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Abstract
Banana production generates significant amounts of agricultural wastes, being fiber extraction one of the most relevant 
alternatives for their valorization. This process produces banana’s pseudostem pulp (BPP) as a byproduct, which shows an 
interesting composition for the biorefinery’s biochemical platform, with high polysaccharides (68%) and low lignin contents. 
This work deals with the enzymatic hydrolysis (EH) of raw and hydrothermally pre-treated BPP, focusing on the production 
of oligosaccharides (OS). Raw BPP hydrolysis with cellulase at different dosages rendered only 3.2% OS yields (OSY). 
Pectinase addition has not affected EH performance. On the other hand, EH of hydrothermally pre-treated BPP at 150 °C 
and 170 °C (P150 and P170) allowed to increase OSY up to 28% (P150, 1 FPU of cellulase/g dry biomass, 12 h), being 
72% of the solubilized sugars in the form of cello-oligosaccharides. This last condition was subjected to a multi-stage EH 
strategy without improvements in OSY. An endo-glucanase was also tested, but obtained OSY were lower than cellulase 
results. Finally, obtained OS demonstrated to stimulate the growth of two Lactobacilli strains. The results show that BPP 
pre-treated under mild operational conditions is a good candidate for cello-oligosaccharides production by EH using 1 FPU/g 
DB of cellulase with a simple strategy.
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1 Introduction

Banana crops generate a huge amount of residues, as each 
plant produces fruit only once in its life. For 1 ton of har-
vested fruit, around 4 tons of lignocellulosic wastes are 
generated, being the pseudostem 75% of this residue [1]. 
This biomass is usually left in the plantations, having no 
nutritional value for the soil and generating waste accumu-
lation problems for the next harvesting. Mechanical fiber 
extraction is one of the most relevant alternatives for the 
valorization of the pseudostem [2], but fiber is still a low 
amount of the plant. So, in order to improve the overall 
valorization of the banana plants, it is necessary to find 
other uses for this material. The chemical characterization 
of banana’s pseudostem pulp (BPP) has been demonstrated 
to have an interesting composition for developing a biore-
finery’s biochemical platform, due to its high polysaccha-
rides content (above 60%) and low Klason lignin content 
[3]. Also in this work, the autohydrolysis pre-treatment 
was successfully applied to BPP, producing a high concen-
tration of oligosaccharides (OS) and a residual solid with 
improved characteristics for enzymatic hydrolysis (EH).

EH or its combination with other processes is a way to 
transform lignocellulosic material into biofuels or other 
value-added products like enzymes, organic acids, chemi-
cals, pharmaceuticals, and food/feed [4, 5]. Most of the stud-
ies published in literature consider EH, preceded by pre-
treatment and followed by microbial or chemical conversion, 
as a process to liberate monomeric sugars from cellulose and 
hemicellulose [6]. However, besides sugar monomers, EH 
can also produce OS (with potential prebiotics activity) [7]. 
For example, cello-oligosaccharides (cello-OS), defined as 
saccharides consisting of 2 to 6 glucose molecules linked by 
ß-1,4-linkages, with cellobiose as the main oligosaccharide 
unit [8], can be obtained by the EH of cellulose. Although 
cello-OS as potential prebiotics have not received as much 
attention as hemicellulose-derived OS such as arabino- and 
xylo-OS, some studies show that they have different bio-
active properties [9]. Cello-OS can provide multiple posi-
tive functions toward the host’s health, affecting intestinal 
mucosal architecture, absorption function, barrier integrity, 
and gut’s microflora [9].

There is a limited number of studies in the literature 
addressing cello-OS production from lignocellulosic mate-
rials, and these mainly focus on sugarcane straw [10], 
corncob residue [8], and forest biomass residues [11–13]. 
On the other hand, there are some references on the appli-
cation of EH to the untreated and pre-treated banana pseu-
dostem material [14–19], although these studies aim at the 
production of fermentable sugars, and no attention was 
paid to the possibility of obtaining OS, an aspect that is 
addressed in the present study.

The goal of the present research is to produce OS from 
BPP and pre-treated BPP and evaluate its capacity to stimu-
late the growth of probiotic strains. The first approach was to 
study the initial stages of the EH with cellulase from Tricho-
derma reesei directly on BPP (due to its low lignin content), 
varying cellulase dose and reaction time and also assessing 
the influence of supplementation with pectinase. Aiming to 
improve the enzymatic hydrolysis yields, a second approach 
was to study enzymatic hydrolysis with cellulase on pre-
treated BPP by non-isothermal autohydrolysis at two dif-
ferent final temperatures (150 and 170 °C), varying enzyme 
dose and reaction time. As an alternative to the commercial 
cellulase mixture, EH trials were also performed by using a 
commercially available purified endo-glucanase from Asper-
gillus niger. The third approach was a multi-stage EH with 
media replacement at different time intervals with the best 
pre-treated BPP. Finally, the capacity of the biomass-derived 
cello-OS to stimulate the growth of two Lactobacilli species 
was assessed.

