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The COVID-19 pandemic has undergone frequent and rapid changes
in its local and global infection rates, driven by governmental mea-
sures, or the emergence of new viral variants. The reproduction
number Rt indicates the average number of cases generated by an
infected person at time t and is a key indicator of the spread of
an epidemic. A timely estimation of Rt is a crucial tool to enable
governmental organizations to adapt quickly to these changes and
assess the consequences of their policies. The EpiEstim method
is the most widely accepted method for estimating Rt. But it esti-
mates Rt with a significant temporal delay. Here, we propose a new
method, EpiInvert, that shows good agreement with EpiEstim, but
that provides estimates of Rt several days in advance. We show
that Rt can be estimated by inverting the renewal equation linking
Rt with the observed incidence curve of new cases, it. Our signal
processing approach to this problem yields both Rt and a restored
it corrected for the “weekend effect” by applying a deconvolution +
denoising procedure. The implementations of the EpiInvert and Epi-
Estim methods are fully open-source and can be run in real-time on
every country in the world, and every US state through a web inter-
face at www.ipol.im/epiinvert.
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The reproduction number Rt is a key epidemiological pa-1

rameter evaluating transmission potential of a disease over2

time. It is defined as the average number of new infections3

caused by a single infected individual at time t in a partially4

susceptible population (1). Rt can be computed from the5

daily observation of the incidence curve it, but requires empir-6

ical knowledge of the probability distribution Φs of the delay7

between two infections (2, 3).8

There are two different models for the incidence curve and9

its corresponding infection delay Φ. In a theoretical model, it10

would represent the real daily number of new infections, and11

Φs is sometimes called generation time (4, 5) and represents12

the probability distribution of the time between infection of a13

primary case and infections in secondary cases. In practice,14

neither parameter is easily observable because the infected are15

rarely detected before the appearance of symptoms and tests16

will be negative until the virus has multiplied over several17

days. What is routinely recorded by health organizations is18

the number of new detected, incident cases. When dealing19

with this real incidence curve, Φs is called serial interval (4, 5).20

The serial interval is defined as the delay between the onset21

of symptoms in a primary case and the onset of symptoms in22

secondary cases (5).23

Rt is linked to it and Φ through the renewal equation, first24

formulated for birth-death processes in a 1907 note of Alfred 25

Lotka (6). We adopt the Nishiura et al. formulation (7, 8), 26

27

28

it=
f∑

s=f0

Rt−sit−sΦs for t = 0, .., tc, [1] 29

where tc represents the last time at which it was available, f0 30

and f are the maximal and minimal observed times between 31

a primary and a secondary case. The underlying epidemiologi- 32

cal assumption of this model is that the time-varying factor 33

Rt causes a constant proportional change in an individual’s 34

infectiousness, over the course of their entire infectious period, 35

based on the day on which they were infected. In this case 36

we refer to Rt as the case reproductive number. According to 37

Cori et al. (5), “It is the average number of secondary cases 38

that a case infected at time step t will eventually infect (9).” 39

It is important to note that secondary infections are some- 40

times detected before primary ones, and therefore the min- 41

imum delay f0 is generally negative (see Fig. 2). Equation 42

[1] does not yield an explicit expression for Rt. Yet, an easy 43

solution can be found for the version of the renewal equation 44

proposed in Fraser (9) (equation (9)), and Cori et al in (5), 45

it = Rt

f∑
s=f0

it−sΦs. [2] 46

Significance Statement

Based on a signal processing approach we propose a method
to compute the reproduction number Rt, the transmission po-
tential of an epidemic over time. Rt is estimated by minimizing
a functional that enforces: (i) the ability to produce an incidence
curve it corrected of the weekly periodic bias produced by the
“weekend effect”, obtained from Rt through a renewal equation
; (ii) the regularity of Rt. A good agreement is found between
ourRt estimate and the one provided by the currently accepted
method, EpiEstim, except our method predicts Rt several days
closer to present. We provide the mathematical arguments for
this shift. Both methods, applied every day on each country,
can be compared at www.ipol.im/epiinvert.

L. Alvarez and J-M. Morel designed and performed research and experiments and wrote the pa-
per. L. Alvarez implemented the method. M. Colom built the online interface and collected and
processed data. J.D. Morel rewrote parts and designed the statistical analysis and presentation of
the results.

The authors declare no competing interests

1 Luis Alvarez. E-mail: lalvarez@ulpgc.es

                         1–9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 14, 2021. ; https://doi.org/10.1101/2020.08.01.20165142doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

www.ipol.im/epiinvert
www.ipol.im/epiinvert
https://doi.org/10.1101/2020.08.01.20165142
http://creativecommons.org/licenses/by-nc-nd/4.0/


2021-06-08

2021-06-15

2021-06-22

2021-07-01

2021-07-08

2021-07-15

2021-07-22

2021-08-01
0

50000

100000

150000

200000

Co
un

ts
Infections in United States

incidence filtered inc. reconstructed inc.

2021-06-08

2021-06-15

2021-06-22

2021-07-01

2021-07-08

2021-07-15

2021-07-22

2021-08-01
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R t

Reproduction number in United States
Rt

Rt (EpiEstim)

Fig. 1. Illustration of the EpiInvert method on the USA incidence curve of new cases. On the left: in green, the raw oscillating curve of incident cases up to August 3, 2021. In
blue, the incidence curve after correction of the "week-end bias". In red, the incidence curve simulated from Rt after the inversion of the renewal equation. On the right: in
black, Rt, the reproduction number estimated by the current EpiEstim method, adopted by most health experts (10), shifted back eight days. Estimating its value every day
guides the health policy of each country. Having Rt larger than 1, as it is the case for the USA on August 3, 2021 means that the pandemic is expanding. In red, the estimation
of Rt by the EpiInvert method. This estimate, obtained by compensating the week-end bias and inverting the integral equation, has a temporal shift of about eight days with
respect to EpiEstim. The shadowed areas give the 90% and 95% confidence intervals for the Rt estimation.

By this equation, Rt is derived at time t from the past incidence47

values it−s by a simple division, provided that f0 ≥ 0:48

Rt = it∑f

s=f0
it−sΦs

. [3]49

The underlying epidemiological assumption of this model is50

that the time-varying factor of Rt causes a change in the51

infectiousness only on the day on which transmission occurs∗.52

In this case we refer to Rt as the instantaneous reproduction53

number. This Rt estimate, implemented by the EpiEstim54

software, is highly recommended in a very recent review (11)55

signed by representatives from ten different epidemiological56

labs from several continents.57

EpiEstim is the standard method to compute a real-time58

estimation of the reproduction number, and of widespread59

use. In its stochastic formulation, the first member it of Equa-60

tion [2] is assumed to be a Poisson variable, and the second61

member of this equation is interpreted as the expectation of62

this Poisson variable. This leads to a maximum likelihood63

estimation strategy to compute Rt (see (5, 12–15)). A de-64

tailed description of EpiEstim methods can be found in the65

supporting information.66

Comparing Equations [2] and [1] shows that when applied67

with the same serial interval and case incidence curve, the68

second equation is derived from the first by assuming Rt69

constant on the serial interval support [t−f, t−f0]. Replacing70

Rt−s by Rt in Equation [1] indeed yields Equation [2]. A71

more accurate interpretation of the quotient on the right of72

Equation [3] would be73

Rt−µ = it∑f

f0
it−sΦs

, [4]74

where µ is a central value of the probability distribution of the75

serial interval Φ that could be, for instance, the median or the76

∗Cori et al. (5): “We assume that, once infected, individuals have an infectivity profile given by a
probability distribution ws , dependent on time since infection of the case, s, but independent of
calendar time, t. (...) Rt is the average number of secondary cases that each infected individual
would infect if the conditions remained as they were at time t.”

