral pixels of p frequency bands each 

1: E = [e0 | 0 | … | 0 |]; % e0 = [0, …, 0, 1]T and E is a p×(p+1) auxiliary matrix 

2: U = [0 | 0 | … | 0 |]; % U is a p×p auxiliary matrix 

3: w = [1, …, 1]; % w is a p×1 vector 

4: proj_acc = [0, …, 0]; % facc is a p×1 vector used for saving operations when computing f 

5: Yint = round2int (Y); % Yint is the integer version of Y where the minimum integer value is equal to 1 

6: for i = 1 to p do % main loop 

   7: U[:,i] = E[:,i]; % U is initialized with the endmember computed in the last iteration 

 8: for j = 3 to i do % the computation of U is completed within this loop 

  
9: 𝐩 𝐨𝐣( 𝐤,  𝐣  )  =  

𝐄[:,𝐢]𝐓𝐔[:,𝐣  ]

𝐔[:,𝐣  ]𝐓𝐔[:,𝐣  ]
𝐔[: , 𝐣   ]; % the projection is computed according to 

    (  ,   ) =
<  ,  >

<  ,  >
;      <  ,  >= ∑  𝑧 ·  𝑧

 
𝑧=1  

  10: 𝑼[: ,  ]  =  𝑼[: ,  ] –     𝒋( 𝒌, 𝒖𝒋   ); % the i-th column of U is updated 

 11:         𝒋 % The computation of U according to equation 

  =    ∑     (  ,   ); { = 1           1 =  1}  1
 =1  is finished for the current 

iteration of the main loop 

 12: 𝐩 𝐨𝐣(𝐰,  𝐢) =
𝐰𝐓𝐔[:,𝐢]

𝐔[:,𝐢]𝐓𝐔[:,𝐢]
𝐔[: , 𝐢]; % the projection is computed 

 13: proj_acc = proj_acc + proj(w,ui); % the projection is saved for the next iterations at the 

accumulator 

 14: f = w – proj_acc; % f is a vector orthogonal to the subspace spanned by the columns of E that 

is computed according to equation  =   ∑     ( ,  𝑙)
 
𝑙=1  

 15: if (i == 1) then proj_acc = [0, …, 0]; % reset of the accumulator for the first iteration 

 16: v = (round2int(f
T
))Yint; % Yint is projected onto the direction indicated by fint 

 17: index = arg maxindex = 1, …, R |v[:;index]|; % the projection extreme is found 

 18: E[:,i+1] = Y[:,index]; % endmembers are updated 

19: end for i 
OUTPUT: E = [e1, e2, …, ep]; 

 



Exploiting the scalability for hyperspectral image processing: linear unmixing 4 
  

 

 
95 

  

 

1 

are named U_GENERATOR (this module includes a sub-module named PROJEC-

TIONS), F_GENERATOR, and IMAGE PROJECTION. On the other hand, the for-

mat conversion modules are named int2fp and shift_exp.  

The architecture also incorporates an input memory where the hyperspectral 

pixels to be processed are stored as 32-bit integer values. This double-port 

memory (one read port and one write port) has been implemented by means of 

the internal embedded block RAM resources present in Xilinx FPGAs. In particu-

lar, we have taken advantage of the Xilinx Core generator tool [XCOR] that gen-

erates and delivers parameterizable cores optimized for Xilinx FPGAs. Actually, 

we have made use the Xilinx LogiCORE IP Block Memory Generator [XMEM], 

included in the Xilinx Core generator tool. This Memory IP uses embedded block 

memory primitives in Xilinx FPGAs to extend the functionality and capability of a 

single primitive to memories of arbitrary widths and depths. Because of the 

MVCA algorithm operates at the projection stage with integer versions of the 

single-precision floating point numbers, contained in the originally captured 

hyperspectral image, we will assume compliant with the IEEE 754-2008 standard 

[IEE08]. 

Above every computing module, in Figure 4.9, a set of numbers has been 

included. These numbers corresponds to the numbered steps indicated in the 

MVCA pseudo-code (Figure 8). According to this information, the U_GENERATOR 

module computes the orthogonal set of   vectors,               , from the 

set                defined by the   endmembers that have been already 

computed. The F_GENERATOR module computes vector f from the set 

              , whereas the IMAGE PROJECTION module projects the 

integer version of the hyperspectral image stored in the input memory onto the 

direction indicated by the vector f. In this way, the index signal determines the 

position that gives the maximum projection.  
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Figure 4.9 General view of the Reference MVCA architecture 

Finally, the format conversion modules (int2fp and shift_exp) have 

been added to the architecture in order to assure two issues. First of all, the 

computation of the vector f is performed by using floating point arithmetic 

(int2fp); and secondly, the projection of the image onto the direction pointed 

by this vector is performed using integer arithmetic (shift_exp), as it is de-

manded by the MVCA algorithm. At this point, it has to be mentioned that as far 

as the reflectance values of hyperspectral images are normally between 0 and 1, 

a simple rounding mechanism to the nearest integer would not be efficient at 

all, since the converted values would be 0 or 1. Due to this reason, the floating 

to integer conversion performed by the shift_exp module must be accom-

plished in two steps. In a first step the exponents of all the floating point num-

bers to be converted are shifted in a way such that the minimum exponent be-

comes equal or greater than 127. This process gives back a floating point num-

ber with an absolute value equal or greater than 1 (for practical proof, interest-

ed readers are referred to [XFPO]). In the next step, and the last one, the previ-

ously floating point values are converted into integers.  

As a last remark, it is worth to mention that, for the sake of clarity, we have 

decided to include only the main data signals between modules, skipping the 

multiple control signals that govern the global behavior of the architecture. 
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4.4.1.1 The U_GENERATOR module 

This module is in charge of calculating the set of   vectors,   

            , from the set                defined by the endmembers that 

have been already computed, i.e. steps 7 to 11 in the pseudo-code of the MVCA 

algorithm (Figure 4.8). In order to accomplish this task, U_GENERATOR counts 

with a sub-module named PROJECTIONS. This sub-module efficiently computes 

the coefficient           (     )  
 [   ]  [     ]

 [     ]  [     ]
 in every loop iteration 

placed at step 8. 

This calculation is carried out in a double-loop manner, where the inner 

loop is repeated p times in order to compute the previously mentioned term, 

and the outer loop corresponds with the loop indicated at step 8. In particular, 

the PROJECTIONS sub-module has one register and one circular buffer where 

the endmember that was computed during the last iteration of the   loop placed 

at step 6 and the (   ) vectors already computed from the set U are stored, 

respectively. Every clock cycle, the data in the register is right-shifted while the 

data in the buffer is cyclically permuted. This procedure allows obtaining the 

term  [   ]    [     ] in p clock cycles by means of a multiply-and-

accumulate hardware structure whose inputs are the values in the most right 

positions of the aforementioned register and circular buffer. After p clock cycles, 

          (     ) is obtained by dividing the accumulated result by 

  [     ]   [     ]  This is exemplified in Figure 4.10, where the hard-

ware core of the PROJECTIONS sub-module is depicted, showing the data 

movements in both the register and the circular buffer for different values of     

and iter, being the last index controlling the number of the inner loop iterations. 

As it observed from Figure 4.10.a and Figure 4.10.b, the terms  [   ]    

[     ] and   [     ]   [     ]  are progressively computed with the 

increments of iter (clock cycles), being the results stored in the accumulative 

registers named        and      , respectively. In order to guarantee the 

correctness of the results, both accumulative registers must be initialized to 

zero at the start of a new iteration of the outer loop, i.e. when the value of j 

changes. Once iter = p (Figure 4.10.c), the coefficient           (     ) is 
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readily calculated by dividing the content of        by the content of      . 

The result of this division is stored in a register that is enabled only when the 

results accumulated at        and       are definitive. i.e., when iter = p. 
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Figure 4.10 General view of the PROJECTIONS architecture 

Once a coefficient           (     ) has been computed by the PRO-

JECTIONS sub-module, the U_GENERATOR module has to update  [   ] ac-

cording to the equation placed at step 10 of the MVCA pseudo-code. Finally, 

when the loop initiated at step 8 of the MVCA pseudo-code ends, the 

U_GENERATOR module must store the definitive  [   ] in order to be used it in 

the following iteration of the main MVCA loop (step 6 of the pseudo-code and 

Figure 4.10.d). 

4.4.1.2 The F_GENERATOR module 

This module is the responsible of computing the vector named f, which is 

orthogonal to the subspace spanned by the endmembers already computed. In 
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order to reduce the computational cost associated to this process, f is computed 

according to steps 12 to 15 in the MVCA pseudo-code, which wisely prevent 

from re-computing the whole summation expressed at equation (4) for each 

value of  . This is thanks to the inclusion of the          vector, which allows 

reutilizing previously computed projections in the calculation of vector f. 

The architecture proposed for this module has been summarized at Figure 

4.11, where again for seeking of clarity; we have not included any of the control 

signals that command the module like the enable signals of the different regis-

ters, or the reset signal of the          register, just to name the most im-

portant ones.  

The computation of the coefficient           (   )   
    [   ]

 [   ]   [   ]
 has 

been outlined in the circuit at the top part of Figure 9, which allows its calcula-

tion in p clock cycles by circularly displacing the data in the register   with each 

clock cycle. At this point, it is important to highlight that by fixing the vector   

to [1,1,…,1] T in the MVCA algorithm, we are not only bypassing the generation 

of a p×1 random vector for the computation of each of the p endmembers to be 

extracted from the target image, but we are also avoiding the use of a floating-

point multiplier for computing      [   ], as far as this expression is equiva-

lent to the summation of the p components of  [   ] for the case of this work 

(  [       ] ). Once           (   ) has been computed, the estimation 

of the vector f becomes straightforward with the rest of the hardware included 

in the architecture of the F_GENERATOR module depicted at Figure 4.11, con-

sidering that the data at          and f registers also experiment circular and 

synchronized displacements with each clock cycle. 
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Figure 4.11 General view of the F_GENERATOR 

4.4.1.3 The IMAGE PROJECTION module 

This module projects the hyperspectral image Y onto the direction pointed 

by the vector f. As the spatial and spectral dimensions of the input hyperspectral 

image are usually large, the IMAGE PROJECTION module has been designed in 

order to compute the aforesaid projection with a high degree of parallelism. 

More specifically, as it is summarized in Figure 4.12, the spectral bands of each 

pixel in the hyperspectral image are concurrently multiplied by the components 

of the vector f. Then, the results obtained feed a parallel adder tree that com-

putes the projection in      ⌈     ⌉ adding stages, where ⌈ ⌉ represents 

the ceil function. For ease of design, the first adding stage (the one on top of 

Figure 4.12) is forced to have a number of adders equal 2(NADD-1), being the un-

used adders in this stage filled with zeros. The rest of adding stages have a 

number of adders equal to half of the adders of its predecessor stage. 
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Figure 4.12 IMAGE PROJECTION overview 

Once a projection is computed, the comparator allocated at the bottom of 

Figure 4.12 determines whether the computed projection is bigger than the 

maximum value provisionally stored (initially set to zero), updating in this case 

the maximum and its position (index). Moreover, the proposed IMAGE PROJECTION 

module works in a highly pipelined fashion, which means that with each clock 

cycle, a new hyperspectral pixel is loaded and processed, being all the projec-

tions calculated on a cycle-by-cycle basis. 

4.4.2 Scalable IMAGE PROJECTION module 

The MVCA architecture performs very well in terms of area and frequency 

achieved, being capable of real time processing of hyperspectral images 

[LHC+12b]. However, as the number of endmembers (p) is different for different 

images, a specific implementation for each sensor is required. This is due to the 

fact that the IMAGE PROJECTION module, in charge of performing a multiplication 
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between the hyperspectral image     , and the vector f, requires p multipliers 

(see Figure 4.12). Moreover, as the number of endmembers is relatively high in 

some images, the area occupied by this module might do unfeasible an imple-

mentation over an FPGA. 

In this work, a scalable solution for the IMAGE PROJECTION module is present-

ed. Furthermore, different scenarios for scalability of this module are studied 

and based on that, two alternatives for scaling the IMAGE PROJECTION module 

computation are proposed. As it was mentioned before, the IMAGE PROJECTION 

module consists on the iterative calculation of the multiplication between the 

transposed vector f and the hyperspectral pixel matrix     . Then, among the 

resultant matrix ( ) an endmember is extracted (equation 5) as the highest val-

ue. 

[       ]    [

          

          

          

]  [       ] (5) 

   ∑       
   
             (6) 

In equation (6),     represents the spectral band i of the pixel j. In this case, 

the hyperspectral image contains R pixels of p bands, since it has been spectrally 

reduced. The matrix multiplication opens the window to explore scalability in 

two different ways. 

1. On the one hand, it might be possible to process several spectral com-

ponents of the same pixel at the same time (vector f by one column of 

    ). Hence, it is possible to scale how fast Ck (equation 6) is calculat-

ed, by means of adjusting the number of        operations performed 

in parallel. For instance, assuming that p is equal to 6, it would be pos-

sible to use two multipliers and use them repeatedly (three times) until 

get the Ck value. As a consequence, by following this methodology, the 

corresponding            values are processed sequentially, one after 

another. 

2. Another alternative might be to process several spectral components 

of different pixels at the same time.  The difference of this procedure, 
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with respect the previous one, lies on the fact that in this case different 

  values might be processed, band by band, by different multipliers.  

Both approaches are flexible, since they might permit several levels of 

scalability, in terms of allowing the adjustment of the number of computations 

that are performed in parallel. In order to unify the solutions as much as possi-

ble, and establish a fair comparison between both alternatives, their processing 

core is the same, named processing element (PE). The main structure of this PE 

consists in a multiplier and an accumulator, as Figure 4.13.a shows. The selec-

tion of these elements lies on two reasons. The first one is that they are the 

minimum number of elements required in order to execute a matrix multiplica-

tion, but also because this structure is general enough for implementing any 

one of aforementioned scalable alternatives. Moreover, this PE might be scaled 

by means of increasing or decreasing its number, according to the level of paral-

lelization demanded in the image projection module, without a numerical im-

pact on the final result. Such as Figure 4.13.b highlights, there exist similitudes 

between the proposed PE and the structure of the IMAGE PROJECTION module 

presented into the previous subsection.  

mult

acc

PE

f[i]Yint[i,j]

x x x x

+ +

+

f[1] f[2] f[3] f[4]

..
.

..
.

PE1PE0

a) b)

Yint[1,j] Yint[2,j] Yint[3,j] Yint[4,j]

 
Figure 4.13 Processing Element (PE); a) Main structure of a PE; b) Equivalence between the 

PE and the reference architecture 
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4.4.2.1 Scaling the number of spectral components of a pixel simul-

taneously processed (SpectSA_MVCA) 

The original hardware architecture (section 1.4.1.3) obligates to compute 

all Ck coefficients simultaneously. Hence, as the dimension of the vector f is 

equal to the number of endmembers (p), p multipliers are required (see Figure 

4.12). The main goal behind this scalable design, for now on referred as 

SpectSA_MVCA, is to offer a more flexible architectural solution, compared to 

the previous one. In this sense, this proposal offers the freedom of adjusting the 

number of PEs dedicated to perform        operations. However, due to the 

strategy followed by processing every pixel, in which all the PEs compute the 

same pixel, although different spectral components, the scalability level of this 

design is limited by p. Consequently, the number of PEs might vary between 1 

and p. It is worthy to mention that the design demands a comparator as the last 

stage of the computation process. The comparator is responsible for calculating 

the index (memory address) of the maximum projection obtained during the 

matrix multiplication, once all the pixels have been processed. 

Figure 4.14 represents various levels of scalability, from one PE to four. 

Here the number of PEs is scaled in order to increase the number of operations 

performed in parallel. As it might be appreciated in Figure 4.14.a, in the case of 

using only one PE, the internal accumulator of the PE provides the coefficient Ck 

by itself. However, when two PEs are enabled, the result of the Ck coefficient 

requires the sum of the partial results calculated by each PE1 and PE2 (Figure 

4.14.b). The process is even more complex when the number of PEs is higher 

than 2 (Figure 4.14.c), since the number of adders must be increased in order to 

combine all the partial sums of every couple of PEs, until complete the calcula-

tion of the Ck coefficient.  

Independently of the level of the scalability, the overall behavior of the 

whole IMAGE PROJECTION kernel cannot vary. Therefore, the final design has to be 

flexible enough for fulfilling with this specification. Considering the require-

ments of all the configurations depicted on Figure 4.14, it is easy to identify 

three main tasks. One dedicated to compute values (related to PEs), another 
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one in charge of obtaining the final value of Ck (related to adders), and the last 

one responsible for calculating the index of the endmember, after the matrix 

multiplication (related to the comparator). 