2  Material and methods

2.1  Feedstock and pre‑treated biomass

Pseudostems from Musa acuminata Dwarf Cavendish (Gran 
Enana cultivar) were collected from an agro-industrial plan-
tation in Gran Canaria (Spain). Pseudostems were subjected 
to mechanical fiber extraction using a pilot plant available 
at the University of Las Palmas de Gran Canaria. Banana’s 
pseudostem pulp (BPP) obtained from fiber extraction, 
which was the raw material for this study, was character-
ized in a previous work [3], and its composition is given in 
Table 1.

BPP was dried to constant weight at 40 °C. A fraction 
was milled with a knife mill (Fritsch Industriestr, Germany) 

Table 1  Chemical composition (% w/w in dry base) of banana’s pseu-
dostem pulp (BPP) and solid fractions obtained after the autohydroly-
sis of BPP at 150 °C (P150) and 170 °C (P170) [3]

*Evaluated according to NREL/TP-510–42,629 protocol [3]

Component (% w/w in dry base) BPP P150
logR0 = 2.3

P170
logR0 = 3.01

Glucan 47.39 48.21 ± 0.08 47.89 ± 1.63
  Starch 22.17 12.46 ± 1.17 1.52 ± 0.12

Hemicellulose 14.98 14.97 ± 0.71 21.10 ± 0.74
  Xylan 7.65 10.43 ± 0.2 10.33 ± 0.36
  Arabinan 6.61 4.54 ± 0.51 5.05 ± 0.53
  Acetyl groups 0.79 - 5.73 ± 0.15

Klason lignin 7.92 14.41 ± 0.16 17.33 ± 0.47
Ash 15.44 8.88 ± 0.11 7.64 ± 1.75
Enzymatic digestibility (%)* 73.25 78.62 ± 0.91 83.2 ± 2.54
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to particles smaller than 6 mm for autohydrolysis, and the 
other part was ground in an Ultra Centrifugal Mill ZM200 
(Retsch, Germany) to particles smaller than 0.5 mm, for EH. 
Autohydrolysis pre-treatment was performed as indicated in 
[3] with two final temperatures, 150 °C and 170 °C, under 
non-isothermal conditions, using a solid/liquid rate of 1/11. 
The obtained solids were washed with twice the amount of 
water, pressed again, and then dried at 40 °C for their use 
in the EH (denoted as P150 and P170). The chemical char-
acterization of banana’s pseudostem pulp (BPP), P150, and 
P170 was conducted in the afore mentioned paper and can 
be also found in Table 1.

2.2  Reagents

Glucose, xylose, arabinose, and cellobiose were purchased 
from Sigma-Aldrich. Cello-OS (cellotriose, cellotetraose, 
cellopentaose, and cellohexaose) were purchased from Meg-
azyme. Other reagents used during the experiments were all 
from analytical grade. Cellulase from Trichoderma reesei 
ATCC 26,921 (54 FPU/mL; β-glucosidase activity 19 U/mL; 
endo-glucanase activity 2138 U/mL), from Sigma-Aldrich, 
pectinase ENARTIS ZYM COLOR PLUS, from Enartis, and 
endo-1,4-β-D-glucanase E-CELAN from Megazyme (70U/
mg) from Aspergillus niger were used.

2.3  Enzymatic hydrolysis

EH tests were carried out using 5% (w/v) of dry biomass 
loading and total volume of 10 mL, in 50-mL capped Erlen-
meyer flasks. The reaction medium was composed of 0.05 M 
citrate buffer (pH 4.8), the appropriate volume of enzyme 
and sodium azide (0.02% w/v) as an anti-microbial agent. 
Enzymatic activities were measured according to Ghose 
[20]. Assays were performed in an orbital shaker incubator 
(TEQ, Portugal) at 50 °C at 150 rpm. Samples of 0.5 mL 
were withdrawn at regular intervals for 24 h, from the same 
flask as previous work showed a great variability in the 
results when using independent flasks. All EH assays were 
performed in duplicates. The initial time (t = 0 h) was con-
sidered as the blank (biomass and enzyme blank) in order to 
correct the results to any free saccharides present in the bio-
mass or in the enzymes. The withdrawn samples were boiled 
for 5 min and rapidly cooled to inactivate the enzymes. The 
samples were then centrifuged at 13,000 × g, and the hydro-
lysates were filtered through 0.20-μm filters and analyzed 
by HPLC for glucose quantification before post-hydrolysis 
and then subjected to post-hydrolysis for OS quantifica-
tion as indicated in Sect. 2.5.1. Enzymatic hydrolysis yield 
was calculated according to Eqs. 1 and 2. All experiments 
used the above condition. Figure 1 shows a scheme of the 

Fig. 1  Enzymatic hydrolysis strategies employed during present study for oligosaccharide production from BPP and pre-treated BPP
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different enzymatic hydrolysis strategies employed during 
present study.

2.3.1  Enzymatic hydrolysis of BPP

EH of untreated material (milled to particles smaller 
0.5 mm) was evaluated at different cellulase dosages: 10, 
30, and 45 FPU/g of dry biomass (DB). In addition, a pec-
tinase was used with the untreated material in the presence 
(30 FPU/g DB) or absence of cellulase. Pectinase solution 
was prepared by dissolving 5 g of the pectinase in 50 mL 
of citrate buffer 0.1 M (pH = 5.8). Pectinase was added to 
the medium previously described in a dose of 0.4% (g pec-
tinase/100 g DB). Samples were taken as described before, 
and glucose and cello-OS were measured by HPLC.