mean. In the Ma et al. (16) estimate of the serial interval for 77

Covid-19, we have µ ' 5.5 for the median and µ ' 6.7 for the 78

mean. This supports the hypothesis that EpiEstim estimates 79

Rt with an average delay of more than 5 days. 80

In practice, the way the sliding average of the incidence 81

is calculated causes another delay. Indeed, as illustrated in 82

Figure 1 the raw data of the incidence curve it can oscillate 83

strongly with a seven-day period. This oscillation has little 84

to do with the Poisson noise used in most aforementioned 85

publications. Government statistics are affected by changes of 86

testing and polling policies and by week-end reporting delays. 87

These recording delays and subsequent rash corrections result 88

in impulse noise, and a strong weekly periodic bias observable 89

on the incidence curve (in green) on the left of figure 1. 90

To reliably estimate the reproduction number, a regularity 91

constraint on Rt is needed. Cori et al., initiators of the EpiEs- 92

tim method (5), use as regularity constraint the assumption 93

that Rt is locally constant in a time window of size τ ending 94

at time t (usually τ = 7 days). This results in smoothing the 95

incidence curve with a sliding mean over 7 days. This assump- 96

tion has two limitations: it causes a significant resolution loss, 97

and an additional τ2 = 3.5 backward shift in the estimation of 98

Rt, given that Rt is assumed constant in [t− τ, t]. 99

In summary, the computation of Rt by equations Eq. (1) 100

and Eq. (2) raises three challenges: 101

1. The renewal equation Eq. (1) involves future values of it, 102

those for t+ 1, · · · , t− f0. 103

2. Its second form Eq. (2) used by the standard method 104

estimates Rt with a backward shift of about 5 days. 105

3. Smoothing of the week-end effect causes a 3.5 days shift 106

backward. 107

These cumulative backward shifts may cause a time delay of 108

up to 8.5 days. We shall give an experimental confirmation of 109

such delays by two independent methods: using a simulator 110

with synthetic ground truths, and a thorough study of the 111

incidence curves of 55 countries. The practical meaning of this 112

2 Alvarez et al.
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study is that the value of Rt computed by EpiEstim at time t113

might refer approximately to Rt−8
†.114

Here, we address these three issues by proposing a method115

to invert the renewal equations Eq. (1) and Eq. (2). The116

inversion method developed for Eq. (1) is illustrated in Figure117

1 (right), where the EpiEstim result using the renewal equation118

Eq. (2) (in black) is superposed with the estimate (in red)119

of Rt by EpiInvert using Eq. (1). After registering both, the120

black EpiEstim curve stops eight days before EpiInvert, the red121

curve. More generally we found, using the incidence curve of122

55 countries, that the median of the temporal shift between the123

EpiEstim and EpiInvert Rt estimates using the form Eq. (1) of124

the renewal equation is about 8.24 days, and that the median125

of the RMSE approximation error between both estimates is126

just about 0.036.127

This result is slightly surprising, given that the interpreta-128

tion of Rt in both equations is different, and that the serial129

interval used in both equations also is different. In Eq. (2) the130

serial interval is indeed truncated to preserve the temporal131

causality of this equation. This excellent 0.036 fit nevertheless132

suggests that the EpiInvert method, applied to the renewal133

equation Eq. (1), is compatible with the EpiEstim method,134

but brings an information closer to present. This fact will be135

investigated experimentally in Sections 3 and 4.136

The general integral equation [1] is a functional equation in137

Rt. Integral equations have been previously used to estimate138

Rt: in (17), the authors estimate Rt as the direct deconvolu-139

tion of a simplified integral equation where it is expressed in140

terms of Rt and it in the past, without using the serial interval.141

Such inverse problems involving noise and a reproducing kernel142

can be resolved through the Tikhonov-Arsenin (18) variational143

approach involving a regularization term. This method is144

widely used to solve integral equations and convolutional equa-145

tions (19). The solution of the equation is estimated by an146

energy minimization. The regularity of the solution is obtained147

by penalizing high values of the derivative of the solution. Our148

variational formulation includes the correction of the weekly149

periodic bias, or “weekend effect". The standard way to deal150

with a weekly periodic bias is to smooth the incidence curve151

by a seven days sliding mean. This implicitly assumes that152

the periodic bias is additive. The present study supports the153

idea that this bias is better dealt with as multiplicative. In the154

variational framework, the periodic bias is therefore corrected155

by estimating multiplicative periodic correction factors. This156

is illustrated on the left graphic of Fig. 1 where the green157

oscillatory curve is transformed into the blue filtered curve158

by the same energy minimization process that also computes159

Rt (on the right in red) and reconstructs the incidence curve160

up to present by evaluating the renewal equation using the161

computed Rt and the filtered incidence curve (on the left, in162

red).163

In this work we use two versions of the renewal equation164

formulation to compute Rt. It is, however, possible to formu-165

late statistical models for Rt that do not take into account166

the serial interval and the renewal equation. For instance, in167

(20), the author proposes to use the model:168

log(Rt) = log(Rt−1) + σZt − αit−1, [5]169

†The lack of confidence in the computation ofRt is illustrated by the following fact: the official value
of Rt is updated weekly and not daily by the official French online app Anticovid. This actually
introduces an additional average 3.5 delay in the publication of this index!

where Zt is an independent and identically distributed se- 170

quence of standard normal random variables, σ is the dis- 171

persion of the random walk and α is the coefficient of drift. 172

The model was fit to the provided incidence data by applying 173

Bayesian inference on the parameter and state space with 174

assumed prior distributions. 175

1. Available serial interval functions for SARS-CoV-2 176

As we saw, the serial interval in epidemiology refers to the time 177

between successive observed cases in a chain of transmission. 178

Du et al. in (21) define it as “the time duration between a 179

primary case (infector) developing symptoms and secondary 180

case (infectee) developing symptoms.” 181

Du et al. in (21) obtained the distribution of the serial 182

interval by a careful inquiry on 468 pairs of patients where 183

one was the probable cause of the infection of the other. The 184

serial distribution Φ obtained in (21) has a significant number 185

of cases on negative days, meaning that the infectee had 186

developed symptoms up to f0 = 10 days before the infector. 187

In addition to this first serial interval, we test a serial interval 188

obtained by Nishiura et al. in (22) using 28 cases, which is 189

approximated by a log-normal distribution, and a serial interval 190

obtained by Ma et al. in (16) using 689 cases. As proposed 191

by the authors this serial interval has been approximated by 192

a shifted log-normal to take into account the cases in the 193

negative days. In Fig. 2 we show the profile of the three 194

serial intervals. There is good agreement of the serial intervals 195

obtained by Du et al. (21) and Ma et al. (16)‡. Note that 196

f0 = −4 for the Ma et al. serial interval, f0 = 0 for Nishiura 197

et al. and f0 = −10 for Du et al. The discrete support of Φ is 198

therefore contained in the interval [f0, f ]. 199

We are assuming that the serial interval profile does not 200

change across the time. As stated in (23) (equation [10]), it is 201

nevertheless possible to use a more general form of the renewal 202

equation (1), 203

it=
f∑

s=f0

Rt−sit−sΦt−s,s for t = 0, .., tc, [6] 204

where Φt−s,s is the forward serial interval which takes into 205

account that the onset of symptoms and transmission potential 206

can jointly depend on the life history of a disease. The forward 207

serial interval measures the time forward from symptom onset 208

of an infector, obtained from a cohort of infectors that devel- 209

oped symptoms at the same time t − s. This more general 210

form of the renewal equation is used in (23) to properly link 211

the initial epidemic growth to the reproduction number R0. 212

The variational approach proposed in the present work can be 213

easily extended to compute Rt from it and Φp,s, provided an 214

estimation of Φp,s is available. 215

Transmissibility can also depend on coronavirus lineage. 216

For instance in (24), the authors show that the SARS-CoV-2 217

variant B.1.1.7 has a 43 to 90% higher reproduction number 218

than preexisting variants. It cannot be ruled out that these 219

new variants have a different serial interval than preexisting 220

ones. 221

‡ In the online interface (www.ipol.im/epiinvert) the users can, optionally, upload their own distribution
for the serial interval.
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Fig. 2. Serial intervals used in our experiments: the discrete one proposed by Du et
al. in (21) (solid bars in blue), the serial interval proposed by Ma et al. (16) (solid bars
in orange) and its shifted log-normal approximation (in green), finally a log-normal
approximation of the serial interval proposed by Nishiura et al. in (22) (in red).