PE0

in
d

ex

in
d

ex

+

in
d

ex

a) b) c)

PE0 PE1

+

PE0 PE1

+

PE2 PE3

+

Comparator Comparator Comparator

 
Figure 4.14 Resources of the SpectSA_MVCA according to the scalability level; a) 1 PE; b) 2 

PEs; c) 4 PEs 

Thus, the differentiation of these tasks allows to describe a modular de-

sign, with three elements: a control unit, a scalable PE unit and an adder-tree 

unit, as it has been outlined in Figure 4.15. The first module is responsible for 

managing the data (loading and storing data from memory to the rest of the 

system), synchronizing the PEs, and calculating the output of the IMAGE PRO-

JECTION. The scalable PEs module is the core of the computation. The number 

of the available PEs should not necessarily be constant; it might vary depending 

on the desired scalability level (for instance depending on the dimension of the 

hyperspectral image to be processed, or the time constraints demanded by the 

system). Finally, an adder-tree is required for collecting and adding all the par-

tial results performed by the PEs. 

When the number of PEs increases (it is higher than one), all of them col-

laborate in order to obtain the projection of one pixel (performing a row by a 

column multiplication (equation 6)). 
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Figure 4.15 Modular structure for processing several components of one pixel 

The most effective way of implementing this behavioral strategy, in terms 

of execution time and complexity, is to synchronize the execution of all the PEs 

in order to ensure that all of them start processing, and get results at the same 

time. In the case that the number of PEs is a multiple of the number of spectral 

bands (p) the synchronization and the data loading, from the control unit to the 

scalable PEs, do not present any complication. Otherwise, during the computa-

tion of the last spectral bands of a pixel, some PEs will remain idle (without pro-

cessing data) until a new pixel is loaded. For example, in case of p=5 and the 

level of scalability is two (PEs=2; PE0 and PE1), the pixel will be processed in 

three steps, and then another step will sum their results.  

Step 1:                and               ; 

Step 2:                     and                   ; 

Step 3:                    and        ; 

Step 4:           ; 

Step 5:                           ; 

Step 6: repeat the process from step 1; 
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Under these conditions, during the last step the result of PE1 will be a data 

full of zeros. Although is not an optimum solution, it is based on two reasons. 

First, when there is more than one PE, all the adders involved in the result gen-

eration needs a data input, since they do not contain any control logic. Second, 

this is the easiest way to keep the system synchronization. 

Collecting all the aforementioned considerations (the modularity of the de-

sign, the regularity of the system behavior independently from the level of 

scalability, the flexibility for processing using different number of PEs, and the 

synchronization issues) the schematic of the hardware SpectSA_MVCA design is 

represented in Figure 4.16.  
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Figure 4.16 Scalable IMAGE PROJECTION design for processing several components of the same 

pixel in parallel 

4.4.2.2 Scaling the number of pixels simultaneously processed 

(PixelSA_MVCA) 

As an alternative to the IMAGE PROJECTION approaches presented before, this 

section presents PixelSA_MVCA as another alternative for exploiting the bene-

fits of the scalability. On the contrary to the architecture presented before 

(SpectSA_MVCA), where each Ck is processed sequentially (equation 6), now 

the solution consists on computing more than one Ck coefficients at the same 
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time. In other words, performing several rows by columns operations simulta-

neously (                     ). The easiest way to implement this ap-

proach is shown in Figure 4.17, in which every PE should be responsible for a 

specific CK coefficient. Therefore, each PE has to iterate p times until all the 

components of a pixel have been processed. Under this scenario, every PE 

would produce a result at the same time. Then, a comparator tree would be 

needed in order to identify the maximum value within the set of results provid-

ed by the PEs, such as Figure 4.17 depicts. The addition of this comparator tree 

makes the solution more complex, due to the extra logic, the management and 

the synchronization issues. 
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Figure 4.17 Scalable IMAGE PROJECTION design for processing several pixels simultaneously 

The way to eliminate the comparator tree from the design would require 

introduce certain mechanism in order to generate only one Ck coefficient per 

clock cycle. If this would be possible, then the comparator tree would be re-

duced to only one comparator, like in the previous IMAGE PROJECTION designs. The 

cost of implementing this choice goes through adding more complexity to the 

synchronization process among the PEs. Such as Figure 4.18 shows, the sche-

matic of the PixelSA_MVCA design, all the data inputs includes      (  

    ) delays (represented by   symbol); being     the position of the PE in the 

system. As it can be noticed, every     is delayed one clock cycle compared to 

the previous       unit. This fact implies that, during the initial       clock 
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cycles, not all the PEs are processing data. Once all of them are processing data, 

all the PEs keep working until the last data is completed.  
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Figure 4.18 Scalable IMAGE PROJECTION design for processing several pixels in parallel 

without a comparator tree 

Regarding the scalability level, this hardware design allows varying the 

number of PEs between one and p. In spite of this fact, it would be possible to 

increase the scalability higher than p, but at cost of introducing a comparator 

tree in the system. In this sense, this design would have the same drawbacks of 

the one depicted in Figure 4.16.  

As for the hardware implementation of the PixelSA_MVCA, the design re-

spects the same precepts than the SpectSA_MVCA: modularity, scalability, reg-

ularity, and distributed control. This approach and the block diagram is repre-

sented in Figure 4.19. The comparator but also the inputs delays to the PEs are 

managed by the control block. 
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Figure 4.19 Modular structure for processing several pixels at the same time 

4.5 COMPARISONS AND RESULTS 

The architectures outlined in the last section have been described in Veri-

log Hardware Description Language (HDL) prior to the implementation and veri-

fication onto a XCVSX95T FPGA, belonging to the Virtex-5 family from Xilinx. The 

Verilog codes can be easily configured in order to process hyperspectral images 

of any spatial size and/or number of spectral bands, and also can be tailored to 

adjust the number of processing elements. This section shows the synthesis 

results for all the three architectures detailed previously, and their performance 

when they are implemented onto the Virtex-5 FPGA. 

4.5.1 Endmember extraction accuracy 

Before showing the implementation results, it is necessary to assess the 

new solution in terms of the endmember extraction accuracy. For this reason, 

the proposed FPGA implementation of the MVCA algorithm has been validated 

by using 40 artificially generated hyperspectral images (synthetic images) as well 

as one real hyperspectral scene captured by the Jet Propulsion Laboratory (JPL) 

NASA’s AVIRIS sensor [GRE+98]. 

The artificial hyperspectral images used in this work were generated with 

the demo_vca software tool available at [VCAA], which allows creating a hyper-

spectral image of a spatial size defined by the user from p spectral signatures 
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selected from the USGS digital spectral library [USGS] that are mixed according 

to abundance fractions generated with a properly tuned Dirichlet distribution. In 

addition, a certain amount of Gaussian noise can be added so that the generat-

ed image has a signal-to-noise ratio (SNR) value also defined by the user. In par-

ticular, we have generated 40 images of 36×36 pixels each with five different 

values of SNR (10 dB, 20 dB, 30 dB, 40 dB, and 50 dB) and eight different num-

ber of endmembers, p (3 to 10, both inclusive). 

In addition, the well mineralogical understood Cuprite scene [NAC], which 

has been widely used to validate the accuracy of endmember extraction algo-

rithms, has been also taken into account in this work. This scene was captured 

by NASA’s AVIRIS sensor over the Cuprite mining district in Nevada. Particularly, 

we have used a 250×191-pixel subset available online in reflectance units after 

atmospheric correction which comprises 224 spectral bands between 0.4 and 

2.5 μm. Prior to the analysis, different bands have been removed due to water 

absorption and low SNR, leaving a total of 188 reflectance channels to be used 

in our tests. The number of endmembers present in a real hyperspectral scene 

like Cuprite is unknown a priori. As far as this number is an input of the MVCA 

algorithm, it should be calculated prior to the unmixing step. In order to deter-

mine it, the Virtual Dimensionality (VD) has been estimated by inspecting the 

eigenvalues of the sample covariance matrix and the sample correlation matrix. 

More exactly, the VD was estimated by the Noise Whitened Harsanyi–Farrand–

Chang (NWHFC) eigenthresholding method [CD04] using the Neyman–Pearson 

test with the false-alarm probability set to 10-5, resulting in a total number of 14 

different pure materials within the Cuprite sub-image already mentioned.  This 

image is depicted in Figure 4.20. 

For all these sequences, the results obtained with the MATLAB code of the 

MVCA algorithm have been compared with the ones obtained by means of the 

proposed MVCA architecture when mapped onto a Virtex-5 XC5VSX95T FPGA. In 

all the cases, a perfect match between both results has been obtained which 

guarantees that the FPGA implementation is functionally equivalent to the orig-

inal MATLAB MVCA code. 
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Figure 4.20 Cuprite image 

Just for illustrative purposes, and as far as the MVCA is based on VCA algo-

rithm [VCAA], Figure 4.21 shows the maximum and the minimum spectral an-

gles obtained after comparing the endmembers extracted in Cuprite by the VCA 

algorithm (running on a desktop personal computer) and by the MVCA architec-

ture (running onto the aforementioned FPGA device) against the USGS library 

[USGS] spectra of the 14 minerals reported in the original VCA paper [LHC+12b]. 

For obtaining these results, both the VCA software implementation and the 

MVCA hardware implementation have been applied ten times to the Cuprite 

image with p = 14. Results shown in Figure 4.21 clearly state that the spectral 

angles between the proposed FPGA implementation of the MVCA algorithm and 

the VCA algorithm are pretty similar. In general, the former gets reduce the 

maximum deviations (spectral angles) with respect to the USGS reference signa-

tures. In particular, for the case of the VCA algorithm the average maximum and 

minimum spectral angles have been of 8.19  and 3.96  respectively, while for 

the case of the MVCA algorithm the average maximum spectral angle decreases 

until 7.82  and the average minimum spectral angle only increases up to 4.05 . 
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Figure 4.21 Endmember extraction accuracy results 

4.5.2 FPGA implementations 

This subsection discloses the synthesis results of the proposed MVCA archi-

tectures onto the selected FPGA device. These data are expressed in terms of 

hardware resources and the amount of required time for extracting a finite set 

of endmembers from a given hyperspectral image, but also for different levels 

of scalability. 

First of all, and seeking for clarity, the three presented architectures are 

distinguished by their names: Original_MVCA, SpectSA_MVCA and Pix-

elSA_MVCA. The former one refers to the architecture that was presented first 

(Section 4.4.1).The SpectSA_MVCA corresponds to the scalable architecture 

that parallelizes the number of the spectral components that might be pro-

cessed simultaneously (Section 4.4.2.1). The latter design, PixelSA_MVCA ar-

chitecture, refers to the scalable architecture that processes several pixels in 

parallel (Section 4.4.2.2).  
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These three architectures share some common characteristics among them 

that should be mentioned before analyzing the results. Related to the reliability 

of the results, the three options provide the same precision in terms of the 

endmembers extraction accuracy, independently of the spatial size of the hy-

perspectral image. Furthermore, regarding their designs, the three architectures 

are focused on parallelizing the IMAGE PROJECTION module and, therefore, the 

U_GENERATOR and F_GENERATOR modules are the same for all of them. However, 

the parallelization strategy used for processing the IMAGE PROJECTION is complete-

ly different among these three architectures. Moreover, although the solutions 

are flexible, since they are able to extract a wide range of endmembers, the 

scalability is not explored for all of them. Only SpectSA_MVCA and Pix-

elSA_MVCA are capable of adjusting their number of processing elements once 

the number of endmembers (p) has been fixed. On the contrary, under these 

circumstances, the number of multipliers Original_MVCA remains fixed by 

always processing all the spectral bands simultaneously. Due to this fact, Orig-

inal_MVCA is considered as a static design during the rest of the analysis and 

comparisons.  

With the goal of establishing the advantages and disadvantages of these 

MVCA architectures, a comparison in terms of hardware resources and perfor-

mance is presented along the rest of this section. First of all, the amount of 

hardware resources is analyzed graphically. Thus, Figure 4.22 shows the slice 

occupancy of the IMAGE PROJECTION module within the whole scalable architec-

tures (SpectSA_MVCA and PixelSA_MVCA), when the number of processing 

elements varies from 1 to 15. These numbers allow to figure out the following 

conclusions. On the one hand, due to the fact that the PE element is exactly the 

same for both architectures (122 slice registers, 80 slice LUTs, 4 DSP48E), the 

mismatch between their logic resources is because of how their corresponding 

control units have been designed. On the other hand, the impact of the scalable 

IMAGE PROJECTION, as part of the rest of the MVCA architecture, might be deter-

mined. However, in order to do this, it is necessary to compare these numbers 

to the global occupancy of these architectures (Figure 4.23-25).   
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Figure 4.22 IMAGE PROJECTION module occupancy in SpectSA_MVCA and PixelSA_MVCA ar-

chitectures 

 The data depicted in Figure 4.22 shows how the hardware requirements of 

the IMAGE PROJECTION module rise linearly when the number of processing ele-

ments increases. As it was previously mentioned, the number of PEs has the 

same effect in terms of number of resources in both architectures. Therefore, 

the influence of the adder-tree and the storage requirements vary in the case of 

the SpectSA_MVCA and PixelSA_MVCA architectures respectively. In the case 

of the SpectSA_MVCA the adder-tree is always present in the design, and con-

sequently its contribution to the number of resources remains constant when 

the number of PEs increases. On the other hand, despite the fact that the Pix-

elSA_MVCA does not incorporate an adder-tree, its pixel storage requirements 

vary with the number of PEs. This is a direct consequence from the scalability 

process. Whereas the SpectSA_MVCA only has to storage one pixel for all the 

PEs, the PixelSA_MVCA needs to register one pixel per PE. Therefore, when 

the number of PEs is higher than three, the image projection module of the 

PixelSA_MVCA architecture is more demanding in resources than the 

SpectSA_MVCA. 

Then, Figure 4.23-25 represent the number of FPGA slices occupied by the 

three approaches when a different number of endmembers is extracted. In ad-

dition, different levels of scalability have been explored for each chart, with the 

exception of Original_MVCA that is always characterized by one point (when 
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the number of its multipliers coincides with the number of endmembers to ex-

tract).  

 
Figure 4.23 Synthesis result for extracting 5 endmembers 

 
Figure 4.24 Synthesis results for extracting 10 endmembers 

In figures (Figure 4.23-25) above the horizontal axis represents the scalabil-

ity level, which means the number of processing elements enabled for the com-

putation; whereas the vertical axis represents the number of the FPGA re-

sources consumed for implementing the design. These values have been ob-

tained after synthesizing the designs onto a Xilinx Virtex-5 SX95T. 
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Figure 4.25 Synthesis results for extracting 15 endmembers 

Figure 4.23 shows all the scalability choices of the selected architectures, 

when p=5. However, in the rest of figures (Figure 4.24 and Figure 4.25) where 

the number of endmembers to extract is 10 and 15, respectively, only a few 

numbers of configurations are represented. Notice that the Original_MVCA is 

represented by only one value in all these charts. As it was mentioned before, 

once the number of endmembers to extract has been determined, the Origi-

nal_MVCA architecture is considered as a static design, without any possibility 

of scaling its computation.  

Despite the fact that the three architectures share some modules of their 

designs, the synthesis resources (the number of slice registers and slice look-up-

tables (LUTs)) notably vary from one to another. The main reason for this dispar-

ity in the numbers is due to way in which the IMAGE PROJECTION module has been 

designed. As it was expected, there is a direct relationship between the scalabil-

ity level and the number of consumed resources. Thus, the higher scalability 

demands higher resources. Surprisingly, according to the graphical results, the 

modifications introduced into the SpectSA_MVCA and PixelSA_MVCA designs 

in order to let vary the number of PEs available in the system, do not have a 

significant impact on hardware. Moreover, in these two scalable architectures, 

the slope of the curves of hardware resources tends to moderate their slope 

when the number of PEs is closer to the number of endmembers.  
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On the other hand, the scalability has different effects on the number of 

resources for the SpectSA_MVCA and the PixelSA_MVCA architectures. Inde-

pendently from the scalability level, the SpectSA_MVCA only has to store only 

one pixel for feeding the PEs and ensuring a correct behavior of the system, but 

also the adder-tree always occupies the same number of resources. Nonethe-

less, the PixelSA_MVCA is more sensitive to the scalability variations, since it 

has to store as many full pixels as the number of PEs there is in the system. 

Regarding the percentage of the FPGA resources occupied by these three 

proposed architectures, the data are analyzed two by two, according to the 

information collected in Table 4.I. In fact, the comparisons are established be-

tween the Original_MVCA (when the number of PEs is equal to p) and the 

SpectSA_MVCA; and between the SpectSA_MVCA and the PixelSA_MVCA 

(when the number of PEs is p). As for the Original_MVCA approach, the num-

ber of slice registers varies from the 27% (p=5) to the 71% (p=15), while the 

number of slice LUTs ranges between the 20% (p=5) and the 51% (p=15). Under 

the same circumstances, and assuming the highest level of scalability the num-

ber of slice register for the SpectSA_MVCA varies from the 27% (p=5) to the 

69% (p=15) respectively, whereas the number of slice LUTs are a little higher 

than the Original_MVCA, varying between the 21% (p=5) and the 53% (p=15). 

Then, analyzing the resources utilization of the PixelSA_MVCA, its number of 

slice registers changes between the 24% (p=5) and the 72% (p=15), while the 

number of slice LUTs fluctuates between 19% and 54% respectively.  

