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A Multi-Criteria Fleet Deployment Model for Cost, Time and
Environmental Impact

Abstract

Most conventional models in maritime logistics focus uniquely on cost-minimization, whereas
the supply chain management literature and practice emphasize customer time-performance and
delivery reliability. In addition, the environmental perspective, in particular carbon dioxide
(CO») reductions, is highly relevant. This paper addresses this issue by formulating a bi-
criterion fleet deployment model, which minimizes shipping costs and transit time under an
environmental constraint. The model identifies the Pareto optimal frontier of cost, transit time
and CO: emissions, in terms of generalized costs for the importer as well as the impact of
potential delays. The approach is tested empirically on a network of maritime and railway routes
connecting China and US East/West coast ports, which simulates the weekly containerized
China-USA traffic. The US West Coast ports act as transshipment gateways/hubs via both the
intermodal US rail system and the coast-to-coast domestic maritime routes traversing the
Panama Canal. Customer preferences are represented through an opportunity cost of flow time.
The numerical results show a convex operational cost curve as a function of time reductions,
i.e., increasing marginal cost for time. However, given the correlation of slow steaming and line
cost reductions, the results for emission restrictions show that the impact primarily affects
shippers in the form of longer lead times, not liners that benefit from lower costs. Both results
suggest that resolution of the conflict between liners and shippers will involve addressing
difficult issues in market, regulatory and technological development.

Keywords: Fleet deployment; Liner shipping; MIP; Value of time; Maritime transport;
Greenhouse gases.

1. Introduction

Modern supply chains are by definition related to the geographic dispersion of different
locations and the corresponding distances between them (Stock et al., 2000). The time needed
to cover those distances (that is, the duration of the transport process throughout the chain, and
its cost) is one of the main concerns of supply chain stakeholders. Since the world merchandise
trade is dominated by China -it was the world’s leading exporter (2,487 USS$ billion) and the
second leading importer (2,136 USS billion) in 2018 (WTO, 2019) after the United States- this
paper will focus on the China-US transoceanic supply chain, and approach the problem from
three perspectives: the costs incurred by the transport operator (the ‘myopic logistical economic
perspective’), the total transit time (the ‘customer private valuation perspective’) and the means
of transport’s marginal pollution impact (the °‘societal-environmental perspective’), by
disentangling the interests of three classes of stakeholders with partially incommensurate
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interests. Whereas the operator often pursues low operational costs with the transport time as a
secondary objective, the final customer looks for the fastest mode of transport at the lowest
possible tariff. The valuation of time is private information for the client, just as the supply
chain surplus from lower direct costs on the operator’s side is only shared with the client if the
competition demands it. The environmental impact is also uncertain and potentially addressed
by pollution abatement fees or taxes, or through direct regulation of the type of fuel and/or
transport technologies allowed. Even though these three perspectives are frequently paid lip
service in analytical frameworks, the dominant modeling paradigm has been to optimize the
myopic supply chain cost. All three perspectives concern supply chain stakeholders, whom we
consider as different actors in a common process: the flow of goods along the logistical network.
The decision can be considered part of the more general problem of transport mode selection
in trans-national logistic networks; a decision that can be decomposed into a strategic
management level and for shorter periods of time, a tactical level. The strategic decisions deal
with the overall design and configuration of the network and its integration with suppliers and
customers via the transport chains. The tactical level deals with product flows along the chain
that link the raw material suppliers, production facilities, and distribution centers to the end
customer. These decisions normally involve a unified approach that analyzes the characteristics
of the whole network (plant locations, production technologies, plant capacities and others) in
order to integrate them with suppliers and customers (Schmidt & Wilhelm, 2000).

1.1 Shipping industry

As a crucial element in supply chains, maritime transport dominates in terms of the volume
of world merchandise trade; in 2018 a total of 11 billion tons of cargo were loaded, including
3.2 billion tons of oil and gas and 7.8 billion tons of dry cargo, including 1.88 billion tons of
containerized traffic (24% of dry cargo), (UNCTAD, 2019). Although maritime transport is a
heterogeneous activity, the shipping industry is mainly based on three different operational
approaches: tramp, industrial and liner shipping (Lawrence, 1972). Tramp traffic (that operates
to fulfill specific demands) and industrial shipping (mainly related to in-house traffic) both
function with a high degree of flexibility, whereas liner shipping involves fixed schedules,
defined port itineraries and public tariffs. Liner shipping is strongly associated with container
traffic and is crucial to economic globalization, playing a fundamental role in international trade
as a main component in transoceanic supply chains. In 2018 the global containerized trade
sector grew by 2.6%, reaching 152 million TEU’s (twenty equivalent units) and following the
sustained growth tendency (5.8% on average) recorded over the last 20 years (UNCTAD, 2019).
The global character of the liner shipping industry its heavy dependency on port and land
infrastructures and increasing competition, have led to vertical and horizontal integration
processes in order to gain size, strengthen their position in the market and increase their
influence over regulatory bodies and public authorities. In parallel, in search for economies of
scale, the size of the ships they operate has dramatically increased. Whereas in the 1970’s
container carriers of 2,500 TEU’s were the reference, in 2020 ships up to 21,000 TEU’s can be
found covering the transpacific routes between China and the US west coast, or the Asia-Europe
routes that links China and Europe via the Strait of Malacca and the Suez Canal. The strong
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interconnection between shipping lines and port infrastructures cannot be overemphasized.
Regularity and schedule compliance are crucial factors in liner shipping operations, and both
are strongly dependent on port performance. This fact, together with market pressure for more
reliable services, has forced shipping companies to take control of the whole transport process
through the integration of sea and land activities. Thus, industry actors have vertically
integrated to include not only shipping but logistical and stevedoring activities (Tran & Haasis,
2015); expanding the scope of their activities within the supply chain. Horizontally, carriers
have traditionally tended to form coalitions through, conferences and alliances to agree on
common pricing strategies. While conferences aim to establish common route prices, alliances
arise to address low capacity utilization that derives from the use of large container ships in a
highly constrained environment (Haralambides, 2007). Due to the fixed schedule and defined
routing, the efficiency of the operations of any fleet is directly linked to the number and type of
ships that must be deployed on each route to minimize costs. This, together with the fact that
shipping companies redeploy their fleets every 3-6 months to adapt the offer of slots to demand
(Shuaian Wang & Meng, 2012), motivates the liner ship fleet deployment (LSFD) problem.

1.2 Time in maritime transport

Historically it has been believed that the demand for maritime transport is derived from the
demand for goods. However, trade globalization and the preeminence of global supply chains
have led to the view that the demand for maritime transport is not only a consequence of the
need for goods, but an integrated process in which the service level, time performance and the
competition for customers play an important role (Panayides, 2006). Time, throughout the
supply chain, emerges as a key dimension in getting goods from producers into the hands of the
final consumers as it can influence trade flows by being a ‘barrier’ and affect trade volume.
Time can act as a trade barrier across three dimensions: lead time; just in time; and time
variability. In uncertain demand environments a long lead time -strongly related to transport
time in many cases- can have a negative influence on stock levels; leading to either run outs or
oversupply, depending on the demand. Time variability on the other hand, is strongly correlated
with the cost of buffer stocks, especially when it is associated with just-in-time systems (Nordas,
Pinali, & Grosso, 2006), as it can compromise the competitiveness of a supplier even if it is
able to deliver goods promptly.