2. Computing Rt by a variational method222

As explained in the previous section, we aim at solving two223

versions of the renewal equation224

it = F (R, i,Φ, t) for t = 0, .., tc, [7]225

where226

F =F1≡Rt
f∑

s=f0

it−sΦs; F =F2≡
f∑

s=f0

it−sRt−sΦs. [8]227

F2 corresponds to the case reproductive number formulation228

(equation [1]) and F1 to the instantaneous reproduction number229

formulation (equation [2]). Both formulations of the renewal230

equation are valid, and we can apply our methodology to both.231

As we shall see, this leads to anticipate by several days the232

estimate of Rt. Equation [2] is also used in the classic Wallinga233

Teunis method (4), as shown in the supporting information.234

This last method is widely used to compute Rt retrospectively.235

Correcting the week-end effect We must first formulate a com-236

pensation for the weekend effect, which in most countries is237

stationary, strong, and the main cause of discrepancy between238

it and its expected value F (i, R,Φ, t). To remove the weekend239

effect we estimate periodic multiplicative factors defined by a240

vector q = (q0, q1, q2, q3, q4, q5, q6).241

The variational framework we propose to estimate Rt is242

therefore given by the minimization of the energy243

E({Rt}; q)=
tc∑
t=0

(
qt%7it− F ({qt%7it}, R,Φ, t)

median(t−τ,t](i)

)2

+ [9]

w

tc∑
t=1

(Rt−Rt−1)2

where t%7 denotes the remainder of the Euclidean division of244

t by 7, t = 0 represents the beginning of the epidemic spread245

246

247

248

249

250

enough to avoid overfitting and small enough to ensure that 251

the testing policy has not changed too much. The optimization 252

of Rt is instead performed through the whole time interval 253

[0, tc]. The corrected value ît = qt%7it amounts to a deter- 254

ministic attenuation of the weekend effect on it. An obvious 255

objection is that this correction might not be mean-preserving. 256

To preserve the number of accumulated cases in the period of 257

estimation, we therefore add the constraint 258

tc∑
t=tc−T+1

it =
tc∑

t=tc−T+1

ît =
tc∑

t=tc−T+1

qt%7it, [10] 259

to the minimization problem [9]. 260

In that way, the multiplication by the factor qt%7 produces 261

a redistribution of the cases it during the period of estimation, 262

but it does not change the global amount of cases. In Equation 263

[9], median(t−τ,t](i) is the median of it in the interval (t− τ, t] 264

used to normalize the energy with respect to the size of it. 265

In the experiments we use τ = 21. The first term of E is 266

a data fidelity term which forces the renewal equation [7] 267

to be satisfied as much as possible. The second term is a 268

classic Tikhonov-Arsenin regularizer of Rt. As in the case of 269

EpiEstim, this method provides a real-time estimate of Rt 270

up to the date, tc, of the last available incidence value. Yet, 271

in contrast with EpiEstim, this method takes advantage for 272

t < tc of the knowledge of the incidence curve it̄ for t̄ ∈ [t, tc]. 273

This improves the posterior accuracy of the Rt estimate. 274

The regularization weight. The regularization weight w ≥ 0 is 275

a dimensionless constant weight fixing the balance between 276

the data adjustment term and the regularization term. 277

Boundary conditions of the variational model. Since t = 0 is 278

the beginning of the epidemic spread where the virus runs free, 279

one is led to use an estimate of R0 = R0 based on the basic 280

reproduction number R0. (In the supporting information we 281

present a basic estimation of R0 from the initial exponential 282

growth rate of the epidemic obtained as in (25)), therefore, to 283

solve Equation [9], we add the boundary condition R0 = R0. 284

The proposed inversion model provides an estimation of Rt 285

up to the date, tc, of the last available incidence value. Yet 286

if f0 < 0, the functional [9] involves a few future values of 287

Rt and it for tc ≤ t ≤ tc − f0. These values are unknown at 288

present time tc. We use a basic linear regression using the last 289

seven values of it to extrapolate the values of it beyond tc. 290

We prove in the supporting information, that the boundary 291

conditions and the choice of the extrapolation procedure have 292

a minor influence in the estimation of Rt in the last days when 293

minimizing [9]. 294

All of the experiments described here can be reproduced 295

with the online interface available at www.ipol.im/epiinvert. This 296

online interface allows one to assess the performance of the 297

method applied to the total world population and to any 298

country and any state in the USA, with the last available data. 299

We detail our daily sources in the supporting information. 300

An empirical confidence interval for Rt. In absence of a statis- 301

tical model on the distribution of Rt, no theoretical a priori 302

confidence interval for this estimate can be given. Neverthe- 303

less, a realistic confidence interval is obtained by the following 304

procedure: let us denote by Rt̃t the EpiInvert estimate at time 305

t using the incidence curve up to the date t̃ ≥ t. Therefore 306

and tc the date of the last available incidence value.
The weekend effect has varied over the course of the pan-

demic. Hence, for the estimate of q it is better to use a time 
interval [tc − T + 1, T ] where T is fixed i n t he experiments 
to T = 56 (8 weeks). This two months time interval is long

4 Alvarez et al.
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Rtct represents the final EpiInvert estimate of Rt using the307

incidence data up to the last available date tc. As shown below308

using the real and simulated data, for F ≡ F2, Rt+kt stabilizes309

for k ≥ 8. We can therefore consider Rt+8
t as an approximation310

of the reproduction number ground truth. We want to provide311

an empirical confidence interval It = [Rtct − r(t), Rtct + r(t)]312

such that 95% of times Rt+8
t ∈ It (for t = tc, tc − 1, ..., tc − 7).313

To define r(t) we use, on the one hand, a measure of the314

variation of Rt in the last few days given by315

σ(t) =

√∑N

n=1(Rtct −Rtc−nt )2

N
, [11]316

where Rtc−nt in (tc−n, tc] are obtained by linear extrapolation.317

In our experiments we use N = 3. On the other hand, we use,318

supported by results obtained below for real and simulated319

data, that the error in the estimation of Rt grows linearly320

when t approaches tc (the last time at which it was available).321

Combining σ(t) with a linear function with respect to (tc − t)322

we obtain the following expression for r(t):323

r(t) = σ(t) + (B − C(tc − t))+ [12]324

where B and C are parameters of the estimation and (x)+ ≡325

max(0, x). The advantage of this empirical approach is that326

the estimation of the confidence interval is adapted to the327

variation of Rt in the last few days. Using 16500 experiments328

on real data corresponding to Rt estimations on 300 different329

values for the last used day, tc, in 55 countries, we obtain,330

in the case of F ≡ F2, that using B = 0.24 and C = 0.03,331

95% of times Rt+8
t ∈ It (for t = tc, tc − 1, ..., tc − 7). In332

the same way for the empirical 90% confidence interval we333

obtain B = 0.16 and C = 0.022. If we consider now F ≡ F1,334

then it is observed that Rt+kt stabilizes for k = 3. Using it335

as ground truth, the obtained empirical confidence intervals336

for Rt+3
t are given by B = 0.04 and C = 0.016 (in the case337

of 95%) and B = 0.02 and C = 0.009 (in the case of 90%)338

These empiric intervals are displayed for each t in the online339

algorithm www.ipol.im/epiinvert and have the aspect of fattened340

curves above and below Rt.341

Efficiency measure of the weekly bias correction. We esti-342

mate the correction of the weekly periodic bias by the efficiency343

measure344

I =

√√√√∑tc
t=tc−T+1

(̂
it− F (̂i, R,Φ, t)

)2∑tc
t=tc−T+1 (it− F (i, R1,Φ, t))2 . [13]345

I represents the reduction factor of the RMSE between the346

incidence curve and its estimate using the renewal equation347

after correcting the week-end bias. ît = itqt%7 and R are348

the optimal values for the energy [9] and R1 denotes the R349

estimate without correction of the weekly bias. The value350

of I can be used to assess whether it is worth applying the351

correction of the weekly periodic bias to a given country in a352

given time interval.353

Estimation of the temporal shift between EpiEstim and EpiIn-354

vert. In what follows, we will denote by REpit the EpiEstim355

estimation of the reproduction number by Cori et al. in (5), de-356

tailed in the supporting information. As we have argued above,357

we expect a significant temporal shift between the EpiInvert358

estimate of Rt and REpit , of the order of 9 days. This expecta- 359

tion is strongly confirmed by the experimental results, and can 360

be checked by applying the proposed method to any country 361

using the online interface available at www.ipol.im/epiinvert. In 362

summary, the time shift between both methods should be a 363

half-week (3.5 days) for F ≡ F1 and by Equation [4] of about 364

µ+ 3.5 ' 9 for F ≡ F2. This will be verified experimentally 365

by computing the shift t̃ between REpit and Rt yielding the 366

best RMSE between both estimates: 367

t̃=arg min
t∈[0,12]

