MethodsX 8 (2021) 101476

Contents lists available at ScienceDirect

MethodsX

journal homepage: www.elsevier.com/locate/mex

Method article

Extension of an extraction method for the determination of 305 organic compounds in clay-loam soil to soils of different characteristics

Andrea Acosta-Dacal^{a,1}, Cristian Rial-Berriel^{a,1}, Ricardo Díaz-Díaz^b, María del Mar Bernal-Suárez^b, Manuel Zumbado^{a,c}, Luis Alberto Henríquez-Hernández^{a,c}, Ana Macías-Montes^a, Octavio P. Luzardo^{a,c,*}

^a Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
 ^b Department of Environmental Analysis, Technological Institute of the Canary Islands, C/ Los Cactus no 68, Polígono Industrial de Arinaga, 35118 Agüimes, Las Palmas, Canary Islands, Spain
 ^c Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition(CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain

ABSTRACT

Soil is one of the environmental compartments most affected by pollution. From this medium, the organic compounds can be emitted to the groundwater, the atmosphere, or the biota. Thus, having adequate methods of analysis of organic pollutants in this matrix is essential. However, the soil is a very complex matrix whose organic and inorganic components can determine the degree to which they are retained. Therefore, the methods must account for the various soil characteristics. In this study, the performance of an extraction method that had been already validated in clay loam soils for more than 300 organic compounds of very different nature including pesticides, PhACs, ARs, and POPs has been evaluated in four additional representative soil types of the agricultural land of the Canary archipelago: sandy loam, sandy clay, clay and loamy sand. For this purpose, recovery experiments have been performed at a single concentration (50 ng g^{-1}) in each soil type. When there is a significant difference according to the criteria applied for a given compound, a factor has been calculated to correct the difference in performance in each soil type.

- These results allowed to broaden the range of soils that can be analyzed with the proposed methodology.
- In the worst case, which is the loamy sand soil, the original methodology allows the analysis of 180 organic contaminants with adequate recoveries. For analytes outside the acceptable range in this soil and the other soil type analyzed, correction factors are proposed.

https://doi.org/10.1016/j.mex.2021.101476

^{*} Corresponding author.

E-mail addresses: andrea.acosta@ulpgc.es (A. Acosta-Dacal), cristian.rial@ulpgc.es (C. Rial-Berriel), rdiaz@itccanarias.org (R. Díaz-Díaz), mbernal@itccanarias.org (M.d.M. Bernal-Suárez), manuel.zumbado@ulpgc.es (M. Zumbado), luis.henriquez@ulpgc.es (L.A. Henriquez-Hernández), ana.macias@ulpgc.es (A. Macías-Montes), octavio.perez@ulpgc.es (O.P. Luzardo).

¹ These authors contributed equally to the work, and therefore should be considered indistinctly as first authors.

^{2215-0161/© 2021} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

ARTICLE INFO

Method name: One-Step QuEChERS method for the extraction of organic pollutants in soils Keywords: QuEChERS, LC-MS/MS, GC-MS/MS, Pesticides, Anticoagulant Rodenticides (ARs), Pharmaceutical Active Compounds (PhACs), Persistent Organic Pollutants (POPs), Polychorinated Biphenyls (PCBs), Polycyclic Aromatic Hydrocarbons (PAHs), Polybrominated Diphenyl Ethers (PBDEs), Organochlorine Pesticides (OCPs) Article history: Received 25 May 2021; Accepted 31 July 2021; Available online 1 August 2021

Specifications table

Subject Area:	Chemistry
More specific subject area:	Environmental Analytical Chemistry
Method name:	One-Step QuEChERS method for the extraction of organic pollutants in soils
Name and reference of original method:	Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil [1,2]
	An Easy Procedure to Quantify Anticoagulant Rodenticides and Pharmaceutical
	Active Compounds in Soils [3]
	verification in organic and conventional farms of the Canary Islands [4]
Resource availability:	N.A.

Background

Soil is a well-known reservoir of organic pollutants from where they can be released to other environmental compartments such as groundwater, atmosphere, and biota [5,6]. Compounds of very different nature and usage can reach the soil through pest control in agriculture -i.e pesticides, or the sewage system -i.e anticoagulant rodenticides (ARs). In addition, pharmaceutical active compounds (PhACs), which are considered compounds of emerging concern (CECs), can reach soil through irrigation with reclaimed wastewater or the use of manure and sewage sludge as compost. Furthermore, although banned or restricted for decades, persistent organic pollutants (POPs) can end up in the soil through their historical use in agriculture -i.e organochlorine pesticides (OCPs), and industry -i.e.polybrominated diphenyl ethers (PBDEs) and polychlorinated Biphenyls (PCBs), and volatilization and deposition processes -i.e. polycyclic aromatic hydrocarbons (PAHs). Given the diversity of compounds that can end up in the soil, there is a need for methods capable of determining and quantifying them to facilitate soil surveillance in line with monitoring programs such as coordinated multi-annual plan of the European Union [7].

For this purpose, a simple and economic method was optimized and validated to extract and analyze organic compounds of diverse nature in agricultural soils that could be used in routine analysis [1–4]. This method is a modification of the QuEChERS (quick, easy, cheap, effective, rugged and safe) initially introduced for the extraction of pesticides in fruit and vegetable by Anastassiades et al. [8], which has been subjected to several modification to improve the overall technique performance in other matrices and analytes [9–15]. The compounds extracted and analyzed in soil with the QuEChERS-based method constitute a large group of 305 organic compounds. These analytes are classified into 213 pesticides of current and recent use, 43 CECs 7 of which are ARs and 36 are PhACs, and 49 POPs, between PBDEs, PCBs, OCPs and PAHs. The complete list of compounds together with their group, and the technique by which they are analyzed is presented in Table 2.

This method was optimized and validated for a representative agricultural soil of the Canary Islands that can be classified as clay loam. However, soil is a heterogeneous and highly complex matrix whose components may influence the degree of adsorption of the organic compounds. Therefore, not only the chemical properties of the compound may affect the mobility and availability of these compounds in the soil but also the soil characteristics, such as pH, moisture, texture and organic matter content [16]. Generally, they are mostly absorbed in soils rich in organic matter or clay [17].

Consequently, it is necessary to consider soil physicochemical properties to achieve more reliable quantifications with the analytical methods.

This study aims to extend the use of the QuEChERS-based method for the extraction and analysis of the above mentioned 305 organic compounds of different nature and origin to other types of soil frequently used in agriculture.

Chemicals and reagents

Certified standards stock mix solutions of the pesticides included in the coordinated multi-annual plan of the EU for the investigation of residues in food of vegetable or animal origin during the years 2020, 2021 and 2022 [7] were purchased from CPA Chem (Stara Zagora, Bulgaria) in 10 mixes of compatible pesticides at 10 μ g mL⁻¹, each in acetonitrile (ACN). Standard stock solutions of the selected POPs were also supplied by CPA Chem in 5 mixes, each of them at 100 μ g mL⁻¹: one for the OCPs (in acetone), one for the PAHs (in dichloromethane), one for the PBDEs (in iso-octane) and two for PCBs (in iso-octane). Individual certified standards of ARs, PhACs and additional pesticides (purity 95.19% to 99.9%) were acquired from Dr. Ehrenstorfer (Augsburg, Germany), Sigma-Aldrich (Augsburg, Germany) and European Pharmacopoeia Reference Standards (Strasbourg, France). Atrazine-d5, Carbendazim-d3, Chlorpyrifos-d10, Coumachlor, Cyromazine-d4, Diazinon-d10, Linuron-d3, Pirimicarb-d6 and PCB 200 (Dr. Ehrenstorfer and Sigma-Aldrich, 99.3-99.9% purity) were used as procedural internal standards (P-IS). These internal standards were added to the samples at the beginning of the procedure to account for various sources of errors throughout all stages in the method [18].

LC-MS grade methanol (MeOH), acetonitrile (ACN), acetone (Ac) and formic acid (FA, HCOOH) were obtained from Honeywell (Morristown, NJ). Ammonium acetate (NH₄CH₃CO₂) was purchased from Fisher Scientific (Loughborough, UK). AOAC method QuEChERS salts [19] (6 g of MgSO₄ and 1.5 g of CH₃COONa) were acquired in commercial premixes from Agilent Technologies (Palo Alto, USA). The ultrapure water was produced in the laboratory using a Gradient A10 Milli-Q System (Millipore, Bedfore, MA, USA).

Standard solutions and calibration curves

Individual stock standard solutions at a concentration of 1000 μ g mL⁻¹ were prepared for PhACs, ARs, P-IS and additional pesticides in MeOH for the first group and ACN for the last three. From these, mixed stock solutions were prepared in ACN or MeOH at 10 μ g mL⁻¹ for each group. Then, working solutions of PhACs, ARs and P-IS were prepared at 1 μ g mL⁻¹ in those solvents. A working solution containing all the pesticides at a final concentration of 0.833 μ g mL⁻¹ was prepared by mixing the ten parts of the European Commission commercial mix and the additional in-house solution containing all the analytes at a final concentration of 20 μ g mL⁻¹/each was prepared by mixing the five parts of the commercial mix. Then, a working mix solution was prepared at 1 μ g mL⁻¹ in Ac.

Matrix-matched calibration curves ranging from 0.195 to 100 ng g⁻¹ were prepared with the standard working mix solutions of each compound group in either soil extract for GC-MS/MS or in in a mixture of this extract with ultrapure water (1:1, v/v) for LC-MS/MS.

All standards, working mix solutions and matrix-matched calibrators were stored in glass amber vials at -20 °C and checked periodically for stability.

Sample selection and pretreatment

The method was originally developed, optimized and validated in an agricultural soil which did not present any of the analytes of interest. This sample, located in the midlands of the Canary Islands, can be considered representative of the most fertile soil of the archipelago and is classified as clay loam according to its characteristics (see soil A in Table 1). To test whether this method could be transferred to other types of cropland on the islands, samples were taken from farms located in different areas of the archipelago that may represent other areas typically used for cultivation. In each sampling plot, a

ID	Classification	pН	CE (µS cm ⁻¹)	00C (%)	Coarse sand (%)	Fine Sand (%)	Thick slit (%)	Fine slit (%)	Clay (%)	Moisture (%)
Soil A	Clay loam	4.88	209	2.19	11.48	19.39	11.27	28.33	29.53	6%
Soil B	Sandy loam	7.16	246	6.51	52.83	10.88	7.71	19.39	9.20	6%
Soil C	Sandy clay	8.41	1072	0.49	21.96	26.52	2.70	6.82	42.99	6%
Soil D	Clay	9.00	228	0.46	18.42	11.11	0.12	0.29	70.06	8%
Soil E	Loamy sand	9.53	328	0.29	54.92	27.41	2.49	6.27	8.91	4%

 Table 1

 Physicochemical properties of the soil samples.

CE: Conductivity; OOC: Oxidizable Organic Carbon.

composite sample was prepared from subsamples collected in depths between 20 and 30 cm. Then, the soil was homogenized, air-dried at room temperature and sieved (2 mm mesh). Once analyzed, it was observed that these soils could be classified into 5 types according to their characteristics, which have been designated with a letter from A to E.

Soil characterization

The physicochemical properties of each soil type (texture, oxidizable organic carbon, moisture, conductivity and pH) are shown in Table 1 together with their edaphology classification. The electrical conductivity and pH were measured with suitable electrodes in soil-water suspensions (1:5, w/v). Moisture was calculated as the difference between the air-dried soil weight and the weight after 24 h in an oven at 105°C. Particle distribution was obtained using the hydrometer method [20]. The oxidizable organic carbon to calculate the organic matter content was determined according to the spectrophotometric method in which the absorbance reading is compared with a curve of sucrose solutions with increasing carbon concentration. Once these properties were determined, the soils were classified using the texture diagram of the United States Department of Agriculture (USDA) [21].

Modified QuEChERS method

First, 10 ± 0.05 g of dried and sieved soil were weighed into a 50 mL centrifuge tube. Before starting the extraction process, the appropriated volume of the standard mix solutions to achieve the desired concentration (50 ng g⁻¹) were added to the recovery samples. Likewise, all samples and blanks were spiked with 50 µL of the P-IS solution, thoroughly shaken, and left to stand for an hour. Then, 10 mL of ACN-2.5%FA were added to each tube and vigorously shaken for 1 min. After that, 6 g of MgSO₄ and 1.5 g of CH₃COONa were incorporated to the tubes, energetically shaken for another minute, and sonicated in an ultrasonic bath (50/60 Hz, 120 V VWR, Radnor, Pennsylvania, USA) for 15 min to ensure aggregate breakdown. After that, samples were placed in a rotatory shaker (Ovan, Barcelona, Spain) for 25 min and then centrifuged for 10 min at 4200 rpm (3175.16 \times g) (5804 R, Eppendorf, Hamburg, Germany). Finally, the supernatant was filtered through 0.20 µm Chromafil® PET filters (Macherey-Nagel, Düren, Germany) and either directly analyzed in GC-MS/MS or dissolved in ultrapure water (1:1, v/v) and analyzed in LC-MS/MS.