2.3.2  Enzymatic hydrolysis of pre‑treated BPP

Pre-treated BPP were submitted to EH using the particle 
size resulting after the pre-treatment without intermediate 
milling. For P170, 10 FPU/g DB was used. On the other 
hand, EH of P150 was carried out with 10 and 1 FPU/g DB 
of cellulase.

P150 was also hydrolyzed using E-CELAN, an endo-β-
glucanase, at a dosage of 43 U(CMC)/g DB. For the assay, 
the enzyme was diluted to 11 mL with sodium acetate buffer 
(100 mM, pH = 4.5) containing 0.5 mg/mL bovine serum 
albumin (BSA), as specified by the manufacturer. Endo-β-
glucanase activity was measured by carboxymethyl cellulose 
(CMC) assay [20] after the dilution of the enzyme, and the 
obtained activity was 14 U/mL.

2.3.3  Multi‑stage enzymatic hydrolysis of pre‑treated BPP

For the multi-stage enzymatic hydrolysis study, P150 was 
used with 1 FPU/g DB of cellulase. In this case, 50-mL cen-
trifuge tubes were used to facilitate the replacement of the 
media. At the end of each stage, the solid was separated from 
the liquid phase by centrifugation, and the removed superna-
tant was replaced with fresh buffer (0.05 M citrate buffer pH 
4.8 and 0.02% sodium azide) without any enzyme, to restore 
the initial volume and perform the following enzymatic 
stage. The EH was carried out for 24 h with the replacement 
of the media at different time intervals. In the first strategy, 
a six-stage EH was carried out with replacements each 4 h. 
The second one was a four-stage process with replacements 
each 6 h, and the third one was also a four-stage process with 
different time intervals (4 + 6 + 6 + 8 h). The supernatants 
obtained in each stage were analyzed by HPLC for mono-
saccharides and OS quantification after post-hydrolysis and 
also directly as it is, for evaluation degree of polymerization 
(DP), as indicated in Sect. 2.5.1. The EH yield obtained in 
each stage was calculated according to Eqs. 1 and 2, taking 

into consideration the volume recovered in each stage. The 
overall yield obtained in each strategy was obtained as the 
sum of the individual yields obtained in each stage.

2.4  Stimulation of the growth of probiotic bacteria 
on BPP hydrolysate

Two probiotic strains, Lactobacillus gasseri DSM20077, 
from DSMZ (Braunschweig, Germany), and Lactobacillus 
plantarum ATCC 8014, from ATCC (Manassas, VA, USA), 
were used in order to determine to what extent the cello-OS, 
produced by EH of BPP under the optimal conditions, can 
be used as carbon sources by these bacteria. These strains 
were chosen due to their ability to efficiently grow on com-
mercial cellobiose [12]. The medium for both Lactobacillus 
strains’ stock cultures was 232 DSMZ (Man-Rogosa-Sharpe 
(MRS) medium with cysteine). The hydrolysate was tested 
at an initial carbohydrate (cellobiose + glucose) concentra-
tion of 2% (w/v) in MRS media prepared at pH 6.0, in the 
absence of any other carbohydrate. The obtained media was 
sterilized using 0.22 µm pore size filters. For the inoculation 
of the media, bacteria cells grown in glucose pre-cultures 
were centrifuged (1800 × g for 10 min), collected, and re-
suspended in 20 mL of the sterilized media, to obtain an ini-
tial optical density (OD) of 0.3. The cultures were incubated 
at 36 °C, without agitation. The growth rate was monitored 
by OD at 600 nm  (OD600nm) and glucose and cellobiose 
consumption, as well as fermentation products (lactic acid, 
acetic acid, etc.) were analyzed by HPLC. All tests were run 
in duplicates.

2.5  Analytical methods

2.5.1  High‑performance liquid chromatography (HPLC)

Hydrolysates from EH and fermentation studies were ana-
lyzed by HPLC. Monosaccharides (glucose, xylose, ara-
binose), cellobiose, and short-chain fatty acids (SCFA) 
resulting from fermentation (lactic acid, acetic acid, butyric 
acid, and propionic acid) concentrations were analyzed by 
a Merck Hitachi LaChrom HPLC System (Tokyo, Japan) 
equipped with refraction index (L7490) detector. An Aminex 
HPX-87H (7.8 × 300 mm) cation exchange column, preceded 
by a 50 × 7.8 mm guard column with the same filling (Bio-
Rad, USA), was used at 50 °C with  H2SO4 5 mM as eluent 
with a flow rate of 0.6 mL/min.

For OS quantification, an aliquot sample was post-hydro-
lyzed with 4% (w/w)  H2SO4 at 121 °C for 60 min, and the 
increase in sugar monomers was used to determine the OS 
concentration. To assess the OS polymerization degree, 
enzymatic hydrolysates were injected in Phenomenex Rezex 
RSO-Oligosaccharide  Ag+ (200 × 10 mm) column at 80 °C, 
preceded by 60 × 10 mm guard column with the same filling. 
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Ultrapure water at 0.3 mL/min was used as eluent. Calibra-
tion was done with standards mentioned in Sect. 2.2.