S(t)≡

√∑tc
k=tc−T+1(Rk−t−REpik )2

T
[14] 368

where T = 56 (8 weeks) and where we evaluate Rk−t for 369

non-integer values of k − t by linear interpolation. 370

Summary of the algorithm parameters and options. 371

• choice of the serial interval : the default options are the 372

serial intervals obtained by Ma et al. (we use the shifted 373

log-normal approximation), Nishiura et al. and Du et al.. 374

The users can also upload their own serial interval; 375

• choice of the renewal equation used, F ≡ F1 or F ≡ F2; 376

• Correction of the weekly periodic bias (option by default) 377

The regularization weight w is always fixed to 5, the value we 378

obtain below, experimentally, by comparing with EpiEstim. 379

Summary of the output displayed at www.ipol.im/epiinvert. 380

First we draw two charts. In the first one we draw Rt and 381

REpit shifted back t̃ days where t̃ is defined in [14]. Rt is 382

surrounded by a shaded area that represents the above defined 383

empirical confidence intervals. In the second chart, we draw 384

the initial incidence curve it in green, the incidence curve 385

after the correction of the weekly periodic bias ît = itqt%7 386

in blue, and the evaluation of the renewal equation given by 387

t→ F (̂i, R,Φ, t) in red. For each experiment we also compute 388

: 389

1. Rtc : last available value of the EpiInvert Rt estimate. 390

2. REpitc
: last available value of the EpiEstim estimate REpit . 391

3. t̃ : optimal shift (in days) between R and REpi defined 392

in [14]. 393

4. S(t̃) : RMSE between R and REpi shifted back t̃ days 394

(defined in [14]). 395

5. V(i) : variability of the original incidence curve, it, given 396

by : 397

V(i)≡
‖i′‖L1[tc−T,tc]

‖i‖L1[tc−T,tc]
≈
∑tc

t=tc−T+1|it−it−1|∑tc
t=tc−T+1 it

[15] 398

6. V (̂i) : variability of the filtered incidence ît after the 399

correction of the weekly periodic bias. 400

7. I : reduction factor of the RMSE error between the inci- 401

dence curve and its estimate using the renewal equation 402

after the correction of the weekly periodic bias (defined 403

in [13]). 404

8. q = (q0, .., q6) : the correction coefficients of the weekly 405

periodic bias (q6 corresponds to the tc, the last time at 406

which it was available). 407
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Fig. 3. Distribution of w for F1 and F2 when the regularization weight w and the
delay t̃ are optimized independently for each country to minimize the average error
S(t̃) between the EpiEstim and the EpiInvert methods on a time lapse of 56 days.
France in blue, Japan in green, Peru in cyan, South Africa in magenta, USA in red.
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Fig. 4. Average error S(t̃) between the EpiEstim and the EpiInvert estimates of Rt

for each country. On the left w is fixed and on the right it is the optimal weight per
country. France in blue, Japan in green, Peru in cyan, South Africa in magenta, USA
in red.

3. Results on incidence curves from 55 countries408

To estimate a reference value for the regularization parameter409

w we used the incidence data up to July 17, 2021 for the 55410

countries showing the larger number of cases. For each country,411

we performed 30 experiments. Starting with the incidence data412

up to July 17, in each experiment we removed the last 10 days413

from the incidence data used in the previous experiment. In414

that way we got a large variety of real epidemic scenarios. We415

optimized the RMSE S(t̃) between Rt and REpit shifted back416

t̃ days (defined in [14]). This optimization was performed with417

respect to w and t̃. The goal was to fix w, the only parameter418

of the method, so that the result of EpiInvert is as close as419

possible to EpiEstim in the days where both methods predict420

Rt. The second goal of this optimization was to estimate the421

effective time shift t̃ between both methods.422

In Fig. 3 we show the box plot of the distribution of w423

for F1 and F2 when w was optimized independently for each424

experiment to minimize the average error over 56 days between425

the EpiEstim and the EpiInvert methods. The median of the426

distribution of w is 5 for F1 and F2 which indicated that a427

common value of w could be fixed for all countries. Here and428

in all figures to follow, each dot represents the average of all429

experimental results associated to a country.430

In Fig 4, we show, for the versions F1 and F2 of the renewal431
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Fig. 5. Optimal time shift t̃ obtained by minimizing the mean error S̃(t) over 56 days
between the EpiEstim and the EpiInvert estimates of Rt for each country. The time
shift is, as predicted by our theoretical analysis, close to 3 days for F1 and slightly
above 8 days for F2. On the left w is fixed and on the right it is the optimal weight per
country. France in blue, Japan in green, Peru in cyan, South Africa in magenta, USA
in red.

equation, the average error S(t̃) over 56 consecutive days of 432

the error between the EpiEstim and the EpiInvert estimates of 433

Rt for each country. The median of the overall average error 434

is 0.025 for F1 and 0.034 for F2. 435

As shown in Fig. 4, the agreement between Rt and REpit 436

shifted back by the optimal delay t̃ is overwhelming. As is 437

apparent by comparing the box plots on the left and right, 438

the increase of the error S(t̃) was insignificant when fixing 439

w = 5 for all countries (“fixed weight”) instead of optimizing 440

jointly on w and t̃ for all countries (“variable weight”). In 441

all experiments, we therefore fixed the value of w to 5 for all 442

countries. Once fixed, we optimized again S(t̃) with respect 443

to t̃. 444

In the box plot of Fig. 5 we show, for the versions F1 and 445

F2 of the renewal equation, the optimal time shift t̃ obtained 446

by minimizing the mean error S̃(t) over 56 days between the 447

EpiEstim and the EpiInvert estimates of Rt for each country. 448

As is apparent by comparing the box plots on the left and right, 449

there is almost no change on t̃ when fixing w for all countries 450

(“fixed weight”) instead of optimizing jointly on w and t̃ for all 451

countries. We obtain respectively t̃ = 2.88± 0.47 for variable 452

w and t̃ = 2.87±0.49 for F1 with fixed w, and similarly for F2: 453

t̃ = 8.24± 0.82 and t̃ = 8.27± 0.80. These results are in good 454

agreement with the discussion about the EpiEstim method 455

we have presented above, which led to predict a time delay of 456

3.5 days for F ≡ F1 and more than 8 days for F ≡ F2. The 457

difference between the predicted time delay and the observed 458

one therefore is about 0.5 days. This is easily explained by 459

the regularization term in Equation [9], which forces Rt to 460

resemble Rt−1. In summary, these experiments show that 461

EpiEstim predicts at time t a value Rt which corresponds to 462

day t− 8.5 or t− 3.5, and that EpiInvert predicts at time t a 463

value Rt which corresponds to day t− 0.5. 464

We now explore the internal coherence of the EpiInvert 465

predictions. Let us denote by Rt̃t the EpiInvert estimate at 466

time t using the incidence curve up to the date t̃ ≥ t. Since the 467

estimate of EpiInvert at each day evolves with the knowledge 468

of the incidence in later days, when t̃ increases, the estimation 469

Rt̃t becomes more accurate and, as shown later using simulated 470

data, we can consider that Rt̃t stabilizes and approaches the 471

final estimation when t̃ = t + 3 for F ≡ F1 and t̃ = t + 8 472
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Fig. 6. Internal relative error between the EpiInvert estimations depending on the
prediction day k. Each dot represents the average value on 300 experiments per-
formed on one country for different values of t. On the left, for F ≡ F1, we compare
for k = 0, 1, 2, the relative errors |Rt+k

t − Rt+3
t |. On the right, for F ≡ F2, we

compare, in the same way, |Rt+k
t −Rt+8

t | for k = 0, .., 7. For F ≡ F2, we see
that |Rt+k

t − Rt+8
t | goes down almost linearly with respect to k. France in blue,

Japan in green, Peru in black, South Africa in magenta, USA in red. The robustness
of the prediction is positively affected by incidence numbers.