1.3 Environmental aspects

An unwanted side effect of maritime traffic is the environmental impact of ship engine
emissions, which is an issue of growing concern for industry, governments, and regulators.
According to the International Maritime Organization (IMO) during the period 2007-2012,
international shipping emitted annually on average 846 million tonnes of carbon dioxide (CO»)
and 866 million tonnes of carbon dioxide equivalent (CO.¢) for greenhouse gases (GHGs)
combining CO,, methane (CH4) and nitrous oxide (N2O). This accounts for approximately 2.6%
and 2.4% of the annual global CO, and GHGs on a COxe basis, respectively. Forecasts indicate
that by 2050, international shipping production of CO2 emissions could grow by between 50%
and 250%, depending on varying economic growth scenarios and technological development.

4



In 2011 the IMO issued a set of technical and operational measures that came into force in 2013,
providing an energy efficiency framework for ship types that account for approximately 85%
of CO; emissions from international shipping (Smith et al., 2014). These measures range from
limiting speed and readjusting schedules to technical modifications to ship engines, affecting
not only GHG but other gases, such as nitrogen oxides (NOy), carbon monoxide (CO) and
sulphurous oxides (SOx). IMO regulations to reduce sulphur oxide (SOx), emissions from ships
first came into force in 2005, limiting sulphur content in their fuel oil. Since a ship’s engine
emission is directly related to its fuel consumption, which in turn is a function of its sailing
speed, there is a direct relation between speed reduction (slow steaming), fuel consumption and
emission reduction. This connection directly affects supply chain performance, given the
importance of maritime transport within it.

1.4 Objectives

The purpose of this paper is not to provide an integrated management decision for a single
decision-maker, but to highlight intrinsic goal conflicts between the carrier, the final customer,
and society. From the carrier side two types of transport are considered: sea and rail; the
transshipment nodes between the two modes are incorporated. The total operational costs are
minimized in several scenarios, and delays in some ports and GHG emission restrictions are
included. From the customer perspective, the importer’s perception of the value of the coming
goods strongly depends on transit time (Hummels & Schaur, 2013), (Nordas et al., 2006),
especially when products with short lifecycles are traded. Since the cost of transport is normally
inversely proportional to transit time, trade actors face a tradeoff between time and cost that
results in the selection of a particular transport mode. This approach is reflected in the paper
via a bicriterion mixed integer programming (MIP) model for the liner ship fleet deployment
(LSFD) problem that includes a combined maritime and rail network. The rail network is
considered as part of the maritime network with some particular attributes, and trains as a
special type of ship with adapted characteristics. Consequently, rail ramps are assimilated to
ports and all three port’s handling operations - loading, unloading, and transshipment - apply
equally to rail ramps and ports. We include the total weekly containerized maritime traffic
China-USA in a stylized maritime and railway network, considering the latter as an extension
of the former. The whole network is assumed to be served by a single integrated liner shipping
company that transports all China-US traffic, turning the freight rail rates into an internal cost
for the liner. We analyze the costs of the fleet, transport time, and the impact of potential CO»
emission restrictions. The objective is to minimize the liner/railway fleets’ costs and the total
transportation time via a bi-criterion formulation to find the time-cost tradeoff frontier. If the
importer perceives time to be an important factor, they will be willing to pay more to get the
products delivered on time. On the other hand, if cost is a priority, less costly but slower options
will be preferred. Environmental constraints impose additional burdens on all these actors in
terms of cost and/or time so the tradeoff between cost and time due to restricted CO; emissions
is also analyzed. Potential port delays at the US west-coast ports add additional constraints to
the problem. The proposed fleet deployment problem draws on the LSFD problem with
transshipment operations (Shuaian Wang & Meng, 2012) initially formulated as a mixed-
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integer nonlinear programming model with implicit container flow origin-based variables, that,
adding a second vector of decision variables, is transformed into a mixed-integer linear
programming model. Herrera et al., (2017) applied a related model to the Panama Canal
expansion, adapting it to the Canal specificities to assess the impact of the increased Canal
capacity in the costs of the liners operating the Trans-Canal routes. In the present paper the
basic structure of this model is used incorporating a combined sea/railway network, the
generalized cost including the transit time and the impact of CO, emissions restrictions. Initially
we carry out a numerical simulation to minimize the operating costs of the fleet. In a second
step we introduce the transit time and finally, we analyze the effect of CO> emissions
restrictions.

The remainder of this paper is organized as follows: Relevant literature is reviewed in Section
2. The method employed, described in Section 3, is applied in Section 4; and the results obtained
are analyzed in Section 5. Finally, Section 6 is dedicated to conclusions and possible further
research.

2. Relevant literature

Three streams of literature are relevant to the object of the present paper. Literature regarding
containership routing and scheduling problems at the strategic, tactical and operational planning
levels has been reviewed by Meng et al., (2014), including a detailed evaluation of studies at
three levels: containership fleet size, mix and network design (strategic); frequency
determination, fleet deployment, and speed optimization; and schedule design (tactical) and
container booking and routing (operational). They underline the gap between theoretical studies
and the liners’ day to day operational challenges, and in doing so bring to light one of the main
problems that academics encounter when conducting applied studies: liner shipping companies’
sensitivity about their operating information, resulting in a lack of verifiable sources of data.
As a network-based industry, network decisions play an important role for the liner’s operation
managers. Tran and Haasis, (2015) have undertaken a thorough literature review dealing with
network optimization decisions in container liner shipping, through examining more than 120
papers and dividing the problem into three main categories: container routing, fleet
management and network design. Network optimization is a crucial operational factor for the
companies since fierce competition among the carriers leads to operations at the lowest possible
cost, which implies very tight schedules. Schedule planning is one of the key elements in liners’
decision-making process and highlights the network-based character of the industry. Three
different categories of problems are involved: optimal routing and container flow; optimal
design of the network; and efficient fleet operation. Some of the authors conclusions point to
the increasing concentration, the growing tendency to deploy and operate mega-vessels, the
emergency of great alliances connecting a great number of operators and the expansion of the
industry towards hinterland operations. The existing mathematical models for the treatment of
the container liner fleet deployment (CLFD) problem are reviewed by Wang and Meng, (2017),
including container transshipment and routing, uncertain demand, empty container
repositioning, ship sailing speed optimization and ship repositioning. In that review, fleet
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deployment with container transshipment and routing models are extensively analyzed,
including path-based and origin-destination-link-based fleet deployment models. The origin-
link-based fleet deployment model -used in this paper- is also examined, highlighting the
advantage of this model regarding the number of flow variables, which is one order of
magnitude smaller than in the O-D-link based model. Liner ship fleet deployment (LSFD) has
been extensively studied in recent years. Wang and Meng, (2012) emphasize the importance of
transshipment in the LSFD problem. They propose a MIP formulation for a model in which any
amount of transshipment operations is permitted in any port. The number of transshipped
containers is implicitly represented by origin-based container flow variables substantially
reducing the number of required variables. An extended formulation of this model is used in
the numerical simulations of this paper. Meng and Wang, (2012) treats the integrated problem
linking the tactical level fleet deployment problem to the operational level container routing
problem. Wang, (2013) adds further elements to this problem such as slot-purchasing, type of
container ships and empty containers repositioning, developing a MILP model, and relaxing
the number of transported containers as continuous variables. A fleet deployment problem
involving cargo transshipment, multiple container routing options and uncertain demand is
proposed by Wang and Meng, (2010), formulating the problem as a stochastic program
maximizing the expected profit. Initially a sample average estimate is derived from a random
sample to approximate the objective function, thereby solving the resulting deterministic
program, by repeating the process with different samples until a candidate solution is obtained.
The same type of problem is proposed by Meng et al., (2012) but including in the deployed
fleet not only the liner owned ships but charters ships from other liners.