2.6  Calculations

EH yields for monomers (glucose) were calculated accord-
ing to Eq. 1:

where potential glucose in the substrate is calculated con-
sidering total glucan content in the solid and the molecular 
weight ratio from glucan to glucose (180/162).

Enzymatic hydrolysis yield in oligosaccharides, OSY, 
was calculated by the Eq. 2:

where oligosaccharides content was obtained by the 
increase in sugar monomers measured after post-hydrolysis, 
as indicated in Sect. 2.5.1.

Total enzymatic yield (TY) was calculated as the sum of 
OSY and GY. Oligosaccharides selectivity was calculated 
by Eq. 3:

The growth rate (μ) of the bacteria was calculated by 
Eq. 4:

where  OD1 and  OD2 were taken in the exponential section 
of the bacterial growth curve, corresponding to time 1 and 
2, respectively.

2.7  Statistical analysis

Statistical comparisons were conducted using Tukey’s 
test. The significance of the difference between means was 
determined by Tukey’s test using R-Commander (R-Studio 
Software).

3  Results and discussion

3.1  Enzymatic hydrolysis of banana’s pseudostem 
pulp

Due to the high enzymatic digestibility of the untreated BPP 
(Table 1) [3], direct EH of the raw material was evaluated 

(1)GY(%) =
glucose obtained

potential glucose in the substrate
x100

(2)OSY(%) =
Oligosaccharides obtained

glucan in the substrate
x100

(3)OSselectivity =
OSY

TY

(4)� =
(lnOD2 − lnOD1)

(t2 − t1)

for monosaccharide and oligosaccharide production. Differ-
ent dosages of cellulase, as well as the use of a pectinase 
alone and in combination with cellulase, were evaluated. 
Increasing the dosage of cellulase up to a certain point can 
enhance the yield and ratio of hydrolysis but would also sig-
nificantly increase the cost of the process. Cellulase loadings 
usually vary from 7 to 33 FPU/g substrate, depending on the 
type and concentration of substrates [21]. A cellulase dos-
age of 10 FPU/g cellulose is often used because it provides 
a hydrolysis profile with high levels of glucose yield in a 
reasonable time (48–72 h) at a reasonable enzyme cost [22]. 
In the present study, 10, 30, and 45 FPU/g DB were tested 
for untreated BPP, as a strategy to avoid the pre-treatment, 
and the monosaccharides and OS production were evaluated. 
The study was performed for 24 h, since it is known that the 
enzyme has a high activity within the first 24 h and the OS 
production takes place in the first stages of EH [15].

Figure 2 shows the time evolution of total enzymatic 
hydrolysis yield (TY) and enzymatic hydrolysis yield in 
oligosaccharides (Eq. 2), at the different enzyme dosages 
tested. No release of xylose and arabinose was detected 
during the EH. As expected, increasing enzyme dosages 
resulted in higher TY, which was observed through the 24 h 
hydrolysis. However, this improvement was relatively low 
in comparison with the enzyme dosage rise, increasing from 
10 to 16% when the dosage was increased from 10 to 45 
FPU for 24 h, which may not be cost-effective. This behav-
ior can be associated with the non-productive adsorption of 
cellulase either on starch or the lignin [23]. Concerning OS 
production, as shown in Fig. 2, most of hydrolyzed polymers 
was in a monomeric form and not as OS. The maximum 
yield achieved in OS production was lower than 4% of the 
total glucan, with no significant improvement when higher 
enzyme dosages were used (30 and 45 FPU/g DB). The fact 
that increasing enzyme dosages improved TY but not OSY 
can be probably partially attributed to the high degree of 
crystallinity and polymerization of biomass from banana 
wastes [24], which does not allow the endo-glucanase to 
attack the internal bonds of the chain, being only the exo-
glucanase able to break chain-ends.

The yields obtained, even using a dosage of 45 FPU/g 
DB, were low compared with potential enzymatic digest-
ibility of the raw material (73%) obtained in the enzymatic 
digestibility assay [3], which can be attributed to different 
factors. Firstly, it is important to highlight that during those 
tests, cellulases were supplemented with Novozyme 188, 
which contain high amylase activity [25] that can hydro-
lyze alpha bonds in starch, producing additional glucose 
during the hydrolysis. In addition, higher enzyme load (60 
FPU/g DB) and longer reaction time (72 h) was used, as the 
focus was different (i.e., production of glucose instead of 
OS). Also, in this study the presence of starch that was not 
hydrolyzed might have limited the productive adsorption of 
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the cellulase enzyme. Finally, glucanases inhibition could 
be expected due to the low β-glucosidase activity (19 U/
mL) of the enzyme used for the assays, which could result 
in cellobiose accumulation that in turn inhibited cellulase 
[26]. However, HPLC chromatogram did not show a high 
presence of cellobiose in the reaction medium, being most 
of glucans found as glucose, as commented.

