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Abstract

This Master Thesis is related to the classification of medical hyperspectral (HS) data. The
objective of this Master Thesis is to design a semi-supervised algorithm to carry out the labelling
of the new acquired hyperspectral (HS) images, with the goal to incorporate these data in a
supervised classification scheme. To develope this Master Thesis, a database obtained at the
University Hospital Doctor Negrin was employed. This HS database is composed by 26 HS cubes
belonging to a total of 16 different patients diagnosed with Glioblastoma primary brain tumour,
where the test set consisted of 6 captures corresponding to 4 patients. The images were labelled
with 4 different classes: normal tissue, tumour tissue, hypervascularized tissue, and background.

The main idea is to solve the problem that arises in these operating rooms, where there is a
previously labelled database and the new data acquired from the patient who is undergoing
surgery. The objective is to include this data from the current patient to the database with which
the classification model is trained and generated. With this proposal it is possible to generate a
learning model using the labelled data obtained in previous surgical interventions and the
unlabelled data of the current patient. The main goal is to be able to improve the classification
results by including data from the new patient.

To carry out the automatic generation of the current patient labels, it was decided to use the
k-means algorithm. The chosen method uses the Euclidean distance by default, but a preliminary
study was carried out to select the distance metric that better fits our database. According to this
study, the cosine distance was chosen. Subsequently, to optimize the algorithm performance, a
study was made to select the value of the parameter k.

Once these parameters have been selected, the current patient data are automatically labelled.
Labelling was done in two ways, first looking what is the majority class for each cluster and then,
with the proviso that only those clusters containing more than 60% of the same class will be taken.

These data are merged together with the database of previous patients (which are annotated
by skilled neurosurgeons) in a Support Vector Machines (SVM) classifier to generate the model
and subsequently evaluate its performance. Due to the high computation times of SVM training,
the same procedure was developed with the Random Forest (RF) algorithm, where a study was
carried out to evaluate the number of trees to be used and the parameter k was redefined. With a
k equal to 15 and a number of trees of 100, the data were evaluated.

Since most clusters were identified as being of the background class, it is proposed to achieve
the same procedure, but using only the 3 clusters that best represent the normal tissue,
hypervascularized tissue and the background class in the generation of the current patient labels.
All results were evaluated with various evaluation metrics, including the kappa coefficient, which
is useful both for multiclass cases and when classes are unbalanced.



Resumen

Resumen

Este Trabajo Fin de Master estd relacionado con la clasificacion de datos médicos
hiperespectrales (HS). El objetivo principal es desarrollo de un algoritmo semi-supervisado para
poder realizar el etiquetado de las nuevas imagenes hiperespectrales (HS) adquiridas, con el
objetivo de incorporar estos datos al esquema de clasificacién supervisada. Para la realizacion se
utiliz6 una base de datos obtenida en el Hospital Universitario Doctor Negrin. Esta base de datos
de imégenes HS esta compuesta por 26 cubos HS pertenecientes a un total de 16 pacientes
diferentes con un tumor cerebral primario de glioblastoma, donde el conjunto de prueba consta
de 6 capturas correspondientes a 4 pacientes. Para realizar el etiquetado de cada una de las
imégenes, se definieron 4 clases: tejido normal, tejido tumoral, tejido hipervascularizado y la clase
background.

La idea principal es la de poder solventar el problema que surge en los quir6fanos, donde
existe una base de datos previamente etiquetada y los nuevos datos adquiridos del paciente que
esta siendo intervenido. El objetivo es el de lograr con este estudio incluir estos datos actuales del
paciente que se encuentra en la sala de operaciones a la base de datos con la que se entrena y se
genera el modelo de clasificacion. Con esta propuesta se consigue generar un modelo de
aprendizaje utilizando tanto los datos etiquetados obtenidos en intervenciones quirtrgicas
previas como los no etiquetados del paciente en cuestion. El objetivo principal es poder mejorar
los resultados de la clasificacién al incluir datos del nuevo paciente.

