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Abstract: 
 
Critical regimes are present in all socio-technical systems. Usually, man-made systems are 
designed to avoid these regimes completely, and stay in a stable steady state to avoid 
uncertainty. However, complexity theory postulates that the edge of chaos, between order and 
disorder, provides highly interesting phenomena, such as emergence, which are important for 
the evolution of the system. In this paper we explore the edge of chaos through a concrete 
example in electrical energy systems. The exploration is done through simulation, which 
provides a valuable mean to perform massive experiments on large scale systems. The 
complexity residing at the edge is discussed, and external, system relevant and internal factors 
which are likely to shift this edge or drive the systems trajectory towards or away from it are 
introduced.  



 

1. Introduction 
 
Synchronisation effects, such as firefly lightning, describes such systems in which a large 
number of individual behaviours provide the system with different properties, going from 
disorder (asynchronous, random lighting) up to an almost perfect synchronisation. 
 
Classical approaches to technical systems try to avoid edge of chaos, due to its unpredictability. 
Engineers prefer to take over control of those systems by reducing their complexity to ordered 
states (classical mechanics) or controlled chaotic (combustion). But some systems in nature, 
especially those biological or social, where evolution is needed, get better results by being at 
the edge-of-chaos. Being at the edge of chaos can follow to continuously changing states of the 
system or to apparent stability that can be changed abruptly (criticality). This criticality, often 
observed in self-organizing systems, was first described by (Bak 1996) and other, through 
models like the sand pile. 
 
In smart grid systems, and other socio-technological systems, criticality hasn't been a subject of 
research, as the boundaries of the systems avoided edge of chaos states. But the introduction 
of behaviour and bottom up decision making on classical electromechanical systems, can bring 
those systems, under specific conditions, to be under criticality. The complexity of those models 
combining successfully technical and social components make difficult to approach analytical 
methods. An empirical approach can be more helpful to understand under which conditions a 
system can change of phase space. 

 
Figure 1: Simplicity, chaos and complexity 

 
In sociotechnical systems, the conditions can be inherent to the physical phenomena underlying 
the system (frequency laws, power transmission laws), related to technical specifications 
(switches or connections), related to socioeconomical considerations (behaviour) or to the 
external conditions (external temperature). 
 



In this study, the critical points of some systems are approached empirically. To understand 
complex phenomena, it is not always possible or efficient to do it analytically, as this can be 
impossible or largely complicated. Empirical research allows to explore space of solutions and 
the sets of parameters leading to different phase spaces or regimes, understanding under which 
conditions phase transitions are to be expected or which are the requisites of a system to stay 
at the edge of chaos. 
 
 

2. Phase shifts and criticality 
 
One of the most peculiar properties of complex systems is their situation between order and 
randomness, stable and unstable states. The term edge of chaos was introduced by Langton 
(1990)  while analysing phase transitions on cellular automata describes a critical point which 
separates order from disorder. This edge of chaos can be seen as a regime itself, in which 
complex phenomena take place (Wolfram 2002).  
 
The aspect of phase changes can be shown in complex networks by the Watts-Strogatz model 
(Watts and Strogatz 1998). We start with an ordered ring lattice graph in which we rewire edges 
randomly. The average path length drops quickly after an initial limited rewiring, while the 
clustering coefficient remains almost constant, leading to a typical small world network. If we 
continue rewiring more and more edges, a random graph will emerge - a complete disordered 
system. Here we see that the average path length is still low, but has not decreased much since 
our small world state. It is noteworthy that the clustering coefficient dropped - another 
characteristic of a disordered system. 
Complexity thus resides between an ordered network and a completely random topology. Here, 
the characteristics of both order and disorder meet and complex effects can be observed, such 
as changing and emergent patterns. This example illustrates the location of complex systems 
and phenomena situated between ordered systems and randomness. Langton (1990) 
introduced the border where a system gets chaotic, while analysing phase transitions on cellular 
automata. A cellular automata is governed by simple rules, but have proven to show highly 
complex behaviour.  
This term refers to a critical point which separates order from disorder, and plays an important 
role in complex system theory. Some natural systems are pushed versus the edge, which can 
be seen as an driver for evolution. Complex phenomena can take place there, which allow the 
system to change its state, which unlikely to happen in a completely ordered or chaotic 
environment (evolutive landscapes, red queen theorem). 
 
In order to maintain “fitness” in a changing environment, it will be necessary for the system to be 
capable of actively transforming itself over time (Allen 2009). Here resides the importance of the 
edge, in evolving environments, the system has to be adapting continuously in order to stay in 
efficient conditions and these adaptations and changes are more likely to happen at the edge. 
 