The second stream concerns the time dimension. Time as a trade cost has been extensively
studied by D. Hummels, (2001) analyzing the cost consequences of shipping times on trade,
and the impact of time on trade patterns and international production organization. Regarding
US trade he finds that each travelling day is worth 0.8 percent of the value of the good per day
on average, equivalent to a 16% tariff for the average length (20 days) ocean shipment,
estimating that each additional day in ocean transport decreases the probability that a country
will export to the US from 1 percent (all goods) to 1.5 percent (manufactured goods). In a later
work, (Hummels & Schaur, 2013) the authors undertake an analysis of the exporter’s choice
between fast and expensive air transport, and slow, inexpensive ocean transport. Using US
imports data, the consumer valuation of time is estimated to an equivalent to an ad-valorem
tariff of 0.6 to 2.1% per day in transit, with the parts and components trade comprising the most
time sensitive flows.

Thirdly, the environmental aspect of shipping has given birth to a rich literature, especially
dealing with CO> emissions. Cariou et al., (2019), for example, identify the main factors
influencing containerships’ CO; emissions, concluding that the key reasons for the decrease in
annual CO; emissions achieved in recent years can be found in fuel efficiency - due to
technological evolution in the industry and slow steaming- and changes in network design
aimed at shortening the sailed distance with resulting fuel savings. The hidden side effects of
shipping emission reduction on supply chains have been studied by Luo, (2013), who reviewed
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existing studies and identified many of the secondary effects of shipping emission reduction,
among them, the impact on world trade patterns and shipping industry market concentration.
Luo analyzed the impact of an increase in ships’ new building and scrapping activities as a
consequence of fleets renewal to comply with emission rules and the influence of these rules
on port development and operations. Other research contributions (Corbett, Wang, &
Winebrake, 2009), (Lindstad, Asbjernslett, & Jullumstre, 2013), (Chang & Wang, 2014)
emphasize the connection between speed and emission reduction, arguing that slow steaming
is one of the most valuable tools to reduce GHG emissions in the shipping industry. The
problem of CO, emissions in connection with supply chains have been studied among others
by Nouira, Hammami, Frein, & Temponi, (2016), who assessed the impact of carbon-sensitive
customers in the design of forward supply chains, including in this design -among other factors-
transport mode selection.

3. Method

The LSFD problem involves a liner container shipping company that operates a network (set
R)! of ship routes r € R, serving on a weekly basis a set P of ports p € P. Each ship route is
defined by its port rotation:

Pr1 = Pr2 = " 2 PrN, — Pr1 [1]

For any route R, the total number of ports of call is N, the ith port of call is p,; (i=1, 2, ...,
N,), and I = {1, 2, ..., N,.} is the set of port indices. The set I, © L. is the set of port indices
referred to a specific port p € P. The routes are cyclical (p, n, +1:= pr1) and the voyage between
the ports p,; and p, ;.1 is denoted as leg i of the ship route r e R. This leg can be defined by a

pair of consecutive ports (pn., p,; +1| i€ Ir).

The containers are reflected as twenty equivalent units (TEU’s). At any port p € P, the costs
(USD/TEU) related to the containers’ loading and discharge are ¢, and ¢, where ¢, is the
transshipment cost. Note that transhipment is a source of income for container terminals. For
liners, if transhipment is not providing an operational cost advantage but only an additional
handling cost, this cost cannot be passed on to the end customer as it is not value-added. This
is also the reason why shipping companies tend to avoid it. To encourage transshipment
operations among the liners, ports make ¢, < ¢, + ¢, . The number of containers d,q
(TEUs/week) transported between each pair of origin o € P and destination d € P ports is
considered as the input for the fleet deployment problem. The liner shipping company deploys
a fleet (set 9) of ships of type v € 9, each with a fixed operating cost c,”" (USD/week). This
cost does not depend on the number of voyages and includes the cost of the spare parts,

' All notation is listed in Table A. 1



lubricants, fuel for the auxiliary power plant, maintenance, repair, crew and administration. For
a ship v € ¥ the berth occupancy charges at port p € P are cp °r (USD/h). The maximum

capacity of a ship v € 9 is Cap,, (TEU’s) being N2""™ the number of ships of type v € 9 owned
by the liner. It is assumed that all ships deployed on a specific ship route belong to the same
ship type. For operational reasons it is difficult for ships with different sailing speeds to
maintain a reliable service frequency. Additionally, it is difficult to maintains operational
efficiency in ports if ships of different capacities are deployed. Constraints like the ports and/or
canals’ physical or geographical characteristics prevent some types of ships from being
deployed on some routes. Consequently, a sub-set J,- C 9 is defined for the candidate ships that
can be deployed on the route r € R. To maintain the schedule, the number of ships to be
deployed on a route is dependent on the round-trip time (sailing time plus port operations time);
that is, the model assures that the number of ships sailing in any week, equals the number of

weeks of the round-trip. The total sailing time -including the pilot time tf necessary for port

entrance of a ship type v € 19 deployed on a route r € R sailing at a speed s, “ona leg i of
dis ;

length p;;” is denoted by T
flx z(tflx + pTlS/SSpd) VreR; Vved, 2]

el

Port operations time on the other hand, is related to the efficiency and number of quay cranes
operating a ship at the corresponding port. For a ship v € 9, the average time needed for
loading/unloading one TEU at a port p € P is defined by t,,, (W/TEU).

The operating costs of a ship route r € R deployed with m,. of type v € U,- can be divided in
three parts: costs associated with the ship (m,.c,’" ), costs associated to the route (voyage costs

c{vix) depending only on the type of ship v, and the cost of berthing at each port that depends

on the time berthed and the corresponding berthing charges. The voyage costs c{vix include the

fuel cost and the port entrance charges. For a route r € R deployed with ships of type v € 9,.,

fuel

each of them consuming fuel priced at p,  ($/ton) at a rate of E{: (ton/h) and paying a call fee

of ce"tr at the entrance of the ports the voyage cost is:
e = ) L + 0 /5T wreRs e, [3]

iel,

In addition to these costs, total costs also include container handling costs at the different
ports.