Para realizar la generacion automatica de las etiquetas del paciente actual se decide utilizar el
algoritmo k-means. El método elegido utiliza la distancia euclidiana por defecto, por lo que se
realiza un estudio preliminar para seleccionar la distancia que mejor se adapta a nuestra base de
datos. Se escogié la distancia coseno. Posteriormente, para optimizar el rendimiento del
algoritmo, se realizé un estudio para seleccionar el valor del parametro k.

Una vez seleccionados estos parametros, los datos del paciente actual se etiquetaron
automaticamente. El etiquetado se realizd6 de dos maneras, primero teniendo en cuenta la clase
mayoritaria que conformaba cada uno de los cltsteres y luego, con la condicion de que sélo se
utilizaran para la generacion de etiquetas aquellos cltsteres que contuvieran al menos un 60% de
algunas de las clases.

Estos datos etiquetados junto con la base de datos de los pacientes previos (que son
etiquetados por neurocirujanos expertos) son introducidos en el clasificador Support Vector
Machine (SVM) para generar el modelo y posteriormente testearlo. Debido a los altos tiempos de
computo, se elabord el mismo procedimiento con el algoritmo Random Forest (RF), donde se
realiz6 un estudio para evaluar el nimero de arboles a utilizar y se redefini6 el pardmetro k. Con
una kigual a 15 y un nimero de arboles de 100 se evaluaron los datos.

Debido a que la mayoria de los clasteres se identificaron como de la clase background, se
propuso realizar el mismo procedimiento, pero utilizando en la generacion de las etiquetes del
paciente actual solo los 3 clister que mejor representen las clases tejido normal, tejido
hipervascularizado y la clase background. Todos los resultados fueron evaluados con varias
métricas de evaluacidn, incluido el coeficiente kappa, que es 1til tanto para los casos multiclase
como para cuando las clases estan desbalanceadas.
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Chapter 1: Introduction

This chapter presents the context, objectives and methodology to be followed in this
Master Thesis. In addition, a detailed description of the structure of the document is
provided.

1.1 Context

This Master Thesis is developed within the research lines for the acquisition and
processing of hyperspectral (HS) images (HSI) that is currently being carried out by the
Integrated Systems Division (DSI) of the Institute of Applied Microelectronics (IUMA)
of the University of Las Palmas de Gran Canaria (ULPGC), specifically in the field of
medical diagnosis.

Furthermore, the ITUMA has been involved in several projects funded by public and
private entities, in the field of HSI processing and its application. Among these projects
are these two, being the first one financed by the European Commission:

e HELICoiD Project (CNET-IST-618080)

HELICoiD is a European collaboration project between a total of four universities
(The University of Las Palmas de Gran Canaria, Technology and Medicine of London,
Imperial College of Science, Association pour la Recherche et le Développment des
Methodes et Processus Industriels de Paris and Polytechnic University of Madrid),
three industrial partners and two hospitals. This project is financed by the Executive
Research Agency (REA) of the European Union and was coordinated by the IUMA.

Its main objective was to apply HSI techniques to differentiate between healthy and
tumour tissue during surgical procedures. This project developed an intraoperative
experimental configuration based on non-invasive HS cameras connected to a platform
running a set of algorithms capable of discriminating between healthy and pathological
tissues in the brain. The database provided by this project will be used in this Master
Thesis.

e ITHaCA Project (ProID2017010164)

The ITHaCA project (IndenTificacion Hiperespectral de tumores CerebrAles), is a
multidisciplinary project consisted of engineers, neurosurgeons and pathologist. It has
been funded by the Canarian Agency for Research, Innovation and the Information
Society (ACIISI) of the Canary Islands Government and was promoted by the IUMA and
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FUNCANIS (Canarian Foundation for Health Research), under the coordination of
IUMA. The aim of this project was to perform a real-time classification of the brain
tumour area using HSI.

1.2 Objectives

The main objective of this Master Thesis is to design a semi-supervised classification
system for the detection of brain tumours using HSI. Likewise, the main objective is
broken down into the following partial objectives, that must be achieved during the
development of the project.

e Study of the state of the art.

e Analysis of patient samples.

e Propose and implement semi-supervised algorithms for HS data.

e Study the evaluation metrics to evaluate the classification performance.

e Determine the technique applied to the semi-supervised classification that
offers the best precision of the results.