An example of this edge, which is familiar to the engineering and technical domains, is the 
Reynolds number. It is used in fluid mechanics to characterise different flow regimes, such as 
laminar or turbulent flow. A laminar flow occurs at low Reynolds numbers, where viscous forces 
are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at 
high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic 
eddies, vortices and other flow instabilities. 
 
 

3. Simulation study for sociotechnical systems 
 
Socio-technical systems are present in the real world everywhere in which a technical system 
interacts with human behaviour. This is the case for the major part of existing technical systems. 
In order to model the ”whole” behaviour, human behaviour has to be added to technical models. 
Coupling social with technical models is therefore a requirement for modelling large, complex 
systems. Agents are well suited to this approach, as by definition, they include behaviour which 
can be interpreted as a social for also technical behaviour. 
 
As an example of this, in (Moglia, Perez et al. 2010) , urban water systems were modelled as 
complex adaptive systems by using agent-based modelling. The approach allowed for a support 
of analysis of the system, by acquiring a fundamental understanding of the processes - e.g. 
emergent phenomena, relating to water safety and human behaviour, which could be 
represented through a micro-modelling rather than being described as a probabilistic causal 
model at the macro level. So, it was noted that  while steady-state behaviour was achieved in 
most cases, occasionally very different steady-states occur, and sometimes they also had 
sudden shifts that occur for diverse and unexpected reasons (Moglia, Perez et al. 2010). Being 
a non-deterministic model, it allows however, given a set of conditions, to predict in a certain 
way the patterns of system behaviour, at least in a probabilistic sense. 
 
Electrical energy systems as complex systems 
 
The energy system is a highly interconnected system of systems (Kremers, Viejo et al. 2010), 
which is undergoing a paradigm shift moving away from a centralised and hierarchical structure, 
towards a new system where more distributed actors have an influence on it.  
 
Electrical energy systems are composed of different networks and levels, usually differentiated 
by their voltage. Large producers inject at high voltage levels, medium voltage level is used for 
distribution and mid-size production units, as well as industrial consumers, and the low voltage 
level delivers electricity to the final consumers. All these levels are interconnected through 
transforming stations. Electrical grids are usually large scale systems, ranging over vast 
geographical areas, such as the European or North American power grid. The system itself is in 
continuous change, offering a highly dynamic behaviour in time and space. Transitions emerge 
over time as fundamental change of large-scale socio-technical systems (lambda-systems) such 
as energy infrastructures that are the backbone of society (Chappin and Dijkema 2010). 
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The paradigm shift the system is going through at the time being involves that production is no 
longer limited to large energy providers. This is due to the entrances of small decentralised 
producers in the form of distributed generation to the network, which are able to inject energy at 
much lower voltage levels than before. This permits that energy can be consumed close to 
where it is consumed, avoiding long transmission paths. However, a tendency towards a less 
hierarchical system can be observed, which even involvers energy flows that become 
bidirectional (not only in direction of the lower levels, but also going up sometimes). This 
involves technical and regulatory challenges which have to be taken into account in the current 
developments. A better knowledge of the demand side is needed in order to tackle these points. 
The electrical energy system thus can be seen as a system-of-systems with a high increase of 
decentralized decision processes. Also, new technologies increase the means of 
communications and the interactions along the network. A large number of entities, with growing 
heterogeneity, characterise the system as a complex one.  
 
Current tools are usually only focusing on one scale or level. So, behaviours on different levels 
are hardly being represented together, or interacting across scales. However, this is needed to 
understand the causes and effects across a complex system. 
 
Few applications of complexity theory on electrical energy networks can be found so far in 
literature. Particularly, (Rosas-Casals, Valverde et al. 2007) analysed the fragility of the high 
voltage system in different country toward targeted attacks, using complex networks theory. 
They found a correlation between topology and the dynamics of the system. Other applications 
can be found in energy markets, where complex modelling approaches such as agent-based 
modelling (ABM) are used to reflect market behaviour by heterogeneous actors. 
 
Cascading events in the power grid have led to major blackouts in the past. These cascading 
failures are related to de-synchronisation processes in the electrical system. Being composed of 
production, dissipation, transmission, and consumption, the electrical system  represents a 
dynamical problem and the power grid can be seen as an example of a system of oscillators 
(Arenas, Díaz-Guilera et al. 2008). 
 