The LSFD problem is to determine the types and number of ships that a liner shipping
company must deploy on the served routes, as well as the number of transshipped containers at
the different ports of the network to satisfy the weekly container demand and minimize the total
weekly cost. Noting that the round-trip time of a route depends on the sailing time -that defines



the weekly number of ships in operation- and the number of containers handled at the ports on
the route, the problem, formulated as a LSFD model, will involve two types of decision
variables: variables related to fleet deployment and those related to the container flow with
container transshipment operations. The former type includes the number of ships m, deployed
on route € R necessary to maintain a regular service and a binary variable x,., that takes the
value of 1 if the ship route r € R is deployed with ships of the type (v € 9, ), being 0 otherwise.
To linearize the corresponding model using the big-M modelling method an additional variable
m,.,, is introduced, denoting the number of ships of type v € 9 deployed on the route r € R. The
latter type includes the number of containers (TEUs/week) originating from port o € P and
loaded at the ith port of call on the r € R ship route, denoted by Z;;, the number of containers
(TEUs/week) originating from port o € P and discharged at the ith port of call on the r € R ship
route, denoted by Z7; and the number of containers (TEUs/week) originating from port o € P
and stowed on board the ships sailing on the ith leg of the r € R route, denoted by f,5. To
linearize the model the variable z,.;,, corresponding to the total number of containers handled in

a ship v e 9 at the ith port of the route r € R is equally introduced.

To model the LSFD problem a set of two vectors of decision variables is assembled:
X= My, X, 20,25 [T €eR,ved,i€el,,oe P,de P,o # d) (4]
X =My, ziy|lT €R,VEY,, i €1.) [5]

The proposed mixed-integer linear programming model includes the costs related to the
ships in operation, the voyage costs, the cost of berthing, and the transshipment and handling
costs. Two additional parameters are added to include the time perception of the importers. We
have not considered the cost of fixed capital, supposing that the different liners operate in unison
without any competition between them, acting de facto as a single liner that manages a
combined maritime-railway fleet, which oversees all China-US maritime containerized traffic.
To highlight the importance of the costs of traversing the Panama Canal, these are considered

separately, and are not included in the voyage costs cﬁx. To that effect, two new sub-sets are
defined: the set of routes including the Canal (R, € R) and the set of port indices (I, < I) of
the last port of call before the Canal transit in the route r € R.. In compliance with the Canal
rules, a tariff c5#"%¢ per TEU on board ships traversing (£5| r € R, i € I.); and cS2"Y per
TEU in vessel capacity (Table A. 2) are applied. For the set of rail routes, a new sub-set R,,; C
R is defined. The land route distances are expressed in nautical miles (nm) and the sailing and
running speeds in nm/h (knots). Due to the different nature of the ship and rail networks, all the
rail costs except the fuel costs have been integrated into a single cost related to the rail voyage.
Therefore, fixed operating costs, berthing and entrance costs and the handling and
transshipment costs are equal to zero in the rail network. The remaining cost is a rail specific

fixed voyage cost (cf;xrl | 7 € Ry, v € 9,) related to the net average rail freight cost (c”/) of the
US railway system:
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flxrl Z pdlS f Vre R.; Yvev,

iel,

[6]

In sum, the minimum total weekly cost TC'(x,X) of a joint group of liner shipping
companies and rail operators, acting as a single entity and deploying m,,, ships and trains of
type v € 9,, on the routes r € R, to attend a weekly demand d 4, is obtained as:

min TC(x,X) = Z Z (M cSP" + L x0)
xX,X

T€R veV,

+ Z Z flxrl

r € Ry VED,

+ z z z canalc fr(; + z z z Cﬁg]nalvxrv

T€Rc l€ly, © T€Rc VEVy L€l

ber

T€R i€l veY, [7]

EDEADDINCELOE AL WS

peP T€Ry i€lyp OEP deP o€eP

+ Z Z(éo +Cq) doa

0€P deP

S.t.

Zxr,,zl VreR [8]

veld,

my, < Mix,, VreR; Vved, [9]

168mrv+M2(1—xﬁ,)>Tflx+ ty vZri VreR; Yved
Driveériv T

iel,

Zf;; — z Capyx;, <0 VreR; Viel, [11]

o€eP ved,

[10]

frioat 2z =f5 +2 VreR; Viel,; VoeP [12]
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Z Z(iﬁi— 20)=doq Yo€eP; VdeP; d # o [13]

reRg i€lrq
Zpiy < M3x,, VTreR; Viel,; Yve 9, [14]
Zyriy + My(1 — xppy) = Z(iﬁl +2%) VreR; Viel,; Vved, [15]
o€P
f9=0 VreR Vi€l 0=ppin [16]
7Z2;=0 VreR Viel,; o=p, [17]
x,, € {0,1} VreR; Vved, [18]
m,, € Z* U {0} VreR; Yved, [19]
20, >0 VreR; Viel,; YoeP [20]
7%, >0 VreR; Viel,; YoeP [21]
f3=0 VreR; Viel,; YVoeP [22]
Zyiy =0 VreR; Viel,; YVveD, [23]

Constraints [8] ensure that only one type of ship can operate on each route. Constraints [9]
and [10] are the (weekly) service frequency constraints. Given that a round trip normally does
not take more than 15 weeks: M;=15 and M, = 15weeks x 168 h/week = 2520. The number
of containers transported on each leg of each route is constrained by [11]. Constraints [12] and
[13] enforce flow conservation at each port of every route. Constraints [14] and [15] define
Zrip Since constraint [15] must be binding in the optimal solution if x,., = 1. For the extreme
case that a full shipload of containers is discharged, and another one loaded, at a given port:
M; = M, =2 max {Cap,, Vv €9 }. Constraint [16] enforces that a container originated from
a given port o does not return to that same port. Constraint [17] prevents a container from being
unloaded at a port o if it originated from that same port. Constraints [18] to [23] define the non-
negativity and/or integer attributes of the decision variables.

To introduce time in the model, two additional parameters are considered:

T =N A [24]

r€R iel, ved, oeP
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Ttrans — z térans% z z Z(ﬁgl +22%) — ; dpg — Z dop [25]

peP TeRy i€l 0P oeP

The parameter T (in hours-TEU) defines the product of the total number of containers on
board along every route r times the total sailing time of that route. Each element of the time-
flow expression [24] therefore refers to the time that the containers are on board the ships sailing
the leg p,;_1- py; of the route r (including the time to enter the ports). The parameter T*"%"S (in
hours-TEU) defines the total sum of the product of the estimated average time of transshipment
operations at the corresponding ports times the sum of the number of transshipped containers
at each port. Each element of the time-transshipment expression [25] therefore refers to the time
that the total number of transshipped containers are waiting at each port for transshipment.
The estimated average time of transshipment operations denoted as t;"*" is set at 3.5 days.

To account for the relative importance of cost and time we use terms [24] and [25] as
objective functions. Thus, we obtain a bicriterion function L, (x, X) representing the total cost
and the total transportation time. To find the Pareto-efficient set for the bicriterion problem, a
convexification of the bicriterion function in [26] is used for a range of alternatives, ranging
from a pure cost minimization (the liner’s perspective), a,, = 0, to pure time minimization (the
end customer perspective), a,, = 1:

L,(x,%) = (1 —a,)TC (x,%) + a, (T + 7o) [26]

0<a,<1,n=0..10 (a, =0.1xn)

Note that the convexity property of the actual efficient frontier can only be guaranteed for
continuous real variables, in the case of the current mixed-integer programming model the
frontier is non-convex. Thus, the convex weighting method obtains efficient points, but not the
entire frontier, that may be “hidden” in non-convex, dominated segments. The lower the time
involved in shipping the referenced number of TEUs, the higher the operating costs are. On the
other hand, the only way to reduce total operating costs consists in accepting that the containers
remain longer on route.