According to the synthesis results, the Original_MVCA architecture might 

operate with a frequency up to 268.15MHz, while the maximum frequencies 

achieved for the scalable architectures (SpectSA_MVCA and PixelSA_MVCA) 

are 244.29MHz and 243.15MHz respectively.  

Considering the results collected in Table 4.I, the flexibility offered by both 

scalable proposed architectures (SpectSA_MVCA and PixelSA_MVCA) does not 

require a significant amount of extra hardware resources compared to the static 

reference design (Original_MVCA). Moreover, the reduction in the clock fre-
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quency of these scalable designs is a 9.23% lightly lower than the Origi-

nal_MVCA architecture. 

Table 4.I Synthesis results on the FPGA Virtex XC5VSX95t  

HW DESIGN 

Configuration Synthesis report 

N. of 
endmembers 

N. of PEs 
N. Slice 

Registers 
N. Slice LUTs 

Freq. 
(MHz) 

Original_MVCA 
5 5 16,063 (27%) 12,275(20%) 

268.15 10 10 27,223 (46%) 20,438(34%) 

15 15 42,023 (71%) 30,103(51%) 

SpectSA_MVCA 

5 

1 15,366 (26%) 12,641 (21%) 

244.29 

2 15,687 (27%) 12,949 (22%) 

3 15,788 (27%) 12,968 (22%) 

4 16,000 (27%) 13,132 (22%) 

5 16,212 (27%) 13,297 (22%) 

10 

1 24,333 (41%) 19,363 (32%) 

3 24,995 (42%) 19,953 (33%) 

5 25,179 (43%) 20,018 (33%) 

9 25,908 (44%) 20,559 (34%) 

10 26,089 (44%) 20,693 (35%) 

15 

1 38,098 (64%) 29,242 (49%) 

5 38,944 (67%) 29,897 (50%) 

10 39,854 (67%) 30,572 (51%) 

14 40,578 (68%) 31,108 (52%) 

15 40,776 (69%) 31,257 (53%) 

PixelSA_MVCA 

5 

1 14,630 (24%) 11,280 (19%) 

243.15 

2 14,978 (25%) 11,554 (19%) 

3 15,322 (26%) 11,886 (20%) 

4 15,668 (26%) 12,094 (20%) 

5 16,014 (27%) 12,300 (20%) 

10 

1 23,763 (40%) 17,913 (30%) 

3 24,464 (41%) 18,525 (31%) 

5 25,166 (42%) 19,036 (32%) 

9 26,570 (45%) 20,160 (34%) 

10 26,921 (45%) 20,429 (34%) 

15 

1 37,692 (64%) 27,796 (47%) 

5 39,116 (66%) 28,947 (49%) 

10 40,897 (69%) 30,368 (51%) 

14 42,320 (71%) 31,640 (53%) 

15 42,676 (72%) 31,919 (54%) 

With the purpose of analyzing the performance of the proposed architec-

tures, in terms of the speedup, Table 4.II and Table 4.III collect information re-

garding the number of clock cycles necessary for extracting one endmember, 

when several scalabilities are used. More in detail, the number of clock cycles 

are measured at two points: when the MVCA starts processing (clock cycles 

MVCA column), and when the IMAGE PROJECTION starts processing once the f vec-
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tor has been calculated by the rest of the MVCA system (clock cycles IMAGE PRO-

JECTION column). 

Then with these numbers, and considering the maximum clock frequencies 

of each of the architectures, the time spent in extracting one endmember (1 

endm column), or several ones might be inferred, according to the following 

expression (7): 

     (  )  
 

          (   )
    𝑙         (7) 

The information shown in Table 4.II has been obtained when 5 endmem-

bers are extracted from a small synthetic hyperspectral image of 36×36 pixels. 

Then, results collected in Table 4.III correspond with a more realistic simulation, 

in which 14 endmembers are extracted from the Cuprite image (250×191 pix-

els).  

Independently on which of the three architectures is selected, the genera-

tion of the vector f requires the same number of clock cycles for the three cases, 

since the U_GENERATOR and F_GENERATOR modules are the same. More spe-

cifically, the generation of the vector f requires four clock cycles since the MVCA 

starts processing. Therefore, the rest of the time is spent in extracting the 

endmembers, which means computing the matrix multiplication between the 

vector f and the hyperspectral image     .  

According to the results shown in Table 4.II, the Original_MVCA architec-

ture is the fastest one, when the three architectures operate with 5 PEs. This 

result is based on the fact that the Original_MVCA requires less number of 

clock cycles for extracting one endmember, and it reaches the highest clock 

frequency.  

According to these results, it is evident that both scalable architectures 

(SpectSA_MVCA and PixelSA_MVCA) accelerate the endmembers extraction 

process whenever their number of PEs increases. However, the scalability does 

not have the same influence in the speedup of these architectures. In the case 

of the PixelSA_MVCA, the decrement in the number of clock cycles is directly 

proportional to the number of PEs involved in the IMAGE PROJECTION task. On the 
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other hand, when the number of PEs (   ) is higher than p/2 and lower than p 

(
 

 
       ), the SpectSA_MVCA architecture does not experiment any 

acceleration compared to the situation in which the number of PEs is equal to 

p/2. 

Table 4.II Behavioral simulation with a synthetic image (36×36 pixels and 5 endmembers) 

Configuration Behavioral simulation – 1 endmember extraction 

ENDMEMBERS = 5 
FRAME = 1,296 
pixels 

PEs 
Freq. 
MHz 

Clock 
cycles 
MVCA 
1 endm 

Time (ns) Clock 
cycles 
IMAGE  

PROJECTION 
1 endm 

Post P&R results 

1 endm 5 endm 
Freq. 
MHz 

Time 
(ns) 

Original_MVCA 5 268.15 1,306 4.87 24.35 1,302 178.22 36.64 

SpectSA_MVCA 

1 

244.29 

6,514 26.69 133.45 6,510 

130.63 

249.33 

2 3,922 16.05 80.25 3,918 150.11 

3 2,625 10.74 53.70 2,621 100.47 

4 2,625 10.74 53.70 2,621 100.47 

5 1,330 5.44 27.20 1,326 50.90 

PixelSA_MVCA 

1 

243.15 

6,501 26.73 133.65 6,497 

145.36 

223.61 

2 3,262 13.41 67.05 3,258 112.20 

3 2,183 8.97 44.85 2,179 75.08 

4 1,644 6.76 33.80 1,640 56.54 

5 1,321 5.43 26.95 1,317 45.43 

Table 4.III Behavioral simulation with Cuprite image (250×191 pixels and 14 endmembers) 

Configuration Simulation analysis – endmembers extraction 

ENDMEMBERS = 14 
FRAME= 47,750 pixels 

PEs 

Clock 
cycles  
MVCA 

1 endm 

Synthesis result Post P&R results 

Freq. 
MHz 

Time (ns) Freq. 
MHz 

Time 
(ms) 1 endm 14 endm 

Original_MVCA 14 47,781 268.15 178.18 2,494.52 178.22 3.75 

SpectSA_MVCA 

1 668,536 

244.29 

2,736.64 38,312.96 

130.63 

71.64 

3 238,786 977.46 13,684.44 25.59 

6 143,286 586.54 8,2111.56 15.35 

9 95,536 391.07 5,474.98 10.23 

11 95,536 391.07 5,474.98 10.23 

13 95,536 391.07 5,474.98 10.23 

14 47,786 195.61 2,738.54 5.12 

PixelSA_MVCA 

1 668,521 

243.15 

2,749.41 38,491.74 

145.36 

64.38 

3 222,860 916.55 12,831.70 21.46 

6 111,450 456.48 6,390.72 10.73 

9 74,309 305.60 4,278.40 7.15 

11 60,804 250.06 3,500.84 5.85 

13 51,456 211.62 2,962.68 4.95 

14 47,784 196.52 2,751.28 4.60 

This is due to the way in which the SpectSA_MVCA processes a pixel, 

where every PE perform several operations according to the following expres-
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     (     )
         

}
 
     . This behavior, together with 

the fact that all the PEs start and finish processing at the same time, obligates to 

all the PEs to execute the same number of operations. Thus, when the number 

of endmembers (p) is not proportional to the number of PEs, some PEs will re-

main idle until the rest of the PEs conclude their computation in the last itera-

tion. This situation always happens when the number of PEs is higher than p/2. 

Another inconvenient of this design occurs when      , since the accumula-

tors belonging to the PEs remain unused during the whole endmembers’ extrac-

tion process. For this reason, the less and the more efficient scalability cases, for 

the SpectSA_MVCA, occur when the numbers of PEs are equal to one and p/2 

respectively.  

Beyond the synthesis results, post place and route simulations have been 

run in order to verify the proper execution of these architectures under more 

accurate circumstances. In this sense, Table 4.III includes the clock frequency 

after the post place and route stage (Post P&R results column), which is reduced 

in a 33%, 46% and 40% for the Original_MVCA, SpectSA_MVCA and Pix-

elSA_MVCA respectively. The number of clock cycles is the same for the behav-

ioral and the post place and route simulations for the three architectures. 

Hence, the static architecture is the fastest one compared to the scalable ones 

when the number of PEs coincides to the number of endmembers. Neverthe-

less, the lack of flexibility for adjusting the number of PEs of this architecture 

limits its reusability for running under different environmental conditions. As for 

the scalable architectures (SpectSA_MVCA and PixelSA_MVCA), both of them 

achieve similar performance when the number of hardware resources and the 

speedup are considered. However, the PixelSA_MVCA design permits a higher 

range of efficient scalability levels, since in all the scenarios a higher number of 

PEs is translated in less number of clock cycles. Moreover, all the PEs’ resources 

are always utilized in this architecture. 

In general, all these numbers make difficult to establish a fair comparison 

and then, determine which one of these three architectures is more efficient or 
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more appropriated for an FPGA-based embedded system. In order to simplify 

the analysis and offering an objective comparative, a figure of merit (FM). This 

factor considers itself all the previous data, according to the following equations 

(8) and (9): 

   
         (   )            

   
 (8) 

            
   

                                                 
  (9) 

Considering these new issues, Table 4.IV represents a global comparison 

between the static and the scalable architectures presented in this chapter, 

when 5 endmembers are extracted from a synthetic image (36×36 pixels). Then, 

Table 4.V collects the same information but in the case of extracting 14 

endmembers from the Cuprite image.  

Table 4.IV Figure of merit for a synthetic image (5 endmembers) 

Architecture NPE Total Resources Clock cycles  Efficiency 
Freq. 
(MHz) 

FM 

Original_MVCA 5 28,338 1,306 2.70 268.15 7.25 

SpectSA_MVCA 

1 28,007 6,514 0.548 244.29 1.34 

2 28,636 3,922 0.890 244.29 2.18 

3 28,756 2,625 1.32 244.29 3.24 

4 29,132 2,625 1.31 244.29 3.19 

5 29,509 1,330 2.55 244.29 6.22 

PixelSA_MVCA 

1 25,910 6,501 5.94 243.15 1.44 

2 26,532 3,262 1.16 243.15 2.81 

3 27,208 2,183 1.68 243.15 4.09 

4 27,762 1,644 2.19 243.15 5.33 

5 28,314 1,321 2.67 243.15 6.50 

According to the Efficiency definition, the higher values of efficiency the 

better. Actually, this means lower numbers of resources (slice registers + slice 

LUTs) and clock cycles for extracting one endmember. In the case of the FM, it 

follows the same criterion. That is, the FM is better when it reaches higher val-

ues. This issue responds to the fact that it is interesting high clock frequencies.  

With these considerations, and after analyzing the data shown in Table 

4.IV, the Original_MVCA is the most efficient and the architecture with higher 

figure of merit, followed by the PixelSA_MVCA and then by the 

SpectSA_MVCA.  
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Table 4.V Figure of merit for Cuprite hyperspectral image (14 endmembers) 

Architecture NPE Total Resources Clock cycles Efficiency 
Freq. 
(MHz) 

FM 

Original_MVCA 14 62,188 47,781 3.37E-2 268.15 9.02 E-2 

SpectSA_MVCA 

1 62,807 668,536 2.38E-3 244.29 0.58 E-2 

3 63,361 238,786 6.61E-2 244.29 1.61 E-2 

6 64,269 143,286 1.09E-2 244.29 2.65 E-2 

9 65,016 95,536 1.61E-2 244.29 3.93 E-2 

11 65,532 95,536 1.60E-2 244.29 3.90 E-2 

13 66,049 95,536 1.58E-2 244.29 3.87 E-2 

14 66,344 47,786 3.15E-2 244.29 7.71 E-2 

PixelSA_MVCA 

1 60,242 668,521 2.48E-3 243.15 0.60 E-2 

3 61,512 222,860 7.29E-3 243.15 1.77 E-2 

6 63,382 111,450 1.42E-2 243.15 3.44 E-2 

9 68,429 74,309 2.06E-2 243.15 5.00 E-2 

11 66,745 60,804 2.46E-2 243.15 5.99 E-2 

13 68,011 51,456 2.86E-2 243.15 6.95 E-2 

14 67,620 47,784 3.09E-2 243.15 7.53 E-2 

When the Cuprite image is processed, the FM is the same for both scalable 

architectures in those cases in which the number of PEs varies from 1 to p/2, 

and when the number of PEs is equal to the number of PEs. In the rest of the 

scenarios (
 

 
     ), the FM keeps constant in the case of the SpectSA-

_MVCA architecture, whereas the PixelSA_MVCA enhances its FM.  

Considering all these results, the Original_MVCA architecture is the most 

appropriated solution in the case of having enough resources and running in a 

static scenario, in which the number of endmembers to extract remains con-

stant. However, in case of the number of resources is a critical factor, the scala-

ble architectures show up as better candidates. Furthermore, when the envi-

ronmental conditions might vary, it is more interesting and efficient moving 

toward the PixelSA_MVCA approach, since it offers a higher range of scalability 

levels where the number of PE might be adjusted between 1 and the number of 

endmembers to extract.  

Finally, it is worth to mention that as the AVIRIS sensor is able to collect 

512 hyperspectral pixels in 8.3 ms [GRE+98]. Hence, it might be concluded that 

the three architectures are suitable for real time hyperspectral endmember 

extraction systems.  
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4.6 CONCLUSIONS AND FURTHER RESEARCH 

In this chapter, two scalable FPGA-based architectures have been present-

ed as part of the linear spectral unmixing processing chain devoted to analyze 

hyperspectral images. The architectures are based on the MVCA algorithm, 

which extracts the endmembers of a specific hyperspectral image. The two scal-

able approaches have been synthesized onto a XC5VSX95T FPGA from Xilinx. 

Both cases result in a suitable solution for real time applications according to 

the acquisition times of the NASA’s AVIRIS sensor. Furthermore, the exploitation 

of the scalability feature within these solutions introduces several strengths to 

the system, such as modularity (which increases the reusability of all the mod-

ules), flexibility (which facilitates changing the overall design configuration easi-

ly), and adaptability (which permits adjusting the architectural performance to 

different requirements). 
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5 Dynamic Resource Manager 

 

The design and development of dynamic and partial reconfigurable FPGA-

based embedded systems is almost mandatory when dealing with high perfor-

mance computing applications under changeable environments. Unfortunately, 

the management of the reconfiguration process in context-aware embedded 

SoCs is a complex task. In this sense, this chapter proposes a control and man-

agement element responsible for scheduling and ensuring a successful reconfig-

urability under these scenarios. 

5 hapter C 
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5.1 OUTLINE 

A costly reconfiguration process and the lack of a reliable management 

supports have prevented a broader use of the FPGAs. In order to contribute to 

solve these issues, in this chapter a hardware/software dynamic resource man-

agement system is proposed. This solution combines scheduling and placement 

tasks, providing a complete management flow for supporting dynamically recon-

figurable hardware designs. One of the advantages of the proposed model is the 

capability for running its scheduling and placement tasks in different nodes, as 

part of a distributed network. The results of our experiments demonstrate that 

our placement policy, specially designed for reconfigurable systems, achieves 

good results in terms of reusability and performance, compared to other man-

agement approaches. 

5.2 EXPOSING THE PROBLEM 

In the recent years, the field of embedded Systems-on-Chip (SoCs) has be-

come more demanding and complex. This fact implies improving parameters 

such as the time-to-market, cost, power consumption, performance and flexibil-

ity. As a clear example, high performance computing applications require more 

powerful and faster devices in order to fulfill with real time constraints. These 

characteristics have to be combined together with reduced silicon areas, high 

reusability of the designs, but also a high efficiency of the resources available in 

the system. Real time performance limitations might be mitigated, however, by 

taking advantage of the integrated programmable logic of the FPGAs. In this 

sense, modern FPGAs are gaining wider popularity over GPPs and GPUs [TB10] 

for implementing applications that can benefit from parallelism, due to their 

well-balanced tradeoff between flexibility and performance. These devices offer 

the benefits of hardware determinism and reliability without the drawbacks of 

ASICs, such as cost and rigidity. With the explosion of embedded devices in the 

past few decades, many improvements have been made in both the hardware 

components and software tools. Despite this innovation and growth, traditional 

embedded system design approaches have evolved slowly, since there is a gap 

that needs to be filled. Given the increasingly rapid spread of new standards and 
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protocols as well as the increasing pressure on designers and developers to de-

liver their products faster and earlier, embedded-system design is due for a 

disruptive paradigm change. Additionally, the property of being configurable, 

allowing for loading new configurations and redefining the connectivity in the 

FPGA fabric, makes possible for designers including future proof designs. More-

over, this feature permits more robust updates and customizations without 

requiring any substantial hardware modifications in a post-fabric stage. The use 

of SoC FPGAs for real time applications provides not only integration benefits 

but also the ability to scale performance as needed. 