Instrumentation

The LC-MSMS analysis was performed using a 1290 Infinity II LC System coupled to a Triple Quad 6460 mass spectrometer (Agilent Technologies, Palo Alto, CA, USA). A Poroshell 120 EC-C18 column (2.1 × 100 mm, 2.7 μ m; Agilent Technologies) equipped with a guard pre-filter with a 0.3 μ m SS frit and a pre-column (2.1 × 5 mm, 1.8 μ m; Agilent Technologies) at 50 °C was used for the chromatographic separation. The mobile phases were 2 mM ammonium acetate 0.1% FA in ultrapure water (A) and 2 mM ammonium acetate in MeOH (B). A binary gradient using mobile phases A and B was programmed as follows: 5% B - 0.5 min; 5% B - 1 min; 40% B - 2.5 min; 85% B - 8 min; 100% B - 10 to 14 min; 5% B - 14.01 min. The flow rate was set at 0.4 mL min⁻¹, the volume injected was 5 μ L and the total run time was 18 min. MS/MS analyses were performed using the Agilent Jet Stream Electrospray Ionization Source (AJS-ESI), in both positive and negative ionization mode, with dynamic

multiple reaction monitoring (dMRM). The nitrogen supplied by Zefiro 40 nitrogen generator (F-DGSi, Evry, France) was used as desolvation and drying gas. Nitrogen 6.0 (99.9999% purity, Linde, Dublin, Ireland) was used as collision gas. The sheath gas was set at 12 L min⁻¹ at 330 °C. The desolvation and nebulizing gas temperature was 190 °C and the flow rate was 11 L min⁻¹ with a pressure of 26 psi. The capillary voltages were set at 3900 and 2600 V in positive and negative ionization mode, respectively. The cycle time was 700 ms and dwell time 3-83 ms.

The GC-MS/MS analysis was conducted with a GC System 7890B equipped with a 7693 Autosampler and Triple Ouad 7010 mass spectrometer (Agilent Technologies, Palo Alto, USA). The chromatographic separations were performed using two fused silica ultra-inert capillary columns Agilent J&WHP-5MS (Crosslinked 5% phenyl-methyl-polysiloxane, Agilent Technologies) 15 m length, 0.25 mm i.d., and 0.25 um film thickness of 0.25 um each connected in series by a Purged Ultimate Union (PUU; Agilent Technologies). This configuration allowed the use of the back-flushing technique. Helium (99,999% purity, Linde, Dublin, Ireland) was used as the carrier gas and the flow was adjusted by the retention time lock feature using chlorpyrifos methyl as a reference (retention time = 9.143 min). The column temperature was maintained at 80 °C for 1.8 min, increased to 170 °C at a rate of 40 °C min⁻¹, then increased to 310 °C at a rate of 10 °C min⁻¹ and held for 3 min. The injection volume was 1.5 µL in splitless mode using a 4 mm Ultra Inert Liner with glass wool (Agilent Technologies) and it was set at 250 °C. Each chromatographic analysis lasted 20.75 min. Postrun backflush was set at -5.8 mL min⁻¹ and 315 °C for 5 min. MS/MS analyses were performed using electron impact (EI) ionization source in multiple reaction monitoring (MRM) mode, using 24-time segments. The El source temperature was set at 280 °C. Nitrogen 6.0 (99,9999% purity, Linde, Dublin, Ireland) was used as the collision gas at a flow of 1.5 mL min^{-1} . The transfer line temperature was 280 °C. A solvent delay of 3.7 min was left. The cycle time was in the range of 52-334 ms and the dwell time was between 15-40 ms.

Data analysis was performed using Agilent software MassHunter Quantitative Analysis (for QQQ) version B.07.01 and MassHunter Qualitative Analysis version B.07.00 for both GC-MS/MS and LC-MS/MS.

Method performance study

Recovery studies

The performance of the method in soils B, C, D, and E in comparison with soil A, the claim loam soil used in the previous validation of the method, was assessed through recovery experiments in quintuplicate at a single concentration of 50 ng g^{-1} . This concentration was selected as it is typically fixed as the limit of quantification (LOQ) for residues in soils [18]. Moreover, all the compounds are efficiently extracted at this concentration in clay loam soil, and actually it is the LOQ of two of the analytes: naphthalene and imipenem. In addition, extractions without the addition of analytes (blanks) were performed for each soil type in duplicates.

The mean and the standard deviation of the recoveries in each type of soil (A-E) are summarized in Table 2 (this information is also represented in Figure 1, Panels A-L, in the supplementary material). The range where recoveries are considered acceptable is 70-120% and a Relative Standard Deviation (%RSD) below 20% according to the guidelines followed in the validation [18,22].

Correction factors

From the data obtained in the recovery experiments, the difference in the performance of the compounds in each type of soil was calculated. It was calculated by taking soil A as a reference. Thus, it is the quotient of the recoveries in soils B, C, D, and E by the recoveries in soil A. In those cases where this factor was within the range of 0.8 and 1.2, it has been considered that there is no marked difference between the two types of soil for a given compound, and, therefore, it would not be necessary to apply any correction to the results obtained in the respective soil. The correction factors are intended to correct the concentrations obtained with the proposed method for each analyte in soils of types B to E and can be consulted in Table 3.

Table 2

Percentage recoveries and relative standard deviation of the 305 analytes in each soil type at the stablished concentration together with the compound number identification, group, and technique of analysis. This information is represented in figure 1 of the supplementary material.

N°	Compound	Group	Technique	Soil A		Soil B		Soil C		Soil D		Soil E	
				%REC	%RSD								
1	4,4'-Dichlorobenzophenone	Pesticides, OCPs	GC	164.0	12.4	138.7	27.3	87.0	12.2	95.3	12.3	126.8	18.0
2	4,4'-Dicofol	Pesticides, OCPs	GC	52.8	14.6	37.7	17.0	32.0	10.3	33.2	15.8	14.9	13.8
3	Abamectine	Pesticides	LC	67.1	8.0	31.4	9.9	60.6	13.5	58.8	0.8	57.1	5.9
4	Acephate	Pesticides	LC	61.3	3.2	57.3	1.2	52.8	1.3	39.8	1.5	63.8	1.2
5	Acetamiprid	Pesticides	LC	82.3	2.7	73.7	1.9	75.6	1.0	73.9	1.1	77.6	1.5
6	Acrinathrin	Pesticides	LC	83.6	8.0	39.5	25.2	76.3	6.4	77.8	5.9	72.9	2.9
7	Aldicarb	Pesticides	LC	83.7	3.8	71.6	1.4	76.9	1.2	80.0	0.6	77.6	1.3
8	Aldicarb sulfone	Pesticides	LC	85.3	2.8	77.9	2.6	78.1	1.0	77.9	2.4	75.5	1.7
9	Atrazine	Pesticides	LC	86.9	3.8	62.9	2.4	82.3	2.1	92.1	0.7	84.4	0.9
10	Azinphos methyl	Pesticides	LC	84.2	1.6	73.0	2.6	75.4	2.1	79.2	2.0	75.7	2.4
11	Azoxystrobin	Pesticides	LC	85.9	3.2	76.6	2.0	75.3	3.4	77.0	1.2	71.3	2.1
12	Benalaxyl	Pesticides	LC	87.1	2.9	71.7	4.3	85.5	1.6	88.5	1.1	84.7	1.3
13	Bendiocarb	Pesticides	LC	84.3	4.3	74.0	1.2	81.4	1.0	82.3	1.2	79.5	0.8
14	Bifenthrin	Pesticides	GC	129.6	11.6	112.7	21.3	80.4	7.8	86.2	5.8	74.4	9.9
15	Bitertanol	Pesticides	LC	79.5	1.9	77.4	3.0	70.4	4.1	67.8	2.8	62.5	3.9
16	Boscalid	Pesticides	GC	119.6	11.7	197.3	23.2	86.2	8.1	81.9	15.5	71.6	8.0
17	Bromopropylate	Pesticides	GC	128.1	15.8	113.6	15.2	90.4	5.7	93.3	4.3	83.8	9.6
18	Bromuconazole	Pesticides	LC	85.3	5.6	68.5	3.0	71.9	4.1	74.7	0.8	74.2	4.9
19	Bupirimate	Pesticides	LC	74.7	8.9	58.2	2.3	75.7	2.0	73.0	2.0	77.4	2.0
20	Cadusafos	Pesticides	LC	88.9	3.1	53.5	2.5	80.0	10.9	90.5	1.9	85.7	1.7
21	Carbaryl	Pesticides	LC	83.6	2.8	69.9	1.3	76.6	1.6	80.0	0.9	76.7	1.6
22	Carbofuran	Pesticides	LC	97.5	6.0	74.1	1.1	89.4	1.2	94.6	1.0	72.4	2.0
23	Carbofuran-3-hydroxy	Pesticides	LC	84.1	2.1	75.2	2.1	78.1	0.9	79.3	2.0	77.5	1.1
24	Chlorantraniliprole	Pesticides	LC	78.5	4.0	78.9	3.1	68.9	3.9	67.6	1.6	64.1	3.9
25	Chlorfenapyr	Pesticides	GC	111.0	4.4	96.1	29.3	76.9	13.1	73.1	13.4	57.2	3.8
26	Chlorobenzilate	Pesticides	GC	130.6	12.0	123.1	28.6	102.5	13.2	102.0	17.3	81.7	4.2
27	Chlorpropham	Pesticides	GC	152.1	19.0	143.8	31.6	106.4	16.0	100.7	9.9	96.5	8.7
28	Chlorpyrifos	Pesticides	GC	128.9	10.1	103.5	34.8	89.2	14.4	88.8	8.8	71.6	10.9
29	Chlorpyrifos methyl	Pesticides	GC	104.3	5.8	95.0	20.7	71.3	8.3	71.4	15.9	49.3	5.2
30	Chlorthal dimethyl	Pesticides	GC	117.8	10.5	102.3	20.0	86.1	15.6	92.6	11.2	80.3	10.2
31	Clofentezine	Pesticides	LC	90.4	3.6	54.1	3.0	87.1	2.2	96.7	1.5	91.0	1.6
32	Clothianidin	Pesticides	LC	77.5	6.0	64.5	2.9	69.8	2.5	69.9	1.2	69.2	2.9
33	Coumachlor	Pesticides	LC	88.4	1.6	80.7	1.2	84.4	5.3	84.3	1.4	74.6	3.2

A. Acosta-Dacal, C. Rial-Berriel and R. Díaz-Díaz et al./MethodsX 8 (2021) 101476

N°	Compound	Group	Technique	Soil A		Soil B		Soil C		Soil D		Soil E	
				%REC	%RSD	%REC	%RSD	%REC	%RSD	%REC	%RSD	%REC	%RSD
34	Coumaphos	Pesticides	LC	109.1	2.4	99.2	1.5	102.3	2.8	102.3	1.9	96.2	1.5
35	Cyazofamid	Pesticides	LC	77.4	3.2	61.5	1.4	77.3	1.8	92.4	3.0	56.4	4.9
36	Cyflufenamid	Pesticides	LC	89.2	2.4	58.3	3.2	81.9	3.8	86.6	0.9	79.8	2.1
37	Cyfluthrin	Pesticides	GC	128.4	11.4	106.1	35.3	80.2	13.3	77.6	14.7	60.2	8.4
38	Cyhalothrin (lambda isomer)	Pesticides	LC	83.4	7.9	30.1	24.3	75.5	11.8	72.2	7.7	62.9	21.9
39	Cymoxanil	Pesticides	LC	81.5	2.3	71.2	1.3	74.4	1.7	77.2	1.2	74.1	2.0
40	Cypermethrin	Pesticides	GC	133.8	15.0	128.8	31.7	80.3	13.2	70.2	21.4	58.8	10.3
41	Cyproconazole	Pesticides	LC	85.2	2.7	80.1	1.8	78.4	2.0	78.7	1.8	76.6	2.6
42	Cyprodinil	Pesticides	GC	122.8	13.8	107.9	21.9	87.0	11.3	89.3	7.9	77.9	8.9
43	Deltamethrin	Pesticides	GC	98.6	10.1	99.1	38.7	63.5	11.1	51.2	26.0	39.5	11.9
44	Demeton-S-methyl	Pesticides	LC	79.5	4.2	63.0	1.4	78.5	2.3	80.6	1.6	66.7	2.1
45	Demeton-S-methyl-sulfone	Pesticides	LC	81.7	2.1	76.2	1.9	75.6	1.3	75.1	1.5	75.0	1.8
46	Diszinon	Pasticidas	CC	125.3	8 8	110.3	10.0	96.4	10.7	96.1	70	77.0	80
40	Dichlofluanid	Pesticides		54.6	18 /	110.5	20 /	36.1	12.5	37.0	11.2	26.5	20.2
47	Dichloran	Pesticides		126.0	20.3	94.4	20.5	20.1 80.2	10.5	66.0	12.6	62.5	10.4
40	Diethothyl ethyl	Pesticides		04.6	20.5	75.0	23.5	80.2 88 3	20	00.0	12.0	02.J 881	20
50	Diethofencarb	Pesticides	LC	89.6	3.0	821	23	82.7	2.5	86.9	1.2	78.8	1.5
51	Difenoconazole	Pesticides	LC	816	27	64.5	2.5	72.9	11.0	73.0	2.5	69.8	21
52	Diflubenzuron	Pesticides	IC	84.4	47	70.5	2.4	78.1	5.0	82.3	2.5	72.6	42
53	Diflufenican	Pesticides		84.2	23	53.3	3.9	79.8	29	82.5	3.0	77.4	3.6
54	Dimethenamide	Pesticides		821	2.5	68.7	2.4	78.3	2.5	82.6	14	75.2	0.5
55	Dimethoate	Pesticides		83.4	3.5	72.0	2.1	76.2	14	75.9	0.7	76.3	14
56	Dimethomorph	Pesticides		851	15	89.8	2.1	70.2	21	67.9	16	64 3	25
57	Diniconazole-M	Pesticides		84.4	3.2	68.3	2.7	69.3	61	74 3	37	61.5	3.2
58	Dinocan	Pesticides		991	10.0	46.0	16.1	57.0	19.1	62.6	49	671	25.4
59	Diphenylamine	Pesticides	LC	77.8	7.4	65.9	3.0	71.9	6.9	63.6	6.8	69.6	4.3
60	Endosulfan alfa	Pesticides, OCPs	GC	110.6	10.7	89.9	29.7	73.8	5.6	76.7	10.5	66.6	5.3
61	Endosulfan beta	Pesticides, OCPs	GC	109.6	15.1	84.9	39.0	72.8	10.7	69.1	1.6	60.4	3.7
62	EPN	Pesticides	LC	83.2	7.2	48.2	3.7	74.7	1.1	80.7	2.5	77.9	4.1
63	Epoxiconazole	Pesticides	LC	76.0	4.4	64.1	3.5	73.1	5.6	76.4	1.6	53.7	6.0
64	Esfenvalerate	Pesticides	GC	100.8	10.7	87.2	37.7	58.9	8.8	55.5	13.4	41.7	10.3
65	Ethion	Pesticides	LC	90.6	2.3	39.3	2.2	83.3	0.9	91.1	1.7	83.8	1.6
66	Ethofumesate	Pesticides	GC	147.1	15.6	119.4	35.5	99.8	21.0	110.3	21.6	92.4	9.8
67	Ethoprophos	Pesticides	LC	80.2	1.8	60.1	2.1	75.1	2.9	79.8	2.0	71.6	2.7