The use of cellulases with other enzymes in the hydrolysis 
of cellulosic materials has been extensively studied [21]. For 
example, Ghose and Bisaria [27] and Beldman [28] reported 
a significant increase in the extent of cellulose conversion 
using a mixture of hemicellulases or pectinases with cellu-
lases. In this study, a pectinase was used with the BPP in the 
presence (30 FPU/g DB) and absence of cellulase, in order 
to evaluate if pectinase would have any effect in saccharifi-
cation, not only by increasing the sugars obtained but also 
by improving the mixing and the contact between biomass 
and enzyme. However, results revealed that pectinase used 
in this study did not affect neither the TY nor OS production 
(data not shown).

Therefore, it was concluded that enzymatic hydrolysis of 
untreated BPP does not allow obtaining good yields using 
enzyme loadings economically viable. Although compared 
to other lignocellulosic biomass, banana wastes have gener-
ally lower lignin contents (component that has been related 
to the recalcitrance of a biomass), it has a more fibrous 
nature, which limits the rate of EH [24]. The pre-treatment 
is, therefore, a key factor for effective EH, as also observed 
by other authors working with banana crop byproducts [29, 

30]. For example, Shimizu [30] obtained a maximum of 
15.9% enzymatic hydrolysis yield after 72 h for untreated 
pseudostem with 15 FPU/g cellulase supplemented with 
cellobiase, value which is comparable to the 16.4% yield 
obtained in this study for 24 h at 45 FPU.

3.2  Enzymatic hydrolysis of pre‑treated BPP 
with cellulase

Apart from untreated BPP, pre-treated material via autohy-
drolysis was used. The pre-treatment conditions were cho-
sen on the basis of previous results [3]: autohydrolysis at 
150 °C and at 170 °C. The compositions of both fractions are 
shown in Table 1. The autohydrolysis pre-treatment removed 
ashes and extractives, and a solid enriched in hemicellu-
lose, glucan, and lignin was obtained. The autohydrolysis 
pre-treatment also allowed improving the enzymatic digest-
ibility of the material, which increased 10% at the highest 
temperature (Table l).

The pre-treated materials (P170 and P150) were subjected 
to EH, at an enzyme dosage of 10 FPU/g DB. Figure 3a and 
b show the evolution of glucose yield (GY), oligosaccharide 
yield (OSY), and the total yield (TY) obtained for P170 and 
P150, respectively. A higher dosage of enzyme was tested, 
but results are not shown, since it did not improve neither 
TY nor OSY, for both pre-treated biomass. The higher val-
ues of yields obtained shows the advantage of using a pre-
treatment, which not only allows to attain much better yields 
but also reducing treatment time or enzyme dosage while 

Fig. 2  BPP enzymatic hydroly-
sis yields for different enzyme 
dosages (10, 30, and 45 FPU/g 
of DB). Solid lines refer to total 
yield (TY), and dotted lines 
correspond to oligosaccharide 
yields (OSY)
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keeping the effectiveness. In this occasion, although higher 
amounts of OS were obtained, most of dissolved material 

was rapidly converted to monosaccharides. The kinetic was 
quite similar for both pre-treated fractions. At the beginning 
of the reaction, where the rate of hydrolysis is higher due 
to preferential hydrolysis of the amorphous region, OS are 
produced in a higher amount than glucose, due to the action 
of the endo-glucanases in the amorphous region. However, 
these OS are converted into glucose over the time. This 
breakdown was slower in the case of P150. While for P170 
(Fig. 3a), OS were generated in the first 2 h and their break-
down started rapidly, the OS produced for P150 remained 
stable during the first 4 h (Fig. 3b). Analyzing the total 
yields, the highest TYs obtained (24 h of hydrolysis) were 
65.5% for P170 and 60.5% for P150. P150 was less affected 
in structure, due to less severe conditions, and it is reason-
able that the yields were slightly lower. Both yields were 
lower than potential enzymatic digestibility (Table 1), fact 
which can be attributed, in part, to the insufficient reaction 
time. For instance, a study with alkali pre-treated banana 
pseudostem and enzyme loading of 30 FPU/g of solid [29] 
showed an increase in the enzymatic yield from around 65 
(in 24 h) to 84% (in 110 h). Moreover, a lower solid–liq-
uid rate was used in enzymatic digestibility assay, making 
mass transfer easier, and a smaller particle size was used 
(increasing available surface), which turns the process faster. 
On the other hand, as the enzymatic digestibility assay was 
done in the presence of Novozyme 188, some extra sugars 
could be produced coming from remaining starch/hemicel-
lulose for P150. Comparing both pre-treatments, autohy-
drolysis at 150 °C presented some advantages: the use of 
less severe conditions, with the consequent energy savings, 
and the obtaining of higher OS selectivity (0.58 for P170 
vs 0.72 for P150, Fig. 3a and b, respectively) while keeping 
the OSY, around 25% for both pre-treated fractions. In fact, 
the analysis of OS selectivity shows that with 10 FPU, the 
selectivity decreases very quickly after the first 4 h, to values 
lower than 0.5.