Previous works in the smart grid domain have shown that there can be phase shifts in these 
systems. In (Kremers, González de Durana et al. 2012), a refrigerator demand side 
management simulation has shown to oscillate largely, which would imply catastrophic 
consequences on a real system. Whereas refrigerators work based on pulsating loads, these 
loads are usually not synchronised. By intervening the system though smart grid measures 
though, in some cases the phases of the loads can coincide, leading to such a synchronization 
in which the system begins to oscillate. Through empirical tests using a simulation model, these 
stable, partially stable and unstable regimes were analysed. 
 
 

 



4.  Synthetic presentation of the case study 
 
The case study we chose here is based on the works described (Kremers, González de Durana 
et al. 2012) (Kremers, González de Durana et al. 2012). A simulation model of a domestic 
refrigerator (micro-level) was coupled with a simplified model of an electrical energy system 
(macro-level). The idea behind was testing autonomous load shedding strategies for 
refrigerating appliances. By using a global indicator from the electrical system, the a device at 
individual refrigerator level decides locally whether to stop consumption, to support the reserve 
mechanisms of the power grid and increase the stability of the system. This mechanism seemed 
to work well to stabilise the system after major events like the breakdown of a production unit. 
However, the studies also detected that, under certain circumstances, when increasing the 
number of controlled refrigerators, non-desired, dangerous effects like oscillations could occur. 
The model allowed for a first analysis by probabilistically quantifying the risk of such an event. 
Furthermore, besides the stable and the oscillating state, an intermediate regime was found in 
which it is uncertain if the system will fall towards stability or instability (Figure 2). 
 

 
Figure 2: Stable (left), partially oscillating (center) and oscillating (right) regimes 

 
In this paper, we decided to go further and analyse the critical zone in a more detailed manner, 
taking into account:  

● an increase of the simulation entities to analyse these effects on massively replicated 
agents, 

● obtain a better understanding of the synchronisation and de-synchronisation processes  
● perform a parameter analysis to detect which factors have an impact on these effects 

 
Also, we analyse which conditions move the system towards a critical space. These steps are 
described in the following: 
 
1. Analyse phase space and the external conditions of the system 
2. Go towards critical space and fix conditions on the edge of chaos 
3. Vary internal and system parameters to detect if they are likely to shift the edge  
 
 
 
 



5.  Simulation in a high performance environment 
 
To do so, the simulation model is transposed into a suitable simulation framework. So far, 
simulations were run in Anylogic. In this case, the model is implemented in Tafat (Evora, 
Kremers et al. 2011), which allows for better performing simulations and a larger number of 
agents running massively in parallel. For these simlations, we obtained a factor 4 of 
improvement in the execution time. Furthermore, Tafat was adapted in this case to perform 
parameter variations. 
 
The goal of the Tafat framework is to make easier and faster the development of agent and 
object-based simulations. The use of Tafat allows representing a scenario using a bottom-up 
approach where the global behaviour emerges from the aggregation of the behaviours at lower 
levels. This approach allows studying the electrical grid as a complex system where the 
emergent behaviours can exhibit unexpected and unknown concerns. Those concerns can be 
explained by the study of the individual behaviours and the elements interaction. In this paper, 
we use Tafat since it allows representing the device level where the distributed measures act. 
Using Tafat the effects caused by those measures can be retrieved at different scales as the 
containment hierarchy can be represented. 
 
From a conceptual point of view, Tafat is conceived using a Model-Based Engineering 
Paradigm and its architecture is divided in three main components: metamodel, repository and 
model. The metamodel defines the simulation elements to be used in the models. The 
repository contains the behaviours which represent the way in which the elements at the 
metamodel work. Finally, the model is the representation of the simulation scenario, that is, the 
instantiation of the metamodel elements that represents the scenario and their behaviours (from 
the repository). The simulation elements are divided in three kinds: entities, connections and 
agents. In Tafat a simulation life-cycle is recommended which reaches the advantages of this 
framework. The life-cycle consists of four steps: data preparation, model creation, model 
simulation and result analysis. 
 

6. Simulation results and discussion 
The different factors that have an impact on the system can be classified into the following 
categories. We have classified the different factors of impact on the system into 

● External: related to the environment, around the system (production, failure, etc.) 
● System relevant: related to the system that we are contemplating (Number of fridges, 

proportion of fridges towards the system) 
● Entity internal: related to the individuals composing the system  (Number of controlled 

fridges, parameter of individual entities of the system, door openings) 
 
For the latter, the impact on the global system is difficult to evaluate without a complex 
modelling approach. Even if controlling the external and system variables, the system remains 
unstable, simulation can help us to determine whether if changing the internal condition can 
have an impact on the  



This is a typical emergent phenomenon as we have individual behaviours (conditioned by 
internal parameters) which can have an impact at aggregate level. 
 