Table	2	(continued)
-------	---	-------------

N°	Compound	Group	Technique	Soil A		Soil B		Soil C		Soil D		Soil E	
				%REC	%RSD								
68	Etofenprox	Pesticides	LC	64.3	14.8	31.8	9.1	47.6	38.3	22.4	10.8	43.4	32.2
69	Etoxazole	Pesticides	LC	81.5	2.2	32.8	6.4	74.6	4.1	78.6	0.6	78.1	2.8
70	Fenamidone	Pesticides	LC	77.9	4.6	77.9	1.9	71.5	1.6	71.9	2.5	64.3	2.0
71	Fenamiphos	Pesticides	LC	92.1	2.0	76.1	2.3	86.5	2.2	86.4	1.6	77.8	2.3
72	Fenamiphos sulfone	Pesticides	LC	81.6	2.6	82.1	1.3	70.0	3.7	66.8	1.6	67.4	1.9
73	Fenamiphos sulfoxide	Pesticides	LC	72.0	2.9	72.5	1.7	62.5	3.0	52.2	0.8	67.4	2.5
74	Fenarimol	Pesticides	GC	120.7	10.7	110.9	24.2	79.3	10.2	76.5	5.1	73.6	8.4
75	Fenazaquin	Pesticides	LC	78.4	7.4	22.7	33.7	71.5	13.2	88.1	4.0	87.5	3.2
76	Fenbuconazole	Pesticides	LC	91.6	1.6	88.0	2.9	85.5	4.7	83.9	1.6	80.8	2.4
77	Fenbutatin oxide	Pesticides	LC	97.6	31.8	51.7	63.6	54.1	29.7	75.3	16.8	84.6	15.9
78	Fenitrothion	Pesticides	GC	110.3	16.1	103.0	32.1	79.0	18.0	72.5	18.7	51.8	9.3
79	Fenoxycarb	Pesticides	LC	92.8	2.6	70.9	2.1	86.7	2.1	89.1	1.4	82.4	2.1
80	Fenpropathrin	Pesticides	LC	85.9	4.2	28.4	14.9	72.8	3.8	74.2	1.4	68.0	1.8
81	Fenpropimorph	Pesticides	LC	65.7	2.3	68.3	1.8	57.8	2.4	37.9	2.7	78.3	2.2
82	Fenpyroximate	Pesticides	LC	84.8	4.1	26.7	36.7	78.8	1.3	78.5	0.7	73.4	2.4
83	Fenthion	Pesticides	LC	91.2	5.6	64.2	4.9	80.2	5.0	79.6	4.1	75.9	4.9
84	Fenthion oxon	Pesticides	LC	89.0	2.4	74.9	1.6	83.0	1.7	87.3	1.1	83.0	0.6
85	Fenthion oxon sulfone	Pesticides	LC	76.8	2.4	70.7	2.0	69.0	2.8	67.6	2.1	67.9	2.7
86	Fenthion oxon sulfoxide	Pesticides	LC	70.5	3.1	66.0	2.8	61.4	1.6	52.4	1.5	69.5	2.3
87	Fenthion sulfone	Pesticides	LC	81.0	2.0	71.3	2.0	72.1	1.8	75.5	1.1	69.3	1.6
88	Fenthion sulfoxide	Pesticides	LC	82.6	1.4	79.8	1.5	71.2	3.0	70.4	1.3	69.2	2.4
89	Fenvalerate	Pesticides	GC	111.6	13.1	104.5	30.2	68.8	18.3	57.4	10.6	49.6	8.1
90	Fipronil	Pesticides	LC	80.6	4.4	85.6	3.5	69.9	4.5	72.1	2.6	68.7	1.2
91	Fipronil sulfide	Pesticides	GC	147.2	7.7	145.3	13.4	150.9	18.7	150.0	15.2	112.8	2.3
92	Fluazinam	Pesticides	LC	88.1	1.4	73.6	2.9	83.8	4.4	83.3	1.9	78.7	1.8
93	Flubendiamide	Pesticides	LC	82.9	2.8	69.3	2.9	79.8	1.7	80.6	3.1	75.5	1.9
94	Flucythrinate	Pesticides	GC	121.8	11.6	129.2	26.9	80.8	10.8	73.0	10.9	60.0	10.8
95	Fludioxonil	Pesticides	LC	86.0	3.0	74.7	9.0	75.2	5.4	79.7	2.6	72.5	3.9
96	Flufenoxuron	Pesticides	LC	80.5	3.8	45.3	1.4	71.7	4.1	74.6	2.3	70.9	2.1
97	Fluopyram	Pesticides	LC	81.0	1.1	66.7	2.0	69.2	3.7	71.7	1.6	67.6	0.5
98	Fluquinconazole	Pesticides	LC	79.5	6.3	61.9	4.6	70.1	8.0	73.5	4.5	73.2	4.6
99	Flusilazole	Pesticides	LC	90.7	4.9	72.6	3.2	82.7	2.8	85.6	4.0	73.7	2.3
100	Flutolanil	Pesticides	LC	78.4	3.5	65.2	1.4	69.7	4.1	70.5	0.9	66.6	2.1
101	Flutriafol	Pesticides	LC	78.5	3.7	69.1	2.3	73.5	1.7	77.9	0.7	74.5	1.0
102	Fluvalinate tau	Pesticides	LC	76.0	6.5	40.5	16.8	66.7	7.1	59.9	4.1	54.4	4.1
103	Fonofos	Pesticides	GC	126.3	9.7	117.4	24.9	93.4	11.7	97.2	8.7	79.2	6.3
104	Fosthiazate	Pesticides	LC	81.8	3.0	73.1	1.4	73.2	0.7	71.6	0.7	78.3	0.9
105	Hexaconazole	Pesticides	LC	98.4	4.8	73.0	2.0	85.5	1.5	89.5	1.9	86.1	2.4
106	Hexaflumuron	Pesticides	LC	71.5	3.4	73.9	3.9	60.6	5.6	56.7	3.1	51.3	5.8

ø

Table 2	2 (continued)	

N°	Compound	Group	Technique	Soil A		Soil B		Soil C		Soil D		Soil E	
				%REC	%RSD	%REC	%RSD	%REC	%RSD	%REC	%RSD	%REC	%RS
107	Hexythiazox	Pesticides	LC	83.3	2.2	30.9	1.2	70.6	12.1	80.3	0.9	76.2	1.9
108	Imidacloprid	Pesticides	LC	84.5	2.6	77.2	4.3	77.2	3.0	74.5	2.2	72.8	2.7
109	Indoxacarb	Pesticides	LC	89.1	2.6	69.0	4.2	80.6	3.3	77.2	4.5	69.3	2.7
110	Iprodione	Pesticides	GC	72.9	10.9	53.2	18.6	40.4	10.2	39.3	4.4	31.7	10.9
111	Iprovalicarb	Pesticides	LC	79.5	1.3	69.7	1.5	73.7	0.6	76.3	0.6	72.7	1.4
112	Isocarbophos	Pesticides	GC	123.7	16.3	114.9	21.0	83.4	9.7	84.9	9.6	68.1	9.1
113	Isofenphos methyl	Pesticides	LC	83.8	3.6	60.0	3.6	76.9	4.6	82.4	2.8	77.3	3.1
114	Isoprothiolane	Pesticides	LC	81.2	4.3	66.0	2.9	73.4	2.0	73.7	1.4	71.6	3.6
115	Kresoxim methyl	Pesticides	LC	88.0	4.2	59.6	1.6	79.8	3.5	84.0	3.3	79.4	3.6
116	Linuron	Pesticides	LC	81.4	4.3	66.3	2.4	75.9	6.1	80.8	3.1	75.9	3.1
117	Lufenuron	Pesticides	LC	67.9	4.1	39.5	15.4	73.0	3.8	79.3	2.1	72.5	3.9
118	Malaoxon	Pesticides	LC	80.0	2.3	69.3	1.4	73.7	1.0	73.5	2.1	70.5	3.1
119	Malathion	Pesticides	LC	81.6	3.7	68.0	2.1	71.6	2.3	73.2	2.1	69.0	2.4
120	Mandipropamid	Pesticides	LC	81.5	2.2	78.0	1.4	72.3	2.7	70.8	0.8	66.7	3.6
121	Mefenoxam (metalaxyl-M)	Pesticides	LC	75.7	2.4	68.6	1.1	69.1	0.7	67.3	0.6	69.2	0.8
122	Mepanipyrim	Pesticides	LC	88.7	4.6	59.4	2.2	80.8	4.2	89.1	1.8	82.6	1.6
123	Metaflumizone	Pesticides	LC	64.4	2.4	76.8	2.8	58.7	4.0	55.6	1.5	51.6	1.8
124	Metalaxyl	Pesticides	GC	124.2	9.1	108.2	32.9	82.4	11.3	86.4	14.6	76.6	7.7
125	Metaldehyde	Pesticides	LC	81.2	5.3	81.1	4.8	77.1	9.3	79.9	4.1	80.5	4.6
126	Metconazole	Pesticides	LC	85.8	2.0	67.7	1.7	82.1	1.9	80.5	1.8	75.7	0.8
127	Methamidophos	Pesticides	LC	44.2	6.5	47.6	1.6	52.3	0.5	41.9	1.2	46.0	2.2
128	Methidathion	Pesticides	LC	89.6	3.3	73.7	1.1	80.6	2.4	81.3	2.1	78.7	2.5
129	Methiocarb	Pesticides	LC	84.5	3.8	68.1	2.8	79.6	1.5	84.7	1.2	77.3	1.7
130	Methiocarb sulfone	Pesticides	LC	81.2	2.8	71.6	2.0	71.9	2.6	73.1	3.6	74.5	3.6
131	Methiocarb sulfoxide	Pesticides	LC	74.1	1.7	64.7	1.6	69.3	2.2	65.0	2.7	71.2	1.6
132	Methomyl	Pesticides	LC	89.5	4.1	77.0	1.5	77.7	0.9	76.7	0.8	80.0	2.2
133	Methomyl oxime	Pesticides	LC	73.2	7.8	67.4	7.1	68.5	4.3	69.6	5.8	64.9	4.6
134	Methoxyfenozide	Pesticides	LC	81.5	2.8	72.4	1.5	74.4	1.4	75.3	1.4	71.8	1.8
135	Metrafenone	Pesticides	LC	89.5	6.3	67.6	7.3	83.4	16.4	98.1	2.4	86.5	2.5
136	Mevinphos (phosdrin)	Pesticides	LC	77.9	2.6	72.7	1.9	75.4	0.7	75.8	0.7	75.7	0.9
137	Monocrotophos	Pesticides	LC	73.0	3.2	68.3	1.7	70.1	1.1	62.5	2.4	72.3	3.0
138	Myclobutanil	Pesticides	LC	87.7	7.5	88.7	4.0	70.7	3.2	71.8	1.5	67.1	1.8
139	N,N-Dimethyl-N'-p-	Pesticides	LC	94.3	3.4	84.9	0.8	84.0	4.2	86.4	2.1	77.5	2.1
	tolyIsulphamide (DMST)												