1.3 Methodology

The methodology that will be carried out in this Master Thesis to achieve the
objectives consist of the following steps:

- Athorough investigation of the scenario and the tools that will be used during
the development of the work to understand its operation. To this end,
emphasis is placed on the basic concepts of HS and its applications.

- To investigate the different semi-supervised classification techniques to be
used for his in this context.

- Research the different evaluation metrics to use. We select the ones that best
adapt to the comparison we want to make.

- To analyze and evaluate the results obtained.

1.4 Document organization

The document of this Master Thesis is structured in the following chapters:

Chapter 1: Introduction. The objectives of the project are exposed, and a general
introduction is made about the scenario and the tools used in this Master
Thesis.

Chapter 2: State-of-art. The basic concepts necessary for the development of the
project are explained. Likewise, a study of the different applications of
HSI is made. Finally, a brief study of the different types of classifiers is
carried out.

Chapter 3: Hyperspectral Image Database. This chapter exposes the procedure
applied to the captures of HS images of brain tumours. As well as the
database that will be used during the development of this project.
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Chapter 2: Introduction

Chapter 4:

Chapter 5:

Chapter 6:

Methodology. This chapter explains the steps implemented to carry out
the design of the semi-supervised algorithm.

Experimental results. This chapter analyses the results obtained with
the semi-supervised algorithm designed in this Master Thesis.

Conclusions and future lines. The conclusions are presented from the
in-depth analysis of the results. In addition, possible future directions for
this final work are considered.
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Chapter 2: State-of-the-art

2.1 Introduction

In this Master Thesis, the classification of brain tumours using semi-supervised
algorithm is proposed. In this section, fundamental concepts will be introduced, which
are essential to understand the development of this thesis. First, it is necessary to
understand what hyperspectral (HS) imaging (HSI) are and their different application
fields since this type of images will be used during the development of this thesis.
Secondly, different methods of classification and distances will be explained. Finally,
several studies where semi-supervised algorithms are applied will be analysed.

2.2 Hyperspectral images

Hyperspectral Imaging (HSI) is also known as imaging spectroscopy. The word
"imaging” stand for the representation of the appearance or morphology of the object,
and the term “spectroscopy” indicates the study of the interaction of electromagnetic
radiation with different materials. Therefore, HSI contains both the spatial (x, y) and the
spectral (A) information of a given object.

This technology can acquire hundreds of contiguous spectral bands, obtaining the
spectral signature of any material, as shown in the Figure 2-1 where the spectral
signature extracted from a brain tumour is shown. The spectral signature identifies
different types of materials[1] by measuring the radiation reflected by each material at
each wavelength. This thesis tries to identify between four tissues: normal tissue,
tumour, blood vessels and background.
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Figure 2-1. Spectral signature and hypercube of brain tumour.

All the information sampled with HSI is stored in a three-dimensional (3D) data
structure called HS cube. The axis X and Y correspond to the spatial information, which
indicate the position of the pixels, while A shows the different wavelength that compose
the spectral information.

HSI allows to obtain information about the observed object beyond what is possible
to perceive to the naked eye. The spectrum of visible light ranges from 400 nm to 750
nm, and the eye perceives each of these wavelengths as a different colour (red, green and
blue). On the contrary, HS images are able to sample hundreds of spectral bands, from
the ultraviolet (UV, 200 nm) to the infrared (IR, 2500 nm) [2][3][4].

This type of technology was created for remote sensing applications. However, HSI
is currently used in several applications, such as remote sensing in the field of the
meteorology [5], the agriculture [6][7] or the environmental pollution[8]. It also
supposes a solution for the food industry [9][10][11][12] or medical diagnosis[13][14]. In
this thesis, this technique will be applied in the medical field, specifically as an aid tool
for the detection of human brain tumours.

2.2.1 Medical applications

In the medical field, HS images have represented a technological breakthrough due
to their non-invasive nature and because they provide useful information for the
diagnosis of diseases. For example, for the assessment of oxygenation, perfusion and
haemoglobin in various tissues during abdominal surgery and the identification of
malignant breast tissues [15].