The comparison of the different discrete points of the efficient frontier allows an estimation
of the trade-off ratio between shipment time and operating cost for the shipper. These
comparisons describe the technically viable trade-offs between time and cost for the supplier of
the transport service which depend on each of the specific solutions that compounds the
efficient frontier. The opportunity value for the user is here an empirical parameter obtained by
Hummels and Schaur (2013), assumed constant over the range of solutions obtainable. The
contribution of this work is then in the identification of time- cost technically feasible
combinations, which is preferred by the transport services’ final consumer. A third criteria is
introduced in the model to assess the environmental impact of the fleet deployment decisions,
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through evaluating the impact of a reduction of CO> both in the operation of the fleet and in the
customer’s perception of the delivery time. This criterion (defined as the CO> emission from
transport operations) is formulated via an additional constraint that imposes a reduction in the
fleet’s CO, emissions. An additional parameter is used to calculate the fleet’s total CO»

emissions:
¢ i d~
€= Z Z Z Erj:ac T Wi s ) quxrv [27]

T€R ved, i€l,

The reduction is not achieved by implementing technical changes or improvements, as it is
assumed to be a fixed state-of-the-art technology, but via speed limitations (slow steaming).
Reductions in other GHG emissions, such as SO2, might be achieved by reducing fuel sulphur
content or implementing technical measures, such as exhaust gases filters. However, this
analysis is limited to CO», which is by far the main contributor to a ship’s GHG emissions.

3.1 The model as a representation of a liner fleet’s operations

The model represents the main aspects of a liner’s fleet operation since it reflects the costs
of the entire fleet in one week. Certain characteristics, however, must be qualified. The
stationary structure of the model does not allow for variations in weekly demand, as it is forecast
for the entire period of operations. The only variations in the number of loaded and unloaded
TEU’s at the different ports arise from the variability in the volume of transhipped containers
at the different ports and among the different transport modes, which could lead to congestion
in the event of significant upward variations. Congestion problems in ports have a double
consequence: on the sea side of the equation there is a queuing effect due to the accumulation
of ships waiting to berth, and on the land side, a slowdown in operations due to the buildup of
container inventory. These effects can be made endogenous using clearing functions. A clearing
function defines the expected output in a planning period of a production resource as a function
of a set of state variables that describe the volume of work available to the resource in that
planning period (Missbauer & Uzsoy, 2020). Experience with supply chain network design
(Sourirajan, Ozsen, & Uzsoy, 2007) indicates that taking into account congestion can lead to
different solutions from those that overlook it. However, our static model represents a marginal
volume for overall port operations in the East Coast ports, without real influence on the effective
level of congestion. Thus, we have chosen to model the consequences of the aggregate
congestion as exogenous parameters rather than as endogenous effects, using as primary

parameter for congestion effects the pilot time (tf' iix) necessary for port entrance. In the model,

the variations of this pilot time parameter are used to model unforeseen events, such as strikes
or natural disasters, which are not linked to demand variations. Using the pilot time parameter
as a general parameter to capture congestion at port entry, we observe the relevant impact on
the overall flowtime that the model evaluates.
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4. Application

A schematic network of the US railway system (Figure 1) including the ramps of Chicago
(CHI) and Atlanta (ATL) is added to a network of maritime routes connecting the port of
Shanghai (SHA) in China with the ports Seattle (SEA), Oakland (OAK) and Los Angeles (LAX)
in the US West-coast, Balboa (BLB) and Colon (MIT) at both ends of the Panama Canal and
Houston (HOU), Miami (MIA), Norfolk (ORF) and New York (NYC), in the US East-coast:

12] G— 22 - 23 —Pp
r24 s dprunn P 126 =P

Figure 1. US rail routes with ports and ramps (CHI and ATL).

All these nodes are connected by a set of sea and rail routes, each of them forming a closed
loop ending at the departure (P) point. Two of the sea routes are Transpacific, connecting
China and the US West-coast. The third is an intercoastal route connecting US coasts via the
Panama Canal:

rll SHA-SEA-LAX-OAK > SHA
rl2 SHA-BLB-NYC-ORF-HOU-MIT » SHA
rl3 OAK-BLB-MIA-HOU-MIT-LAX P OAK

Appendix A includes a graphic illustration of these routes (Figure A. 1 and Figure A. 2). The
maritime network is combined with a rail one connecting the ports (acting at the same time as
rail ramps) with the rail ramps of Chicago (CHI) and Atlanta (ATL) through the following six
routes:

21 SEA-CHI-ORF-CHI > SEA

122 LAX-ATL-MIA-ATL > LAX
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123 OAK-CHI-NYC-CHI > OAK

124 HOU-CHI-NYC-CHI » HOU
25 HOU-ATL-ORF-ATL » HOU
126 MIA-ATL-CHI-ATL > MIA

The length of each leg and its corresponding port of call is displayed in the Table 1 for each
route. Given that every route is a closed loop, the last column is the distance between the final
and initial ports/ramps of call:

Port position/Leg distance (nm)
1 nm 2 nm 3 nm 4 nm 5 nm 6 nm
ri1 SHA 5094  SEA 1139 LAX 369 OAK 5398 - - -
r12 SHA 8571 BLB 2011 NYC 287 ORF 1705 HOU 1528 MIT 8610
r13 OAK 3246 BLB 1239 MIA 970 HOU 1528 MIT 2951 LAX 369
r21 SEA 1908 CHI 858 ORF 858 CHI 1908
r22 LAX 2288 ATL 674 MIA 674 ATL 2288
r23 OAK 2096 CHI 794 NYC 794 CHI 2096
r24 HOU 1116  CHI 794 NYC 794 CHI 1116
r25 HOU 847 ATL 737 ORF 737 ATL 847
r26 MIA 674 ATL 625 CHI 625 ATL 674

Route

Table 1. Routes: voyage distances and ports/rail ramps of call

For operational reasons, the liner shipping companies tend to operate uniform fleets on every
route with the set of ships deployed on each route comprising the same type of ship. To allow
the use of different ships on the routes, multiple lines are included on each route. Twelve
identical lines (In) are considered for the route r11 (In1101-In1112), eighteen for r12 (In1201-
In1218) and seven for r13 (In1301-In1307). The rail routes include 20 lines each: (In2101-
In2120) for 121, (In2201-1n2220) for 22 and so on.

Using data from the U.S. Census Bureau (https://usatrade.census.gov/) to represent actual
trade, the simulations are carried out with a total export/import traffic China-US (Jan-Dec 2017)
of 194,108 TEU’s/week transported at different sailing speeds, with an average weight of 9
ton/TEU each. The import/export traffic of the different states is assembled in eight groups
according to the pattern displayed in Figure 2 and proportionally assigned to the different
ports/ramps, one per group, except the California group traffic that is assigned to OAK and
LAX:
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Figure 2. Assignment of US states to ports and ramps.