N°	Compound	Group	Technique	Soil A		Soil B		Soil C		Soil D		Soil E	
				%REC	%RSD								
140	N,N-dimethylformamidine (DMF)	Pesticides	LC	102.4	6.1	76.6	1.7	95.3	4.0	101.4	3.7	82.7	3.8
141	Nuarimol	Pesticides	LC	78.4	8.4	73.7	3.0	71.3	3.4	73.1	3.3	67.5	2.3
142	Ofurace	Pesticides	LC	81.6	3.2	70.0	2.1	76.0	3.1	75.9	3.0	66.1	1.0
143	Omethoate	Pesticides	LC	64.3	2.7	58.5	1.2	59.6	1.0	45.4	1.0	69.1	1.6
144	Oxadixyl	Pesticides	LC	79.3	2.1	72.7	1.1	69.6	1.1	66.7	1.0	70.8	1.6
145	Oxamyl	Pesticides	LC	76.5	3.6	70.1	1.7	69.1	1.2	65.3	1.0	75.0	1.8
146	Oxamyl oxime	Pesticides	LC	82.2	3.3	70.7	1.9	78.1	0.5	79.8	0.8	68.0	1.4
147	Oxyfluorfen	Pesticides	GC	98.0	11.2	92.1	23.3	76.7	9.1	67.5	9.3	62.0	11.7
148	Paclobutrazol	Pesticides	LC	78.5	4.8	71.2	3.2	69.7	2.1	71.0	3.5	70.3	1.5
149	Paraoxon methyl	Pesticides	GC	89.4	6.3	97.2	25.1	61.9	5.5	60.8	10.6	50.7	7.6
150	Parathion ethyl	Pesticides	GC	105.3	13.9	92.3	16.3	79.8	14.5	65.4	8.9	57.9	15.3
151	Parathion methyl	Pesticides	GC	98.1	4.7	92.5	20.5	70.3	8.7	60.3	15.5	45.0	7.8
152	Penconazole	Pesticides	LC	84.6	1.7	63.6	3.5	78.0	1.5	81.5	2.8	77.7	3.5
153	Pencycuron	Pesticides	LC	81.8	3.7	52.1	2.7	69.7	5.7	78.1	3.2	58.7	1.6
154	Pendimethalin	Pesticides	LC	86.6	3.3	38.4	4.4	79.3	2.6	79.5	3.4	76.7	1.5
155	Permethrin	Pesticides	GC	126.3	14.2	128.8	30.4	93.0	9.2	92.7	17.4	71.2	6.2
156	Phosalone	Pesticides	LC	86.3	2.0	60.6	4.1	82.2	2.0	87.4	1.0	81.1	2.6
157	Phosmet	Pesticides	LC	86.9	3.6	76.5	2.7	77.1	2.9	78.3	1.7	72.6	2.6
158	Phosmet oxon	Pesticides	LC	79.0	2.8	70.5	1.5	70.0	0.7	69.3	0.9	71.4	0.9
159	Phthalimide (Folpet deg)	Pesticides	GC	131.6	5.2	131.3	23.3	109.7	4.2	104.9	5.3	115.0	3.6
160	Pirimicarb	Pesticides	LC	56.0	8.8	61.9	1.1	67.3	1.3	59.4	1.3	71.6	0.9
161	Pirimiphos ethyl	Pesticides	LC	81.3	3.6	37.1	2.4	79.6	1.1	86.9	0.6	81.3	1.1
162	Pirimiphos methyl	Pesticides	LC	90.4	4.5	54.5	2.0	83.3	2.5	91.7	0.9	85.3	1.3
163	Prochloraz	Pesticides	LC	95.3	4.5	69.3	3.8	90.2	1.5	88.6	1.9	86.9	4.8
164	Procymidone	Pesticides	GC	139.6	19.3	108.9	19.9	98.8	10.3	104.0	12.6	87.8	4.9
165	Profenofos	Pesticides	LC	87.4	3.0	44.6	1.9	77.0	2.9	81.6	2.1	73.9	1.9
166	Propargite	Pesticides	LC	82.2	3.1	30.0	8.7	74.6	5.8	81.7	2.1	77.6	1.6
167	Propoxur	Pesticides	LC	86.3	2.8	73.1	2.2	80.3	0.9	82.5	1.6	80.9	1.3
168	Propyzamide (pronamide)	Pesticides	LC	83.4	6.3	62.4	0.8	73.8	1.9	79.9	3.6	75.5	4.2
169	Proquinazid	Pesticides	LC	78.6	2.6	21.0	51.3	71.9	8.5	76.7	3.4	70.6	1.0
170	Prothioconazole-desthio	Pesticides	LC	76.3	5.3	55.9	3.1	74.0	4.6	84.6	3.5	59.4	3.3
171	Prothiophos	Pesticides	GC	129.3	11.0	105.7	40.2	84.8	11.7	87.2	14.0	69.5	5.1

Table	2 (continued)

N°	Compound	Group	Technique	Soil A		Soil B		Soil C		Soil D		Soil E	
				%REC	%RSD								
172	Pyraclostrobin	Pesticides	LC	85.4	3.0	59.2	2.4	77.2	3.0	81.0	1.9	75.1	1.2
173	Pyrazophos	Pesticides	LC	84.5	2.6	76.1	2.1	75.4	2.7	72.7	1.3	67.1	3.4
174	Pyridaben	Pesticides	LC	81.6	1.9	27.5	35.1	75.2	5.9	84.2	0.9	80.8	0.9
175	Pyridaphenthion	Pesticides	LC	79.3	7.4	72.0	2.9	61.6	3.0	62.0	2.1	55.8	1.8
176	Pyrimethanil	Pesticides	GC	129.0	11.8	119.3	26.3	94.2	12.7	95.0	5.7	80.5	11.5
177	Pyriproxifen	Pesticides	LC	82.0	2.3	32.3	3.2	76.4	0.9	81.4	1.4	78.6	1.8
178	Quinalphos	Pesticides	LC	91.9	2.3	74.2	3.6	89.5	1.6	93.9	3.7	89.6	1.8
179	Quinoxyfen	Pesticides	LC	78.8	7.1	22.6	2.9	70.4	8.5	88.7	2.1	88.7	2.1
180	Rotenone	Pesticides	LC	89.4	2.6	79.7	4.1	78.7	7.1	80.7	1.0	66.9	4.5
181	Simazine	Pesticides	LC	78.4	5.2	56.7	2.7	75.9	2.9	76.0	2.4	76.0	2.0
182	Spirodiclofen	Pesticides	LC	86.9	4.3	27.0	39.3	79.8	2.3	87.0	1.1	79.0	1.4
183	Spiromesifen	Pesticides	LC	82.8	4.5	31.5	3.3	71.2	6.1	73.6	3.8	68.0	1.3
184	Spirotetramat	Pesticides	LC	78.8	4.2	106.1	3.2	71.5	4.4	66.0	3.2	61.8	3.1
185	Spirotetramat-enol	Pesticides	LC	77.7	5.7	109.3	1.0	70.6	3.6	67.2	3.6	61.9	6.4
186	Spiroxamine	Pesticides	GC	62.7	12.0	105.0	19.1	37.9	8.5	17.7	5.4	86.3	4.9
187	Tebuconazole	Pesticides	LC	81.1	3.1	63.3	1.4	77.3	2.5	78.6	6.2	77.0	5.4
188	Tebufenocide	Pesticides	LC	80.7	2.6	65.4	1.2	73.5	2.9	74.6	2.3	70.4	2.6
189	Tebufenpyrad	Pesticides	LC	101.5	2.6	48.0	2.1	91.9	2.3	97.1	3.1	88.9	2.3
190	Teflubenzuron (artifact 3)	Pesticides	GC	153.4	8.7	131.7	21.4	103.5	10.5	93.9	9.9	96.6	7.7
191	Tefluthrin	Pesticides	GC	137.2	19.3	138.0	31.2	102.0	13.2	98.8	12.6	86.7	4.4
192	Telodrin	Pesticides	GC	130.4	13.9	101.1	24.7	83.1	16.7	85.5	15.2	76.0	12.5
193	Terbufos	Pesticides	GC	135.6	7.0	125.2	25.5	96.8	6.5	100.2	11.1	79.3	3.5
194	Terbuthylazine	Pesticides	LC	81.3	2.6	55.8	1.9	72.6	2.6	78.6	1.1	71.8	2.1
195	Tetrachlorvinphos	Pesticides	LC	100.8	3.4	80.2	2.6	96.6	1.2	100.6	2.2	95.6	4.1
196	Tetraconazole	Pesticides	LC	78.6	3.6	63.5	5.8	70.3	2.4	72.5	2.3	67.8	3.6
197	Tetradifon	Pesticides	GC	135.8	12.0	116.3	26.5	82.3	8.0	84.9	14.3	68.9	3.6
198	Tetramethrin	Pesticides	GC	113.5	14.6	102.7	28.5	57.9	7.2	60.0	5.4	48.9	10.6
199	Thiacloprid	Pesticides	LC	78.3	3.1	71.6	2.0	69.2	0.6	67.5	0.2	73.5	1.4
200	Thiamethoxam	Pesticides	LC	76.1	3.7	62.1	3.6	66.0	3.2	62.6	1.6	61.3	2.3
201	Thiodicarb	Pesticides	LC	72.0	3.0	74.0	1.9	61.8	1.3	58.6	0.6	71.9	1.6
202	Tolclofos methyl	Pesticides	GC	129.7	9.0	115.7	28.1	90.7	13.7	97.1	16.7	68.3	5.0
203	Tolylfluanid	Pesticides	GC	70.1	13.7	56.9	33.9	42.9	12.8	40.9	10.5	31.2	24.3
204	Triadimefon	Pesticides	LC	84.1	2.4	84.4	1.9	77.7	0.9	75.5	3.1	71.4	4.9
205	Triadimenol	Pesticides	LC	81.0	1.1	99.6	1.8	78.6	2.0	76.0	4.3	72.5	2.8
206	Triazophos (hostathion)	Pesticides	LC	81.4	3.1	70.8	1.7	74.1	0.5	77.9	1.9	74.0	1.5

N°	Compound	Group	Technique	Soil A		Soil B	Soil B		Soil C		Soil D		
				%REC	%RSD	%REC	%RSD	%REC	%RSD	%REC	%RSD	%REC	%RSD
207	Trichlorfon	Pesticides	LC	79.6	3.5	65.6	2.4	70.6	2.5	71.4	3.0	68.9	3.0
208	Trifloxystrobin	Pesticides	LC	83.5	3.2	49.5	3.1	77.6	1.7	82.9	0.7	77.5	1.8
209	Triflumizole	Pesticides	LC	77.2	6.0	45.8	2.2	78.3	1.7	81.7	2.9	82.1	1.3
210	Triflumuron	Pesticides	LC	93.7	3.2	63.2	2.2	84.5	2.3	85.6	3.3	81.7	5.0
211	Trifluralin	Pesticides	GC	114.2	28.5	134.2	33.4	100.5	8.9	80.7	5.1	78.3	12.0
212	Triticonazole	Pesticides	LC	82.9	2.5	82.3	3.9	76.9	1.8	73.3	2.8	72.2	3.8
213	Vinclozolin	Pesticides	GC	150.3	5.8	130.5	27.2	99.3	13.8	105.7	22.1	89.3	6.2
214	Aldrin	OCPs	GC	115.2	10.2	100.7	18.0	83.0	9.0	91.6	10.9	78.6	8.2
215	Dichlorodiphenyldichloroethane (p,p' DDD)	OCPs	GC	113.5	17.7	88.4	36.9	83.1	20.7	73.9	9.7	112.3	4.2
216	Dichlorodiphenyldichloroethylene (p,p' DDE)	OCPs	GC	121.2	9.6	96.8	30.6	116.0	36.2	90.6	16.0	110.7	30.6
217	Dieldrin	OCPs	GC	102.7	9.7	80.7	25.1	127.1	26.1	75.5	13.9	53.7	12.1
218	Endrin	OCPs	GC	90.8	13.1	73.4	31.1	66.5	13.9	63.6	10.4	61.6	7.6
219	Heptachlor	OCPs	GC	98.1	12.1	71.0	41.6	57.2	13.5	65.6	16.3	54.8	6.4
220	Hexachlorobenzene	OCPs	GC	140.9	8.2	112.9	27.0	103.0	9.7	110.9	12.3	97.1	5.2
221	Hexachlorocyclohexane (alpha)	OCPs	GC	127.2	11.4	103.5	39.5	80.9	15.2	79.0	10.2	67.3	5.2
222	Hexachlorocyclohexane (gamma, lindane)	OCPs	GC	103.9	11.8	72.1	36.8	57.5	7.6	57.7	18.5	62.6	1.9
223	Hexachlorocyclohexano (beta)	OCPs	GC	125.2	11.7	86.9	34.4	61.5	12.5	69.4	12.3	14.9	39.0
224	Hexaclorociclohexano (delta)	OCPs	GC	89.6	12.4	78.7	31.6	62.2	18.8	62.6	11.5	44.7	3.1
225	Mirex	OCPs	GC	91.7	15.7	69.0	31.9	56.8	8.9	60.7	5.5	59.6	9.4
226	PCB 28	PCBs	GC	136.1	7.2	127.3	30.7	99.7	9.3	111.0	14.4	93.5	4.8
227	PCB 52	PCBs	GC	130.1	13.0	108.4	27.4	100.1	19.0	109.9	17.3	94.7	6.7
228	PCB 77	PCBs	GC	123.5	12.0	98.2	28.4	92.7	10.7	99.7	13.0	86.8	4.2
229	PCB 81	PCBs	GC	117.1	8.3	95.8	30.0	85.1	5.4	94.5	12.4	79.3	10.5
230	PCB 101	PCBs	GC	127.6	10.9	99.9	31.4	90.0	8.3	93.6	4.1	86.5	6.9
231	PCB 105	PCBs	GC	132.6	9.3	109.0	29.4	104.8	8.0	110.1	13.2	95.2	8.8
232	PCB 114	PCBs	GC	120.9	12.5	101.2	28.8	95.3	14.3	104.8	17.5	83.2	9.2
233	PCB 118	PCBs	GC	106.4	16.3	88.2	25.1	90.6	13.9	89.8	4.4	77.2	5.2
234	PCB 123	PCBs	GC	129.7	10.1	119.9	25.8	114.0	11.7	119.9	17.3	103.9	4.3
235	PCB 126	PCBs	GC	104.7	17.3	77.9	14.8	75.7	5.2	85.7	11.8	73.9	6.6
236	PCB 138	PCBs	GC	96.6	19.7	78.8	16.9	74.1	14.5	80.3	11.5	74.3	9.6