The work by Moulay Y. [15] presents a system that provide colorized images for
surgeons during pancreatoduodenectomy (PD). These images indicate the different
tissue characteristics (tissue oxygenation, organ haemoglobin index and lactate). The
aim of this study is to contribute to the decision of the best surgical approach during the
PD.

Table 2-1 shows liver and stomach HSI measurements in patients with celiac artery
stenosis (CAS) before and after gastroduodenal artery (GDA) clamping.
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Table 2-1. HSI measurements of liver and stomach.

Patient No. Before GDA Clamping 30 min after GDA Clamping
N S5t0, OHI Lacin S5t0, OHI Lac. in Additional Surgical
- in % (0-100) mmol/L in % (0-100) mmol/L Procedure
Pat. No. 1
. 63 18 79 42
Liver Type A %9 33 0.6 3 . 0.7 none
Stomach
Pat. No. 2
. 70 39 75 42
Liver Type A 91 48 0.8 94 44 0.8 none
Stomach
Pat. No. 3 *
Liver Type B 8 82 11 o1 8 2.3 dissection of MAL
98 35 92 79
Stomach
Pat. No. 4
Liver TypeC 67 74 12 59 3 1.2 dissection of MAL
91 60 91 70
Stomach

Figure 2-2 shows the comparison of a normal and a color-coded image of liver
oxygenation which can help the surgeon avoid ischemic complications.

Figure 2-2. Color-coded images of the tissue oxygenation in % (Right) and color image (left).

Another study by Aref, Mohamed H. [16], presents a system capable of differentiating
normal and malignant breast tissues. The HSI is used to measure the diffuse reflection
(Ra) of breast samples (Figure 2-3).
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Figure 2-3. Raw data of the Rd of normal (black line) and cancer (red line) sample.
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After the selection of the spectral image, the custom algorithm is applied to increase
the image contrast and delineation of tumour regions as shown in Figure 2-4.

= -1

100 200 300 400
X-axis

Figure 2-4. Contour delineation of tumour and normal tissue in breast sample.

The results of the samples were validated by comparing them with the pathological
reports. The application of this technology in the medical field makes it possible to avoid
invasive techniques such as biopsies. As a result, a more accurate diagnosis of many
diseases can be achieved. The real challenge is to design algorithms capable of extracting
the data in real time.

2.3 Machine Learning Algorithms

Machine Learning algorithms are used to extract information from data. Depending
on the type of learning that the algorithm uses to perform the data analysis, there are
three classes: supervised, semi-supervised and unsupervised algorithms.

Supervised learning algorithms employ a set of data with known labels to generate a
model in order to classify new data. Respect to the unsupervised learning, the technique
cluster the data in different groups applying a similarity criterium. In the case of semi-
supervised learning, to generate the predictions, both labelled and unlabelled data [17]
are employed together.

2.3.1 Supervised learning algorithms

Supervised learning algorithms take as input data whose labels are known to realize
predictions. Thus, from the data in the training set, the algorithm can generate a model
which performs predictions for a new data sample.

In a conceptual way, the supervised classification can be formulated as an
optimization problem. Consider XeRR,as the domain of the attributes and the labelled set
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G ={G1,G2,...,Gk}. The aim is to find a mathematic function known as a classifier that
allows the mapping h(-):X — G, which optimizes a suitable measure of predictive
capacity when applied to entities with unknown groups data [18].

Some examples of supervised learning algorithms are: Support Vector Machine
(SVM) and Random Forest (RF) among others [19][20][21].

2.3.1.1 Support Vector Machines algorithm

SVM is a supervised binary classification algorithm based on the principle of
structural risk minimization. A simple way to develop a binary classifier is to generate an
optimal hyperplane as a decision surface, which divides the data according to each
feature with a maximum margin of separation [22].

It proceeds from a separate training data set C = {(xy, ¥1) ..., (xp, ¥)} which consist of
an ordered sequence of data (x;) and labels (y;), where x; € R% and y; € {+1,—1} that
are defined as a separating hyperplane whose lineal function is able to separate the data
of the set given by the expression (2.1), where w; ER V;=1,...,dyb € R

D(x) = (Wyxy + - +wyxg) +b={(w,x)+ b (2.1)

The hyperplane must fulfil the inequalities (2.2) and (2.3)

w,x;)+ b=0if yi=+1Vi=1,..,n (2.2)
w,x)+ b=0if yi=-1 vi=1,..,n (2.3)
Where if y; = +1 the class is positive and, otherwise, when y; = —1 the class is
negative.
A
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o o s eparating hyperplane
Class -1
wrxtb<-1 . W
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Figure 2-5. Separating Hyperplane (linear separable case).