The capability of some FPGAs to support dynamic reconfiguration [LF09] al-

lows swapping different hardware functions onto the FPGA at run time, while 

the rest of the system remains operating normally, without being interrupted. 

This fact facilitates the adaptation of the FPGA to different requirements at run 

time, making it possible to keep the overall performance mostly stable all the 

time, or adapting the behavior to more restrictive or relaxed specifications 

when the system operates in hazardous and uncontrolled environments. 

Unfortunately, there is still too much research work to do in embedded 

systems designs before high performance computing applications can leverage 

the benefits of this new paradigm. Thus, the complexity of managing dynamical-

ly reconfigurable resources is a hot spot, since it creates a significant barrier-to-

spread the use of the FPGAs into the market. The solution goes through design-

ing an intelligent mechanism able to manage the reconfiguration process but 

increasing hardware reusability, saving power and meeting timing constraints. 

Due to the fact that the reconfiguration management is not a trivial challenge, 

researchers tend to address the problem by considering scheduling and place-

ment as separated issues. The former is responsible for analyzing, organizing 

and controlling what, how and where the reconfigurable tasks run. The latter 

carries out the physical implementation of those reconfigurable tasks into the 

reconfigurable region. The combination of both kinds of solutions may help to 

alleviate and overcome the lack of dynamically reconfigurable SoCs manage-

ment.  
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In this chapter a Dynamic Resource Manager (DRM) system is proposed. It 

provides a complete flow of scheduling and placement tasks for FPGA-based 

embedded SoCs exposed to environmental variations. Two main features char-

acterize this solution. The first one is regarding its hierarchical structure, which 

provides a device independent hardware reconfigurability service and, at the 

same time, permits uncoupling the scheduling and management tasks as inde-

pendent but complementary elements of the same DRM. The second one is its 

capability for managing different designs by offering a flexible 2D structure of 

the reconfigurable region. 

5.3 STATE-OF-THE-ART ON RECONFIGURATION MANAGEMENT 

Modern reconfigurable devices such as FPGAs can be reconfigured at run 

time, and some of them can be even dynamically partially reconfigured. While 

flexibility opens a window to new paradigms on the reconfigurable computing 

field, it also introduces new challenges such as reconfiguration management 

and the efficient reusability of the available reconfigurable resources. Thus, 

management issues have become a priority for researchers in order to facilitate 

the development of dynamically reconfigurable embedded systems. In this sec-

tion, some representative existing approaches published during the last years 

are reviewed. Many of these research works circumscribe scheduling issues to 

the physical management of reconfigurable resources. As an example, 

DreamSim [NAO+12] is a simulation framework for distributed systems in which 

all the nodes of the network might incorporate partial reconfiguration. The 

strength of this approach is its capability for defining customized task scheduling 

policies. However, they are always specified as part of the simulator. The weak-

ness of this solution is the fact that it has been conceived for testing purposes. 

Therefore, no concrete design has been presented. In addition, the proposed 

simulations have not been tested with real workloads and realistic scenarios yet. 

Moving toward running solutions, the approach introduced in [AAS12] 

swaps the software (SW) and the hardware (HW) version of the same task at run 

time. This fact increases system flexibility, since a HW task might be swapped 

for its SW version, or vice versa, depending on the environmental demands. The 



Dynamic Resource Manager 5 
  

 

 
131 

  

 

basis of this approach lies on assigning three different states to the partial re-

configurable regions: free, ready or busy. The disadvantage of this solution is 

the fact that it behaves according to a data flow graph defined at compilation 

time. As a consequence, the system cannot be adapted to an uncontrolled sce-

nario. As an alternative, [CRG+11] proposes a HW scheduler for managing re-

configurable systems at run time, based on DAGs (Directed Acyclic Graphs). The 

authors understand the reconfigurable region as a set of independent reconfig-

urable units (RU), without any relationship between them. These RUs might 

operate simultaneously, providing a multi-tasking environment. However, this 

idea of separated RUs might limit the number of solutions since it forces the 

design of the RUs to the worst reconfigurable module size that can be hosted. 

On the other hand, despite the fact that the authors evaluated their solution 

with several experiments, they do not provide the mechanism responsible for 

manipulating the reconfigurable bitstreams. 

[JG11] proposes a framework for managing partial reconfiguration, in mul-

ti-application SoCs, named VAPRES. This framework introduces a dynamic re-

source manager which performs both scheduling and placement tasks. The de-

fined scheduling algorithm follows an offline methodology, since the scheduler 

behaves according to a present and well-known data flow. This fact might limit 

its usability under variable environments. Other approaches, such as [KBR+11] 

and [CRS+11], propose a simulation framework and an automatic design flow 

for DRMs. In both cases, the designed systems are flexible enough for specifying 

the scheduling policies and achieving solutions independent from the architec-

ture description. Authors in [KBR+11] provide a simulator for evaluating dynam-

ic reconfiguration scenarios by using the SystemC language. Then [CRS+11] cre-

ates a DRM starting from a high level description application. As it can be appre-

ciated here, no solution offers a general DRM solution for multitasking reconfig-

urable SoCs. On the contrary, they are application oriented, in the sense that 

they have to describe the applications prior to the development of the DRM. 
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5.4 A NEW DYNAMIC RECONFIGURABILITY PARADIGM FOR EMBED-

DED SYSTEMS 

Emerging applications are supposed to respond according to the environ-

ment and the user needs. Context-awareness implies that systems and applica-

tions integrate intelligence in a seamless way. That means they should include 

both, hardware and software mechanisms to reason and infer the correct sys-

tem behaviour. New methodologies, strategies and platforms to support and 

manage self-adaptation and intelligent response should have to be devised. 

Dynamic reconfiguration has been during years a promising mechanism intend-

ed to provide systems with powerful features such as adaptability, self-healing, 

dynamic deployment, etc. Unfortunately, current design and management pro-

cedures still obligate the designer to develop detailed and cumbersome low-

level tasks to accomplish such desirable characteristics. Overcoming challenges 

of this magnitude supposes a complex concern. In this sense, one of the main 

goals of this work is to fill the gap between the traditional conception of the 

dynamic reconfigurability and more complex working scenarios, in which is pos-

sible that several designs compete for resources at run-time within the same 

FPGA. In addition, the increment of the development of embedded systems and 

the high restrictive demands suggested by the users (in terms of adaptability, 

power savings, costs, etc.) open the window to a new range of flexible and 

complex solutions, in which the scalability and the evolvable features of the 

dynamically reconfigurable designs are the main characters. These changes have 

to be orchestrated by an entity, as part of the embedded system, capable of 

attending the reconfiguration request, and acting in consequence in order to 

provide a successful response. 

In addition, the fact that many solutions separate the scheduling and man-

agement tasks independently makes the integration of both kinds of solutions 

together as part of the same embedded system difficult. Furthermore, many of 

them do not consider running under unpredicted environments, and conse-

quently, they are not allowed to adapt the behavior or performance of embed-

ded systems under dynamic scenarios. In other order of things, any of the ap-
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proaches reviewed within the state-of-the-art consider managing scalable 

and/or evolvable hardware designs. 

In this way, the proposed DRM for FPGA-based reconfigurable embedded 

systems, focused on covering weaknesses of traditional dynamically reconfigu-

rable systems, has been founded on several restrictions and basic specifications 

that constrain the variations of the considered working scenarios and provide a 

simple but efficient solution to the DPR management. 

5.4.1 Designs specifications imposed by the DRM 

The proposed dynamic resource manager has to be able to provide a suc-

cessful hardware reconfiguration process on an FPGA. However, in order to 

accomplish with this responsibility, the reconfigurable designs have to fulfill the 

following specifications: flexibility, modularity, scalability, reusability and reallo-

cation.  

5.4.1.1 Flexibility 

Partial reconfiguration can be used for different types of designs. The most 

significant ones are modular and evolvable designs. In the former case, all the 

modules are indeed designed to share reconfigurable areas. However, evolvable 

designs tend to use the reconfigurable resources on-demand according to the 

evolution of the system, without redesigning the whole system. From the man-

aging point of view, these two design methodologies differ in the scheduling 

strategies that they might use. In most of the cases, partial reconfiguration 

scheduling of a modular design might be planned in advance, by means of ex-

ploring diverse off-line scheduling strategies and considering a well-defined 

layout of reconfigurable regions, specifically defined for the reconfigurable 

modules according to their size and interfaces. In the case of modular designs, 

several granularity levels of area partitioning might be defined. The layout in 

this case is fixed and the shape and placement of areas depends on the modules 

that they contain. These modules can be swapped in and out or just can be 

placed in the corresponding area they have reserved. The communication infra-
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structure between areas depends on the data path and the relationship be-

tween implemented modules, and usually forms a rigid system. 

Nevertheless, in an evolvable design any free area may be used for placing 

new modules or hardware tasks that were defined after the deployment of the 

system. These reconfigurable areas are constantly released in response to an 

evolution of the initial system. This behavior requires more flexible scheduling 

solutions (on-line scheduling strategies). For evolvable designs, and also in order 

to obtain more flexibility, a 2D mesh configuration with predefined communica-

tion channels can be used for the reconfigurable region layout. Although a pre-

defined communication channel implies a non-flexible structure, flexibility is 

obtained by the fact that this structure allows to place a module anywhere. This 

approach implies that all components should have the same interface that 

might be obtained with some kind of wrappers and therefore enabling the mo-

bility of components over different areas. In this work we define a set of recon-

figurable areas in a 2D mesh approach following this strategy. This 2D mesh 

approach is also extended with the two levels of granularity of macro and micro 

areas approach valid for evolvable designs. In addition, the system might vary its 

behavior by loading new configurations at run-time, or it also might vary the 

performance of a determined functionality. 

5.4.1.2 Modularity 

This feature should be considered at system but also at design structure. 

Regarding the system structure, the FPGA has two well-differentiated regions: 

the static and the reconfigurable ones. The former contains all those parts of 

the architecture that never change, whereas the reconfigurable region is formed 

by a bunch of areas in which the reconfigurable modules might be placed. At the 

design structure, the modularity facilitates the separation of tasks in different 

units. Thus, every hardware design is divided into a set of functional modules, 

where some of them might remain unchanged during its execution, while others 

modules might be swapped or changed at run time. In the end, this characteris-

tic improves the reusability of the designs. 
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5.4.1.3 Scalability 

Whether a module has the particularity of being scalable, this feature must 

be annotated as part of the characterization, and it should include also the max-

imum size of the array (one dimensional or 2-dimensional). It is worth recalling 

that all the instances belonging to the same scalable module must be placed in 

contiguous areas within the reconfigurable region in order to keep a regular 1D 

or 2D matrix structure.  

5.4.1.4 Reusability 

Once a module finishes or stops its execution, it remains allocated on-chip 

ready to be re-executed until a new module occupies the space. This criterion 

allows maximizing the reusability of the available resources. 

5.4.1.5 Reallocation 

A reconfigurable module might be moved to other reconfigurable regions, 

or to other areas within the same RR, without any inconvenience. This is possi-

ble when the number of resources of the new allocation is coincident to those 

required by the module, but also the organization of those resources has to 

follow the same pattern that the demanded by the module through its bit-

stream. 

These characteristics might be understood as different reconfigurability 

cases, such as Figure 5.1 shows. In order to simplify the solution, in the begin-

ning this work has considered only one reconfigurable region (RR) in the FPGA. 

However, along this work the RR is understood as a flexible structure composed 

by small reconfigurable areas that might be joined together in order to allocate 

bigger reconfigurable modules. Therefore, the RR may be seen as a 2-

dimensional array of reconfigurable areas. 
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Figure 5.1 Desirable characteristics for dynamic and partial reconfigurable designs 

5.4.2 Scheduling and management challenges 

Some system and/or environmental fluctuations could influence on the 

modules’ disposition on the reconfigurable region, in order to adapt the behav-

ior and/or performance of the FPGA to those variations. But first of all, it is im-

portant to highlight that a reconfigurable module is a component that has been 

designed for being implemented in reconfigurable areas. Each module is associ-

ated with its corresponding configuration bitstream and an univocal identifier. If 

a hardware copy (replica) of a module is implemented as part of the reconfigu-

rable region, then it is considered as an instance of the module. Each instance 

has also its corresponding identifier (ID). Therefore, several instances of the 

same module may coexist in hardware simultaneously, but all of them having 

different IDs. These replicas of a module might cooperate among them, forming 

arrays of elements, with the aim of sharing the workload and accelerating the 

execution. It is also possible that these replicas perform their corresponding 

functionalities separately independently to each other. 

With all these considerations, there exist three main circumstances that 

might occur along the execution of the system. 
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1. There is enough space in the RR to achieve a successful reconfiguration. As 

Figure 5.2 shows, this is the easiest case to manage since the reconfigura-

ble module might be directly allocated, without executing any previous op-

eration in the RR. Thus, the instantiation of the module just requires the 

specification of the area where it has to be placed. 

 
Figure 5.2 Enough space in the RR for reconfiguring the system 

2. There are enough resources, but not enough space in the RR for reconfigur-

ing the system. The difference between this case and the previous one is 

based on the fact that the instantiated modules are distributed all over the 

RR, keeping idle resources spread through the region. In this circumstance, 

the amount of idle resources would be enough for placing the requested 

instance whether all of them were concentrated together. Like Figure 5.3 

depicts, in case of instantiating Module_2 in the R.R. it would be necessary 

to reallocate some of the other modules already instantiated. 
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Figure 5.3 Enough resources but not space in the RR for reconfiguring the system 

3. There is neither space nor resources in the RR for reconfiguring the system. 

In case there is not space, and the number of resources is not sufficient to 

contain the reconfigurable module requested by the system, there are two 

ways to proceed. The easiest one would be doing nothing. In other words, 

do not permit or do not attend to the reconfiguration request. However, 

this would be an inappropriate behavior in the case of the reconfigurable 

module was important. As an alternative, it would be interesting to provide 

a solution able to evaluate the importance of the reconfiguration request 

compared to the modules already instantiated in the RR. Thus, whether the 

reconfiguration request has a higher priority than some of the modules 

placed in the RR, then that (or those) modules have to be removed and let 

space to the incoming reconfigurable module. This context is detailed in 

Figure 5.4. 

Finally, it is important to consider the case in which the incoming module 

has lower priority than all of the modules instantiated in the R.R. Under this 

situation the reconfiguration request might not be attended until some of the 

running modules finish their execution. 
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Figure 5.4 There is neither space nor resources in the RR for reconfiguring the system 

5.5 PROPOSED SOLUTION: THE DYNAMIC RESOURCE MANAGER 

The scheduling of the reconfiguration process is not a simple task. It in-

cludes the evaluation of free resources, the decision about which of the already 

instantiated components can be replaced by another one, the control of timing 

and latency of the reconfiguration process, or the mobility of components with-

in the reconfigurable region, just to name a few of the aspects that should be 

considered to perform an efficient scheduling of the reconfiguration process. 

In dynamically reconfigurable systems the scheduler and the placer tend to 

be so intimately related to each other that most of the time it is usually hard to 

find clear boundaries between them. However, this work proposes a Dynamic 

Resource Manager (DRM) structured in layers, where the scheduler and the 

placer are perfectly differentiated according to their functionality and imple-

mentation. The objective of the DRM is to provide a set of services to perform 

an efficient scheduling and control of the sequence and processes related to the 

partial reconfiguration of FPGAs. 

5.5.1 Overview 

The proposed DRM has been defined by means of a hierarchical structure, 

based on two main levels. The top-layer is a software Scheduler in charge of the 

evaluation of the most efficient way to perform a partial reconfiguration re-
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quested by the application. At the intermediate layer, the Reconfiguration En-

gine (RE) is the responsible for the dynamic placement (and deployment) of the 

reconfigurable components on the reconfigurable grid. Most of these tasks are 

completely device and technology dependent and, for that reason, the main 

purpose of the Reconfiguration Engine is to provide a common abstraction, so 

that the dynamic reconfiguration of the components can be encapsulated as a 

transparent service to the upper layers. 

Another contribution of this work is that the proposed DRM supports the 

scheduling and reconfiguration of scalable designs by means of replicating or 

removing multiple instances of the same module.  

The proposed DRM system is based on a hardware/software co-design that 

follows the structure depicted in Figure 5.5. It supports services to dynamically 

configuring, controlling and monitoring reconfigurable modules. Even more, the 

DRM can identify common hardware modules and cache their partial bitstreams 

for later reuse by another application reducing in that way the reconfiguration 

time overhead. 