Given the advantages of P150, the possibility of reducing 
the enzyme dosage (and consequently the cost) in the EH of 
this material was evaluated. Figure 3c shows evolution of 
GY, OSY, TY, and OS selectivity obtained during EH with 
1 FPU/g DB. In this case, the reaction was evaluated until 
48 h. Due to the very low enzyme dosage, the hydrolysis rate 
was lower, and the maximum TY achieved was below that 
the one obtained with 10 FPU/g DB (49% in contrast with 
61%); however, if the analysis is made per unit of enzyme 
used, we obtained 49% against 6.1% when using 1 or 10 
FPU, respectively. Also, OS selectivity decreases slowly 
in comparison to enzyme hydrolysis with 10 FPU/g DB, 
reaching 0.5 at 48 h. The differences between TY are not as 
big as the ones obtained by other authors when increasing 
the enzyme dosage, for example, [31] tripled the sacchari-
fication yield when doubling the enzyme dosage (3 FPU/g) 
working with pre-treated birch. This very low dosage of 
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Fig. 3  Enzymatic hydrolysis yield obtained with pre-treated BPP by 
autohydrolysis at 170  °C (P170) at an enzyme dosage of 10 FPU/g 
DB (a) and pre-treated BPP by autohydrolysis at 150 °C (P150) at an 
enzyme dosage of 10 FPU/g DB (b) and 1 FPU/g DB (c). Solid lines 
refer to total yield (TY), dotted lines correspond to oligosaccharide 
yields (OSY), dash–dot lines to glucose yields (GY), and dash–dot 
lines to OS selectivity
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cellulase allowed to obtain similar OSY (27.87 ± 3.76% 
vs 25.23 ± 1.38% for 1 and 10 FPU, respectively) and OS 
selectivity (0.72 for both dosages) with the difference that 
longer reaction time was needed to achieve the maximum 
yield in OS (1 h vs 12 h). Analyzing per unit of enzyme 
maximum OSY was 2.5vs 28% and OS selectivity was 0.072 
vs 0.72 for 10 and 1 FPU, respectively. This huge difference 
is probably due to the very low amount of β-glucosidase 
present in the media, which avoid OS breakage into glucose, 
as observed for 10 FPU/g DB, representing an advantage in 
the present study. If instead of OSY, OS selectivity is prior-
itized (an interesting parameter, especially when alternative 
approaches, like medium replacement are followed [8]), the 
maximum value obtained was 0.87 (with an OSY of 12.56%) 
for the shortest time evaluated (1 h).

Hydrolysates characterization of same condition, from 
posterior experiments (multi-stage strategy), revealed that 
most of the cello-OS was cellobiose (31%), with small 
amount of DP3-6 (8%). During the EH of cellulose, obtained 
cello-OS in an intermediate step are hydrolyzed quickly to 
glucose, and it is necessary to quickly separate the cello-
OS from the reaction mixture before they are completely 
hydrolyzed to glucose [32, 33]. In this occasion, in which 
the presence of β-glucosidase in the reaction media was very 
low, the high content of glucose was also probably the result 
of the action of the exo-glucanases present in the enzymatic 
complex, activities that were not quantified in the cellulase 
characterization in the present work. Cellulase from Tricho-
derma reesei (the one used in this work) is known to have 
higher exo-β-glucanase than endo-β-glucanase activity [33]. 
Further evidence of this is the fact that, for example, between 
24 and 48 h, the reduction in the concentration of OS would 
correspond to an increase of glucose of 0.33 mg/mL; how-
ever, the increase of glucose in this interval was 2.04 mg/
mL.

The results obtained are comparable with those previ-
ously published addressing cello-OS production from lig-
nocellulosic material. For example, the saccharification of 
organosolv-pre-treated birch biomass in similar conditions 
as this work produced an OSY of 18.5% and 10.9% for 24 
and 48 h, respectively, corresponding to OS selectivity of 
88 and 83%, respectively [11]. The higher OS selectivity for 
birch can be explained by the higher glucan content (77.9%) 
when compared to present biomass (48.21%).

3.3  Enzymatic hydrolysis of pre‑treated BPP 
with endo‑glucanase

A purified endo-glucanase (E-CELAN) was also used 
in this work, as the absence of β-glucosidase and exo-β-
glucanase activities would lead to maximizing OS produc-
tion and selectivity. The endo-glucanase enzyme dosage 
chosen was calculated to obtain similar CMC activity to the 

one provided by the cellulase at 1 FPU/g DB. The yields 
obtained with the endo-enzyme are relatively low when 
compared to cellulase action (data not shown), although a 
step increase was observed in OSY between 24 and 48 h, 
which increased from 1.33 to 11.53%, and in TY (from 
1.42 to 13.94%). The low enzyme dosage and the use of a 
mono-enzyme might require longer reaction times. In this 
occasion, cellobiose accumulation was not observed dur-
ing the 48 h studied. The low cellobiose detected (coming 
from exo-glucanase activity), the low glucose yields (associ-
ated to β-glucosidase), and the high OS selectivity (0.83 for 
48 h) can be attributed to high enzyme purity. Equivalent 
results were obtained working with cellulase at a dosage of 1 
FPU/g DB and 1 h of treatment (12.56% of OSY and an OS 
selectivity of 0.87) but with different profiles of DP for both 
hydrolysates. In the case of using the cellulase, as said, most 
of cello-oligosaccharides were as cellobiose. However, the 
hydrolysate produced by the endo-glucanase did not present 
OS with lower DP than 6, as observed in the chromatogram 
obtained with the Phenomenex Rezex RSO-Oligosaccharide 
column.