for F ≡ F2. Fig. 6 gives a box plot of the distributions of473

the internal relative error between the EpiInvert estimations474

depending on the prediction day k.475

Fig. 7 shows, for each prediction day k = 0, 1, .., the linear476

regression of the internal relative error between the EpiInvert477

estimations, viewed as a function of the mean incidence of the478

country. These regression lines are clearly decreasing, which479

means that a higher incidence favors a better estimate of Rt.480

Last but not least, we evaluate the reduction obtained on the481

“week-end effect”. Fig. 8 shows a regression plot of the RMSE482

reduction factor I (see [13]) obtained by applying correcting483

coefficients to reduce the “week-end effect”. This reduction484

decreases from about 0.7 to 0.4, the plots being ordered in485

increasing order of average incidence. This indicates that486

higher incidences lead to a more regular 7 days periodicity of487

the week-end effect. In https://ctim.ulpgc.es/covid19/BoxPlots/488

Fig. 6, 7 and 8 are presented in interactive mode with tooltip489

detailed statistics on each country.490

4. Validation on epidemic simulations491

To evaluate the accuracy of the proposed technique, we used492

simulated data where the ground truth for Rt (that we denote493

by RGTt ) is similar to the one proposed in Gostic et al. (11).494

This ground truth simulates the impact of a strict lockdown at495

the beginning of the epidemic spread. Initially, RGTt = R0 > 1,496

then, a strict lockdown is implemented at time t = 0 and RGTt497

becomes Ri < 1. After t′ days (the lockdown duration) the498

social-distancing measures start relaxing to keep the Rt value499

stabilized around 1. The parameters to define RGTt are R0, Ri,500

t′ and s, which determines the slope of the transitions between501

R0 and Ri and between Ri and 1. the larger s, the sharper502

the transition. For a technical description of the definition of503

RGTt , see the supporting information. The ground truth of the504

incidence curve, that we denote by iGTt , is computed from the505

renewal equation using RGTt as reproduction number. Since506

the ground truth of the incidence curve is defined up to the507

multiplication by a constant factor, the simulator allows users508
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Fig. 7. Linear regression of the internal relative error between the EpiInvert estimation
as a function of the mean incidence. The regression lines are clearly decreasing,
which means that a higher incidence favors a better estimate of Rt.
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Fig. 8. Reduction factor I (see [13]) obtained by applying correcting coefficients to
reduce the “weed end effect”. This reduction decreases from about 0.7 to less than
0.4. The plots are ordered in increasing order of average incidence.
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to tune the additional parameter imax, which represents the509

maximum value of the incidence curve in the whole period. We510

simulated the observed incidence curve it assuming that it =511

P(iGTt q′t%7) follows a Poisson distribution of mean iGTt q′t%7512

where q′ = (q′0, .., q′6) is the vector of the weekly bias correction513

factors.514

To simulate the weekly bias the simulator proposes 19515

options of real bias correction factors, pre-estimated using516

the incidence curve of 19 countries. Note that, in agreement517

with the Poisson model, the weekly bias is applied first on the518

deterministic incidence curve. It is followed by the Poisson519

simulation, which takes this biased deterministic value as520

parameter. The simulator finally uses EpiInvert and EpiEstim521

to compute Rt from the biased Poisson process realization522

it. An online implementation of this simulator is available at523

www.ipol.im/episim.524

A statistical analysis of the results was performed on 4800525

simulations, obtained by varying regularly the parameters526

R0 ∈ [1.5, 2], Ri ∈ [0.5, 0.8], s ∈ [0.1, 2.], imax ∈ [1000, 30000],527

t′ = 28, pre-estimated weekly bias from 19 countries, and the528

extra option of not applying weekly bias. The regularization529

parameter was fixed to w = 5, which is the optimal value530

obtained with real data. In the case of F ≡ F1, we compared531

the ground truth RGTt with REpit (the EpiEstim estimation),532

Rtt (the EpiInvert estimation using it up to the time t), Rt+3
t533

(the EpiInvert estimation at time t using it up to the time534

t+ 3), and the final estimate Rtct . In the simulator, tc > t+ 8535

is the last day used in the simulation, which depends on the536

lockdown duration. In the case of F ≡ F2, we compared the537

ground truth with REpit , Rtt, Rt+4
t , Rt+8

t and Rtct .538

Fig. 10 shows a thorough comparison on a lockdown sce-539

nario of the results of the Rt estimation methods. These540

simulations confirm the theoretically anticipated time delays541

between the various considered estimates of Rt. Contrarily542

to EpiEstim, EpiInvert updates the estimated values of Rt543

when days pass by. This estimate of Rt obtained k days later,544

denoted by Rt+kt , stabilizes near the (blue) ground truth RGTt545

for k = 8 (B, red) with the F2 model, and for k = 3 for the F1546

model (A, red). Indeed it uses, for each t, the incidence values547

up to 8 days (resp. 3 days) later. Nevertheless, for the F1548

model, the timely estimate Rtt (A, orange) is very close to the549

ground truth RGTt (A, blue) and much closer to it than the550

EpiEstim estimate (A, black). For the F2 model, the timely551

estimate Rtt (B, orange) is not that close to RGTt . Indeed,552

the estimation uses the values of it up to time t, so there is553

only partial information to compute the reproduction number,554

which still depends on the future values of it. Yet, the Rt+4
t555

estimate (B, magenta), which is delayed by only 4 days, is556

considerably closer to the ground truth (in blue), and Rt+8
t is557

still closer. Observe that EpiEstim (in black) provides by far558

the worst estimation of RGTt .559

In Table 1, we show the distributions of the optimal time560

delay between RGTt and its various estimates by minimizing the561

RMSE between both curves. For the F1 model, the EpiEstim562

estimate shifted back by 2.65 days has an error of 0.053. Rtt,563

computed on the same day by EpinInvert, has an error of564

0.044 with a delay of just 0.84 days. In short, EpiInvert gets565

a better estimate 2 days in advance with respect to EpiEstim.566

A similar conclusion arises for the F2 model. EpiEstim, when567

shifted back by 8.42 days, has an error of 0.108. Waiting for 8568

days and shifting back by 0.44 days the result of Rt+8
t yields569

an inferior error, 0.075. But a result almost as good (0.078) is 570

obtained by taking the result of Rtt and shifting it back by 5.41 571

days. There is no particular gain in waiting longer for better 572

estimates of EpinInvert : the estimate does not improve with 573

time and is stack at 0.075. In summary, this result (based on 574

simulations) leads to the following recommendations: 575

a) The EpiEstim estimate at time t, Rt must be shifted back 576

by 8.42 days; 577

b) The EpinInvert synchronous estimate Rtt made at time t 578

must be shifted back by 5.41 days. It is more precise than 579

the EpiEstim estimate (an 0.078 error against 0.108) and it is 580

obtained three days earlier (a 5.41 days delay against 8.42); 581

c) Nevertheless, as we have seen in Fig. 6, the EpiInvert ex 582

post estimate k → Rt+kt stabilizes after 5 days to a value 583

which is very close to the ground truth, without the need for 584

shifting back its value. 585

In the above estimates, replacing Rt+8
t by Rtct does not 586

change this conclusion. The difference between these estimates 587

is negligible. Indeed, Rt+kt no longer varies for k ≥ 8. 588

5. CONCLUSION 589

The reproduction number Rt can be estimated by solving a 590

renewal equation linking Rt, the case incidence curve it, and 591

the serial interval Φs. We considered two formulations of 592

the renewal equation. The first one (F ≡ F1) estimates the 593

instantaneous reproduction number. The second one (F ≡ F2) 594

estimates the case reproductive number. Resolving these 595

equations is challenging, because the daily incidence data 596

it recorded by health administrations is noisy and shows a 597

strong quasi-periodic behavior. In order to get an estimate 598

of Rt we introduced a classic regularity constraint on Rt 599

and we corrected the weekly periodic bias observed in the 600

incidence curve it by a simple variational formulation. Our 601

proposed variational model, EpiInvert, also computes empirical 602

confidence intervals. In contrast to former methods, EpiInvert 603

can use serial intervals with distributions containing negative 604

days (as it is the case for COVID-19). Thus, it avoids an 605

artificial truncation of the serial interval, and it provides an 606

estimate that improves with time. Nevertheless, as shown 607

on simulations and on real incidence data, EpiInvert shows 608

excellent agreement with EpiEstim. Its main improvement is 609

the reduction of the time shift between the estimation and the 610

actual value of Rt. If we compare EpiEstim with the EpiInvert 611

estimate Rtt (the estimation of Rt that uses the incidence values 612

up to the time t), EpiInvert provides an estimate of Rt about 613

2 days in advance for the instantaneous reproduction number, 614

and about 3 days in advance for the case reproductive number. 615

This means that for both models, EpiInvert can anticipate by 616

several days an estimate of Rt. This estimate is more precise 617

than the EpiEstim estimate. In addition, we proved on a 618

simulator that the EpiInvert estimate Rt+8
t , obtained 8 days 619

later than the current date, t, is very close to the ground truth. 620

Comparing it with the EpiEstim estimate confirms that the 621

time delay of EpiEstim is about 3 days for the instantaneous 622

reproduction number (F = F1), and more than 8 days for 623

the case reproductive number (F = F2). Finally, comparing 624

the EpiEstim and the EpiInvert estimated curves of Rt on 625

real data confirms these 3 and 8 days delays between both 626

estimates. These facts are extremely relevant, given that the 627

control of social distancing policies requires a timely estimate 628

of Rt. 629
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F1 F1 F1 F1 F1 F1 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2