As Figure 5.5 shows, the software part of the system is composed by a mi-

croprocessor, in which sequential software tasks and also the Scheduler are 

executed. The other layers, (the hardware part of the embedded system), dif-

ferentiates the static and the reconfigurable regions of the FPGA. The static 

region implements the Reconfiguration Engine, and also those modules that 

remain without changes during the system execution. 
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Figure 5.5 Dynamic Resource Manager structure 

5.5.2 Detailed work 

Along this subsection the proposed DRM is explained in detail, following its 

hierarchical structure from the top to the bottom; such that the Scheduler is 

introduced first. Then, the next layer, the bitstream manager referred as Recon-

figuration Engine, is presented. 

5.5.2.1 The Scheduler 

The proposed Scheduler makes use of the basis of on-line scheduling 

methodologies in order to determine what, where and how reconfigure a hard-
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ware module. The complexity of this entity lies on the fact that these decisions 

have to be made at run-time. Furthermore, the Scheduler respects some behav-

ioral strategies with the idea of keeping a balanced compromise between per-

formance and reconfiguration overhead. As a result, the Scheduler is able to 

orchestrate all the tasks related to the reconfiguration process in hardware by 

means of evaluating, analyzing, organizing and verifying the whole sequence of 

steps to ensure a successful reconfiguration. Seeking for simplicity, the behav-

ioral strategies have been separated into two categories: reconfiguration, and 

allocation policies. The former collection of strategies has a structural nature, 

since they fix the actuation procedure to the Scheduler when a reconfiguration 

request is received.  The allocation policies, on the other hand, are directly re-

lated to low-level tasks with the aim of maximizing the reusability of the logic 

resources, minimizing the utilization of the silicon area and reducing the recon-

figuration time as much as possible. 

5.5.2.1.1 Reconfigurable policies 

The Scheduler has been provided with several databases in which different 

information is accessible in order to make its decisions. Part of this information 

is loaded at design-time, since it is used for characterizing every module that 

might be reconfigured at run-time. Other information is loaded and stored by 

the Scheduler during the execution of the system. This run time data is updated 

every time that a new modification is included into the reconfiguration region. 

These databases will be explained more in detail in this section. 

In other order of things, the fact that the DRM has been conceived for 

adapting the behavior/performance of a system obligates to make decisions 

rapidly. This is a problem with a difficult solution when the DRM ignores how 

the environment is going to change, since there are many unknown parameters 

to be considered. This lack of a prior knowledge obligates the DRM to use on-

line strategies for the scheduler. The characteristic of these kinds of strategies is 

that there is not a pre-loaded sequence of configurations. Therefore, it is not 

possible to dispose a priori what, where and how a modification has to be per-

formed in the system. In these cases the system is responsible for deciding 
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when to adapt the RR, while the Scheduler determines where and how the re-

configuration request has to be carried out. Besides this is a dynamic process, 

the Scheduler structures its behavior into four stages, summarized in Figure 5.6. 

Figure 5.6 Main responsibilities of the Scheduler 

The first one is an evaluation stage, where the Scheduler ensures on one 

hand that the reconfiguration process makes sense and, on the other hand, that 

it might be executed properly by assessing the context and the available data. 

On a second stage, the Scheduler analyzes what to do in order to support the 

reconfiguration demand, but also how to proceed according to the bundle of 

disposable functionalities implemented on it. Once the action has been select-

ed, the Scheduler decomposes the task in smaller and simpler actions, whether 

it is necessary. Then, one by one it transmits the orders to the low-level manag-

er (the Reconfiguration Engine) to execute it physically on the Reconfigurable 

Region. This procedure is repeated until all the basic actions have been com-

pleted. If any error occurs during the reconfiguration process, the Scheduler 

identifies what originates the fault and tries to solve it; otherwise the reconfigu-

ration process fails and the error is reported to the rest of the system, being the 

previous context recovered. Finally, the last stage is to update all the corre-

sponding information related to the executed reconfiguration. The whole pro-

cess is represented in Figure 5.7. 

As part of the novelties of the proposed DRM, it is important to highlight 

its capability for combining the traditional dynamically reconfigurability man-
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agement together with the scalability of modules. Actually, these improvements 

are transparent to the Reconfiguration Engine, since the Scheduler is the ele-

ment within the DRM who manages these cases, following the structure shown 

in Figure 5.7. Furthermore, in the case of receiving more than one reconfigura-

tion request simultaneously, the Scheduler attends first of all the one with high-

er priority. This priority might be established by two ways. The direct method is 

assigning to every reconfigurable module a manual priority at design time. This 

value will be dependent to the environment and the device in which the system 

is going to run. The second way for discarding one request against the other is 

determining the most critical one according to several design and run-time fac-

tors, by means of using a cost function that considers all these aspects. 

5.5.2.2 Allocation strategies 

One of the most complex tasks of the Scheduler is inserting a new module, 

due to the dynamism of the RR in which many situations might occur along the 

time. The easiest case, as an exception, is the scenario in which there is enough 

space in the RR (because the region is empty, or there is little number of mod-

ules) for inserting a copy (instance) of the requested module. Here the behavior 

is simple, easy and fast, since the DRM only has to load the corresponding bit-

stream. Under other circumstances, the process is more complex and might 

require several steps. 

Therefore, the Scheduler has to decide where to instantiate the module ef-

ficiently. For accomplishing with this goal, it evaluates several strategies in an 

attempt for reusing the logic resources, but also reducing the reconfiguration 

time as much as possible. In this sense, the Scheduler has to consider whether 

there is any idle module (of the same type that the requested one) that might 

be reused by reallocating it and restarting it. 

Another alternative is the case where there is not any copy of the module 

that has been loaded previously in the RR stored in cache; or even if the incom-

ing module has a higher priority than any other of the modules already instanti-

ated in the RR. With these considerations, and using the same terminology than 
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[NAO+12], the Scheduler behaves according to the following strategies. First of 

all, the Scheduler tries to reuse any idle instance of the current module already 

placed in the RR. This strategy is known as Optional Closest-Match Strategy. This 

behavior is independent from the fact that there is enough space in the RR, 

since it is faster to reactivate or reallocate a configuration bitstream already 

loaded than accessing to the external configuration memory and recompose the 

bitstream. In the case the first strategy fails because all the instances are busy, 

the second strategy, known as Sufficient-Area Priority Strategy, is followed. The 

Scheduler looks for a recent copy of the requested module in cache, otherwise 

it instantiates a new copy in the RR but only if there is enough space in the RR. 

When all these strategies are not enough for achieving the reconfiguration, the 

Exact-Match Priority Strategy is used. That means there are neither idle instanc-

es nor available areas in the RR. At this point, the Scheduler checks in the RR 

instances if there are candidates to be removed in favour to the incoming one. 

The criterion for this decision is based on the priority of every module. Thus, an 

instance with less priority will be stopped and replaced by the requested one. 

At this point it is important to highlight the wide flexibility of the proposed 

DRM compared to other solutions of the state-of-the-art, since it is capable of 

managing reconfigurable modules with different sizes that might be placed onto 

the same areas of the RR. Therefore, the Scheduler has to consider the size of 

every reconfigurable module before executing any of the aforementioned tasks. 

Regarding the scalability feature of some modules, the Scheduler imposes 

certain restrictions to the increment of the number of their replicas. This growth 

always has to conform an array structure, that might be one or two-

dimensional. In addition, all the replicas have to be placed together one to an-

other. Moreover, in the case that the required expansion of the array cannot be 

completed due to the lack of space, the Scheduler always tries to select the 

configuration that includes a higher number of replicas, depending on the RR 

state. 
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Figure 5.7 Reconfiguration request flow 
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5.5.2.3 Main functionalities 

The DRM receives some instructions related to the reconfigurability 

through the Scheduler, which interprets those general instructions and operates 

in consequence by simplifying those ones into basic functions. Therefore, the 

Scheduler performs all the tasks concerning to the organization, analysis, con-

trolling and updating of all the information related to the hardware reconfigu-

rability. More specifically, it is focused on the evolution of the reconfigurable 

region. Furthermore, it also informs to the bottom layer (RE) on how to pro-

ceed, depending on the necessities of adaptation of the system. With these 

considerations, and attending to the previous behavioral strategies, the Sched-

uler provides a collection of functions, separated in top-level and basic functions 

depending on the abstraction level. 

5.5.2.3.1 Top-level functions 

These functions are the communication link between the rest of the sys-

tem and the DRM. When a reconfiguration request is received by the Scheduler, 

the system also specifies its needs, in terms of which adjustment is required and 

how. Despite the fact that this is a desirable feature of the Scheduler, the first 

approach is still limited in intelligence. Accordingly, the system determines 

which reconfigurable module has to be handled, by using a univocal identifier 

(ID_MODULE), but also what kind of task is needed. The number of functions is 

limited to the following ones: register and delete a module, insert an instance, 

expand an array or reduce an array. The last two functions correspond to the 

insertion and removal of replicas of a module, and although they would be also 

implemented using the insert and delete functions, this differentiation acceler-

ates the reconfiguration process, and reduces the number of interruptions from 

the system to the DRM. 

5.5.2.3.2 Basic functions 

The Scheduler simplifies the previous functions by using the basic functions 

described ahead: 
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Create: This function creates a new instance of a reconfigurable module 

onto a specific area. At this point, the Scheduler decides the area where the 

instance will be placed into the RR. The election of the final placement de-

pends on the list of predefined areas in which the specific module might be 

instantiated; the free or idle reconfigurable areas currently available in the 

RR; or the priority of the incoming reconfigurable module compared to the 

currently running ones in the RR. 

Register / Delete: These functions are in charge of including or removing a 

module to the list of reconfigurable modules, respectively. Two possible 

situations are distinguished. On one hand, the reconfigurable module has 

to be added to a preloaded design; on the other hand, the reconfigurable 

module is a new design in its own. The main difference between both is the 

fact that in the former case it is necessary to know the identifier of the de-

sign that it belongs to. However, in the latter case, a new design identifier is 

automatically assigned. 

Activate /Stop: These procedures modify the execution status of a recon-

figurable instance. The former (Activate) function starts the execution of a 

reconfigurable module, whereas the Stop function pauses or concludes the 

running activity of a module. 

Reconfigure: This procedure is responsible for the reuse of instances that 

were previously used. 

Procedures such as Register and Delete are always executed without being 

combined with any other procedure. On the other side, the rest of procedures 

might be chained depending on the reconfiguration request, such as Figure 8 

depicts. 

When an array of modules is scaled, the workflow is the same that the one 

shown in Figure 5.8, except by the fact that first of all the reconfigurable region 

is checked in order to ensure whether there are enough available areas, or the 

current instantiated modules have lower priority than the scalable module. If 
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one or both conditions are fulfilled, the scalability is executed. The growth of an 

array might be executed in columns, rows or in both directions. 

Complementary to the methodologies and strategies mentioned above, 

the Scheduler could not accomplish with the reconfigurability without accessing 

to some information related to the system. Some of these data are collected at 

design-time, before the system starts running. However, there is another set of 

data that must be stored and loaded at run-time, since they are obeyed to the 

variations of the reconfigurable region. With the objective of simplifying the 

terminology, every chain of data is named as library. Thus, the Scheduler differ-

entiates three types of libraries: library of modules, instances and reconfigura-

ble region (Figure 5.9). 

1. Library of modules: This chain of data stores information of every reconfig-

urable module that might be instantiated in the RR. Therefore, every ele-

ment of the library characterizes univocally a module through its identifier 

(ID_MODULE), number of hardware resources (CLBS, DSPS and BRAMS), priority 

level, how scalable it is (indicating the maximum number of rows and col-

umns it supports), and the memory address where its partial bitstream is 

stored. Despite the fact that most of the modules are characterized at de-

sign time, the Scheduler is flexible enough for allowing to update some reg-

isters of a module at run time. 

2. Library of instances: This one is created as soon as there is any activity in 

the RR, since it is responsible for registering what instances are available in 

the system. Of course, this information has to be updated all the time, in 

order to provide an accurate and efficient control of the status of the sys-

tem. Every instance has associated certain kind of information that allows 

to know which module it is, and whether it is currently running, idle, or 

whether it has been removed from the RR (although it is still “alive” in 

cache). In the case that the instance belongs to a scalable structure, this in-

formation is also annotated here. Actually, there are as many libraries of 

instances as modules are placed in the RR. This fact is possible because one 

module might have several copies of it in the RR. As a consequence, it is 
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necessary to identify every one of those replicas univocally by using an 

identifier (ID_INSTANCE), even when all of those copies belong to the same 

array.  

3. Library of reconfigurable areas: This bundle of information virtualizes the 

reconfigurable region, in order to adapt its state during the execution of 

the system. In this sense, this library contains certain information preload-

ed at design time, but other one collected at run time. Regarding the de-

sign time, it is mandatory that the Scheduler knows in advance how many 

reconfigurable regions are there in the system, before the system starts 

running, but also how they are composed in terms of the number of areas, 

how those areas are distributed and the final size of the RR. On the other 

hand, the status of every reconfigurable area is updated at run time.  
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Figure 5.8 Behavioral flow of the Scheduler in order to include a reconfigurable module in the RR 
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Figure 5.9 Data structures of the Scheduler 
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The Scheduler prevents the system from failures of the physical implemen-

tation during the reconfiguration process, but also from incomplete reconfigura-

tions. Thus, the ID_ERROR signal notifies what has happened during the reconfig-

urability. In the case that a reconfiguration request cannot be attended correct-

ly or fails, the Scheduler recovers the existing context before the reconfiguration 

request. In addition, the Scheduler gives back to the system certain information 

regarding the evolution of the reconfiguration process, which allows to check 

the process, step by step from the reconfiguration request to the end of the 

operations. Although, this information does not guarantee a correct behavior of 

the whole system, it has been implemented for debugging purposes. Moreover, 

all those modules that do not interfere to the current reconfiguration process 

are not interrupted and kept running. 

5.5.3 Reconfiguration Engine (RE) 

The execution of dynamic reconfigurations in FPGAs is typically solved us-

ing software approaches, where an embedded processor (such as the Micro-

blaze) is used to transfer the configuration partial bitstream to the configuration 

memory of the device to the silicon area. As an alternative, the placement layer 

presented in this paper relies on a specialized hardware component (the Recon-

figuration Engine - RE) to carry on with reconfiguration tasks directly related to 

the bitstream manipulation. This approach offers several advantages, such as it 

isolates the Scheduler from lower-level tasks and, consequently both elements 

(the Scheduler and the Reconfiguration Engine) might be independently re-

leased, while their interfaces remain the same. In addition, the RE design avoids 

requiring a processor for managing the reconfiguration process. 

More in detail, the Reconfiguration Engine offers a set of reconfiguration 

services through a simplified interface. Those services include bitstream trans-

ference, the start and stop of individual instances, status requests, and location 

and relocation of components. Another important aspect related to the pro-

posed Reconfiguration Engine is the way in which the reconfigurable region is 

managed. Traditionally, most of the proposals take a rigid coarse-grained ap-
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proach, where the number and location of reconfigurable areas are completely 

predefined at compile time. Under this scenario it is mandatory that any recon-

figurable component comply with certain restrictions, such as the location of 

the communication ports, size and shape factors. 

From the architecture point of view, the Reconfiguration Engine is com-

posed by two modules: the Reconfiguration Controller (rController) and the 

Factory. It also requires some kind of storage resources, such an external 

memory (Figure 5.5), although it is not part of the Reconfiguration Engine itself. 

5.5.3.1 Reconfiguration Controller 

The Reconfiguration Controller orchestrates the placement tasks of the re-

configuration process. It might be understood as the centralized control mecha-

nism of the Reconfiguration Engine. Therefore, it is the access point to the RE 

from the rest of the system. The communication with the rController is per-

formed through a set of messages that can be issued from a hardware compo-

nent, embedded software, or even remotely through an Ethernet or a serial link, 

among others. In addition, it includes an internal table that dynamically stores 

the state of the reconfigurable region: location of the instances, bitstream ref-

erences, and the execution status of the instances, or memory references for 

module persistence issues. Although, it seems that the Scheduler and the Re-

configuration Engine duplicate information, this fact has been implemented for 

security and controlling reasons, since thanks to this duplicity the DRM might 

detect an error faster. 

The rController receives the reconfiguration commands from the Scheduler 

and executes the corresponding operations. These operations range from start-

ing or stopping components to be evicted if necessary, saving the status of a 

reconfigurable component, and sending the reconfiguration request to the Fac-

tory. As it was mentioned in the previous subsection, every reconfiguration 

component has its univocal identifier (ID_MODULE) associated to a partial bit-

stream. Furthermore, every time a module is instantiated, the rController gen-

erates a new identifier (one per instance) (ID_INSTANCE). This identifier is used to 
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address the invocations to the corresponding module; i.e. a reconfigurable 

component filterA might be replicated several times generating in this way sev-

eral instances of it such as filterA_1; filterA_2 and filterA_3. 

5.5.3.2 Factory 

This component deals with the issues related to the transference and ma-

nipulation of bitstreams. As the name suggests, it is able to enable new recon-

figurable components by means of transferring the corresponding bitstream 

from the storage memory to the configuration memory of the device by using a 

dedicated bus. It takes the role of a specialized DMA controller. In the case of 

Xilinx FPGAs, for example, the Factory moves the data from a Native Part Inter-

face (NPI) interface memory to the corresponding Internal Configuration Access 

Port (ICAP) controller. 