Figure 2-5 shows an example of the SVM algorithm, which employs the support
vectors of the training data to develop the decision surface. From a practical point of
view, the maximum margin has proven to have a good generalization capability, avoiding
the problem of overfitting to the training examples [23].

2.3.1.2 Random Forest

Within the decision trees that recursively segment the feature space and assign a label
to each resulting partition there are the RF. This decision allows to classify the new data
points [24].
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This type of supervised algorithm generates several decision trees, each tree gives a
prediction, and it is the forest that chooses the most repeated prediction.

Test Sample Input

Tree 1 Tree 600

¢ o

/

Prediction 1 Prediction 2 (...) Prediction 600

‘ Average All Predictions |

Random Forest
Prediction

Figure 2-6. General structure of the Random Forest algorithm.

As it can be seen in Figure 2-6, the forest is the one which selects the average of the
results of all the trees. RF has been proven to offer high generalization performance and
high computational efficiency in HSI [25].

2.3.2 Unsupervised algorithms

Unsupervised learning is a kind of automatic learning algorithms, which the dataset
is mined without the requirement of human intervention. In other words, information
can be extracted from the input data even when the labels are unknown.

The most common algorithms are clustering methods, which are based on exploring
the data and finding patterns or clusters. Some examples of clustering algorithms are
spectral clustering, k-means and k-medoids clustering, or Gaussian mixtures models
[26].

Original unclustered data Clustered data

Figure 2-7. Visual example of data grouping by the clustering method
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In Figure 2-7, an example of the clustering algorithm is shown. In the first image
(Original unclustered data, Figure 2-7) at least two groups of points can be identified
with the naked eye. The first, in the lower right quadrant and the second made up of the
rest of the points. The second image (clustered data, Figure 2-7) shows the result of using
a clustering algorithm, where three different data sets are identified.

2.3.2.1 K-means algorithm

The k-means method assembles the existing data into groups. It looks for the
similarity levels between the different groups to have a low value. This similarity is
calculated from the mean value of the group or centroid [27].

This algorithm has an input parameter k, which represents the number of clusters.
K-means partitions a set of n objects into k clusters looking for high intra-cluster
similarity and low inter-cluster similarity. From a given data set, it associates each point
to the nearest centroid.

The K-means algorithm consists of the following steps:

1. The k centroids are initialized with random data samples from the data set.
2. A similarity metric between each sample of the dataset and the k centroids is
calculated.

Each data sample is assigned to the cluster whose centroid is the nearest.
The value of the centroid is updated to the mean value of the data composing
the cluster. This last stage is performed until the centroids do not move or
change, elsewhere repeat from 2 [28].

B w

2.3.3 Semi-supervised algorithms

In supervised learning, the Machine Learning model is generated from a large,
labelled training set. However, in many practical classification applications the number
of available unlabelled samples is larger, since the collection of labelled samples is
complicated. The assignment of labels to these unlabelled data is a process that requires
human effort and experience. For this reason, it is interesting to develop algorithms that
can use both labelled and unlabelled samples in the classification process to obtain high-
performance classifiers [29].

In this case, semi-supervised learning (SSL) algorithms are interesting to be applied
when the number of labelled data is limited, and there are available unlabelled samples.
SSL is a powerful tool to generate learning models when the number of labelled samples
is low [30]. Most SSL approaches rely on the design of specialized learning algorithms to
effectively use the data. Generally, supervised learning algorithms are the ones selected
to generate the models, so SSL aims to improve the performance of the selected
supervised algorithm using the available unlabelled data [31][32] [33]. In the literature,
the most important types of SSL are:

- Generative models, which involve the estimation of conditional density p(x|y)
[34].