Rt REpi
t Rt

t Rt+1
t Rt+2

t Rt+3
t Rtc

t REpi
t Rt

t Rt+1
t Rt+2

t Rt+3
t Rt+4

t Rt+5
t Rt+6

t Rt+7
t Rt+8

t Rtc

t

t̃ 2.65 0.87 0.41 0.27 0.23 0.2 8.42 5.41 4.43 3.46 2.52 1.62 1.41 0.59 0.49 0.44 0.37
S(0) 0.140 0.071 0.049 0.045 0.046 0.049 0.280 0.212 0.179 0.148 0.122 0.103 0.091 0.086 0.083 0.081 0.080
S(t̃) 0.053 0.044 0.040 0.041 0.043 0.047 0.108 0.078 0.077 0.077 0.076 0.075 0.075 0.075 0.075 0.075 0.075

Table 1. Statistical results for the different estimation results of Rt on 4800 simulations for the F1 and F2 models. First row: the renewal
equation model used. Second Row: the Rt estimate. Third row: the optimal shift t̃ minimizing the RMSE between RGTt and the Rt estimate.
Fourth row: the median of S(0), the RMSE without temporal shift. Fifth row: the RMSE S(t̃) after applying the optimal temporal shift.
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Fig. 9. Comparison on a lockdown scenario of the results of the Rt estimation methods. The RGT
t ground truth parameters are R0 = 2 (reproduction number before the

lockdown), Ri = 0.75 (reproduction number after the lockdown), t′ = 28 (lockdown duration), s = 0.5 (slope of the transition between R0 and Ri), imax = 10000
(maximum of the incidence curve), and a weekly periodic bias borrowed from the USA. The simulations and inversions were performed in A and C for F ≡ F1 and in B and D
for F ≡ F2. Note that the same RGT

t scenario (blue curve in A and B) leads to very different incidence curves (in green) in C an D. Hence, the results of the F 1 and F 2
inversions in A and B cannot be compared. In A and B, Rt+k

t denotes the EpiInvert estimate of Rt obtained k days later.
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Fig. 10. Distributions of the optimal time shift (A), the RMSE before the time shift
(B) and the RMSE after the time shift (C) between the ground truth RGT

t and its
approximation obtained by EpiEstim and by EpiInvert, as a function of the number
of days k after t used in the prediction. Note that columns F1 and F2 cannot be
compared. Indeed, as illustrated in Figure 9, the incidence simulations for a same
ground truth RGT

t are quite different. The result of EpinInvert, which evolves with
time, converges near-perfectly to the ground truth after 8 days (resp. 3 days) for F2
and F1 respectively. The EpiEstim result is static and stays 30 to 40% away from the
ground truth. As argued in section 1, this large relative error in the F2 model can be
compensated by shifting back the estimate by 8.5 days.
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Supporting Information682

In this section we describe and analyze the EpiEstim method683

and its parameters (Section A). In Section B the Wallinga-684

Teunis method. Section C presents implementation details685

of EpiInvert. Section D shows some technical details on our686

experiments on simulated data. Section D makes a case study687

of the USA, France, Japan, Peru and South Africa.688

A. The EpiEstim method. One of the most widely used meth-689

ods to estimate the instantaneous reproduction number is the690

EpiEstim method proposed by Cori et al. (5). In what follows,691

we will denote by REpit the EpiEstim estimation. The authors692

show that if it follows a Poisson distribution with expectation693

λ = E[it] = REpit

∑t

s=1 it−sΦs and REpit is assumed to follow694

a gamma prior distribution Γ(a, b), then the following analyti-695

cal expression can be obtained for the posterior distribution696

of REpit :697

REpit,τ =
a+

∑t

s=t−τ+1 is

b−1 +
∑t

s=t−τ+1
∑f

k=1 is−kΦk
, [A]698

where REpit is assumed to be locally constant in a time window699

of size τ ending at time t. However, it does not follow a700

Poisson distribution as its local variance in most states much701

higher than its mean, being dominated by the weekend effect.702

In this method, implemented in the EpiEstim R package, a703

regularization of the estimation is introduced by assuming704

that REpit is constant in a time window of size τ ending at705

time t. We found that the parameters a and b of the prior706

Gamma distribution Γ(a, b), have very little influence on the707

current estimation of REpit . Cori et al. in (5) proposed to708

use a = 1 and b = 5. Taking into account the magnitude709

of the current number of daily cases in countries affected by710

Covid-19, the contribution of a and b to the expression [A]711

can be neglected. As shown in (15), assuming that the mean712

ab of the prior Gamma distribution Γ(a, b) satisfies713

ab =
∑t

s=t−τ+1 is∑t

s=t−τ+1
∑f

k=1 is−kΦk
, [B]714

equation [A] becomes715

REpit,τ = īt,τ∑f

k=1 īt−k,τΦk
[C]716

which corresponds to the usual REpit estimate obtained directly717

from equation [2] applied to īt, where īt is the average of it in718

the interval [t− τ, t]. Therefore, if we remove the parameters a719

and b from the estimation of REpit , the main difference between720

the EpiEstim estimation and the one proposed here for F ≡ F1721

is that in EpiEstim, a serial interval with non-positive values722

is not allowed and that the regularity is forced by a backward723

seven day average of the incidence curve. This is replaced724

by a regularity term in the proposed variational formulation.725

Notice that due to the backward averaging of the incidence726

curve, we can expect a time shift between both estimations.727

B. The Wallinga and Teunis computation ofRt . TheWallinga-
Teunis (4) method is also implemented in the EpiEstim pack-
age and widely considered as a reliable method to compute
the case reproduction number, Rct , retrospectively (11). Its
formulas to estimate Rct at time t require the knowledge of it

for t = 0, · · · , t+ f . Starting from the original definitions of
the authors, we give a mathematical proof that their method
is actually computing Rt by the F1 form of the renewal equa-
tion. The method is based on the following estimation of the
“relative likelihood, pk,l, that a case k has been infected by
case l”,

pk,l = Φ(tk − tl)∑n

m=1,m6=k Φ(tk − tm)

where n represents the reported cases and tk is the time of 728

infection for the case k. Wallinga and Teunis define the case 729

reproduction number by 730

Rl =
∑
k

pk,l. [D] 731

Since Rl only depends on the time of infection tl, it is actually 732

an estimation of the reproduction number at time t = tl, so 733

the Wallinga and Teunis estimate, Rct , of the reproduction 734

number can be expressed as: 735

Rct =
∑
k

Φ(tk − t)∑n

m=1,m6=k Φ(tk − tm)
[E] 736

It remains to establish a relation of Rct with the instantaneous 737

reproduction number REpit obtained by the renewal equation 738

with F ≡ F1, 739

REpit = it∑
s
it−sΦs

. [F] 740

Grouping in the sum in [E] the cases k such that tk = t̄ and 741

taking into account that there are it̄ such cases, Rct can be 742

rewritten as 743

Rct =
∑
t̄

Φ(t̄− t)it̄∑
s>0 it̄−sΦs

=
∑
t̄

Φ(t̄−t)REpit̄ =
∑
s

Φ(s)REpis+t.

[G] 744

We can therefore interpret Rct as the forward convolution of 745

the initial estimate REpit with the kernel given by Φs. This 746

relation between the instantaneous and case reproduction 747

numbers has also been proven in (9) (equation (10)). On the 748

other hand, as explained above, the EpiEstim estimate REpit 749

can be interpreted (if we neglect the parameters a and b of 750

the Gamma distribution) as the application of Equation [F] to 751

the incidence curve filtered by sliding average on [t− τ + 1, t]. 752

In conclusion the Cori et al. and the Wallinga and Teunis 753

methods use the renewal equation F ≡ F1. Note, however, that 754

the Wallinga and Teunis method computes the reproduction 755

number only retrospectively. Indeed, the computation of Rct 756

requires the values of it̃ for any t̃ > t such that Φ(t̃− t) > 0. 757

This fact was observed in Cori et al.: (in the WT approach), 758

“estimates are right censored, because the estimate of R at 759

time t requires incidence data from times later than t.” 760

C. Implementation details of EpiInvert. 761

Boundary condition for [t > tc] . The proposed inversion model 762

provides an estimation of Rt up to the the date,tc, of the 763

last available incidence value. An obvious objection is that 764

if f0 < 0, the functional [9] involves a few future values of 765

Rt and it for tc ≤ t ≤ tc − f0. These values are unknown at 766

present time tc. We use a basic linear regression to extrapolate 767

the values of it beyond tc. To compute the regression line 768

(i = m7 · t+n7) we use the last seven values of it. In summary, 769
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the extension of it beyond the observed interval [0, tc] is defined770