The Factory is also able to manipulate the bitstream on the fly, which 

means allowing the relocation of that bitstream in different reconfigurable are-

as. To perform these tasks it is necessary to have all partial bitstreams, associat-

ed with every reconfigurable module, previously stored in memory. When the 

Factory receives orders, it takes the information of the specified module (bit-

stream) and the area to be placed (ID_AREA). Then, it modifies the corresponding 

partial bitstream and sends it to the RR through the ICAP. The Factory also sup-

plies the reconfigurable region layout of the system, which permits creating 

several instances of the same module. Furthermore, the communication with 

the Factory is asynchronous in order to avoid bus locking, and it takes a callback 

approach to indicate the completion or error of the operation. 

5.5.4 Characterization of the Reconfigurable Region 

At the bottom layer of the DRM, the reconfigurable region is configured as 

a grid of compassable reconfigurable areas. A minimum reconfigurable micro-

area unit is defined for the specific system, which can be used separately, or 

integrated into a larger reconfigurable macro-area at run-time. In this context, 

the DRM is able to manage this dynamic 2D area model of the FPGA, where the 

reconfigurable region is structured as a homogeneous grid in which several are-
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as might be coupled into bigger areas at run-time. This characteristic of aggluti-

nation makes the reconfigurable region more efficient since areas can be 

adapted to match with reconfigurable modules of different shapes and sizes. 

(Figure 5.10) As a consequence, over this mesh, bigger areas were defined 

grouping several of the original areas. These areas are joined together through 

their communication infrastructure, generating a hierarchical approach able to 

contain more resource demanding components. 

 
Figure 5.10 Possible evolution of the reconfigurable region (RR) at run time 
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cies, such as a serial design process that increases the overall design cycle, poor 

flexibility of the final embedded system, difficulties in verifying the entire sys-

tem due to the lack of a unified HW-SW representation and hence to incompat-

ibilities across the HW/SW boundaries.  

In order to combine the HW and SW integration, co-design methods 

emerge as an alternative beyond the traditional mechanisms. The main charac-

teristic of co-design methods is they accelerate the verification stage, allowing 

for simulating HW and/or SW units in early stages without waiting until their 

development stage is concluded. Another difference with respect to traditional 

design method is that co-design methods of hardware and software emphasized 

the parallelism and mutual feedback (Figure 5.12).  

 
Figure 5.11 Traditional method of embedded system design 
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co-design based on SystemC uses a uniform language to describe system func-

tionalities.  

 
Figure 5.12 Hardware-Software co-design process 
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and unexpected situations [Tei12]. With the apparition of FPGAs, the adjust-

ment of the system is not constrained to the running software, but also it is 

available through the adaptation of the reconfigurable hardware. Hence, online 

techniques for HW/SW co-design, in order to achieve a context-aware embed-

ded system optimization of the partitioning of hardware and software, are de-

sirable. 

With all these considerations, in order to provide a solution that fit with 

the management of dynamically reconfigurable systems, which contemplates 

scheduling aspects but also the procedure of the partial reconfigurability itself, 

it is necessary a framework capable of offering a HW/SW co-simulation. Fur-

thermore, this framework should be general enough for modelling the dynamic 

reconfigurability. In this sense, Arco research group [ARCO] has developed a 

SystemC framework, as part of the DREAMS project. This platform pursuits for 

combining the advantages of most of the co-design strategies (providing co-

simulation support, and facilitating the interfaces between the boundaries of 

HW and SW elements), but also being able to incorporate dynamically reconfig-

urable scenarios, together with their management. More in detail, system level 

HW/SW co-simulation is a way to give designers feedback on their designs. 

Then, the interfacing implementation domains offer different alternatives for 

communicating HW/SW in the form of cooperating circuits and software proce-

dures embedded in the implementation. The simulation platform is capable for 

allowing hardware/software co-design, but also combining the dynamic recon-

figurability on FPGAs together with its management. This simulation framework 

accelerates the embedded systems design development, since SW development 

can start immediately before the HW becomes available, preventing unneces-

sary design iterations, and allowing debugging and modifications in early stages 

of the process. Thus, modifications are immediately reflected and do not re-

quire recoding. 

Validating the viability of the DRM management’s functionalities goes 

through integrating it as part of a dynamically reconfigurable FPGA-based em-

bedded system. Considering the hierarchical nature of the proposed DRM, the 
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Scheduler will be run on the microprocessor, like any other software task, 

whereas the Reconfiguration Engine will be part of the hardware elements of 

the system. For all these reasons, this platform has been selected in order to 

validate the proposed DRM.  

5.6.1.1 A co-simulation platform based on SystemC  

The objective of this SystemC platform is to provide a support for model-

ling the DRM behavior (including the Scheduler and the Reconfiguration Engine) 

and the Dynamically Reconfigurable Region for any applications running on an 

FPGA. The overview of this simulation platform is shown in Figure 5.13.  

 
Figure 5.13 Co-simulation platform structure 
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that will be executed in a microprocessor (the Scheduler and the rest of soft-

ware tasks). Then, the middleware (HW Static Region) contains the Reconfigura-

tion Engine and all the static hardware blocks of the desired applications. Finally 

the bottom layer corresponds to the reconfigurable region, where the reconfig-

urable modules are simulated. However, the limitations of SystemC language 

obligates to represent the dynamic reconfigurability in a similar way than the 

dynamic and partial reconfiguration Xilinx’ pattern. That means, generating 

general units (named as Reconfigurable Units in Figure 5.13) where each one 

groups, as part of it, all the functionalities that might be activated on it along 

the time. Thus, regarding the communication, each reconfigurable unit has to 

be characterized for the worst possible case.  

One of the strengths of this framework is its generality. It permits charac-

terizing multiple FPGAs, and therefore simulating multiple situations, according 

to the application requirements. As a result, it might provide the basis for de-

termining HW/SW partitions in early stages in the development of an applica-

tion. 

This co-simulation environment is mainly focused on the timing modelling 

of the final platform, with the aim of providing an accurate response to the in-

put stimuli as an approximation to the real environment. In order to accomplish 

with these requirements, the co-simulation framework assumes that: 

 The DRM unit (scheduling and reconfigurable modules’ manipulation) 

will be responsible for controlling and managing the dynamic reconfig-

urability. 

 As part of the reconfigurable region, reconfigurable modules might be 

independent among them (being directly connected to the static re-

gion through the communication manager), or being communicated 

with other reconfigurable modules in order to generate more complex 

structures (simulating the same behavior than a scalable design). 

 Managing the connectivity between reconfigurable modules. 

 Parameterizing the reconfiguration time of all the reconfigurable mod-

ules. 
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 Simulating real time workload conditions. 

 Modifying the data flow at run-time. 

 Adaptability to unpredicted environments. 

 The communication interfaces between areas (the static and the re-

configurable one) will remain the same during the execution time. 

 The swapping task between reconfigurable modules is modelled as a 

functionality change in the reconfigurable unit. 

 The interconnection model has been generalized with the TLM stand-

ard. 

5.6.1.2 DRM interfaces 

The communication interfaces between the different levels of the DRM are 

carried out through a simple set of signals. The interface between the system 

and the Scheduler is similar to the one between the Scheduler and the Recon-

figuration Engine, since in both cases it is necessary to specify what to do and 

where. More in detail, Table 5.I contains all the signals involved in the transfer-

ences between the system and the Scheduler. 

Table 5.I Communication interfaces between the microprocessor and the Scheduler 

DRM inputs Description 

NEW_RECONF Reconfiguration flag request – interruption 

ID_RECONF Reconfiguration action identifier – what to do 

ID_MODULE Module identifier – over whom to act 

CONF_SIZE_ARRAY Desirable array dimension (this is for scalable designs) 

DRM outputs Description 
STATUS_RECONF Reconfiguration process status 

The system interrupts the DRM when a reconfiguration is requested by en-

abling NEW_RECONF signal. Then, ID_RECONF and ID_MODULE signals determine 

what the system demands and related to whom, respectively. An example 

would be the case in which the system needs to incorporate a new functionality; 

then it would indicate one of the top-level functions of the Scheduler, and the 

specific module it wants to include. The last input signal (CONF_SIZE_ARRAY) de-

termines the final size of the scalable module to modify, indicating the number 

of columns and rows. When the reconfiguration process has concluded, the 

DRM gives back information to the system about the result of the process by 
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using the signal STATUS_RECONF. Once the DRM receives a reconfiguration re-

quest, the Scheduler starts processing according to the strategies and method-

ologies described in the previous section. Thus, the Scheduler is responsible for 

sending specific instructions to the Reconfiguration Engine respecting the inter-

face structure shown in Table 5.II. 

Table 5.II Interfaces between the Scheduler and the Reconfiguration Engine 

RE inputs Description 
Method ID_TASK Identify the function to be performed 

Data  

ID_MODULE  
ID_INSTANCE  

ID_AREA 
BITSTREAMREF 

Identify which module will be used 

Identify which instance of the module will be used 

Identify which area will be manipulated 

Bitstream memory address 

Result  ID_ERROR Report status after the task has been executed 

The rController, as part of the Reconfiguration Engine, is the unit in charge 

of transferring information with the Scheduler, and then the Factory sends the 

bitstreams to the ICAP port, completing in this way the data flow of the system. 

The interface of the rController to the rest of the system is composed by three 

main signals (two inputs and one output). The inputs are Data and Method. 

These ones are directly related to the information shown in Table 5.II since the 

ID_TASK identifier corresponds to the Method signal, whereas the Data signal 

agglutinates the ID_MODULE, ID_INSTANCE, and the ID_AREA identifiers. More in 

detail, Data is a 16 bits wide signal whose value depends on the invoked Meth-

od. As for the output Return signal, this one is associated to the ID_ERROR or to 

the ID_INSTANCE identifiers, depending on the performed operation. Thus, all 

Methods return a value indicating that the task has been completed successfully 

or with errors. The rController registers the reconfigurable components infor-

mation in a couple of internal tables. 

5.6.1.3 Simulation benchmarking 

Once the whole platform has been characterized and the data interfaces 

fixed, it is time to load the SW Scheduler and verify its behavior under a simu-

lated real environment. This process is organized according to the following 

steps: 
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1. Configuring the reconfiguration time, and the execution time of all the 

functionalities, in order to model a real context.  

2. Initializing the data memories of the Scheduler for loading the recon-

figurable modules information. 

3. Data generation and data flow configuration in the platform. 

4. Sending reconfiguration requests (from Test block) to the Scheduler.  

5. The Scheduler organizes the reconfiguration process and interacts with 

the rest of the system through the rController.  

6. The Scheduler repeats the previous step until completing the reconfig-

uration process. 

A general structure of the developed benchmark is depicted in Figure 5.14.  

 
Figure 5.14 Benchmarking for testing the Scheduler behavior 

In this particular case, the Unit Under Test (UUT) corresponds to the pro-

posed Scheduler. Then, hardware elements of the embedded system (Reconfig-

uration Engine, reconfigurable modules and static elements of the application) 

are transparent to the UUT, and they are modelled and represented by the box 

named as FPGA functional model. 
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The behavior of DRM has been tested under different situations, in order 

to check the Scheduler’s decisions and its corresponding responses in cases in 

which the reconfiguration process might conclude successfully, but also in less 

favourable situations. Thus, moving from the easiest cases, in which there is 

enough space in the reconfigurable region for instantiating a new module, the 

testbenches recreate more complex situations by running one test after anoth-

er, like if the reconfigurable region was evolving along the time. In this sense, 

three main test groups are run: 

1. Tests related to simple reconfigurable modules. The most significant cases 

under study have been collected in Table 5.III. First column (Action) refers 

to the reconfiguration request demanded by the system. Second column 

(Description) explains the objective pursued by the reconfiguration, where-

as the last column (Basic function) describes the main task executed by the 

Scheduler in order to fulfill with the request. 

2. Tests related to scalable reconfigurable modules. Once the Scheduler fills 

its database with all the information related to the reconfigurable modules, 

this test (Table 5.IV) checks the behavior of the Scheduler when the main 

players of the reconfigurability are scalable modules. These scalable mod-

ules might conform one dimensional or two dimensional arrays. In the first 

case all the replicas of the module are placed one after another but always 

in one direction (horizontally or vertically). Otherwise the array might grow 

in rows and columns, but once again all the replicas of the module might be 

placed together, one after another. 

3. Tests related to scalable and no scalable modules. Actually, this group of 

tests combines situations previously tested and described in Table 5.III and 

Table 5.IV.  

Table 5.III Testbench with simple reconfigurable modules 

Test Description 
Action N Description Basic function 

Register 
module 

1 First registration of reconfigurable modules with different priorities Register 

2 Registration of an already registered module Update 
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Test Description 
Action N Description Basic function 

Insert 
instance 

3 

Insert module in the reconfigurable region and there is enough available areas 

3.1 
The Scheduler looks for reusing an idle instance 

in the desired area 
Activate 

3.2 
The Scheduler looks for reusing an instance that 

was previously used 
Reconfigure 

3.3 
The Scheduler looks for creating a new instance 

of the module 
Create 

4 

 
Insert a module in the reconfigurable region but there is not availa-
ble areas since there are other copies of the module already run-
ning 

ERROR_NO_SPACE 

5 

Insert a module in the reconfigurable region but there is not available area because there is 
another module already instantiated 

5.1 
Requested module has lower priority than the al-

ready instantiated 
ERROR_NO_SPACE 

5.2 
Requested module has higher priority than the 

already instantiated module 

5.2.1 Stop  

5.2.2 Create 

6 

Insert a module, which occupies more than one micro-area in the reconfigurable region, 
but those micro-areas are occupied by another modules 

6.1 
All the already instantiated modules have higher 

priority than the requested module 
ERROR_NO_SPACE 

6.2 
At least one of the already instantiated modules 

has higher priority than the requested module 
ERROR_NO_SPACE 

6.3 
All the already instantiated modules have lower 

priority than the requested module 

6.3.1 Stop 

6.3.2 Create 

Delete 
module 

7 

Remove reconfigurable modules from the system 

7.1 
There are not instances in the reconfigurable re-

gion 
Delete 

7.2 
There is, at least, one instance idle in the recon-

figurable region 
Delete 

7.3 
There is, at least, one instance running in the re-

configurable region 

7.3.1 Stop 

7.3.2 Delete 

Table 5.IV Testbench with scalable modules 

Test Description 
Action N Description Basic function 

Create an 
array 

1 
Create a new array in the reconfigurable region 3×3 from the 
scratch (there is not any instance in the reconfigurable region) 

Expand_array 

Reduce 
the array 

2 Decrease the size of the previous array from 3×3 to 1×2 Reduce_array 

Increase 
the array 

3 

Include new instances in the array from 1×2 to 4×5 Expand_array 

3.1 
Reusing some of the first instances created for 

the initial array (3×3) 
Activate 

3.2 
Introducing new instances until complete the re-

quested size (from 3×3 to 4×5) 
Create 

Create an 
array 

4 

Create a new array but some of the required areas are occupied 

4.1 
Requested scalable module has lower priority 

than the already instantiated modules. Then, the final array 
Insert_rows / 

Insert_columns 
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Test Description 
Action N Description Basic function 

will reach an intermediate size (growing in the direction that 
gets the highest number of instances) 

4.2 
Requested scalable module has higher priority 

than the already instantiated modules 

4.2.1 Stop 

4.2.2 
Expand 
array 

Reduce 
an array 

5 
Remove an array from the reconfigurable region (stop all the in-
stances of the array but not removing the scalable module from the 
system) 

Stop 

Delete 
module 

6 Remove a scalable module from the system 

 6.1 
There are not instances in the reconfigurable re-

gion 
Delete 

 6.2 
There is, at least one instance in the reconfigura-

ble region 

6.2.1 Stop 

6.2.2 Delete 

5.6.2 FPGA-based embedded system 

This section is focused on the implementation of a dynamically reconfigu-

rable application on FPGA Xilinx V5-LX100T, in which the reconfiguration pro-

cess is managed by the DRM according to the environmental requirements. In 

this case, as a simplification, the reconfiguration requests follow a battery of 

tests that specify to the DRM when and how to reconfigure the running applica-

tion. 

5.6.2.1 Dynamically scalable hyperspectral linear unmixing applica-

tion 

The start point is the architecture referred as PixelSA_MVCA, presented 

in Chapter 4. The exploitation of the dynamic reconfigurability requires modify-

ing the architecture in order to maximize the exploitation of characteristics like 

the flexibility, and the reallocation of reconfigurable modules. One of the main 

challenges is the placement and routing of the design on an FPGA, since the 

communication lines between modules and between the static and the recon-

figurable modules have to be fixed independently of the level of the scalability 

at run time. Furthermore, due to the connectivity lines within an FPGA vary 

notably between horizontal resources and vertical resources, the design-

er/developer should ensure the shape of the reconfigurable modules, and also 

minimize the number of data wires. These are the main aspects that have been 

considered before modifying the PixelSA_MVCA design, such as Figure 5.15 
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shows. Thus, the scalable version depicted in Figure 5.15.a might vary its num-

ber of PEs statically, or even using a total dynamic reconfiguration of the FPGA, 

since the routing paths have to be adapted every time that a PE is inserted or 

removed from the reconfigurable region. On the contrary, the architecture 

shown in Figure 5.15.b is regular in terms of routing, since all the data go 

through the same channels. This last structure makes easier the exploitation of 

the dynamic and partial reconfiguration (DPR). Notice that for getting this regu-

larity, two new modules have been incorporated to the architecture: the dis-

tributer and the dispenser; both of them routing elements. In addition, the dis-

penser also includes some basic control logic in order to distribute the input 

data (coming from the north) between its corresponding PE or its bottom 

neighboring dispenser. 