The ports at both ends of the Panama Canal (BLB and MIT) are included only as
transshipment ports with no demand. The assignment of the demand of the different groups of
states to the ports and ramps of the network is summarized in Table 2:

Ports SEA OAK LAX HOU MIA ORF NYC CHI ATL
Export to SHA 5200 20546 20546 17082 4347 9731 21304 16639 14789
Import from SHA | 5635 9157 9157 8303 2076 7535 8333 6474 7254

Table 2. Demand (TEU's/week). Total demand: 194,108 TEU's/week

15 types of ships are considered, each with a different capacity and sailing speed, plus a train
type, coded as an additional type of vessel (Table 3). The ships consume Intermediate Fuel Oil
(IFO) priced at 400$/ton whereas the train locomotives consume diesel fuel priced at 650$/ton

with respective CO, emissions factors (EI{ acwr) of 3.114 and 3.206 Kg of CO; per ton of
consumed fuel/diesel oil.
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Type | Code | Cap, | 4 | @) | o | o | cher ¥,
TEU’s Knots Tn/h | USD/week usb USD/h h h/TEU
vll 18 2.31
v12 5,000 21 3.84 70,000 7,000 1,500 0.010
v13 24 6.04
v21 18 3.45
v22 8,000 21 5.74 80,000 9,000 2,100 0.008
v23 24 8.92
v31l 18 491
Ship | v32 10,000 21 8.16 90,000 10,500 3,100 4 0.008
v33 24 12.68
v4l 18 5.45
v42 12,000 21 9.11 105,000 12,000 3,900 0.007
v43 24 14.39
v43 18 7.59
v43 18,000 21 12.62 130,000 16,000 4,900 0.006
v43 24 19.61
Train | v06 5,600 40 15.87 * * * 0.020

Table 3. Fleet characteristics

Not all routes can be travelled by the largest ships. Considering the restrictions in the Panama
Canal, the maximum capacity of the ships deployed on the route r12 is limited to 12,000 TEUs.
The route r13 performs as a coast-to-coast sea alternative to the rail, transshipping containers
from the other two transoceanic maritime routes. Due to the limited draft of some of its ports,
the ships deployed on this route are restricted to a capacity of 10,000 TEUs.

For rail destinations we consider a daily rail service of two “standard” trains/day with a
capacity of 400 TEUs each. As mentioned, trains are considered to be a special type of ship. To
match them to the weekly maritime service, the daily rail service is turned into a weekly-

equivalent rail service with a single train of 5600 TEUs, equivalent to 14 “standard” trains. To

fixrl the

calculate the route cost ¢, , average 2017 US freight rail rate

(https://www.aar.org/data/average-u-s-freight-rail-rates-since-deregulation) is transformed into
a cost per TEU and nautical mile, and applied to an equivalent train (Eq. train). After deducting

the rail fuel cost (included in cf,ﬁx as the fuel cost of the special ship matched to the trains ) we

obtain a net average rail freight cost (¢’/) as in Table 4 to be integrated along the rail routes to
produce the route cost:
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Average US freight rail rate (USD/ton-mile) 0.0415
Average US freight rail rate (USD/TEU-nm) 0.4299
Average US freight rail rate (USD/Eq. train-nm) 2,407.44
Eq. train fuel cost (USD/nm) 257.85
¢ (USD/nm) 2.149,59

Table 4. Rail parameters

To capture the monetary value of the customer perception of time we draw on data from
Hummels (2001) and Hummels and Schaur (2013). Departing from the modal choice of firms
between air and maritime transport, Hummels and Schaur (2013), use timely delivery as an
element to identify quality differentiation in trade. They end up by estimating a parameter that
allows translating delays in days into a price equivalent form, considering that any point in the
world can be reached by plane in one day. This parameter shows the marginal cost of delivery
time increases beyond the second day. The ratio between cost and the value of the goods shipped
allows the calculation of this cost in a tariff equivalent form.

Using import trade data from the United States Census Bureau for 2017
(https://usatrade.census.gov/) we calculate a weighted average of the tariff equivalents of all the
goods imported from China to the different US (continental) states involved in the simulation.
Firstly, we calculate the composition in tons of each TEU, assuming each standardized

container weighs nine tons, and follow the same pattern as the composition in tons of all imports
at national level. Secondly, the value of each component/type of good of the standardized
container results from applying the average value in USD per ton, obtained from global national
data, to each of the components of the standardized TEU. The total value of each TEU
corresponds to the sum of the value of all its components (44,449.4 USD). All in all, the final
composition of each TEU mimics the average yearly composition of US imports from China.
Thirdly, we apply the corresponding tariff equivalent parameter made available by Hummels
and Schaur to the values by component/type of good. The sum of all these values represents the
value of each day of delay by TEU (287.8 USD), which means that each additional day in transit
is equivalent to imposing a 0.65% ad-valorem tariff for the importer to the average value of
each TEU. Table 5 displays the distribution of the importers’ time opportunity costs for different
US states, averaging 0.65%, and ranging from 0.37% (Louisiana) to 1.16% (North Dakota).
The importers of the states with lower values than the average will be less sensitive to delivery
time delays; and the opposite for values higher than the average. Since the time opportunity
costs depends on the type of goods imported, no clear geographical distribution pattern

2 We are thankful to both authors, Hummels and Shaur, for sharing with us some estimates of this tariff
equivalent parameter for different categories of goods (HS2 and HS4). These estimations do not incorporate
product fixed effects because there are product categories with few observations. We were advised about the
potential lack of robustness of these more detailed estimations, therefore the responsibility of using them is only
ours. We used the results of the model in which the dependent variable is the relative air to ocean value discounted
by the number of shipments proxy. This specification includes country fixed effects.
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regarding the sensitivity of US importers (grouped by states) to delivery time changes can be
observed:

State TOC State TOC State TOC
Louisiana 0.37 Pennsylvania 0.65 Oklahoma 0.68
Montana 0.42 Illinois 0.65 Texas 0.69

West Virginia 0.52 Ohio 0.65 Indiana 0.69
Maine 0.53 Alabama 0.65 Oregon 0.69
Rhode Island 0.53 Arizona 0.65 North Carolina 0.70
New York 0.55 Delaware 0.66 South Dakota 0.70
Missouri 0.55 lowa 0.66 Virginia 0.70
Washington 0.55 Mississippi 0.66 Nebraska 0.71
New Hampshire 0.55 California 0.66 Nevada 0.72
Massachusetts 0.57 Kentucky 0.67 Colorado 0.72
Minnesota 0.59 Maryland 0.67 Connecticut 0.72
New Jersey 0.59 Wisconsin 0.68 Georgia 0.73

Idaho 0.61 South Carolina 0.68 Michigan 0.74
Vermont 0.64 Florida 0.68 New Mexico 0.83

Kansas 0.64 Tennessee 0.68 Wyoming 0.88
Arkansas 0.64 Utah 0.68 North Dakota 1.16

Table 5. US states time opportunity cost (TOC) as average tariff equivalent (in %)

The slope of the generalized costs line is derived from this average tariff equivalent and
implies that the importer is ready to pay 287.8 USD for the reduction of one day in transit. Now
we can use this average tariff equivalent to identify which of the feasible combinations between
transportation time and cost is optimal for the importer. This optimal combination would
correspond to the one with the minimum generalized cost for users.