- Low density separation algorithms, which seek the maximum margin of the
labelled and unlabelled samples simultaneously, such as inductive and
transductive SVMs [35].
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- Graph-based methods, where each sample scatters its labelled information to its
neighbours. This is repeated until a steady state is achieved across the entire
dataset [36][37].

The use of HSI have increased in many application fields such remote sensing
[38][39][40], military, agriculture or medical field [41][16]. However, assigning a label
to each pixel is a difficult task due to the shortage of labelled samples. For this reason, it
is becoming necessary to design new solutions such as the implementation of semi
supervised algorithms.

2.3.3.1 Applications/Examples

The following paper focuses on a semi-supervised classification and aims to carry out
a study of tomatoes using the segmentation: vine tomatoes, background, stalk and flesh.
The first step in the design is the unsupervised classification of the hypercube with three
different algorithms: k-means clustering, the agglomerative hierarchical and the
multivariate Gaussian Mixture Models (GMM). The second step is a classification of new
data in a supervised way with three different techniques: SVM, Partial Least Squares
Discriminant Analysis (PLS-DA) and Soft Independent Modelling of Class Analogy
(SIMCA). Finally, the last step is the evaluation phase where a supervisor should decide
if the segmentation is acceptable [42].

From the results obtained from the unsupervised learning approaches, the 5 spectra
of pixels with the most information were selected then, they are used to build the
supervised model.

Table 2-2. Results of the three unsupervised techniques.

k-means clustering Hierarchical clustering GMM Total

Result (%) 83.33 55.56 38.89 86.11

On the one hand, the first table (Table 2-2) shows the results of the three
unsupervised techniques. The k-means with the square Euclidean distance achieved the
best result. On the other hand, the best supervised method was the PLS-DA with an
accuracy of 97%, what is shown in the table Table 2-3.

Table 2-3. Results of the three supervised techniques.

1 Training image 2 Training images
Accuracy Time (s) Accuracy Time (s)
SVM 0.89 0.83 0.96 1.23
PLS-DA 0.92 0.49 0.97 0.52
SIMCA 0.82 1.27 0.90 1.35

For the former example, the semi-supervised segmentation algorithm that has been
elaborated with the combination of the supervised and unsupervised techniques have
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achieved for this database a correct classification rate of 97%. In this case, the semi
supervised approach improved the results of the supervised classification.

In the study performed by Tatyana V. Bandos, a semi-supervised graph-based method
was proposed. This design is intended to produce smoother classifications. To do this,
the authors exploit both the spatial and contextual information of the images through
composite kernels (Spatial, spectral, stacked, summation and cross-information) [37].
They used a reduced training with 3, 5, 10 samples per class through 3-fold cross
validation. The design was tested with whole image where better integration of the spatial
information is achieved by the graph-based (Figure 2-8).

Stacked Summation

Cross-info

Spectral

Spatial

Graphs

Figure 2-8. Classified images with the SVM-based and the graph-based with 5 training pixels by class.

The evaluation metric used was the hit rate. The Table 2-4, shows the overall accuracy
(OA) obtained for each kernel as well as the number of labelled samples per class. The
results are shown as SVM/GRAPH. As it can be observed for the graph method, a better
OA value is obtained respect to the SVM method.

Table 2-4. Overall Accuracy (OA%) obtained with SVM and Graph methods.

|

No. training samples per class

Composite kernel || 3 5 10
Spectral 58.43/60.28 58.70/60.54 67.66/69.17
Spatial 51.77/52.42  55.96/57.69  65.49/66.60
Stacked 52.01/53.48 55.68/57.18 67.02/68.16
Summation 61.26/62.39 64.89/66.86 69.43/71.32
Cross-information 64.57/66.09 65.02/67.13 66.36/67.87

2.4 Similarity Metrics

In this Master Thesis, different similarity metrics have been used. For this reason,
this section explains different types of mathematical distance metrics that allow to
calculate the similarity between data samples. The most commonly used mathematical
models are: Minkowski, Euclidean, Cosine, City-block and Chebyshev distances.
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2.4.1 Minkowski distance

This distance is calculated using the following formula (2.8), where dg; is the
Minkowski distance between the vectors x, and y;,:

p n
dst = > g = yyl?
j=1

The Table 2-5 shows the special cases of the Minskowski distance [43].