 
Figure 5.15 Block diagrams of the application; a) Scalable PixelSA_MVCA design;  b) 

Reconfigurable PixelSA_MVCA 

Comparing the dynamically reconfigurable PixelSA_MVCA (Figure 5.15.a) 

with the DPR PixelSA_MVCA version (Figure 5.15.b), neither their behavior not 

their number of clock cycles for extracting an endmember vary between them. 

The disparities among these implementations lie on the number of hardware 
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resources and the clock frequency, once they are synthesized onto a Xilinx V5-

LX110T FPGA, such as Table 5.V represents. 

Table 5.V Synthesis results of a whole MVCA architecture with 1PE onto a Xilinx V5-LX110T 

Logic Resources 
Scalable PixelSA_MVCA Reconfigurable PixelSA_MVCA 

1 PE 2 PE 3 PE 1 PE 2 PE 3 PE 
Slice Registers 14,632 14,984 15,320 14,249 14,674 14,978 

Slice LUTs 11,282 11,591 11,923 10,993 11,294 11,597 

DSP48E 16 20 24 16 20 24 

Clock cycles for 
extracting 1 
endmember 

6,501 3,264 2,185 6,501 3,264 2,185 

Freq. (synthesis / 
Post P&R) 

284.33 MHz / 
 156.76 MHz 

90.63 MHz  

Time for extract-
ing 1 endmember 

22.86 ns / 
41.47 ns 

11.47 ns / 
20.82 ns 

7.68 ns / 
13.93 ns 

71.73 ns  36.01 ns  24.10 ns  

Attending to the data collected on Table 5.V, the direct consequence of 

moving from a dynamically scalable design (Scalable PixelSA_MVCA) to a 

dynamically and partial reconfigurable one (Reconfigurable PixelSA_MVCA) 

is the reduction of the clock frequency. Therefore, the endmembers extraction 

process is slower in the Reconfigurable PixelSA_MVCA than the Scalable 

PixelSA_MVCA, despite the fact that both of them require the same number of 

clock cycles. More specifically, the Scalable PixelSA_MVCA is 3.13 times 

faster than the Reconfigurable PixelSA_MVCA for all the scalability levels. 

Even though, the Reconfigurable PixelSA_MVCA architecture might be 

used under real time constraints for hyperspectral endmember extraction, con-

sidering the fact that the AVIRIS sensor is able to collect 512 hyperspectral pixels 

in 8.3 ms, as it was referred in Chapter 4. 

5.6.2.2 Embedded system framework and benchmarking 

In order to consider all the aspects presented along the previous chapters, 

this subsection joins all those concepts (scalability, dynamic reconfigurability 

and resource management) together, by means of integrating them as part of 

the same FPGA-based embedded system. Due to the scope of this Thesis is to 

demonstrate the viability of using scalable DPR designs under unpredicted envi-

ronments, the demonstrator simplifies the solution as much as possible. As a 

result, the proposed embedded system integrates the proposed DRM, and the 
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Reconfigurable PixelSA_MVCA architecture in order to create a dynamic 

hyperspectral system. 

Before integrating the whole system, hardware and software together, it is 

recommended to verify the correct behavior of all the elements onto the FPGA 

separately. This is the best way to constrain future fails as much as possible, 

mainly to the communication interfaces among all the elements and their syn-

chronization. Despite the fact that the Scheduler, and the whole DRM interfac-

es, has been verified through the co-simulation platform (Section 1.6.1.3), it is 

turn to verify the behavior of the Reconfigurable PixelSA_MVCA onto the 

FPGA. 

Reconfigurable PixelSA_MVCA integration: A static version of the 

application is implemented and run. In this stage two executions have been run. 

The first one used the lowest scalability level of the application (one PE); where-

as the second one enables the highest scalability level of the application (three 

PEs). The comparison between both execution results allows to detect any 

anomaly in the behavior of the system.  

From a higher abstraction level, the proposed benchmarking for verifying 

the hardware architecture is represented in Figure 5.16. The Reconfigurable 

PixelSA_MVCA architecture is represented by a black box named HW MVCA, 

and it is directly connected to a communication controller (FSL_Ctrl), in 

charge of initializing and activating the MVCA through the scalability, 

n_endmembers and start signals. Then, once the MVCA extracts the index of 

the winner pixel the FSL_Ctrl receives the information and forward it to the mi-

croprocessor.  

The soft embedded microprocessor (Microblaze) of the structure depicted 

in Figure 5.16 controls the configuration of the system (the scalability level and 

the number of endmembers to extract), and it sends the results of the MVCA 

out by using the serial port (UART – Universal Asynchronous Receiver-

Transmitter). The simplicity of this design has been the cause why the commu-

nication between the microprocessor and the FSL_Ctrl has been implemented 
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using a Fast Simple Link (FSL bus). Moreover, the communication between the 

microprocessor and the rest of elements of the system is using the Processor 

Local Bus (PLB). 

In order to ensure an appropriate behavior of the system, the system has 

been configured as follows: clock frequency to 100 MHz, n_endmembers to 5, 

scalability varies between 1 and 3, and the input corresponds with the 

small synthetic image of 36×36 pixels and 5 endmembers used previously for 

running simulations. 

Microblaze FSL_Ctrl HW MVCAstart

scalability

n_endmembers

index

finish

UART

FSL

FSL

PLB

 
Figure 5.16 System structure of the MVCA 

As it was expected, under the three scalability configurations tested, the 

results (the number of clock cycles required for extracting an endmember, and 

the winner indexes) are the same when the Reconfigurable PixelSA_MVCA 

is loaded and run onto the FPGA than when it is simulated. Thus, the values 

collected in Table 5.V are the same for both scenarios. 

System integration: Once the behavior of the proposed reconfigurable de-

sign has been verified when it runs statically, the next step is to repeat the same 

but at this time changing its scalability dynamically. That means, first of all, sep-

arating the static elements of the Reconfigurable PixelSA_MVCA to the 
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reconfigurable ones and generating their corresponding partial bitstreams. The 

next step consists of adding complexity to the embedded system in order to 

incorporate the tools for managing the reconfiguration process of the system. 

That is, to include the proposed DRM module (the Scheduler and the Reconfigu-

ration Engine). 

For every different reconfigurable module of the design, there is to desig-

nate a region on the FPGA where it can be placed and routed. This is an easy 

process with the help of PlanAhead tool [XPAH]. Due to the fact that the pro-

posed experiment will only replicate the same kind of element, it has been con-

sidered that the Reconfigurable PixelSA_MVCA only has one reconfigura-

ble module (the combination between the dispenser and the PE). Then, it is 

time to describe the structure of the Reconfigurable Region. The number of 

areas within the RR, their distribution and size will depend on two main aspects: 

the logic resources distribution of the selected FPGA (not all the families dissem-

inate the columns of DSPs, CLBs and BRAMs in the same way), and the require-

ments of the reconfigurable modules in terms of resources. As an example, the 

proposed architecture uses DSPs in its PEs; therefore their reconfigurable areas 

(pblock_pr1n in Figure 5.17) must be placed onto the same column of DSPs pro-

vided in the V5-LX110T.  

Every one of these reconfigurable regions, named as pblock_pr1n in Figure 

5.17, is composed by 320 look-up-tables, 320 flip-flops, 50 Slices L-type, 30 Slic-

es M-type and 4 DSPs. 

The main differences between the final FPGA-based embedded system, 

represented in Figure 5.18, and the one used for verifying the architecture stati-

cally are the inclusion of the Reconfiguration Engine (depicted as HW RE), the 

memory controller (MPMC – Multi Port Memory Controller) and the communi-

cation bus among them (NPI – Native Port Interface). The RE needs the MPMC 

in order to load the configuration bitstreams from the configuration memory. 

Moreover, the ICAP port has been incorporated as part of the RE since it is un-

der control of the latter. As for the Scheduler, the top layer of the DRM, it runs 
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on the microprocessor (Microblaze) because of it was described in software. 

Then, the rest of modules are purely hardware. 

 
Figure 5.17 Reconfigurable Region structure and reconfigurable modules distribution 

More specifically, the Reconfiguration Engine and some parts of the Re-

configurable PixelSA_MVCA design are implemented as static modules in 

hardware, because they never modify neither their number of elements, nor 

their performance. However, the number of reconfigurable modules (FUn) of the 

Reconfigurable PixelSA_MVCA might vary according to the required scala-

bility level. That is the reason why those units must be instantiated into the 

dynamically reconfigurable region, which in this case has been structured as a 

one dimensional matrix of 1×3 micro areas. 

Regarding hardware aspects of the proposed system (Figure 5.18), Table 

5.VI shows its post place and route summary reported by the Xilinx Platform 
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Studio tool. The information has been organized in terms of the used flip-flops 

(FFs) and look-up-tables (LUTs) resources for the most relevant blocks, such as 

the Reconfigurable PixelSA_MVCA (Static HW MVCA and Dynamically 

Reconfigurable Region), the Reconfiguration Engine (HW RE) and the serial 

port module (UART). These numbers are obtained when the clock frequency of 

the system has been configured to 100MHz.  

 
Figure 5.18 Embedded system structure 

As a consequence of being static blocks, the Reconfiguration Engine and 

the UART blocks always occupy the same number of resources, independently 

of the scalability of the system. The MVCA, and therefore, the whole system 

require more or less resources depending on the number of FUs configured on 

the system. 
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Table 5.VI Post Place and Route summary on Xilinx V5-LX110T 

Blocks 
FFs used LUTs used 

1 FU 2 FU 3 FU 1 FU 2 FU 3 FU 

System 20,148 20,514 20,882 15,254 15,554 15,945 

MVCA 5,477 5,809 6,143 4,350 4,650 4,951 

RE 6,371 6,371 6,371 2,102 2,102 2,102 

UART 148 148 148 131 131 131 

 60% 60% 61% 43% 44% 45% 

According to the information collected in Table 5.VI, the number of hard-

ware resources of the MVCA, RE and UART blocks corresponds to the 60% and 

44% of the FFs and LUTs resources of the system, respectively. More in detail, 

the reconfigurable architecture (MVCA block) assumes, in average, the 28% and 

the 30% of the flip-flop and LUTs required in the system, respectively. The other 

40% of the hardware resources of the system are due to the implementation of 

the microprocessor and the other internal controllers required for handling the 

buses. 

As for the reconfigurability management, in the beginning the system is 

loaded with the simplest configuration (one PE). At that point, the DRM has to 

manage different situations and reconfigure the system. Sometimes, the recon-

figuration request demands a higher scalability (two or three PEs). Other times 

the DRM has to reduce the number of PEs. In order to verify the correct behav-

ior of the system, the Reconfigurable PixelSA_MVCA always has to pro-

cess the same image. Therefore, the extracted endmembers have to be always 

the same, independently of the number of FUs configured by the DRM. Thus, 

under these scenarios the indexes of the winner endmembers are shown in the 

following Figure 5.19 Winner endmembers, which represents a screenshot of 

the serial port communication. 
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Figure 5.19 Winner endmembers’ indexes for the 36×36 hyperspectral image 

Concerning the reconfiguration time, the worst possible case is the one in 

which the whole configuration bitstream has to be loaded on the FPGA. That 

means placing and routing all the static and the reconfigurable blocks of the 

whole design. In this situation, the Reconfigurable PixelSA_MVCA only 

includes one functional unit, since this is its basic and smallest configuration. 

Thus, the highest size of the configuration bitstream is 3,70Mbytes. Then, con-

sidering that the throughput of the Reconfiguration Engine is 180Mbits/second, 

the slowest configuration time is up to 160 ms. 

5.7 CONCLUSION 

The development of dynamically reconfigurable FPGA-based embedded 

SoCs is a complex issue. The main reason is due to the absence of mechanisms 

for controlling the reconfiguration process automatically, without external in-

tervention. In this sense, this chapter presents a dynamic reconfiguration man-

agement system (DRM), consisting of a mixed hardware-software framework 

that transparently controls the reconfiguration process by scheduling and load-

ing partial bitstreams on the reconfigurable region. One of the novelties of this 

DRM, compared to previous research works, is its capability for handling tradi-

tional reconfigurable modules and scalable ones.  
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As a proof of concepts, an FPGA-based embedded system has been devel-

oped, in which the DRM has been integrated in order to lead the reconfigurabil-

ity of the Reconfigurable PixelSA_MVCA architecture. The goal of this 

demonstrator is to consolidate and validate several aspects presented along this 

PhD research work: 

1. The advantages of designing scalable designs are superior to their dis-

advantages for dynamic scenarios. 

2. It is possible to conceive a new paradigm for dynamic reconfigurability 

on Xilinx FPGAs, where the reconfigurable region might be more flexible than 

traditional contexts.  

3. It is possible to design autonomous or semi-autonomous embedded sys-

tems capable of managing the variations of a scalable design dynamically by 

means of using the proposed DRM.  
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6 Conclusions  

 

The collection of the contributions provided in this PhD, but also their rele-

vance into the dynamic reconfigurability field, are summarized. Then, at the end 

of this document, further research works are proposed, which might comple-

ment and enhance some of the aspects studied along the development of this 

PhD work. 

 

6 hapter C 
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6.1 CONCLUSIONS 

This PhD research work has reviewed the most significant previous works 

regarding the dynamic reconfigurability, including different architectural pro-

posals for high performance applications, low-level assembly methodologies, 

and management solutions for controlling the variations of the system at run-

time. This review has demonstrated that there are still some lacks within the 

dynamic reconfigurability field regarding the tools, methodologies and man-

agement. 

With the goal of overcoming the aforementioned lacks, this PhD has fo-

cused its efforts in several aspects of the dynamic reconfigurability. First of all, a 

review of the state-of-the-art of reconfigurable architectures on data intensive 

applications has been analyzed. Then, with the results extracted after the analy-

sis, a set of contributions have been proposed. In this sense, in order to contrib-

ute in the design of more flexible systems, capable to adapt their performance 

to environmental variations, part of this research has been focused on exploit-

ing the advantages of the scalability over several kinds of applications. As a re-

sult two different applications have been selected: a deblocking filter algorithm, 

as part of H.264/AVC and SVC video codecs standards, and the MVCA algorithm, 

as part of an endmember extraction chain within the hyperspectral imaging 

analysis. Both applications have several characteristics in common. The most 

important ones are their high computational cost, in terms of number of opera-

tions, and the amount of time they require for finishing processing their data. 

Furthermore, both algorithms provide a high level of parallelism that is a desira-

ble feature in order to design efficient scalable designs. Despite their common 

characteristics, the differences between both algorithms make their solutions 

completely different. Whereas the DF algorithm is based on simple arithmetic 

operations and its high data dependences, the main operation of the MVCA is 

the multiplication, in which there is a low dependence among data. Moreover, 

the data dependences After demonstrating the viability of designing scalable 

designs for these two high performance computing applications, this feature has 

been exploited at run time by means of taking advantage of the dynamic recon-
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figurability. Therefore, the scalable DF and one of the scalable MVCA solutions 

have been adapted, and implemented on an FPGA-based embedded system. On 

the other hand, a dynamic resource manager has been designed with the goal of 

being responsible for controlling the whole hardware reconfiguration process, 

as part of context-aware embedded systems. Finally, all these contributions 

have been combined in order to prove the reliability of all these works. There-

fore, one of the proposed scalable designs have been running on the FPGA, and 

scaled dynamically by the proposed DRM without the intervention of any exter-

nal device. 

As a brief summary, the contributions of this PhD research are the follow-

ing ones: 

- An extended review of reconfigurable architectures focused to execute 

several computationally intensive applications. 

- A novel parallelization strategy for the H.264/AVC deblocking filter. De-

spite the fact that in the present PhD this improved wavefront has been used 

for parallelizing macroblocks (MBs) data, it is not constrained to this scenario. 

Therefore, it might be used in several fields whether the data dependences are 

respected. 

- A novel scalable architecture for executing the deblocking filter of the 

H.264/AVC and the SVC codecs has been proposed. The structure of this design 

introduces a high level of flexibility into the DF processing, since the final per-

formance might be adapted to different conditions, just adjusting the number of 

processing elements. Furthermore, this structure might be reused for executing 

diverse kinds of tasks that fulfill with specifics restrictions related to the data 

dependences.  

- The strength of the scalability has been used on the hyperspectral imag-

ing field through the design of a couple of scalable designs for processing the 

MVCA algorithm. The main success of these proposals is based on the fact that 

is a completely unexplored feature in this research field. The results demon-
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strate the viability of these kinds of designs for processing high computational 

demands on hyperspectral imaging applications. 