Enzyme complexes are usually optimized to maximize 
sugar production, and no references have been found using 
this endo-enzyme without additional supplementation; so, 
results obtained cannot be compared with any other existing 
data. This endo-glucanase enzyme was used, for example, in 
the saccharification of pre-treated rice straw supplemented 
with endo-β-glucosidase and β-glucosidase [34]. In the case 
of cello-OS production, combination of purified enzymes 
have been used by other authors [10, 12], although the possi-
bility of tuning commercially available cellulase mixtures to 
produce cello-OS has been proposed as a better option [11]; 
in any case, there are still some barriers that have hindered 
the scaling-up of the process.

3.4  Multi‑stage enzymatic hydrolysis of pre‑treated 
BPP

A multi-stage EH process was investigated in order to 
upgrade the production of cello-OS. The study was carried 
out using the optimized conditions previously determined 
(P150, 1 FPU). The total reaction time of 24 h evaluated in 
the single-stage hydrolysis was divided in separated stages. 
Under this strategy, it was expected to improve the cello-OS 
production due to different factors. On the one hand, the 
breakage of OS produced could be avoided by their recuper-
ation from the reaction medium. Secondly, the possible inhi-
bition on the exo-glucanases and endo-glucanases produced 
by the presence of the reaction products could be reduced 
due to the removal of part of them. Finally, as β-glucosidase, 
unlike exo-glucanases and endo-glucanases, exhibits very 
low binding affinity to cellulosic substrates due to the lack 
of cellulose-binding domain, the low amount of this enzyme 
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could be selectively removed from the liquid phase during 
the replacement, contributing to avoid the rupture of the 
OS produced into glucose. The first and the third exposed 
aspects could improve the OS selectivity of the process, 
while the second one could improve the overall yield.

Table 2 shows the overall TY, GY, and OSY (calculated 
as the sum of the yields obtained in each stage) obtained in 
the different strategies.

If the results obtained for 24 h of hydrolysis in the sin-
gle-stage strategy are used for comparison, the advantage of 
using a multi-stage strategy can be observed, although statis-
tical analysis does not seem to find significant differences. In 
all multi-stage strategies, OSY are similar but OS selectivity 
is around 10 units higher. This means that the replacements 
avoided the rupture of the OS generated by their recupera-
tion from the media before being converted into glucose.

Comparing with 12 h single-stage hydrolysis, however, 
the multi-stage strategy did not bring any improvement. 
Notable improvements in the cello-OS yield or TY were not 
observed under any of the multi-stage strategies, comparing 
with single-stage, which could mean that inhibition prob-
lems did not exist in single-stage strategy. The concentration 
of glucose and OS were quite low in the last stages, and, 
although some extra OS are generated (Online Resources), 
most of them were produced in the first 12 h, as also hap-
pened in single-stage strategy.

Concerning the β-glucosidase removal, although it can be 
entrapped within the tridimensional matrix of the pre-treated 
lignin [35], most of it is expected to have been removed 
with the replacements. The fact that no great differences 
were observed with its removal confirms that working with 
so low levels of cellulase should not be a problem and that 
the exo-glucanase action can be the main responsible of the 
high amount of glucose. The same conclusion was obtained 
in the single-stage study.

This could be explained by the fact that single-stage 
assay, with 1 FPU/g DB, could have achieved the best con-
dition for OS production.

Therefore, the use of multi-stage strategy, with its 
related complexity, is not justified for BPP. If the 12 h 
single-stage strategy is compared with the multi-stage, 
both yield in OS production and the OS selectivity are 
very close, and so it seems that the single strategy con-
stitutes a better treatment strategy. The combination of 
yields and selectivities in OS production shown here (28% 
cello-OS yield, corresponding to 134.48 mg of COS per g 
of raw material, with a OS selectivity of 0.72 using P150, 
1 FPU/g DB for 12 h) are comparable to those obtained 
in literature, with the advantage that a very low load of 
enzyme and a simpler strategy were used in this case. In 
general, there is always a compromise between OS selec-
tivity and OSY. For example, Barbosa et al. [10] employed 
a combination of different endo-glucanases and with lac-
tose and copper as additives, with hydrothermally pre-
treated sugarcane straw, and obtained almost a 100% of 
OS selectivity but just a 6.0% of OSY. Karnaouri et al. 
[13] purposed a fine-tuning of the commercially avail-
able enzyme mixture Celluclast through pH modification, 
multi-stage hydrolysis with buffer exchange, and addition 
of β-glucosidase inhibitor. They achieved a cellobiose-rich 
product with a high cellobiose to glucose ratio (37.5) and 
a cellulose conversion to cellobiose of 9.78% by utilizing 
organosolv-pre-treated birch biomass; they were able to 
obtained higher conversions (up to 35.2%), although with 
a much lower cellobiose to glucose ratio (3.3). The highest 
OSY found was obtained by Chu et al. [8] who achieved a 
OSY of 51.78% with an OS selectivity of 68.53% by using 
a process of adsorption-separation (for selective removal 
of β-glucosidase) combined with a multi-stage enzymatic 
hydrolysis the corncob residues of xylo-oligosaccharides 
manufacture.