In Table 1, the main simulation parameters used are presented. 
 
Table 1: Parameters and their classification 

External or environmental System relevant Internal or entity related 
Description Name Value Description Name Value Description Name Value 
Nominal 
System 
Power 

aveProd 300MW Number of 
controlled 
refrigerators 

contrRefri 0% Thermal 
parameters 

Tau1-
Tau9 

Distribution of 
values 
according to 
refrigerator 
park. Different 
value for each 
refrigerator 

Installed 
load (except 
refrigerators) 

aveDemand 240MW Scale 
Factor 

sf 1-600 Room 
temperature 

roomTemp uniform(20,30) 

Relation 
refrigerators 
/ total load 

refriShare 20%    Load 
shedding 
threshold 

freqOff 49 Hz 

Nominal grid 
frequency 

freqNominal 50Hz       

Number of 
refrigerators 

numberFridges 250-
400.000 

      

 
The parameters of the model can be classified using these categories. All of these can be 
controllable or non-controllable. So, for example, the threshold setting of the load shedding 
algorithm and the door opening rate are both internal, but the first one is controllable and the 
latter not (it depends on social behaviour which is only likely to be influenced indirectly). 
 
Not controllable parameters should be simulated as well, even if they cannot be modified in the 
real system. However they give an idea how a singular factor affects the system, and if this 
factor changes (external conditions), we can know the effect on the system. 
 
Furthermore, we can classify the parameters as fixed or varying. When we call them fixed, 
they are usually similar for all the entities of the system. Random or varying parameters 
describe variations on the characteristics among entities of the same types. So, the refrigerators 
can have different installed powers according to a distribution, which is taken from survey data.  
 
In the first case, we analyse the phase space of the system. As said, given the described load 
shedding algorithm in (Kremers, González de Durana et al. 2012), the system can remain in 
three states:  
 

● stable 
● partially stable 
● oscillating 

 



We try to avoid the oscillating state and any risks of partial oscillation, as the can lead to 
catastrophic oscillations between frequency and loads on the system, which would cause an 
immediate blackout or damage to the system. 
 
Metrics are used to detect different phases of the system. A metric has to be adapted to the 
effect to be studied, in this case the particular to a problem of detecting oscillations. These are 
detected by counting the number of simulation steps in which the grid frequency undergoes a 
threshold value, and clustering these results, to obtain the three regimes: 
 

● stable (only one under passing at the production breakdown) 
● partially stable (some oscillations, less than 20, but stabilisation after) 
● oscillating state (many oscillations, more than 20 but usually several hundred until the 

end of the simulation). 
 
As we are dealing with non-deterministic simulations, an identical configuration of the simulation 
can lead to completely different results. So, a Monte Carlo experiment with 100 runs per 
configuration set was done. For each configuration set, the probability of being in a determined 
regime was calculated.  
 
In a first stage, the external parameters, such as proportion of refrigerator loads vs. the total 
system load were adjusted (refriShare). Further, a scale factor was used, as although tested, for 
massive Montecarlo simulations (several thousands), simulating 400.000 refrigerators was not 
feasible. Before, it was shown that an aggregated behaviour was already achieved with 2000-
5000 refrigerators. 
 
Scenario 1: Variation of the share of controlled refrigerators 
Once found a state where the system is between order and disorder, the proportion of controlled 
refrigerators was increased in steps of 10%. We found that the system remained completely 
stable below 60%. Therefore, focused on the interval 60-100% where the partial regime, the 
state which represents the edge of chaos, is located. The proportion was here varied in steps of 
5% to have a higher precision. 
 



 
Figure 3: Stability of the system vs. controlled refrigerator share 

 
In Figure 3, we can see a phase shift in which the partial regime represents the edge of chaos. 
At this stage, with fixed conditions of the system, it is not predictable whether the system will 
oscillate or remain stable. Through the simulation analysis however, a probability of this 
occurring could be calculated based on an exemplary case. In this case, we see that the 
variation of a system parameter can have an effect on its stability, and using the described 
method for a concrete system, a maximum value for integration of a certain technology could be 
obtained, assuring that the system will be always far from the critical zones. 
 

 
Figure 4: Ordered plot of 100 simulation runs for different shares of controlled refrigerators 



 
Figure 4 shows the number of oscillation for the different shares, ordered sequentially. We see 
the steps in the curve which represent stable systems (2 oscillations), partial (some oscillations 
between  and oscillating regimes (several hundred). 
 