Table 2 (continued)

N°	Compound	Group	Technique	Soil A		Soil B		Soil C		Soil D		Soil E	
				%REC	%RSD								
237	PCB 153	PCBs	GC	117.7	16.2	95.3	25.0	96.2	9.1	100.2	18.1	81.1	6.5
238	PCB 156	PCBs	GC	119.3	12.6	95.5	17.7	82.9	6.4	90.7	7.8	86.9	11.1
239	PCB 157	PCBs	GC	127.0	12.4	92.5	20.4	89.2	9.9	95.2	9.2	85.1	10.2
240	PCB 167	PCBs	GC	107.1	12.6	80.5	17.1	81.9	13.0	89.5	7.4	80.4	8.1
241	PCB 169	PCBs	GC	109.1	15.4	90.2	20.0	84.7	12.1	89.8	7.5	75.4	8.3
242	PCB 180	PCBs	GC	114.5	12.8	98.9	21.6	86.4	11.0	93.4	14.2	78.0	4.5
243	PCB 189	PCBs	GC	110.7	14.5	88.6	15.3	89.5	11.1	88.2	8.8	83.1	9.9
244	PBDE 28	PBDEs	GC	100.7	6.0	93.9	16.0	94.5	5.7	96.6	3.9	85.8	1.4
245	PBDE 47	PBDEs	GC	96.7	10.0	89.6	13.2	84.2	3.6	86.8	6.5	75.5	3.7
246	PBDE 85	PBDEs	GC	98.8	4.7	97.4	9.8	98.4	8.2	85.5	5.4	76.8	5.7
247	PBDE 99	PBDEs	GC	102.5	5.9	89.3	19.9	91.1	8.9	95.9	5.3	85.2	7.8
248	PBDE 100	PBDEs	GC	97.6	6.8	88.3	12.4	88.0	2.6	94.7	6.7	83.9	4.3
249	PBDE 153	PBDEs	GC	90.4	6.4	91.9	11.2	89.4	3.5	88.2	6.2	75.5	2.7
250	PBDE 154	PBDEs	GC	97.1	2.8	95.9	11.6	95.6	8.0	93.7	11.3	82.4	2.6
251	PBDE 183	PBDEs	GC	91.8	6.4	76.1	10.8	81.8	4.9	71.7	7.5	64.3	6.5
252	Acenaphthene	PAHs	GC	123.3	20.1	116.6	37.1	79.7	6.1	78.8	10.2	76.1	5.5
253	Acenaphthylene	PAHs	GC	138.7	16.0	126.4	33.4	92.6	5.4	89.8	7.1	93.9	9.3
254	Anthracene	PAHs	GC	117.1	19.1	115.0	36.3	87.2	15.5	87.0	8.9	76.3	4.1
255	Benzo[a]anthracene	PAHs	GC	127.8	16.9	101.1	34.2	69.3	8.9	75.1	7.1	66.7	10.9
256	Benzo[b]fluoranthene	PAHs	GC	136.4	44.4	113.9	43.8	78.8	11.2	66.3	9.0	50.5	9.7
257	Chrysene	PAHs	GC	149.5	32.7	99.8	43.2	70.7	8.0	76.1	4.2	66.5	10.4
258	Fluoranthene	PAHs	GC	132.1	21.7	107.7	51.2	76.6	17.9	73.3	12.6	63.7	7.6
259	Fluorene	PAHs	GC	144.5	17.4	139.6	39.5	97.8	14.8	90.2	5.1	88.9	9.5
260	Naphthalene	PAHs	GC	125.7	16.1	132.0	33.1	93.4	10.9	89.1	9.1	88.6	6.5
261	Phenanthrene	PAHs	GC	128.5	11.6	147.1	37.3	95.7	16.2	94.6	5.4	81.7	14.1
262	Pyrene	PAHs	GC	132.9	17.5	106.8	48.5	74.0	12.4	76.5	5.7	67.4	7.8
263	Brodifacoum	ARs	LC	66.6	6.7	24.0	21.1	75.2	3.1	84.1	3.4	78.0	2.1
264	Bromadiolone	ARs	LC	69.5	2.4	43.1	4.5	68.5	2.7	73.1	3.2	63.5	3.7
265	Coumatetralyl	ARs	LC	69.4	1.9	57.5	4.6	69.2	3.7	75.0	3.5	69.4	2.5
266	Difenacoum	ARs	LC	79.6	3.3	31.6	5.8	87.8	2.0	91.5	1.2	94.9	0.8
267	Difetihalone	ARs	LC	68.6	9.1	27.7	8.4	70.2	4.6	85.8	2.1	76.9	3.5
268	Flocoumafen	ARs	LC	71.4	3.5	33.6	4.0	74.0	6.1	79.4	0.6	75.4	2.6
269	Warfarin	ARs	LC	80.4	5.1	81.6	5.7	74.9	3.8	77.2	3.9	75.1	3.7
270	Albendazole	PhACs	LC	56.6	6.5	46.9	1.0	67.6	1.6	71.6	1.2	65.4	1.6
271	Cefuroxima axetil	PhACs	LC	72.2	2.3	57.5	3.1	63.7	4.2	65.2	1.4	64.8	0.8

N°	Compound	Group	Technique	Soil A		Soil B		Soil C		Soil D		Soil E	
				%REC	%RSD								
272	Chloramphenicol	PhACs	LC	88.0	7.3	82.2	9.3	76.9	11.6	84.2	14.1	77.6	8.4
273	Cloxacillin	PhACs	LC	58.3	17.6	87.8	9.8	36.9	5.0	33.6	12.0	62.3	2.8
274	Cortiscosterone 21 acetate	PhACs	LC	74.9	2.1	62.7	5.2	66.3	10.0	66.9	2.3	63.9	4.4
275	Dexamethasone	PhACs	LC	54.5	9.4	66.0	3.4	60.4	1.7	46.1	4.4	56.3	3.1
276	Diclofenac	PhACs	LC	60.0	19.2	69.9	2.8	61.0	7.2	66.3	3.1	64.2	6.1
277	Eprinomectin	PhACs	LC	71.1	8.1	46.0	28.2	69.4	4.8	60.5	2.6	57.6	5.0
278	Fenbendazole	PhACs	LC	65.6	9.2	46.7	3.3	62.8	2.8	65.3	1.4	59.4	0.8
279	Flunixin	PhACs	LC	47.0	2.6	30.4	3.1	53.1	2.9	44.9	2.7	65.6	1.6
280	Imipenem	PhACs	LC	102.4	6.4	76.7	16.0	73.7	17.7	83.6	11.7	83.7	10.3
281	Josamycin	PhACs	LC	52.7	3.7	63.7	3.6	37.2	3.8	20.9	4.5	58.4	2.0
282	Ketoprofen	PhACs	LC	69.4	3.8	80.3	4.2	66.6	1.8	66.4	1.2	65.0	3.4
283	Mebendazole	PhACs	LC	61.5	3.6	65.5	2.6	69.1	2.3	69.6	1.2	65.6	2.1
284	Mefenamic acid	PhACs	LC	48.3	20.9	66.3	5.0	41.5	13.0	57.5	8.1	45.1	8.3
285	Metronidazole	PhACs	LC	69.8	8.5	45.6	5.0	65.8	2.8	64.9	1.8	52.8	2.2
286	Moxidectin	PhACs	LC	67.5	8.5	26.1	15.1	54.3	9.1	74.4	4.6	71.3	2.5
287	Naproxen	PhACs	LC	68.1	5.0	73.5	4.3	68.7	4.9	69.2	5.8	63.5	5.2
288	Oxfendazole	PhACs	LC	46.9	3.8	54.3	2.7	64.3	2.3	57.2	0.4	63.1	2.7
289	Penicilina V	PhACs	LC	35.6	13.5	59.8	5.7	27.1	7.7	22.8	3.6	51.5	5.1
290	Sulfacetamide	PhACs	LC	60.3	7.8	51.4	4.0	63.9	0.7	67.0	3.1	47.0	2.0
291	Sulfacloropiridacine	PhACs	LC	64.2	4.7	56.4	5.5	69.5	3.6	77.3	1.8	54.4	3.2
292	Sulfadiacine	PhACs	LC	58.8	4.8	54.1	3.8	62.8	2.4	63.8	1.5	51.9	3.0
293	Sulfadimetoxine	PhACs	LC	69.6	3.0	73.8	4.8	66.5	1.5	69.7	1.1	62.5	1.6
294	Sulfadoxine	PhACs	LC	68.2	1.6	70.1	2.3	69.3	1.4	72.6	1.3	64.9	1.1
295	Sulfameracine	PhACs	LC	61.8	3.3	57.2	4.8	64.7	2.4	65.5	1.2	54.7	1.6
296	Sulfametacine	PhACs	LC	66.0	3.6	61.0	4.6	68.1	2.5	70.7	1.3	61.3	3.8
297	Sulfametizole	PhACs	LC	45.3	11.6	39.9	3.4	65.3	2.4	71.8	2.3	52.4	3.2
298	Sulfametoxazole	PhACs	LC	77.9	3.3	70.7	4.8	77.2	2.4	79.9	2.0	62.9	2.6
299	Sulfametoxipiridacine	PhACs	LC	57.7	4.4	53.4	5.8	67.7	1.7	69.6	1.8	57.9	3.1
300	Sulfamonomethoxine	PhACs	LC	60.5	2.8	55.5	3.8	63.9	2.4	70.6	2.1	58.0	1.5
301	Sulfanilamide	PhACs	LC	59.4	23.7	20.1	3.6	58.1	8.3	81.3	6.1	22.3	6.5
302	Sulfapiridine	PhACs	LC	57.2	4.6	50.4	3.7	68.0	2.2	70.0	3.2	57.9	3.9
303	Sulfaguinoxaline	PhACs	LC	61.8	3.0	63.1	4.7	66.4	1.5	68.4	2.4	60.9	0.5
304	Sulfisoxazole	PhACs	LC	40.4	38.1	66.4	3.3	54.7	3.8	70.3	1.4	38.8	8.1
305	Tolfenamic acid	PhACs	LC	79.4	4.9	60.6	2.8	77.9	9.0	90.1	6.6	85.5	6.2

^aPBDE – Polybrominated diphenyl ethers, OCP – Organochlorine pesticides, PAH – Polycyclic aromatic hydrocarbon, PCB – Polychlorinated biphenyl, PhACs – Pharmaceuticals Active Compounds, ARs – Anticoagulant Rodenticides, P-IS – Procedural Internal Standard.

^bGas chromatography (GC) or liquid chromatography (LC), both coupled with tandem triple quadrupole mass spectrometry.

Multiplying factors for the correction of the concentration found after the application of the analytical method to sandy loam soil (B), sandy clay soil (C), clay soil (D), and loamy sand soil (E).

N°	Compound	Group	Technique	Factor B	Factor C	Factor D	Factor E
1	4,4'-Dichlorobenzophenone	Pesticides,	GC		1.9	1.7	1.3
2	4,4'-Dicofol	Pesticides, OCPs	GC	1.4	1.6	1.6	3.5
3	Abamectine	Pesticides	LC	2.1			
4	Acephate	Pesticides	LC	2		1.5	
5	Acetamiprid	Pesticides	LC				
6	Acrinathrin	Pesticides	LC	2.1			
7	Aldicarb	Pesticides	LC				
8	Aldicarb sulfone	Pesticides	LC				
9	Atrazine	Pesticides	LC	1.4			
10	Azinphos methyl	Pesticides	LC				
11	Azoxystrobin	Pesticides	LC				1.3
12	Benalaxyl	Pesticides	LC	1.3			
13	Bendiocarb	Pesticides	LC				
14	Bifenthrin	Pesticides	GC		1.6	1.5	1.7
15	Bitertanol	Pesticides	LC				1.3
16	Boscalid	Pesticides	GC	0.6	1.4	1.5	1.7
17	Bromopropylate	Pesticides	GC		1.4	1.4	1.5
18	Bromuconazole	Pesticides	LC	1.3			
19	Bupirimate	Pesticides	LC	1.3			
20	Cadusafos	Pesticides	LC	1.7			
21	Carbaryl	Pesticides	LC				
22	Carbofuran	Pesticides	LC	1.3			1.3
23	Carbofuran-3-hydroxy	Pesticides	LC				
24	Chlorantraniliprole	Pesticides	LC				1.3
25	Chlorfenapyr	Pesticides	GC		1.4	1.5	1.9
26	Chlorobenzilate	Pesticides	GC		1.3	1.3	1.6
27	Chlorpropham	Pesticides	GC		1.4	1.5	1.6
28	Chlorpyrifos	Pesticides	GC	1.3	1.4	1.5	1.8
29	Chlorpyrifos methyl	Pesticides	GC		1.5	1.5	2.1
30	Chlorthal dimethyl	Pesticides	GC		1.4	1.3	1.5
31	Clofentezine	Pesticides	LC	1.7			
32	Clothianidin	Pesticides	LC	1.3			
33	Coumachlor	Pesticides	LC				
34	Coumaphos	Pesticides	LC				
35	Cyazofamid	Pesticides	LC	1.3			1.4
36	Cyflufenamid	Pesticides	LC	1.5			
37	Cyfluthrin	Pesticides	GC	1.3	1.6	1.7	2.1
38	Cyhalothrin (lambda isomer)	Pesticides	LC	2.8			1.3
39	Cymoxanil	Pesticides	LC		4.5	10	
40	Cypermethrin	Pesticides	GC		I./	1.9	2.3
41	Cyproconazole	Pesticides	LC				10
42	Cyprodinil	Pesticides	GC		1.4	1.4	1.6
43	Deitamethrin	Pesticides	GC	10	1.6	1.9	2.5
44	Demeton-S-metnyl	Pesticides		1.3			
45	(Dioxydemeton)	Pesticides	IC.				
46	Diazinon	Pesticides	GC		1.3	1.3	1.6
47	Dichlofluanid	Pesticides	GC	1.3	1.5	1.5	2.1
48	Dichloran	Pesticides	GC	1.3	1.6	1.9	2.0
49	Diethathyl ethyl	Pesticides	LC	1.3			
50	Diethofencarb	Pesticides	LC				
51	Difenoconazole	Pesticides	LC	1.3			
52	Diflubenzuron	Pesticides	LC				
53	Diflufenican	Pesticides	LC	1.6			
54	Dimethenamide	Pesticides	LC				
55	Dimethoate	Pesticides	LC				