- New assembly methodologies have been proposed in order to facilitate 

the reallocation of modules in different regions of an FPGA, as part of a dynami-

cally reconfigurable embedded system. 

- Designing a controlling and management mechanism for ensuring a cor-

rect dynamically reconfiguration process on embedded systems, based on on-

line scheduling strategies and improved techniques for manipulating bitstreams.  

- Proposing a new paradigm for reconfigurable regions in which the re-

configurable elements might compete for logic resources with a higher level of 

flexibility than traditional concepts. This fact is shown through the design of a 

2D array of micro areas that might be joined with its closest neighbors in order 

to place bigger modules at run-time.  

- Developing a demonstrator capable to collect on the same system all 

the contributions reached in this PhD work. 

6.2 FURTHER RESEARCH 

This work opens the window to new research lines focused on going deep-

er into some of the proposed contributions. In this sense, several improvements 

might be done, some of them directly related to the design and development of 

scalable architectures; and others related to the management of the reconfigu-

ration process itself. 

- Despite the fact that the proposed scalable DF has been implemented 

and validated on a Virtex-5 board, it would be very interesting to integrate it as 

part of a whole H.264/AVC encoder or decoder. 

- Exploring the scalability benefits on other kind of applications intensive 

in computation, by following the same principles than the ones used in this PhD 

work, such as flexibility, modularity, regularity (related to the behavior and con-

nectivity of every module) and parallelization of the operations. 



Conclusions 6 
  

 

 
183 

  

 

1 

- Regarding the management of the reconfiguration process, it would be 

very interesting working on including certain level of intelligence to the sched-

uler, in order to be more independent from the rest of the system, but also from 

the microprocessor. 

o Designing a more complex cost function which includes implicit-

ly a fourth dimension (considering the other three: number of logic re-

sources, physical area, and priority), such as the reconfiguration time. 

o Being able to collect information regarding the running state of 

the system, but also from the running environment. Therefore, the sched-

uler would take decisions about what, when and where to reconfigure the 

hardware without the microprocessor intervention.  

o Being able to swap modules from hardware to software, or vice 

versa, according to two factors: the performance of the overall system, and 

the persistence of the reconfigurable module. In this context, the persis-

tence analyzes the history of the current reconfigurable module during the 

system execution (how many times has been required, how many times has 

been running in hardware, etc). 

o The scheduler could manage different kinds of modules regard-

ing the scalability, since a scalable design might require replicating different 

type of modules when the level of parallelism is to be increased. 
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A. Sinopsis en español 

 

Este capítulo ofrece una visión general del trabajo de investigación realiza-

do en esta Tesis Doctoral (Arquitecturas reconfigurables dinámicamente para 

sistemas de codificación de vídeo e imágenes hiperespectrales), poniendo espe-

cial interés en las contribuciones más significativas en el campo de la reconfigu-

ración dinámica. 
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A.1 INTRODUCCIÓN 

Las mejoras en los procesos productivos, junto con la evolución tecnológica 

acontecida en las últimas décadas han hecho posible que las FPGAs (Field-

Programmable Gate Arrays) hayan incrementado su presencia en el mercado, 

como sustituto (en determinados casos) a los ASICs como parte de los sistemas 

empotrados utilizados en numerosos dispositivos de uso diario. Parte de este 

éxito se debe a su equilibrio entre rendimiento, flexibilidad y coste. Además, la 

capacidad que poseen algunas FPGAs del mercado para configurarse múltiples 

veces, incrementa la versatilidad de los sistemas finales que incorporan este 

tipo de dispositivo, puesto que permite la reutilización de los recursos para eje-

cutar distintas tareas. 

Si el proceso de reconfiguración de las FPGAs se realiza en tiempo de eje-

cución, sin que ello repercuta sobre el funcionamiento del resto del sistema, se 

habla de reconfiguración dinámica. Esta característica es muy atractiva para 

aquellos sistemas empotrados que han de desempeñar sus tareas en entornos 

variables, o de difícil acceso. La razón de ello es que, haciendo uso de la reconfi-

guración dinámica, el sistema podría ser capaz de adaptar su funcionalidad y/o 

rendimiento a las condiciones del entorno de trabajo sin necesidad de la inter-

vención de ningún agente externo. Si bien es cierto que en los últimos ha habido 

avances en este sentido, tradicionalmente la reconfiguración dinámica se ha 

orientado con dos objetivos: la adaptación funcional de los sistemas, y la actua-

lización o mejora de una funcionalidad ya existente. Ambos casos se basan en la 

sustitución de módulos. Entendiendo por módulo un diseño implementado en  

la FPGA. Sin embargo, existe una alternativa muy atractiva para potenciar la 

adaptación de los sistemas a las variaciones del entorno, basada en el ajuste de 

los recursos hardware utilizados en tiempo de ejecución. Esta característica por 

la cual un diseño ofrece la posibilidad de modificar sus recursos, por medio del 

aumento o decremento de los elementos de procesamiento, se conoce como 

escalabilidad. La variación en el nivel de escalabilidad repercute directamente 

sobre el rendimiento del diseño, ya que este podrá procesar mayor o menor 

número de datos en paralelo, de acuerdo con los requisitos del entorno, o del 
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sistema sobre el que se esté ejecutando. Sin embargo, aplicar este tipo de cam-

bios en sistemas empotrados autónomos no es una tarea sencilla. Por un lado, 

porque en la mayoría de los escenarios dinámicos (que cambian sus propieda-

des o características a lo largo del tiempo) se desconoce cómo van a evolucio-

nar; y por lo tanto no se puede predecir a priori cuales van a ser sus necesida-

des. Por otro lado, la gestión de la reconfiguración dinámica sigue suponiendo 

un reto importante para los diseñadores y desarrolladores, ya que no existen 

mecanismos o soluciones estándares para hacerle frente.  

Con el fin de paliar algunas de las carencias mencionadas en el campo de la 

reconfiguración dinámica, el trabajo desarrollado en esta Tesis Doctoral tiene 

por objetivos explorar las bondades de escalabilidad, a través de la reconfigura-

ción dinámica, así como proporcionar un mecanismo de control y gestión del 

proceso de reconfiguración para sistemas empotrados autónomos basados en 

FPGAs . 

Para hacer frente a la exploración de la escalabilidad se han seleccionado 

dos aplicaciones complejas y exigentes, en cuanto al número y tipo de opera-

ciones que han de realizar.  

Finalmente, las conclusiones acerca de la eficacia y eficiencia de las solu-

ciones propuestas (diseños escalables dinámicamente, y mecanismo de control 

del proceso de reconfiguración) se establecerán objetivamente, mediante el 

análisis de los resultados que se deriven de la ejecución de un demostrador que 

se ha preparado. 

A.2 SOLUCIONES ARQUITECTURALES ESCALABLES DINÁMICAMENTE 

La consecución de los objetivos mencionados anteriormente requiere que, 

las soluciones arquitecturales a implementar sobre una FPGA Xilinx Virtex-5 

LX110T, cumplan con ciertas especificaciones, entre las que destacan: modulari-

dad, homogeneidad, paralelismo y control distribuido. Por lo tanto, todas las 

soluciones arquitecturales propuestas cumplirán con estas premisas, indepen-

dientemente de la aplicación para la que hayan sido diseñadas. 
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La primera de las soluciones tiene por finalidad diseñar y desarrollar una 

arquitectura escalable para el deblocking filter. Ésta es una de las tareas más 

costosas, en cuanto al tiempo de ejecución y al tipo de operaciones, que se han 

de realizar como parte de los procesos de codificación y decodificación de vídeo 

de los estándares H.264/AVC, y su extensión SVC. La segunda de las soluciones 

se encarga de la extracción de endmembers, técnica ampliamente utilizada en 

teledetección para el tratamiento de imágenes hiperespectrales. 

A.2.1 Deblocking Filter 

La función principal del deblocking filter (DF) es la de suavizar los bordes de 

las imágenes, para reducir la distorsión visual del efecto bloque. Este efecto se 

origina por el propio procesamiento de los demás bloques que componen los 

codificadores y/o decodificadores H.264/AVC y SVC. 

La solución propuesta se muestra en la Figure A.1. En ella se puede apre-

ciar la modularidad de la arquitectura, en la que se identifican cinco módulos 

distintos (IC, OC, IM, OM y PE). Estos elementos se pueden agrupar en tres 

grandes grupos de acuerdo con la función principal que desempeñan: control 

(IC-OC), almacenamiento y distribución (IM-OM), y procesamiento de datos 

(PE). Tal y como muestra la Figure A.1.a, el elemento de proceso (PE) está com-

puesto por dos elementos; el router y la unidad funcional (por sus siglas en in-

glés, FU). El router es la entrada y salida de datos de la FU que tiene asociada. Es 

responsable de alimentar a su FU con datos para procesar, así como enviar los 

datos procesados al sistema. Por su parte, la FU es el núcleo de filtrado de la 

arquitectura. Se puede decir que este módulo es el DF en sí mismo, mientras 

que los demás módulos actúan como soporte para que la FU pueda desempeñar 

su función correctamente. 
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c)  
Figure A.1 Arquitectura escalable propuesta del DF; a) Estructura básica 1×1; b) 1×2; c)2×3 

En la Figure A.1 se muestra claramente la capacidad de adaptación de la 

arquitectura propuesta, a través de distintos ejemplos de escalabilidad. La Figu-

ra 1.a representa el esquema básico de la arquitectura, es decir el número mí-

nimo de módulos que ha de contener para que pueda operar. Como se puede 

apreciar en la figura, la escalabilidad se puede apreciar en dos dimensiones. Así, 

la Figure A.1.b representa el crecimiento de la solución en el incremento del 

número de columnas; mientras que la Figure A.1.c crece en ambas direcciones 

(filas y columnas). En cualquier caso, el aumento del nivel de escalabilidad se 

consigue por la réplica de los elementos básicos, y siempre respetando un mis-

mo patrón. Tal que los IMs siempre conformarán la primera fila de la matriz, y 

los OMs la última. Por lo tanto, los PEs siempre permanecerán entre estos dos 

elementos. Como se puede observar, independientemente de la escalabilidad, 

los elementos de control IC y OC nunca se replican. Esto se debe a que son mó-

dulos estáticos, que permanecen siempre ubicados en la misma región de la 

FPGA con el fin de ser los módulos de comunicación de la arquitectura con el 

exterior. 

Para poder escalar el rendimiento del DF, la solución propuesta paraleliza 

el procesamiento de los datos a nivel de MB. De este modo cada PE procesa un 

MB distinto en cada instante. Sin embargo, uno de los retos de este nivel de  

paralelismo radica acelerar el procesamiento tanto como sea posible, pero 

además respetar a su vez con dependencias de datos existentes entre los MBs 

adyacentes dentro de una imagen, según imponen los estándares H.264/AVC y 
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SVC. Para hacer esto posible, el diseño propuesto sigue un patrón de procesa-

miento de datos basado en una versión mejorada del wavefront, tal y como se 

representa en la Figure A.2. 
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Figure A.2 Configuración 2x3 siguiendo el patrón wavefront mejorado propuesto 

Cabe resaltar que el comportamiento de los módulos IM, OM y PE no varía 

con la escalabilidad. Esta independencia del comportamiento global de la arqui-

tectura con el nivel de escalabilidad se debe, en gran parte, al control distribui-

do diseñado. Es decir, no existe un único elemento encargado de sincronizar y 

controlar todas las operaciones permanentemente. Si no que, una vez se inicia 

el sistema, cada módulo se sincroniza internamente en función de los datos 

recibidos. 

A.2.2 Extracción de endmembers 

El estado de la técnica en el campo de la extracción de endmembers en-

globa diversos algoritmos. Sin embargo, este trabajo ofrece una solución arqui-

tectural escalable a uno sólo, el MVCA. Este algoritmo es reciente, y es una me-

jora del conocido el VCA. 

El algoritmo del MVCA se responsabiliza de extraer los endmembers puros 

de una imagen hiperespectral. Y para ello, la solución arquitectural propuesta 

consta de varios módulos (Figure A.3). De entre todos los módulos, el IMAGE 

PROJECTON es el mejor candidato para aprovechar las ventajas de la escalabili-

dad. Esto se debe al tipo de operaciones que realiza (multiplicación matricial), la 

cual permite paralelizar el procesamiento de los datos. 
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Figure A.3 Estructura modular de la arquitectura del MVCA 

Más en detalle, la tarea principal del módulo IMAGE PROJECTION consiste 

en resolver un producto matricial (      ), y determinar cuál de los productos 

fila×columna ha obtenido el mayor valor. La matriz      está compuesta por los 

píxeles, con todas y cada una de sus componentes espectrales que lo confor-

man, de la imagen hiperespectral. Mientras que la matriz f se calcula en los 

otros módulos de la arquitectura, y representa el conjunto de píxeles puros 

calculados hasta el momento. De acuerdo con la resolución matemática del 

producto matricial, existen dos formas de paralelizar el módulo IMAGE PROJEC-

TION, y por lo tanto escalar la solución. De ahí que se hayan propuesto dos solu-

ciones arquitecturales distintas para solucionar un mismo problema.  

La primera de ellas se muestra en la Figure A.4. El conjunto de elementos 

de proceso (PEs) se reparten el procesamiento de todos los elementos involu-

crados en la multiplicación de una fila ( [ ]) y una columna (    [   ]) del pro-

ducto matricial. De manera que el nivel máximo de escalabilidad será igual al 

número de elementos disponibles en una fila. Más concretamente, inicialmente 

el      [ ]      [   ]      [ ]      [   ]        [ ]      [   ]. 
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Figure A.4 Arquitectura escalable ScalableSA_MVCA 

La segunda de las propuestas, mostrada en la Figure A.5, afronta el produc-

to matricial de diferente forma. En esta caso, cada uno de los PEs disponibles se 

ha de responsabilizar de la multiplicación de todos y cada uno de los elementos 

del producto  [ ]      [   ]. Más concretamente:  

     ∑ [ ]      [   ]       ∑ [ ]      [   ]         ∑  [ ]      [   ]. 

Con la finalidad de limitar el diseño a un único comparador se ha impuesto 

como restricción que los PEs no terminen de procesar simultáneamente. Para 

conseguir esto, se retrasa un dato el inicio de las operaciones entre PEs conse-

cutivos. De ahí la inclusión de retardos en la Figure A.4 a la entrada de los ele-

mentos de proceso. 
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Figure A.5 Arquitectura escalable PixelSA_MVCA 

A.3 GESTIÓN DEL PROCESO DE RECONFIGURACIÓN DINÁMICA 

La inclusión de soluciones escalables en FPGAs, como parte de sistemas 

empotrados autónomos, supondría un salto cualitativo y cuantitativo importan-

te para el mercado. Desafortunadamente la reconfiguración dinámica sigue 

siendo un campo de investigación bastante joven, y por lo tanto existen ciertas 

carencias que han de cubrirse antes de que llegue a explotarse en el mercado. 

Uno de los mayores retos que se han de solventar radica en la falta de meca-

nismos de control y gestión inteligentes, capaces de organizar los cambios de 

escalabilidad, o de funcionalidad del sistema de acuerdo con las necesidades del 

entorno en tiempo de ejecución. En este sentido, el trabajo propuesto ha desa-

rrollado un planificador software que, junto con un módulo hardware,  permite 

gestionar la evolución de la región reconfigurable (R.R.) de la FPGA. Para ello, 

esta solución determina qué tareas y cómo han de desarrollarse atendiendo a 

las peticiones del microprocesador, tal y como indica la Figure A.6. 
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Figure A.6 Estructura jerárquica de control para la gestión de la reconfiguración dinámica 

El planificador, desarrollado en software, es el director del proceso de re-

configuración hardware, de tal manera que es responsable de evaluar, analizar y 

organizar todos y cada uno de los pasos que han de ejecutarse para garantizar el 

éxito del proceso de reconfiguración.  Por su parte, el motor de la reconfigura-

ción (Factoría, según la Figure A.6), se encarga de tareas relacionadas con la 

manipulación del bitstream de configuración. De hecho, entre sus funciones 

recaen las tareas de obtener los bitstream, adaptar la información y cargarlo 

sobre la región reconfigurable. 

A.4 CONCLUSIONES 

A pesar de las ventajas que ofrece la reconfiguración dinámica, su uso en 

sistemas empotrados sigue siendo compleja, y en consecuencia poco utilizada 

en el mercado. 

En base al análisis de trabajos previos significativos, dentro del campo de la 

reconfiguración dinámica, la presente Tesis Doctoral trata de contribuir al esta-

do de la técnica aportando soluciones viables que faciliten la explotación de la 

reconfiguración dinámica en FPGAs para sistemas empotrados autónomos, en 

entornos de trabajo variables. Para ello, la investigación de esta Tesis explora 

dos líneas de trabajo bien diferenciadas. Primero, potenciar la escalabilidad de 
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los diseños para así, en combinación con la reconfiguración dinámica poder 

adaptar el rendimiento de un diseño según las demandas del sistema. Seguida-

mente, aportar un mecanismo de control del proceso de reconfiguración diná-

mica adecuado para ese tipo de escenarios. 
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