by771

it =

{
I0e

at − I0ea(t−1) if t < 0;

m7 · t+ n7 if t > tc.
[H]772

The above defined boundary conditions has a very minor
influence in the final estimation of Rt in the last days when
minimizing [9]. Indeed, the extension of it for t < 0 is only
relevant at the beginning of the epidemic spread. On the other
hand, the extension of it for t > tc is only required when the
serial interval has negative values. For instance, to evaluate
the renewal equation in the energy at the current time tc using
this approach for F ≡ F2 we use the expression

itc =
f∑
s=0

itc−sRtc−sΦs +
−1∑
s=f0

itc−sRtc Φs,

and the extension of it for t > tc is only used in the last term773

of the above expression where the values of Φs are usually774

very small. Hence the influence of this extension procedure775

for it is also almost negligible. To confirm this claim, we776

compared, using the shifted log-normal approximation of the777

serial interval proposed by Ma et al., the estimate of Rtc778

using the extrapolation based on a linear regression of the779

last 7 days, with the basic extrapolation given by it = itc for780

t > tc. Computing the absolute value of the difference of both781

estimates for 81 countries we obtain that the quartiles of such782

distribution of values are Q0 = 6.6 · 10−6, Q1 = 1.3 · 10−4,783

Q2 = 3.1 · 10−4, Q3 = 5.7 · 10−4 and Q4 = 4.9 · 10−3. We784

conclude that extrapolation of it beyond tc is a valid strategy785

to estimate Rt up to t = tc.786

Pre-processing the incidence curve. Some countries do not pro-787

vide data on holidays or weekends and only provide the cu-788

mulative total of cases on the next working day. To avoid the789

strong discontinuity in the data sequence produced by the lack790

of data, we automatically divide the case numbers of the first791

non-missing day, between the number of days affected. We do792

not allow negative numbers in the incidence curve. By default,793

we replace by zero any negative value of the incidence curve.794

Alternate minimization of the energy [9]. To minimize the energy795

[9], we use an alternate minimization algorithm with respect796

to Rt and q. Indeed, if q is fixed, then the optimization of797

the energy [9] with respect to Rt leads to a linear system of798

equations that is easily solved. In what follows, we will denote799

by R(t, i,q) the result of this minimization. On the other800

hand, when Rt is fixed, the minimization of [9] with respect801

to q also leads to a linear system of equations. The constraint802

[10] is expressed as an additional linear equation,803

µ0q0 +µ1q1 +µ2q2 +µ3q3 +µ4q4 +µ5q5 +µ6q6 =
tc∑

t=tc−T+1

it, [I]804

where µk =
∑k+7t≤tc

t=tc−T+1 ik+7t. This linear constraint is easily805

included in the minimization procedure using, for instance,806

Lagrange multipliers. So q is computed as the unique solution807

of the associated linear system. In what follows we will denote808

by q(R) the result of this minimization. Let us denote by Rnt809

and qn the estimation of Rt and q in the iteration n of the810

alternate minimization algorithm. We also denote by int =811

it ·qnt%7 the filtered incidence curve at iteration n. We initialize812

n = 0, i0 ≡ i, q0 ≡ 1 and we compute R0
t = R(t, i0,q0) as the 813

minimizer of the energy [9] with respect to Rt for q ≡ q0. 814

The whole method is summarized in Algorithm 1, where 815

the maximum number of iterations is fixed to MaxIter = 100. 816

Algorithm 1 Estimation of î, R, q from i and Φ.
Initialization: i0 ≡ i, I0 = 1, q0 ≡ 1. compute R0

t =
R(t, i0,q0) minimizing [9] with respect to Rt.
for n = 1, 2, ..,MaxIter do

compute qn = q(Rn−1) minimizing [9] with respect to q.
compute int = qnt%7it.
compute In using [13].
if In > In−1 then

stop the iteration
else

î ≡ in.
q ≡ qn.
compute Rnt =R(t,in,qn) minimizing [9] with respect
to Rt.
R = Rn.

end
end
return î, R, q.

Initial boundary condition, for t = 0 . The evaluation of 817

F2(i, R,Φ, t) requires values of Rt and it beyond the inter- 818

val [0, tc]. Given the boundary conditions established, we 819

assume that Rt = R0 for t < 0 and Rt = Rtc for t > tc. 820

Concerning it, for t < 0 we will assume, as usual, that at the 821

beginning of the epidemic spread the virus is in free circulation 822

and the cumulative number of infected detected It ≡
∑t

k=0 ik 823

follows an exponential growth for t < 0, that is It = I0e
at, 824

where a represents the initial exponential growth rate of It 825

at the beginning of the infection spread. We now naturally 826

estimate a by 827

a = median({log
(
It+1

It

)
: t = 0, .., 14}). [J] 828

If we assume that It = I0e
at follows initially an exponential 829

growth and that Rt = R0 is initially constant, then we can 830

compute R0 from the exponential growth a and the renewal 831

equation taking into account that 832

i0 = I0(1− e−a) = I0R0
f∑

k=f0

(e−ka − e−(k+1)a)Φk. [K] 833

Hence, we can compute an approximation of R0 as 834

R0 = 1− e−a∑f

k=f0
(e−ka − e−(k+1)a)Φk

. [L] 835

This estimation of R0 is a discrete version of the formula 836

given in (9) where the incidence curve is assumed to follow 837

an exponential growth. Note that this estimation strongly 838

depends on the serial interval used. For instance, if we assume 839

that a = 0.250737 (the exponential growth rate obtained in 840

(25) when the coronavirus is in free circulation), we obtain that 841

R0 = 2.700635 for the Nishiura et al. serial interval, R0 = 842

3.084528 for the Ma et al. serial interval and R0 = 1.839132 843

for the Du et al. serial interval. 844
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D. Experiments using simulated data. We describe here in845

more detail a simulator Rt → it. The simulator starts from a846

realistic scenario on the evolution of Rt depending on parame-847

ters fixed by the user. Then, using a choice of serial intervals848

and a realistic weekly bias borrowed from real examples, the849

simulator samples the incidence curve it as the realization of850

Poisson variable. The simulated “ground truths” for Rt will851

be denoted by RGTt . They are similar to those proposed in852

Gostic et al. (11). RGTt goes from a user selected initial value853

R0 > 1 to an intermediate value Ri < 1, and finally goes back854

to 1. This hypothesis for an evolution corresponds to a typical855

lockdown scenario where initially the number of cases grows856

exponentially, then a lockdown is implemented during a time857

that we denote by t′, and finally social-distancing measures858

relax but try to stabilize Rt around 1. The parameters defining859

the simulated ground truth RGTt therefore are R0, Ri, t′ and860

s, which determines the slope of the transitions between R0861

and Ri and between Ri and 1. the larger s, the sharper the862

transitions. To define RGTt we use the following function:863

Ry0,y1,s,t′ (t) = y0+ y1−y0

2

(
1+ 2

π
arctan

(
s
π(t−t′)
|y0−y1|

))
[M]864

where y0, y1, s and t′ are the function parameters.865

This function satisfies : limt→−∞Ry0,y1,s,t′(t) = y0,866

limt→∞Ry0,y1,s,t′(t) = y1. The maximum of the absolute867

value of its derivative is equal to s and is attained at t = t′.868

Next, we define RGTt by869

RGTt =
{
RR0,Ri,s,0(t) if RR0,Ri,s,0(t) ≥ RRi,1,s′,t′ (t);
RRi,1,s′,t′ (t) if RR0,Ri,s,0(t) < RRi,1,s′,t′ (t).