N°	Compound	Group	Technique	Factor B	Factor C	Factor D	Factor E
56	Dimethomorph	Pesticides	IC		13	13	13
57	Diniconazole-M	Pesticides	IC	13	1.5	1.5	1.5
58	Dinocan	Pesticides		2.2	1.5	16	15
59	Diphenylamine	Pesticides	LC	212		1.3	110
60	Endosulfan alfa	Pesticides.	GC	1.3	1.5	1.4	1.7
		OCPs					
61	Endosulfan beta	Pesticides,	GC	1.3	1.5	1.6	1.8
		OCPs					
62	EPN	Pesticides	LC	1.7			
63	Epoxiconazole	Pesticides	LC				1.4
64	Esfenvalerate	Pesticides	GC		1.7	1.8	2.4
65	Ethion	Pesticides	LC	2.3			
66	Ethofumesate	Pesticides	GC	1.3	1.5	1.3	1.6
67	Ethoprophos	Pesticides	LC	1.3			
68	Etofenprox	Pesticides	LC	2.0	1.4	2.9	1.5
69	Etoxazole	Pesticides	LC	2.5			
70	Fenamidone	Pesticides	LC				1.3
71	Fenamiphos	Pesticides	LC	1.3			
72	Fenamiphos sulfone	Pesticides	LC			1.3	1.3
73	Fenamiphos sulfoxide	Pesticides	LC			1.4	1.0
74	Fenarimol	Pesticides	GC		1.5	1.6	1.6
75	Fenazaquin	Pesticides	LC	3.5			
76 77	Fenduconazole	Pesticides		10	10	10	
70	Fendulatin Oxide	Pesticides		1.9	1.8	1.5	2.1
78	Femiliounion	Pesticides	GC	10	1.4	1.5	2.1
/9	FelloxyCarD	Pesticides		1.5			10
0U 01	Fenpropimorph	Pesticides		5.0		17	1.5
87 87	Fennyrovimate	Pesticides		3.2		1.7	
83	Fenthion	Pesticides		14			13
84	Fenthion oxon	Pesticides	IC	1.4			1.5
85	Fenthion oxon sulfone	Pesticides					
86	Fenthion oxon sulfoxide	Pesticides	LC			1.3	
87	Fenthion sulfone	Pesticides	LC				
88	Fenthion sulfoxide	Pesticides	LC				
89	Fenvalerate	Pesticides	GC		1.6	1.9	2.2
90	Fipronil	Pesticides	LC				
91	Fipronil sulfide	Pesticides	GC				1.3
92	Fluazinam	Pesticides	LC				
93	Flubendiamide	Pesticides	LC				
94	Flucythrinate	Pesticides	GC		1.5	1.7	2.0
95	Fludioxonil	Pesticides	LC				
96	Flufenoxuron	Pesticides	LC	1.8			
97	Fluopyram	Pesticides	LC	1.3			
98	Fluquinconazole	Pesticides	LC	1.3			
99	Flusilazole	Pesticides	LC	1.3			1.3
100	Flutolanil	Pesticides	LC	1.3			
101	Flutriafol	Pesticides	LC				
102	Fluvalinate tau	Pesticides	LC	1.9		1.3	1.4
103	Fonotos	Pesticides	GC		1.4	1.3	1.6
104	Fosthiazate	Pesticides	LC	10			
105	Hexaconazole	Pesticides		1.3		10	14
105	Hexaflumuron	Pesticides	LC	27		1.3	1.4
107	Hexythiazox	Pesticides	LC	2.7			
108	Imidacioprid	Pesticides		10			10
109	Indoxacarb	Pesticides		1.5	10	10	1.3
110	Iprovalicarb	Pesticidos		1.4	1.0	1.9	2.3
111	Isocarbonhos	Desticidos			15	15	18
112	isocarpopilos	resticides	GC		1.J	1.J	1.0

Table 3 (continued)

N°	Compound	Group	Technique	Factor B	Factor C	Factor D	Factor E
113	Isofenphos methyl	Pesticides	LC	1.4			
114	Isoprothiolane	Pesticides	LC	1.3			
115	Kresoxim methyl	Pesticides	LC	1.5			
116	Linuron	Pesticides	LC	1.3			
117	Lufenuron	Pesticides	LC	1.7			
118	Malaoxon	Pesticides	LC				
119	Malathion	Pesticides	LC	1.3			
120	Mandipropamid	Pesticides	LC				1.3
121	Mefenoxam (metalaxyl-M)	Pesticides	LC				
122	Mepanipyrim	Pesticides	LC	1.5			
123	Metaflumizone	Pesticides	LC				1.3
124	Metalaxyl	Pesticides	GC		1.5	1.4	1.6
125	Metaldehyde	Pesticides	LC				
126	Metconazole	Pesticides	LC	1.3			
127	Methamidophos	Pesticides	LC				
128	Methidathion	Pesticides	LC	1.3			
129	Methiocarb	Pesticides		1.3			
130	Methiocard sulfone	Pesticides					
131	Methodard Sulloxide	Pesticides					
132	Methomyl avima	Pesticides					
133	Methowyfopozide	Pesticides					
134	Metrofopopo	Pesticides		12			
125	Methaleholie Meyinphos (phosdrin)	Pesticides		1.5			
130	Monocrotophos	Pesticides					
138	Myclobutanil	Posticidos			13	13	13
130	N N-Dimethyl-N'-n-	Pesticides			1.5	1.5	1.5
155	tolylsulphamide (DMST)	resticides					1.5
140	N.N-dimethylformamidine (DMF)	Pesticides	LC	1.3			1.3
141	Nuarimol	Pesticides	LC				
142	Ofurace	Pesticides	LC				1.3
143	Omethoate	Pesticides	LC			1.4	
144	Oxadixyl	Pesticides	LC				
145	Oxamyl	Pesticides	LC				
146	Oxamyl oxime	Pesticides	LC				1.3
147	Oxyfluorfen	Pesticides	GC		1.3	1.5	1.6
148	Paclobutrazol	Pesticides	LC				
149	Paraoxon methyl	Pesticides	GC		1.4	1.5	1.8
150	Parathion ethyl	Pesticides	GC		1.3	1.6	1.8
151	Parathion methyl	Pesticides	GC		1.4	1.6	2.2
152	Penconazole	Pesticides	LC	1.3			
153	Pencycuron	Pesticides	LC	1.6			1.4
154	Pendimethalin	Pesticides	LC	2.3			
155	Permethrin	Pesticides	GC		1.4	1.4	1.8
156	Phosalone	Pesticides	LC	1.4			
157	Phosmet	Pesticides	LC				
158	Phosmet oxon	Pesticides				10	
159	Phthalimide (Folpet deg)	Pesticides	GC			1.3	0.7
100	Piriminhos othyl	Pesticides		2.2			0.7
101	Pirimiphos mothed	Posticidos		2.2			
102	Prochloraz	Pesticides		1.7			
164	Procymidone	Pesticides	CC CC	1.4	14	13	16
165	Profemofos	Pesticides		2.0	11	1.5	1.0
166	Propargite	Pesticides		2.0			
167	Propositir	Pesticides		2.1			
168	Propyzamide (propamide)	Pesticides		13			
100	ropyzannac (pronannac)	i concluco	LC	1.5			

N°	Compound	Group	Technique	Factor B	Factor C	Factor D	Factor E
169	Proquinazid	Pesticides	LC	3.7			
170	Prothioconazole-desthio	Pesticides	LC	1.4			1.3
171	Prothiophos	Pesticides	GC	1.3	1.5	1.5	1.9
172	Pyraclostrobin	Pesticides	LC	1.4			
173	Pyrazophos	Pesticides	LC				1.3
174	Pyridaben	Pesticides	LC	3.0			
175	Pyridaphenthion	Pesticides	LC		1.3	1.3	1.4
176	Pyrimethanil	Pesticides	GC		1.4	1.4	1.6
177	Pyriproxifen	Pesticides	LC	2.5			
178	Quinalphos	Pesticides	LC	1.3			
179	Quinoxyfen	Pesticides	LC	3.5			
180	Rotenone	Pesticides	LC				1.3
181	Simazine	Pesticides	LC	1.4			
182	Spirodiclofen	Pesticides	LC	3.2			
183	Spiromesifen	Pesticides	LC	2.6			1.3
184	Spirotetramat	Pesticides	LC	0.7			1.3
185	Spirotetramat-enol	Pesticides	LC	0.7			1.3
186	Spiroxamine	Pesticides	GC	0.6	1.7	3.6	0.7
187	Tebuconazole	Pesticides	LC	1.3			
188	Tebufenocide	Pesticides	LC	1.3			
189	Tebufenpyrad	Pesticides	LC	2.1			
190	Teflubenzuron (artifact 3)	Pesticides	GC		1.5	1.6	1.6
191	Tefluthrin	Pesticides	GC		1.3	1.4	1.6
192	Telodrin	Pesticides	GC	1.3	1.6	1.5	1.7
193	Terbufos	Pesticides	GC		1.4	1.4	1.7
194	Terbuthylazine	Pesticides	LC	1.5			
195	Tetrachlorvinphos	Pesticides	LC	1.3			
196	Tetraconazole	Pesticides	LC	1.3			
197	Tetradifon	Pesticides	GC		1.6	1.6	2.0
198	Tetramethrin	Pesticides	GC		2.0	1.9	2.3
199	Thiacloprid	Pesticides	LC				
200	Thiamethoxam	Pesticides	LC	1.3		1.3	1.3
201	Thiodicarb	Pesticides	LC			1.3	
202	Tolclofos methyl	Pesticides	GC		1.4	1.3	1.9
203	Tolylfluanid	Pesticides	GC	1.3	1.6	1.7	2.2
204	Triadimefon	Pesticides	LC				
205	Triadimenol	Pesticides	LC				
206	Triazophos (hostathion)	Pesticides	LC				
207	Trichlorfon	Pesticides	LC	1.3			
208	Trifloxystrobin	Pesticides	LC	1.7			
209	Triflumizole	Pesticides	LC	1.7			
210	Triflumuron	Pesticides	LC	1.5			
211	Trifluralin	Pesticides	GC			1.4	1.5
212	Triticonazole	Pesticides	LC				
213	Vinclozolin	Pesticides	GC		1.5	1.4	1.7
214	Aldrin	OCPs	GC		1.4	1.3	1.5
215	Dichlorodiphenyldichloroethane (p,p' DDD)	OCPs	GC	1.3	1.4	1.5	
216	Dichlorodiphenyldichloroethylene (p,p' DDE)	OCPs	GC	1.3		1.3	
217	Dieldrin	OCPs	GC	1.3		1.4	1.9
218	Endrin	OCPs	GC	1.3	1.4	1.4	1.5
219	Heptachlor	OCPs	GC	1.4	1.7	1.5	1.8
220	Hexachlorobenzene	OCPs	GC	1.3	1.4	1.3	1.5
221	Hexachlorocyclohexane (alpha)	OCPs	GC	1.3	1.6	1.6	1.9
222	Hexachlorocyclohexane (gamma, lindane)	OCPs	GC	1.4	1.8	1.8	1.7
223	Hexachlorocyclohexano (beta)	OCPs	GC	1.4	2.0	1.8	8.4

Table 3 (continued)

Table 3 (continued)