5. Results

Two simulations are carried out. In the first one -the baseline simulation- the time necessary
for port entrance (tf, Ex) is set at 4 h for all ports except the Canal entrance ports (BLB and MIT)

that are set at 24 h to compensate for Canal traversing time since the real Canal traversing speed
is always much lower than the cruise speed. Due to the short distance to be sailed along the
Canal, fuel consumption is not adjusted. In the second simulation, potential troublesome
situations that produce delays, such as port strikes or natural disasters are modeled, focusing on

the US Pacific Coast ports (SEA, OAK and LAX). The time (tf i.x) required to enter these ports

,L
is set at 480 hours, while simulating a disruptive situation like a port strike or a natural disaster
is represented by a delay of 20 days. The complexity of the model is 163,478 decision variables,
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including 5,358 binary variables; 40,502 constraints and in all 854,798 non-zero elements. The
model was solved on an iMac 3.6 Ghz 8-core machine with § GB RAM running CPLEX solver
using GAMS 1.5.2. The computing times vary in function of the convex weights in the
bicriterion model from 5,361 seconds to 56,882 seconds. The dual gap tolerance was set to
0.001, but four of the runs were halted after 300,000 nodes with relative gaps ranging between
0.033 and 0.047.

To better reflect the trade-off between costs and transportation time, the total costs and the
time involved are divided by the total number of referenced TEU’s, which produces the average
cost and time per TEU. The resulting efficient tradeoff curve is illustrated in Figure 3 for the
benchmark (no-delay) and the 20 days delay scenario. The lower curve corresponds to the
normal no-delay situation: four hours to enter each port (including pilotage) except for the two
Panama Canal entry ports. In the upper curve the entry-port time at US west coast ports is set
at 20 days, with other ports remaining as in the benchmark curve.

The trade-off depends on many model parameters such as average speed, berth occupancy
charges, port-entry times etc. At the benchmark curve, reducing the cost/TEU from 2,562.98
USD to 1,033.61 USD can be accomplished at the cost of increasing the average time/TEU
from 13.26 days to 15.27 days. Note that this model reassigns the whole intermodal traffic
shifting between trains and ships, and among different shipping routes, in each of the iterations
considered. The set of efficient points show an asymptotic behavior at the extremes. Increasing
port-entry times shifts the benchmark curve away from the origin, showing that similar costs to
the benchmark can only be achieved at the expense of an increase in the total number of hours.
Similarly, keeping the benchmark time implies an increase in total operating costs. The iso-cost
curves for each delay scenario are based on the empirical assessment for the US importers’
value of time perception. This allows us to determine the optimal solution as the tangential point
between the iso-cost curve and the efficient bi-criteria frontiers already derived in Figure 3 for
the two situations. Note that the iso-cost curve is derived for the importer’s valuation, whereas
the trade-off curve that results from the bicriterion formulation expresses the overall impact
cost of liner operations; both import and export:
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Figure 3. Unitary cost-time trade-off for imports

For the 20-day delay situation, importers would be ready to accept increased total delays to
avoid higher costs. Table 6 decomposes this delay in terms of operating costs and time
opportunity cost compared to the initial no-delay scenario. The opportunity cost of the average
number of days that the containers are on their way is calculated by multiplying the number of
days by the average value associated with the reduction of one day in transit (287.8 USD),
which corresponds to an average tariff equivalent of 0.65%. In fact, importers are ready to
accept up to six days of extra delay and an increase is 691.40 USD per container when the delay
is 20 days.

It can be seen that carriers assume only 28.63% of the total impact of the delay in the
generalized costs while the importers bear the rest, making them the most affected agents in
this disruptive situation. States with time opportunity costs higher than the average (see Table
5), will support higher total generalized costs.

22



Operating costs . . . Generalized cost
Delay (days . Time (days Time Opportunity cost
y (days) impact ($) (days) pp y ()
No-delay 1,033.61 15.27 4,394,71 5,428.32
20 1,725.01 21.26 6,118.63 7,843.64
Difference 691.40 5.99 1,723.92 2,415.32

Table 6. Cost increases (USD/TEU) associated with the different delays

In cases like strikes or other operational or administrative problems at ports, the total increase
in operating costs should be compared to the cost of identifying the origin of the delays.
Although there is no direct internalization of the time opportunity costs by the shipping
companies, the readjustments in the use of the different transport modes and routes can be
considered a response to the pressure to reduce costs and time by the clients.

A sensitivity analysis carried out reducing the amount (287.8 USD) that the customer is
ready to pay for the reduction of one day in transit, reveals that the final outcome obtained
remains stable unless the reduction in this amount goes beyond a 50% reduction.

Should the problem require a public administration response, such as in cases of
infrastructure damage due to terrorist attacks or natural disasters, decisions from the public
sector may consider those weekly total generalized costs.

A third simulation is carried out by limiting the fleet’s CO> emissions. In the baseline
simulation there are no delays and no limits imposed on CO> emissions. In that scenario the

parameter € in [27] is named £S!. Now the emissions are limited to 80% of £?!, adding an
additional constraint to the model:

g6mr < (.8 gbst [28]
where €™ corresponds to the total emissions of the fleet in this second simulation. The Figure

4 shows the results:
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Figure 4. Emissions reduction. Unitary cost-time trade-off for imports

As displayed, a reduction of the fleet’s CO2 emissions implies a decrease in the operating
costs and an increase in the transit time, implying that the customers face a time opportunity
cost that is not compensated for by the reduction in operating costs; therefore, generating an
increase in total costs.

When the emphasis is given to cost minimization (i.e. the weight of operating costs is much

higher than that attached to the total time involved), the slowest vessels are chosen, leaving no
room therefore for further reductions in speed in order to reduce CO, emissions. However,
already from an equal weighting of the cost-time criteria, the model is capable of incorporating
a 20% reduction in total emissions, and the new trade-off curve starts to diverge from the
baseline. As can be observed in Table 7, in this emissions reduction scenario the liners are saving
3.95% of their operating costs whereas the time opportunity cost borne by the importers
increased by 7.27%, with a corresponding 5.13% increase in total costs:

. Operative costs . ] . Generalized cost
0,
CO; reduction (%) impact ($) Time (days) Time Opportunity cost ()
0 1,033.61 15.27 4,394.71 5,428.32
20 992.81 16.38 4,714.16 5,636,97
Difference -40.8 1.11 319.45 278.65

Table 7. Costs (USD/TEU) associated with emissions reduction
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As Table 8 indicates, the relative weight of the fuel costs is the main cause of the positive
impact caused by emissions reduction on the liner’s operative costs. Slow steaming implies a
larger fleet in operation but the decrease in fuel consumption offsets the increase in the residual
cost:

20% emissions reduction Benchmark Difference
Fuel costs (USD) 40,384,171.67 49,830,642.15 | - 9,446,470.48
Remaining costs (USD) 151,935,315.34 150,800,527.73 1,134,787.61
Total (USD) 192,319,487.01 200,631,169.88 | - 8,311,682.87

Table 8. Relative weight of fuel costs

The total CO> emitted by the fleet changes from 366.82 tons in the baseline scenario to
293.08 tons in the emissions reduction scenario. The evaluation of the marginal impact
associated with the reduction of one ton of CO; is presented in Table 9:

TOTAL
Operative Costs | Time Opportunity Costs Generalized Costs
Total cost difference (USD) - 7,919.606.40 62,007.800.60 54,088,194.20
CO; reduced (tons) 73.74 73.74 73.74
USD/Ton CO, - 107,399.06 840,897.76 733,498.70
Weekly demand (TEU’s) 194,108 194,108 194,108
Marginal cost (USD/ ton CO,/TEU) | - 0.55 4.33 3.78

Table 9. Impact of the unitary reduction of CO, emissions

As can be seen, the total abatement operative cost per ton of CO: is -107,399.06 USD,
implying that on average the liner sees a positive cost impact per TEU equivalent to 0.55 USD.
Since imposing limits on CO; emissions without any other technical modification to the ships
means sailing speed reductions and consequently, savings in fuel consumption, the cost of these
measures is borne exclusively by the importers who see how their time opportunity costs
increase by 4.33 USD/TEU, due to the increased delivery time.

The sensitivity of the results with respect to the CO» reduction is illustrated in Figure 5 below
where the cost components for the operating cost (liner) and time opportunity cost (consumer)
are illustrated. A reduction below 35% leads to an infeasible outcome since no vessel category
can obtain further savings through speed or size. As seen in the Figure, environmental
restrictions are hitting the customer hard whereas the shipping company benefits, both in
relative and absolute terms. A maximal reduction of 35% in CO: leads to a 7.1% decrease in
operating cost and 18% increase in the cost of time for the importer.
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Figure 5 Cost components (operating cost, time cost) vs CO2 reductions.

From the liner’s point of view, these limitations have the same effect as the slow steaming
policies that have been applied in recent years to save fuel. The customer’s perception, however,
can be different. In both cases longer transit times can have a negative effect on their perception
of the carrier’s service quality but in the case of slow steaming it is the liner who is responsible
for the delays, whereas the emission restrictions are imposed by public authorities.

6. Conclusions

The value that the customer assigns to delivery time plays an important role in transport
mode selection, therefore, the incorporation of operating time in the objective function is a
valuable improvement. Shorter product lifecycles, increased retail competition and impatience
in customer preferences are all signs of this tendency. Most of the general supply chain
management strategies in the recent past have emphasized coherence between the operational
features of the physical chain and the competitive features of the business, evoking strategies
such as responsiveness, agility and JIT.

Our model fills a gap between the maritime transport literature, which continues to focus on
cost minimization, and contemporary supply chain concerns. The numerical results highlight
the non-linear tradeoff in time-cost performance, indicating the consequences that a liner-
dominated policy might have on importers’ inventory, ordering and customer service
performance.

The second important contribution that the model makes is to quantify the goal conflicts with
respect to environmental sustainability policies. The results here clearly show the correlation
between the emission reduction policy and the liners’ interests, contrasting with the importers’
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increasing costs in terms of time. In our setting of no technological changes, this finding predicts
maritime industry support for general international reductions in CO2 emissions whereas the
opposite might be true for manufacturers of high-technology and perishable goods. On the other
hand, the competitive pressure from end customers may create an incentive for carriers to invest
in new technologies to reduce emissions without influencing the transport time; that is, the
general cost of the routes.

The perspective in the current model is that of a central planner, ignoring the decentralized
decision making of the individual liners, port operators and shippers facing market interaction
through prices and other communication. The intention with this simplification is to focus
attention on the crucial trade-off between cost and time at the highest level, the qualitative
conclusions of which remain valid even in the decentralized scenario. Further research might
investigate whether the solutions obtained in our centralized model are also stable equilibria in
a market equilibrium model.

Other areas of further study might focus on port congestion. The sustained increase in port
traffic is forcing a continuous process of investment in equipment to keep handling times at
acceptable levels. Traffic distribution studies between different ports on the main maritime
routes associated with the analysis of queuing phenomena produced by demand peaks and
consequent congestion, would contribute to a better allocation of port resources.
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APPENDIX A

== Route R 11: SHA-SEA-LAX-OAK - - - -SHA

—* Route R 12: SHA-BLB-NYC-ORF-HOU-MIT- - - -SHA

4= Panama Canal

Figure A. 1. Intercontinental maritime routes

=== Route R 13: OAK-BLB-MIA-HOU-MIT-LAX - - - -OAK

4= Panama Canal

Figure A. 2. Coast to coast maritime route.
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Cap, Maximum capacity of each ship type

c{j’sr Berth occupancy charges at each port per ship type

ccgmale Tariff applied to the number of TEUs on board the ships traversing the Canal
cegnalv Tariff applied to the ships transiting the Canal according to their capacity
g Call fee for entrance at each port per type of ship

51{ Fuel consumption per type of ship

ke Voyage costs per ship and route

¢l Rail specific fixed voyage cost per train and route

cP" Fixed operating cost per ship type

p Loading cost at each port

Cp Discharging cost at each port

Cp Transhipment cost at each port

c"f Average rail freight cost of the US railway system

d Destination ports

doa Number of containers transported between origin and destination ports
gemr Limited emissions parameter

E,f actor Emissions factor

€ Emissions parameter

gbst Baseline emissions parameter

5 Containers stowed on board the ships per origin, route and port position
L. Set of port indices on each route
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dis
ri

fuel
v

Pri

fix

fix
tr,i

Sub-set of port indices of the last port of call (per route) before the Canal transit
Set of port indices referred to a specific port on each route

Number of ships per route

Number of ships per type and route

Maximum round-trip time in weeks

Maximum round-trip time in hours

Two times the maximum capacity of a ship

Two times the maximum capacity of a ship

Total number of ports of call on each route

Origin ports

Ports

Length of each leg

Price of fuel per type of ship

Set of ports

The ith port of call on each route

Ship routes

Set of ship routes

Sub-set of set of routes including the Panama Canal
Sub-set of rail routes

Sailing speed

Sailing time

Pilot time necessary for port entrance
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trans
tp

Ttst

T trans

Zyipy

Estimated average time of transshipment operations

Average time per ship needed for loading/unloading one TEU at each port
Number of containers onboard multiplied by the route sailing time

Average time of transshipment multiplied by volume of transshipped containers
Type of ship

Set of ships

Sub-set of candidate ships that can be deployed on a route

Binary variable

Loaded containers per origin, route, and port position

Unloaded containers per origin, route, and port position

Total number of containers handled per ship type, route, and port position

Table A. 1. Notation

Ship capacity TEUS's 5,000 8,000 10,000 12,000 18,000
Vessel tariffs

(USD/ship) 30,000 40,000 50,000 60,000 90,000
Cargo tariffs (USD/TEU) 40 40 35 35 35

Table A. 2 Applied Panama Canal tariffs.
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