Scenario 2: Variation of door opening rate 
In this case, we wanted to test the effect of an internal parameter, which is not controllable. We 
chose the door opening rate, as it is a characteristic variable for a sociotechnical systems, in 
which human behaviour gets into interaction with a technical system. Even if it cannot be 
controlled, door opening is likely to vary due to external factors, which can be predicted in some 
cases. This means, that without controlling the variable, we can nevertheless know how a 
system will react to it, if the external conditions are changing. For example, door opening can be 
increased due to extreme events, such as the world cup final or the superbowl, where a large 
amount of people may synchronise their behaviour.  
In this case, we fixed the controlled refrigerator share at 80%, which in the previous experiment 
showed to be at the edge of chaos. Now, the average door opening rate per day was changed 
and plotted in a similar manner.  
 

 
Figure 5: Stability of the system vs. door opening rate, for fixed controlled refrigerator share at 80% 

 
We can see (Figure 5) that the door opening has no clear effect on shifting the edge, even if a 
small tendency can be seen towards a slightly more stable system when there are more door 
openings. The uncertainty of the partial regime is marked by a high probability (around 70-80% 
in all cases). Due to the probabilistic nature of the model, a larger number of simulations should 
be done to analyse it further. In the given range, no significant impact on the stability can be 
observed. 
 
 
 



Scenario 3: Variation of the controlled share and frequency threshold 
In this case, we are varying two parameters at the same time, to see if the threshold frequency 
at which the load shedding is activated has an impact on stability, and if it is dependent on the  
controlled refrigerator share. This simulation was run with the same parameters as above, 
running again a Montecarlo experiment by doing 100 runs for each configuration setting. In this 
case, we have a large amount of simulations as 8 x 9 parameters were varied, which results in a 
total of 7.200 simulation runs in the Montecarlo mode. The simulation was run for 2.000 
refrigerators with an adapted scale factor.  
 
As we see in Figure 6, as expected with higher shares of controlled refrigerators there is a 
higher risk of oscillations. However, a clear impact of the disconnection frequency threshold 
(freqOff) cannot be recognised. A slight tendency in which at lower thresholds (< 49Hz) the 
oscillations occur at earlier stages, might appear, but should be analysed with more extensive 
Montecarlo runs. 
For the partial regime (Figure 7) a similar conclusion as in scenario 1 can be made. At around 
85% of controlled refrigerators, this regime is most likely to happen. Below and above, the 
probability is lower as the system is either stable, or oscillating. 
 

 
Figure 6: Probability of being in the oscillating regime, in function of contrRefri and freqOff 

 



 
Figure 7: Probability of being in the partial regime, in function of contrRefri and freqOff, which represent the 
phase space at the edge of chaos 

 

7. Conclusions 
 
Sociotechnical systems are in constant evolution, which makes them dynamic in time and 
structure. This has been made clear through an example in the energy system. Using 
distributed smart grid measures which are supposed to improve grid stability, oscillating 
problems were detected, as the system is driven towards the edge of chaos. This criticality has 
been analysed empirically through simulation by using a complexity based modelling approach.  
The case study shows that a border can exist, the edge, at which in only some cases critical 
situations occur. This border can be explored through massive simulation, allowing for 
evaluation of different situations and a statistical analysis of the massive simulations 
(Montecarlo).  
For an exemplary case, the penetration rate of a demand side management device was varied, 
observing the amount of times that the system enters a stable, partially stable or oscillating 
regime. this allows for quantification at which penetration rates systems remain in a safe state, 
and allow to identify at which point critical situations can occur. these situations occur as a 
phase shift, but the edge as has been shown can have a range at which only in some cases 
critical situations are caused. through massive simulation these cases were found and 
quantified. 
Furthermore, different parameter were varied to analyse if they have an effect, pushing the 
system towards the stable or chaotic sides. It has been shown that some parameters have no 



effects (door opening), and other have low effects (threshold variation). Further simulations are 
outstanding. 
Simulation, and especially massive simulation on a bottom-based approach has proven to 
provide a valuable tool to analyse and explore the behaviour of complex sociotechnical 
systems, such as the electrical grid, allowing to show both engineering and complexity science 
aspects in the same model. These means allow to quantify risk in a given situation, determine 
cause-effect chains through a detailed observation of the systems trajectory in particular cases. 
Simulation is though considered as a mean to empirically explore the edge of chaos, based on a 
real socio-technical system which itself would be too risky to take the experiments on. 
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