224 Hexaclorociclohexano (delta) OCPs GC 1.4 1.4 2.0 225 Mirex OCPs GC 1.3 1.6 1.5 1.5 226 PCB 28 PCBs GC 1.3 1.4 1.3 1.5 227 PCB 52 PCBs GC 1.3 1.4 1.3 1.5 229 PCB 81 PCBs GC 1.3 1.4 1.3 1.5 230 PCB 101 PCBs GC 1.3 1.3 1.3 1.4 231 PCB 105 PCBs GC 1.3 1.4 1.5 232 PCB 118 PCBs GC 1.3 1.4 1.3 1.4 234 PCB 123 PCBs GC 1.3 1.3 1.3 235 PCB 153 PCBs GC 1.3 1.3 1.3 1.3 238 PCB 157 PCBs GC 1.3 1.3 1.3 1.3	ictor
225 Mirex OCPs GC 1.3 1.6 1.5 1.5 226 PCB 28 PCBs GC 1.4 1.3 1.5 227 PCB 52 PCBs GC 1.3 1.4 1.3 1.5 228 PCB 77 PCBs GC 1.3 1.4 1.4 1.5 230 PCB 101 PCBs GC 1.3 1.4 1.4 1.5 231 PCB 105 PCBs GC 1.3 1.3 1.3 1.4 232 PCB 114 PCBs GC 1.3 1.3 1.3 1.4 232 PCB 123 PCBs GC 1.3 1.3 1.3 1.3 234 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 234 PCB 153 PCBs GC 1.3 1.3 1.3 1.3 235 PCB 156 PCBs GC 1.3 1.4 1.3 1.5 238 PCB 157 PCBs GC 1.3 1.3	.0
226 PCB 28 PCBs CC 1.4 1.3 1.5 227 PCB 52 PCBs GC 1.3 1.4 228 PCB 77 PCBs GC 1.3 1.4 1.3 1.4 229 PCB 81 PCBs GC 1.3 1.4 1.3 1.5 230 PCB 101 PCBs GC 1.3 1.4 1.4 1.5 231 PCB 105 PCBs GC 1.3 1.4 1.4 1.5 233 PCB 114 PCBs GC 1.3 1.4 1.4 1.4 234 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 236 PCB 153 PCBs GC 1.3 1.3 1.3 1.5 238 PCB 157 PCBs GC 1.3 1.3 1.3 1.3 1.3 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 1.3 241 PCB 180 PCBs GC 1.3 1.3	.5
227 PCB 52 PCBs CC 1.3 1.4 1.4 228 PCB 77 PCBs GC 1.3 1.3 1.4 1.3 1.5 229 PCB 81 PCBs GC 1.3 1.4 1.4 1.5 230 PCB 101 PCBs GC 1.3 1.4 1.4 1.5 231 PCB 105 PCBs GC 1.3 1.3 1.4 1.5 231 PCB 114 PCBs GC 1.3 1.3 1.4 1.4 232 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 235 PCB 153 PCBs GC 1.3 1.3 1.3 1.3 238 PCB 156 PCBs GC 1.3 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.3 1.3 1.3 1.4 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.4 244 PBDE 169 PCBs GC	.5
228 PCB 77 PCBs GC 1.3 1.3 1.3 1.4 229 PCB 81 PCBs GC 1.3 1.4 1.3 1.5 230 PCB 101 PCBs GC 1.3 1.4 1.4 1.5 231 PCB 105 PCBs GC 1.3 1.3 1.3 1.4 232 PCB 114 PCBs GC 1.3 1.4 1.4 232 PCB 118 PCBs GC 1.3 1.4 1.3 1.4 233 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 236 PCB 153 PCBs GC 1.3 1.3 1.3 1.3 237 PCB 157 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.3 1.3 1.3 1.3 240 PCB 169 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3	.4
229 PCB 81 PCBs GC 1.3 1.4 1.3 1.5 230 PCB 101 PCBs GC 1.3 1.4 1.4 1.5 231 PCB 105 PCBs GC 1.3 1.3 1.3 1.3 232 PCB 114 PCBs GC 1.3 1.3 1.3 1.4 232 PCB 118 PCBs GC 1.3 1.4 1.3 1.4 234 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 235 PCB 126 PCBs GC 1.3 1.3 1.3 1.3 1.3 237 PCB 153 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.3 1.3 1.3 1.3 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDE GC	.4
230 PCB 101 PCBs GC 1.3 1.4 1.4 1.5 231 PCB 105 PCBs GC 1.3 1.3 1.4 1.4 232 PCB 114 PCBs GC 1.3 1.4 1.4 233 PCB 118 PCBs GC 1.3 1.4 1.3 1.4 234 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 235 PCB 126 PCBs GC 1.3 1.3 1.3 1.3 236 PCB 153 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.3 1.4 1.3 1.4 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 244 PCB 169 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 153 PBDEs GC 1.3 1.3 <td>.5</td>	.5
231 PCB 105 PCBs GC 1.3 1.3 1.3 1.4 232 PCB 114 PCBs GC 1.3 1.3 1.5 233 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 234 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 235 PCB 126 PCBs GC 1.3 1.4 1.3 1.4 236 PCB 138 PCBs GC 1.3 1.3 1.3 1.3 237 PCB 153 PCBs GC 1.3 1.4 1.3 1.4 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 180 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 180 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 80 CC 1.3 1.3 1.3 1.3 1.3 245 PBDE 153 PBDE 5 GC 1.3 1.3 <td>.5</td>	.5
232 PCB 114 PCBs GC 1.3 1.5 233 PCB 118 PCBs GC 1.3 1.4 234 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 235 PCB 126 PCBs GC 1.3 1.4 1.3 1.4 236 PCB 153 PCBs GC 1.3 1.4 1.3 1.4 237 PCB 156 PCBs GC 1.3 1.4 1.3 1.5 238 PCB 157 PCBs GC 1.3 1.3 1.3 1.3 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 180 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 99 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 100 PBDEs GC 1.3 1.3 1.4 252 <td>.4</td>	.4
233 PCB 118 PCBs GC 1.3 1.4 234 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 235 PCB 126 PCBs GC 1.3 1.4 1.3 1.4 236 PCB 138 PCBs GC 1.3 1.3 1.3 1.3 237 PCB 153 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.3 1.4 1.3 1.4 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.3 242 PCB 189 PCBs GC 1.3 1.3 1.3 1.3 243 PCB 189 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 153 PBDEs GC 1.3 1.3 1.4 <td>.5</td>	.5
234 PCB 123 PCBs GC 1.3 1.4 1.3 1.4 235 PCB 138 PCBs GC 1.3 1.3 1.3 1.3 237 PCB 153 PCBs GC 1.3 1.3 1.3 1.3 238 PCB 156 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.3 1.4 1.3 1.4 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.3 1.3 242 PCB 180 PCBs GC 1.3 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 85 PBDEs GC 1.3 1.3 1.3 1.3 246 PBDE 153 PBDEs GC 1.3 1.3 1.4 250 PBDE 153 PBDEs	.4
235 PCB 126 PCBs GC 1.3 1.4 1.3 1.4 236 PCB 138 PCBs GC 1.3 1.3 1.3 1.3 237 PCB 153 PCBs GC 1.3 1.4 1.3 1.4 238 PCB 156 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.3 1.3 1.3 1.5 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.3 242 PCB 180 PCBs GC 1.3 1.3 1.3 1.3 243 PCB 180 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PCBs GC 1.3 1.3 1.3 1.3 246 PBDE 153 PBDEs GC 1.3 1.3 1.4 250 PBDE 153 PBDEs GC 1.5 1.6 <td>.3</td>	.3
236 PCB 138 PCBs GC 1.3 1.3 1.3 1.3 237 PCB 153 PCBs GC 1.3 1.4 1.3 1.4 238 PCB 156 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.3 1.4 1.3 1.4 230 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 240 PCB 169 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.3 243 PCB 189 PCBs GC 1.3 1.3 1.3 1.5 243 PCB 189 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 245 PBDE 47 PBDEs GC 1.3 1.3 1.4 246 PBDE 30 CC 1.3 1.3 1.4 1.4	.4
237 PCB 153 PCBs GC 1.3 1.3 1.5 238 PCB 156 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.4 1.4 1.3 1.5 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.4 242 PCB 180 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 246 PBDE 85 PBDEs GC 1.3 1.3 1.3 247 PBDE 99 PBDEs GC 1.3 1.3 1.4 250 PBDE 153 PBDEs GC 1.5 1.6 1.6 251	.3
238 PCB 156 PCBs GC 1.3 1.4 1.3 1.4 239 PCB 157 PCBs GC 1.4 1.4 1.3 1.5 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.4 242 PCB 180 PCBs GC 1.3 1.3 1.3 1.4 244 PBDE 28 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 47 PBDEs GC 1.3 1.3 1.3 1.3 246 PBDE 85 PBDEs GC 1.3 1.3 1.3 247 PBDE 99 PBDEs GC 1.3 1.3 1.4 250 PBDE 153 PBDEs GC 1.5 1.6 1.6 253 Acenaphthene PAHs GC 1.3 1.3 1.5 <td< td=""><td>.5</td></td<>	.5
239 PCB 157 PCBs GC 1.4 1.4 1.3 1.5 240 PCB 167 PCBs GC 1.3 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.4 242 PCB 180 PCBs GC 1.3 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 85 PBDEs GC 1.3 1.3 1.3 246 PBDE 85 PBDEs GC 1.3 1.3 1.3 248 PBDE 100 PBDEs GC 1.3 1.4 4.4 250 PBDE 153 PBDEs GC 1.5 1.6 1.6 253 Acenaphthene PAHs GC 1.3 1.3 1.3	.4
240 PCB 167 PCBs GC 1.3 1.3 1.3 241 PCB 169 PCBs GC 1.3 1.3 1.3 1.4 242 PCB 180 PCBs GC 1.3 1.3 1.3 1.4 242 PCB 180 PCBs GC 1.3 1.3 1.3 1.3 243 PCB 189 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 246 PBDE 85 PBDEs GC 1.3 1.3 1.3 247 PBDE 99 PBDEs GC 1.3 1.3 1.4 249 PBDE 153 PBDEs GC 1.3 1.4 1.4 250 PBDE 183 PBDEs GC 1.5 1.6 1.6 251 PBDE 183 PAHs GC 1.3 1.3 1.4 252 A	.5
241 PCB 169 PCBs GC 1.3 1.3 1.4 242 PCB 180 PCBs GC 1.3 1.3 1.3 1.5 243 PCB 189 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 47 PBDEs GC 1.3 1.3 1.3 1.3 246 PBDE 85 PBDEs GC 1.3 1.3 1.3 1.3 247 PBDE 99 PBDEs GC 1.3 1.3 1.3 248 PBDE 100 PBDEs GC 1.3 1.4 250 PBDE 154 PBDEs GC 1.5 1.6 1.6 251 PBDE 183 PAHs GC 1.3 1.3 1.4 252 Acenaphthene PAHs GC 1.3 1.3 1.5 1.5 254	.3
242 PCB 180 PCBs GC 1.3 1.3 1.5 243 PCB 189 PCBs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC	.4
243 PCB 189 PCBs GC 1.3 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 1.3 1.3 1.3 244 PBDE 28 PBDEs GC 1.3 245 PBDE 47 PBDEs GC 1.3 246 PBDE 85 PBDEs GC 1.3 247 PBDE 99 PBDEs GC 1.3 248 PBDE 100 PBDEs GC 1.3 249 PBDE 153 PBDEs GC 1.3 250 PBDE 183 PBDEs GC 1.5 1.6 1.6 251 PBDE 183 PBDEs GC 1.3 1.3 1.4 252 Acenaphthene PAHs GC 1.5 1.5 1.5 254 Anthracene PAHs GC 1.3 1.3 1.4 255 Benzo[a]anthracene PAHs GC 1.7 2.1 2.7 257 Chrysene PAHs GC 1.5 1.6 1.6 <td>.5</td>	.5
244 PBDE 28 PBDEs GC 245 PBDE 47 PBDEs GC 1.3 246 PBDE 85 PBDEs GC 1.3 247 PBDE 99 PBDEs GC 1.3 248 PBDE 100 PBDEs GC 1.3 249 PBDE 153 PBDEs GC 1.3 250 PBDE 183 PBDEs GC 1.3 251 PBDE 183 PBDEs GC 1.5 1.6 1.6 252 Acenaphthene PAHs GC 1.3 1.3 1.4 252 Acenaphthylene PAHs GC 1.3 1.3 1.5 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.4 1.9 256 Benzo[b]fluoranthene PAHs GC 1.3 1.7 1.8 2.1 257 Chrysene PAHs GC 1.3 1.7 1.8 2.1 <tr< td=""><td>.3</td></tr<>	.3
245 PBDE 47 PBDEs GC 1.3 246 PBDE 85 PBDEs GC 1.3 247 PBDE 99 PBDEs GC 1.3 248 PBDE 100 PBDEs GC 1.3 249 PBDE 153 PBDEs GC 1.3 250 PBDE 154 PBDEs GC 1.3 1.4 252 Acenaphthene PAHs GC 1.5 1.6 1.6 253 Acenaphthylene PAHs GC 1.3 1.3 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.3 1.7 1.8 2.1 257 Chrysene PAHs GC 1.3 1.7 1.8 2.1 256 Benzo[b]fluoranthene PAHs GC 1.3 1.7 1.8 2.1 257 Chrysene	_
246 PBDE 85 PBDEs GC 1.3 247 PBDE 99 PBDEs GC 1.3 248 PBDE 100 PBDEs GC 1.3 249 PBDE 153 PBDEs GC 1.3 250 PBDE 154 PBDEs GC 1.3 1.4 252 Acenaphthene PAHs GC 1.5 1.6 1.6 253 Acenaphthene PAHs GC 1.3 1.3 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.3 1.7 1.8 2.1 257 Chrysene PAHs GC 1.3 1.7 1.8 2.1 256 Benzo[b]fluoranthene PAHs GC 1.3 1.7 1.8 2.1 257 C	.3
247 PBDE 99 PBDEs GC 1.3 248 PBDE 100 PBDEs GC 249 249 PBDE 153 PBDEs GC 1.3 250 PBDE 154 PBDEs GC 1.3 1.4 252 Acenaphthene PAHs GC 1.5 1.6 1.6 253 Acenaphthylene PAHs GC 1.3 1.3 1.4 252 Acenaphthylene PAHs GC 1.5 1.6 1.6 253 Acenaphthylene PAHs GC 1.3 1.3 1.5 254 Anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.6 1.6 <td>.3</td>	.3
248 PBDE 100 PBDEs GC 249 PBDE 153 PBDEs GC 250 PBDE 154 PBDEs GC 251 PBDE 183 PBDEs GC 252 Acenaphthene PAHs GC 1.3 1.4 252 Acenaphthene PAHs GC 1.5 1.6 1.6 253 Acenaphthylene PAHs GC 1.3 1.3 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 255 Benzo[a]anthracene PAHs GC 1.7 2.1 2.7 256 Benzo[b]fluoranthene PAHs GC 1.5 1.6 1.6 257 Chrysene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.6 1.6 260 Naphthalene PAHs GC 1.3 1.4 1.4 </td <td>.3</td>	.3
249 PBDE 153 PBDEs GC 250 PBDE 154 PBDEs GC 251 PBDE 183 PBDEs GC 1.3 1.4 252 Acenaphthene PAHs GC 1.5 1.6 1.6 253 Acenaphthylene PAHs GC 1.3 1.3 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.4 1.4 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.4	
250 PBDE 154 PBDEs GC 251 PBDE 183 PBDEs GC 1.3 1.4 252 Acenaphthene PAHs GC 1.5 1.6 1.6 253 Acenaphthylene PAHs GC 1.5 1.5 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 257 Chrysene PAHs GC 1.3 1.7 1.8 2.1 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.4 1.4 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs <t< td=""><td></td></t<>	
251 PBDE 183 PBDEs GC 1.3 1.3 1.4 252 Acenaphthene PAHs GC 1.5 1.6 1.6 253 Acenaphthylene PAHs GC 1.5 1.5 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.4 1.4 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.6 262 </td <td></td>	
252 Acenaphthene PAHs GC 1.5 1.6 1.6 253 Acenaphthylene PAHs GC 1.5 1.5 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.5 2.1 2.0 2.2 257 Chrysene PAHs GC 1.3 1.7 1.8 2.1 257 Chrysene PAHs GC 1.3 1.7 1.8 2.1 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.6 1.6 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.4 262 Pyrene PAHs GC 1.3 1.4 1.6 <	.4
253 Acenaphthylene PAHs GC 1.5 1.5 1.5 254 Anthracene PAHs GC 1.3 1.3 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.7 2.1 2.7 257 Chrysene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.4 262 Pyrene PAHs GC 1.3 1.8 1.7 2.0	.6
254 Anthracene PAHs GC 1.3 1.3 1.5 255 Benzo[a]anthracene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.7 2.1 2.7 257 Chrysene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.6 1.6 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.4 262 Pyrene PAHs GC 1.3 1.4 1.6	.5
255 Benzo[a]antnacene PAHs GC 1.3 1.8 1.7 1.9 256 Benzo[b]fluoranthene PAHs GC 1.7 2.1 2.7 257 Chrysene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.7 1.6 1.6 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.6 262 Pyrene PAHs GC 1.3 1.4 1.6 261 Phenanthrene PAHs GC 1.3 1.4 1.6 262 Pyrene PAHs GC 1.3 1.4 1.6	.5
250 Belizo(b)Intraintiene PAHs GC 1.7 2.1 2.7 257 Chrysene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.7 1.8 2.1 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.6 262 Pyrene PAHs GC 1.3 1.4 1.6	.9
257 Chrysene PAHs GC 1.5 2.1 2.0 2.2 258 Fluoranthene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.3 1.7 1.8 2.1 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.6 262 Pyrene PAHs GC 1.3 1.4 1.6	/
258 Fluorantiene PAHs GC 1.3 1.7 1.8 2.1 259 Fluorene PAHs GC 1.5 1.6 1.6 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.6 262 Pyrene PAHs GC 1.3 1.4 1.6	Z
259 Fublicitie PAHs GC 1.5 1.6 1.0 260 Naphthalene PAHs GC 1.3 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.6 262 Pyrene PAHs GC 1.3 1.4 1.6	I 6
260 Napilitatione PAns GC 1.5 1.4 1.4 261 Phenanthrene PAHs GC 1.3 1.4 1.6 262 Pyrene PAHs GC 13 1.8 17 20	.0
261 Prenaminene PARS GC 1.5 1.4 1.0 262 Pyrene PAHs GC 13 18 17 20	.4
	.0
263 Brodificoum APr IC 2.8 0.7	.0
265 Diomacount ARS LC 2.6 0.7	
265 Countertaile ARS EC 1.3	
265 Commarcaum ARs IC 25	
267 Difended AR LC 2.5	
268 Flocumaten ARS IC 21	
269 Warfarin ARS IC	
270 Albendazole PhACs LC 13 07	
271 Cefurorima axetil PhACs IC 13	
272 Chloramphenicol PhACs IC	
273 Closacillin PhACs IC 07 16 17	
274 Cortiscosterone 21 acetate PhACs I.C	
275 Dexamethasone PhACs I.C	
276 Diclofenac PhACs LC	
277 Eprinomectin PhACs LC 1.5 1.3	.3
278 Fenbendazole PhACs LC 1.4	
279 Flunixin PhACs LC 1.5 0.7).7
280 Imipenem PhACs LC 1.3 1.4 1.3 1.3	.3
281 Josamycin PhACs LC 1.4 2.5	