This reflects that BPP is a good candidate for cello-OS 
production by using the methodology applied in the pre-
sent study. The yields could be improved using a different 
enzyme with higher endo-activity or by a later purification 
step to improve the ratio OS/glucose.

Table 2  Enzymatic hydrolysis yield (%) of P150 with a cellulase 
dosage of 1 FPU/g DB obtained under different strategies of media 
replacement. The overall total yield (TY), oligosaccharide yield 

(OSY), and glucose yields (GY) are indicated together with OS selec-
tivity. Different letters within each variable indicate significance at 
Tukey test (p ≤ 0.05)

Strategy Overall
OSY (%)

Overall GY (%) Overall TY (%) OS selectivity

Multi-stage
  6 + 6 + 6 + 6 h 29.80 ± 0.44 A 12.74 ± 0.44 AB 42.54 ± 0.33 A 70.05 ± 0.81 A
  4 + 6 + 6 + 8 h 29.61 ± 0.03 A 13.42 ± 1.39 AB 43.03 ± 1.41 A 68.80 ± 2.20 A
  4 + 4 + 4 + 4 + 4 + 4 h 29.95a ± 0.35 A 11.69 ± 0.00 A 41.64 ± 0.35 A 71.93 ± 0.23 A

Single-stage
  12 h (optimum) 27.87 ± 3.76 A 10.62 ± 1.63 A 38.49 ± 2.13 A 72.4 ± 5.76 A
  24 h 25.07 ± 4.94 A 17.12 ± 1.95 B 42.19 ± 2.99 A 59.4 ± 7.52 A
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3.5  Stimulation of the growth of probiotic bacteria 
on BPP hydrolysate

Two probiotic strains, Lactobacillus gasseri and Lactobacil-
lus plantarum, were used in order to evaluate their capacity 
to consume the produced cello-OS. Their cultivation on pure 
glucose or cellobiose demonstrated that they were capable 
to efficiently use those carbon sources [12]. Growth rate was 
monitored by the OD at 600 nm and glucose and cellobiose 
consumption (Fig. 4). The increase observed in the OD and 
the consumption of the cellobiose content showed that both 
strains were able to use the hydrolysate.

L. plantarum exhibited a faster growth (μ = 0.30  h−1) and 
needed 31 h of incubation to consume practically all the 
carbohydrates, comparing with the 72 h needed in the case 
of L. gasseri (μ = 0.07  h−1). The only metabolite detected 
for both strains was lactic acid; the production of any short-
chain fatty acid (acetic, propionic, or butyric acid) was not 
detected. The amount of lactic acid (Table 3) measured for 

both bacteria was higher than the amount corresponding to 
the cellobiose and glucose that was consumed. This can be 
due to the fact that bacteria can consume other oligosac-
charides with higher DP both originated from cellulose and 
hemicellulose.

4  Conclusions

Pre-treatment of BPP is necessary to increase enzymatic 
hydrolysis yields. Similar global yields and oligosaccharides 
generation were obtained for P150 and P170, while P150 
shows higher cello-oligosaccharides selectivity at lower 
enzyme dosage. Using a very low dosage (1 FPU/g DB) 
enabled a greater stability of the cello-oligosaccharides and 
a very slow glucose production rate. The best yield in cello-
oligosaccharides was 28%, with a selectivity of 0.72 (12 h, 
1 FPU/g DB). On the other hand, the multi-stage strategy 
did not lead any improvement. The use of endo-glucanase 
produced high oligosaccharides selectivity but lower yield. 
Finally obtained cello-oligosaccharides successfully support 
the in vitro growth of two Lactobacilli probiotic strains.
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Fig. 4  Growth curve (OD600 nm) and carbohydrate consumption 
(glucose and cellobiose) of L. plantarum (a) and L. gasseri (b) grown 
on culture media supplemented with BPP hydrolysates

Table 3  Fermentation metabolites (mg/mL) of Lactobacilli strains 
grown on culture media supplemented with BPP hydrolysate

(mg/mL) L. plantarum L. gasseri

0 h 31 h 0 h 72 h

Glucose 10.17 ± 0.09 0.00 ± 0.00 5.97 ± 0.15 0.00 ± 0.00
Cellobiose 11.73 ± 0.73 0.00 ± 0.00 8.89 ± 0.18 0.00 ± 0.00
Lactic acid 0.00 ± 0.00 34.10 ± 1.40 0.00 ± 0.00 25.02 ± 0.68
Acetic acid 3.63 ± 0.72 4.86 ± 0.12 4.00 ± 0.01 4.39 ± 0.11
Propionic 

acid
0.99 ± 0.63 1.23 ± 0.06 1.04 ± 0.00 1.39 ± 0.00
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