[N]870

To reduce the number of parameters we assume that s′ = s/5,871

reflecting the fact that the relaxation of social distancing872

measures is more progressive than a lockdown.873

The ground truth of the incidence curve, that we denote874

by iGTt , is computed from the renewal equation using RGTt as875

reproduction number and a user selected serial interval among876

three proposed (Du, Ma, Nishiura). We take an initial value877

for iGT0 and iteratively compute iGTt from {iGTt′ : t′ < t} using878

the renewal equation and the boundary conditions explained879

above. Then, we improve the accuracy of the estimation of880

iGTt by applying a Newton method until convergence. Indeed,881

given RGTt , the renewal equation is a fixed point equation in882

it. Since the ground truth of the incidence curve is defined up883

to the multiplication by a constant factor, rather than fixing884

the initial number of cases, we add a more intuitive parameter885

imax which allows the user to fix the maximum value of the886

incidence curve in the whole period. This value impacts the887

noise inherent to a Poisson process: the smaller imax, the888

larger the stochastic oscillation of it. We then simulate the889

observed incidence curve it assuming that it = Pois(iGTt q′t%7),890

that is, it follows a Poisson distribution of mean iGTt q′t%7 where891

q′ = (q′0, .., q′6) is the vector with the weekly bias correction892

factors. The weekly bias proposes several real bias correction893

factors options q = (q0, .., q6), borrowed from the EpinInvert894

analysis of the incidence curve of 19 countries. To obtain q′895

from q, we simply invert the weekly bias correction coefficients896

by setting q′k = 1/(qkλ), where λ is a normalization factor897

preserving the cumulative number of cases in the period of898

analysis. More precisely, λ is derived from the equation899

tc∑
t=tc−T+1

iGTt
qt%7λ

=
tc∑

t=tc−T+1

iGTt . [O]900
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Fig. S1. Time delay between the reproduction number ground truth RGT
t and its

various estimates when computing the time shift that minimizes the RMSE between
both curves. The horizontal axis is the slope of Rt at lockdown time (t = 0). Using
the simulator, these estimates confirm the 8.5 days delay of the EpiEstim estimate with
respect to the ground truth for F2, and a 3 days delay for the F1 form of the equation.
The EpiInvert delay is also important on the first evaluation day, but decreases as
days pass by.

From a sample of the stochastic simulation of it, the demo 901

finally computes Rt using EpiInvert and EpiEstim. 902

In Fig. S1 we show, as a function of the slope in the 903

lockdown transition, the distributions of the optimal time 904

delay between RGTt and its various estimates. The optimal 905

time shift between an Rt curve and RGTt is the one that 906

minimizes their RMSE. We observe that the time shift is 907

slightly larger when the slope of the transition is small. 908

E. Case studies: USA, France, Japan, Peru and South Africa 909

. The country data about the registered daily infected are 910

taken from https://ourworldindata.org. In the particular cases of 911

France, Spain and Germany we use the official data reported 912

by the countries. We shall use the incidence data up to Friday, 913

July 23, 2021 (so the last weekly bias correction factor q6 914

corresponds to a Friday). For the US states, the data are 915

obtained from the New York Times report §. 916

Table S2 contains a summary of the values computed for 917

each experiment. To compute the EpiEstim estimation REpit , 918

we used τ = 7, that is, we assumed that Rt is constant 919

in [t − 7, t]. As proposed by Cori et al. in (5) we used 920

a = 1 and b = 5 for the parameters of the Γ(a, b) prior 921

distribution for Rt. Yet, as explained above, these values 922

could be neglected in the EpiEstim estimation, given the 923

magnitude of the incidence data in these regions. The values 924

of the bias correction coefficients qk obtained for F ≡ F1 and 925

F ≡ F2 are quite similar. So it seems that the choice of the 926

renewal equation has no significant influence on the estimation 927

of the bias correction coefficients. 928

In Fig. S2 we show the charts obtained for the USA with 929

F ≡ F1 and F ≡ F2. The USA shows a clear weekly periodic 930

bias. The correction of this bias works quite well, as the RMSE 931

reduction reaches I = 0.409 for F ≡ F1 and I = 0.381 for 932

F ≡ F2. The oscillation of the incidence curve is strongly 933

reduced, passing from V(i) = 0.542 to V (̂i) = 0.267. The 934

agreement with EpiEstim is also excellent as S(t̃) = 0.053 for 935

F ≡ F1 and S(t̃) = 0.048 for F ≡ F2. The daily bias correction 936

factors are similar for F ≡ F1 and F ≡ F2. On Sundays 937

the number of cases is strongly underestimated (q1 = 3.205 938

for F ≡ F2) and overestimated on Fridays (q6 = 0.569 for 939

§https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv
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USA USA France France Japan Japan Peru Peru S.Africa S.Africa
F F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

t̃ 2.38 7.53 3.42 8.73 2.92 9.61 2.50 7.00 2.64 8.39
S(t̃) 0.053 0.048 0.052 0.065 0.014 0.022 0.068 0.070 0.027 0.032

I 0.409 0.381 0.425 0.456 0.265 0.274 0.773 0.770 0.347 0.345
q0 1.916 1.981 0.905 0.893 0.885 0.880 1.267 1.248 0.836 0.838
q1 3.205 3.382 1.022 0.996 1.128 1.124 0.875 0.867 1.115 1.118
q2 0.848 0.879 3.836 3.682 1.624 1.618 0.666 0.678 1.539 1.539
q3 1.014 1.033 0.858 0.844 1.051 1.049 0.791 0.803 1.300 1.298
q4 0.985 0.970 0.825 0.827 0.851 0.851 1.184 1.199 0.864 0.864
q5 1.093 1.048 0.921 0.942 0.846 0.849 1.346 1.346 0.872 0.871
q6 0.569 0.541 0.933 0.974 0.960 0.968 1.330 1.308 0.853 0.853

Table S2. Numerical results obtained by EpiInvert for the USA, France, Japan, Peru and South Africa using the data up to July 23, 2021 and
the renewal equations F = F1 and F = F2.

F ≡ F2).940

In Fig. S3 we show the charts obtained for France with941

F ≡ F1 and F ≡ F2. France also displays a clear weekly942

periodic bias: on Mondays the number of cases is strongly943

underestimated (q2 = 3.682 for F ≡ F2). The correction of944

the periodic bias works well, as I = 0.425 for F ≡ F1 and945

I = 0.456 for F ≡ F2. The oscillation of the incidence curve946

is therefore reduced, passing from V(i) = 0.346 to V (̂i) =947

0.087. The agreement with the EpiEstim method is good,948

with S(t̃) = 0.052 for F ≡ F1 and S(t̃) = 0.065 for F ≡ F2.949

In Fig. S4 we show the charts obtained for Japan with950

F ≡ F1 and F ≡ F2. In Japan, the weekly bias correction951

works very well and yields I = 0.265 for F ≡ F1 and I = 0.274952

for F ≡ F2. The oscillation of the incidence curve reduces953

from V(i) = 0.189 to V (̂i) = 0.069. The agreement with the954

EpiEstim method is good, with S(t̃) = 0.014 for F ≡ F1 and955

S(t̃) = 0.022 for F ≡ F2. Observe how the incidence curve is956

underestimated on Mondays (q2 = 1.618).957

In Fig. S5 we show the charts obtained for Peru with958

F ≡ F1 and F ≡ F2. Although in general countries present959

a clear weekly periodic pattern in the incidence curve this960

is not the case for Peru: we obtain I = 0.773 for F ≡ F1961

and I = 0.770 for F ≡ F2. The oscillation of the incidence962

curve is not reduced, going from V(i) = 0.355 to V (̂i) = 0.369.963

The agreement with EpiEstim is good with S(t̃) = 0.068 for964

F ≡ F1 and S(t̃) = 0.070 for F ≡ F2.965

In Fig. S6 we show the charts obtained for South Africa966

with F ≡ F1 and F ≡ F2. The correction of the periodic bias967

works well, as I = 0.347 for F ≡ F1 and I = 0.345 for F ≡ F2.968

The oscillation of the incidence curve is reduced, passing from969

V(i) = 0.191 to V (̂i) = 0.087. On Mondays the number of cases970

is underestimated (q2 = 1.539 for F ≡ F2). The agreement971

with the EpiEstim method is good, with S(t̃) = 0.027 for972

F ≡ F1 and S(t̃) = 0.032 for F ≡ F2.973

The optimal shift t̃ between Rt is REpit obtained for the974

different countries fits in the range obtained by a joint analysis975

of the 55 countries. Indeed, for F ≡ F1 t̃ ranges from 2.38 to976

3.42 and for F ≡ F2 t̃ ranges from 7.00 to 9.61.977
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Fig. S2. Results obtained for the USA up to July 23, 2021 using: (top) F ≡ F1 and (down) F ≡ F2.
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Fig. S3. Results obtained for France up to July 23, 2021 using: (top) F ≡ F1 and (down) F ≡ F2.
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Fig. S4. Results obtained for Japan up to July 23, 2021 using: (top) F ≡ F1 and (down) F ≡ F2.
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Fig. S5. Results obtained for Peru up to July 23, 2021 using: (top) F ≡ F1 and (down) F ≡ F2.
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Fig. S6. Results obtained for South Africa up to July 23, 2021 using: (top) F ≡ F1 and (down) F ≡ F2.
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