N°	Compound	Group	Technique	Factor B	Factor C	Factor D	Factor E
282	Ketoprofen	PhACs	IC				
283	Mebendazole	PhACs	LC				
284	Mefenamic acid	PhACs	LC	0.7			
285	Metronidazole	PhACs	LC	1.5			1.3
286	Moxidectin	PhACs	LC	2.6	1.3		
287	Naproxen	PhACs	LC				
288	Oxfendazole	PhACs	LC		0.7		0.7
289	Penicilina V	PhACs	LC	0.6	1.3	1.6	0.7
290	Sulfacetamide	PhACs	LC				1.3
291	Sulfacloropiridacine	PhACs	LC				
292	Sulfadiacine	PhACs	LC				
293	Sulfadimetoxine	PhACs	LC				
294	Sulfadoxine	PhACs	LC				
295	Sulfameracine	PhACs	LC				
296	Sulfametacine	PhACs	LC				
297	Sulfametizole	PhACs	LC		0.7	0.6	
298	Sulfametoxazole	PhACs	LC				1.3
299	Sulfametoxipiridacine	PhACs	LC				
300	Sulfamonomethoxine	PhACs	LC				
301	Sulfanilamide	PhACs	LC	3.0		0.7	2.7
302	Sulfapiridine	PhACs	LC				
303	Sulfaquinoxaline	PhACs	LC				
304	Sulfisoxazole	PhACs	LC	0.6	0.7	0.6	
305	Tolfenamic acid	PhACs	LC	1.3			

Empty cell: when the calculated factor is between 0.8 and 1.2, it is considered that there is not enough difference, and no correction should be applied.

Acknowledgements

The authors would like to thank Dr. Jesús Notario from the Department of Animal Biology, Edaphology and Geology of the University of La Laguna for his help in the identification and characterization of the soil samples. This research was supported by the Spanish Ministry of Education, Culture and Sports, grant number FPU16-01888, to A. Acosta-Dacal, and by the University of Las Palmas de Gran Canaria, grant number ULPGC-012-2016, to C. Rial-Berriel.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10. 1016/j.mex.2021.101476.

References

- A. Acosta-Dacal, C. Rial-Berriel, R. Díaz-Díaz, M. del M. Bernal-Suárez, O.P. Luzardo, Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil, Sci. Total Environ. 753 (2021) 142015, doi:10.1016/j.scitotenv.2020.142015.
- [2] A. Acosta-Dacal, C. Rial-Berriel, R. Díaz-Díaz, M. del M.B. Suárez, M. Zumbado, L.A. Henríquez-Hernández, O.P. Luzardo, Supporting dataset on the optimization and validation of a QuEChERS-based method for the determination of 218 pesticide residues in clay loam soil, Data Br. 33 (2020) 106393, doi:10.1016/j.dib.2020.106393.
- [3] A. Acosta-Dacal, C. Rial-Berriel, R. Díaz-Díaz, M. del M. Bernal-Suárez, M. Zumbado, L.A. Henríquez-Hernández, O.P. Luzardo, An easy procedure to quantify anticoagulant rodenticides and pharmaceutical active compounds in soils, Toxics 9 (2021) 83, doi:10.3390/toxics9040083.

- [4] A. Acosta-Dacal, C. Rial-Berriel, R. Díaz-Díaz, M. del M. Bernal-Suárez, M. Zumbado, L.A. Henríquez-Hernández, P. Alonso-González, E. Parga-Dans, O.P. Luzardo, Validation of a method scope extension for the analysis of POPs in soil and verification in organic and conventional farms of the Canary Islands, Toxics 9 (2021) 101, doi:10.3390/toxics9050101.
- [5] M. Fernandez-Alvarez, J.P. Lamas, M. Garcia-Chao, C. Garcia-Jares, M. Llompart, M. Lores, T. Dagnac, Monitoring of pesticide residues in dairy cattle farms from NW Spain, J. Environ. Monit. 12 (2010) 1864, doi:10.1039/c0em00054j.
- [6] D. Mackay, Multimedia Environmental Models: The Fugacity Approach, CRC Press, 2001.
- [7] E. CommissionEU Pesticides Database, 2019 Http//Ec. Eur. Eu/Food/Plant/Pesticides/Eu-Pesticidesdatabase/Public.
- [8] M. Anastassiades, S.J. Lehotay, D. Štajnbaher, F.J. Schenck, Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce, J. AOAC Int. 86 (2003) 412–431.
- [9] R. Perestrelo, P. Silva, P. Porto-Figueira, J.A.M. Pereira, C. Silva, S. Medina, J.S. Câmara, QuEChERS Fundamentals, relevant improvements, applications and future trends, Anal. Chim. Acta. 1070 (2019) 1–28, doi:10.1016/j.aca.2019.02.036.
- [10] M. Asensio-Ramos, J. Hernández-Borges, L.M. Ravelo-Pérez, M.A. Rodríguez-Delgado, Evaluation of a modified QuEChERS method for the extraction of pesticides from agricultural, ornamental and forestal soils, Anal. Bioanal. Chem. 396 (2010) 2307–2319, doi:10.1007/s00216-009-3440-2.
- [11] N.M. Vieira, M.C.G. Paiva, A.A. da Silva, A.I.G. Costa, F.C.L. de Freitas, M.I. da Costa Marinho, Validation and application of a QuEChERS based method for estimation of half-life of imidazolinone herbicides in soils by LC-ESI-MS/MS, Ecotoxicol. Environ. Saf. 167 (2018) 212–217, doi:10.1016/j.ecoenv.2018.09.075.
- [12] F. Rouvire, A. Buleté, C. Cren-Olivé, C. Arnaudguilhem, Multiresidue analysis of aromatic organochlorines in soil by gas chromatography-mass spectrometry and QuEChERS extraction based on water/dichloromethane partitioning. Comparison with accelerated solvent extraction, Talanta 93 (2012) 336–344, doi:10.1016/j.talanta.2012.02.048.
- [13] X. Cao, X. Yang, Z. Liu, H. Jiao, S. Liu, L. Liu, Q. Meng, Rapid simultaneous screening and detection of 12 anticoagulant rodenticides in food by ultra-performance liquid chromatography-triple quadrupole/linear ion trap tandem mass spectrometry, Food Anal. Methods. 10 (2017) 3538–3547, doi:10.1007/s12161-017-0922-2.
- [14] C. Rial-Berriel, A. Acosta-Dacal, M. Zumbado, O.P. Luzardo, Micro QuEChERS-based method for the simultaneous biomonitoring in whole blood of 360 toxicologically relevant pollutants for wildlife, Sci. Total Environ. 736 (2020), doi:10.1016/j.scitotenv.2020.139444.
- [15] A. Orfanidis, H. Gika, G. Theodoridis, O. Mastrogianni, N. Raikos, Development of a UHPLC-MS/MS method for the determination of 84 pharmaceuticals and drugs of abuse in human liver, J. Chromatogr. B 1151 (2020), doi:10.1016/j. jchromb.2020.122192.
- [16] J.B. Weber, G.G. Wilkerson, C.F. Reinhardt, Calculating pesticide sorption coefficients (Kd) using selected soil properties, Chemosphere 55 (2004) 157–166, doi:10.1016/j.chemosphere.2003.10.049.
- [17] L. Correia-Sá, V.C. Fernandes, M. Carvalho, C. Calhau, V.M.F. Domingues, C. Delerue-Matos, Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter, J. Sep. Sci. 35 (2012) 1521–1530, doi:10.1002/jssc.201200087.
- [18] SANTE/12682, Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed, Eur. Comm. Heal. Consum. Prot. Dir. (2019) 2–44.
- [19] S.J. Lehotay, M. O'Neil, J. Tully, A.V. García, M. Contreras, H. Mol, V. Heinke, T. Anspach, G. Lach, R. Fussell, K. Mastovska, M.E. Poulsen, A. Brown, W. Hammack, J.M. Cook, L. Alder, K. Lindtner, M.G. Vila, M. Hopper, A. De Kok, M. Hiemstra, F. Schenck, A. Williams, A. Parker, Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study, J. AOAC Int. 90 (2007) 485–520, doi:10.1093/jaoac/90.2.485.
- [20] J. Ashworth, D. Keyes, R. Kirk, R. Lessard, Standard procedure in the hydrometer method for particle size analysis, Commun. Soil Sci. Plant Anal. 32 (2001) 633–642, doi:10.1081/CSS-100103897.
- [21] USDASoil Texture Calculator | NRCS Soils, 2013 1 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid= nrcs142p2_054167 (accessed April 28, 2021).
- [22] SANCO/825/00, Guidance document on pesticide residue analytical methods., Organ. Econ. Coop. Dev (2010) 34.