(2.8)

Table 2-5. Special cases of Minskowski distance.

Manhattan or City-block
p=1 .
distance
Minskowski Distance p=2 Euclidean distance
Supremum or Chebyshev
p=® .
distance

This distance can be considered a generalization of the Euclidean and Manhattan
distances.

2.4.2 Euclidean distance

The Euclidean distance is used to calculate the distance between two points in a two-
dimensional space, a smaller value indicates more similar points [44].

The Euclidean distance is defined (2.4) as follows:

dzst = (xs - yt) (xs - yt), (24)

Where dg; is the Euclidian distance between the vectors x; and y,, which is given in a
data matrix. It is a special case of the Minkowski distance, but with p=2 (see section
iError! No se encuentra el origen de la referencia.). Its use is recommended
when the variables are homogeneous and are measured in similar units.

2.4.3 Cosine distance

The Cosine distance (2.5) calculates the angle between two vectors projected in a
multidimensional space. This measure deals with the magnitude and the result is
confined by the interval (-1, 1) [45].

This distance is calculated as follow:

X Y,

T (2.5)
/ (xs x) (¥, ¥,)

It is recommended because if the vectors are similar and separated by Euclidean
distance, due to the large size of the data, they may still be oriented closer together. The
Cosine distance is related to the Spectral Angle similarity metric, which is commonly
used in HSI applications [46][47].

dy = 1-
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2.4.4 City-block distance

The City-block or Manhattan distance calculates the exact distance between two
points and not the estimate of the shortest distance[48].

This measure is represented by the following equation (2.6):

n
de= ) Tty =y,
=1

It is the Minkowski distance with p=1. In most cases this distance produces similar
results to the Euclidean distance.

(2.6)

2.4.5 Chebyshev distance

The Chebyshev distance gives the maximum difference and is a special case of the
Minkowski distance with p=® [49]. It is determined by the next formula (2.7):

dst = max;{|xs; — y¢;1} (2.7)

2.5 Summary

In the medicine field, collecting labelled samples is often costly, since label
assignment is a process that requires human effort and expertise, in this case, from
medical experts. For this reason, it is an interesting challenge to develop algorithms that
can use both labelled and unlabelled data for classification.

This chapter has presented the fundamental concepts that must be taken into account
to understand the development of this thesis. It was considered necessary to understand
both the composition and specifications of HSI systems. For this purpose, a brief
introduction of the different fields of application was made to understand the scope of
this technique. In addition, different types of algorithms and classifiers that will be used
in this Master Thesis to classify the content of a HS image using SSL are presented. SSL
is a promising technique in cases where the proportion of labelled data instances is small
compared to the unlabelled instances.
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Chapter 3: Hyperspectral image
database

3.1 Introduction

This chapter describes the database used to evaluate the classification of HS with the
SSL algorithm designed in this Master Thesis. Likewise, the procedure carried out to
obtain the images in the HELICoiD research project is described.

HELICoiD was a European project of the Future and Emerging Technologies program
(FET-Open), within the framework of the seventh Framework Program of the European
Union [50]. This project applied advanced hyperspectral image classification techniques
for the detection of brain tumours. The aim was to generate a demonstrator capable of
discriminating between healthy and tumour tissue in real time during neurosurgery
interventions. Thus, an intraoperative experimental system was developed which allows
neurosurgeons to confirm the complete resection of the tumour tissue in real time from
maps indicating the area of the tumour.

3.2 HSI procedure

For HSI of the surface of the human brain during neurosurgical operations, the
hyperspectral pushbroom cameras selected were the Hyperspec® VNIR (Visual and
Near-Infrared) Series A model and the Hyperspec® NIR (Near-Infrared)100/U model.

Figure 3-1 shows the platform installed in the preoperative area of University
Hospital Doctor Negrin that was used in the HELICoiD project to acquire the images
with the selected pushbroom cameras. The illumination system is a 150 W Quartz
Tungsten lamp (QTH), with a broadband emission between 400 and 2200 nm, due to
the great homogeneity of its spectrum that it offers throughout the spectral range.
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Figure 3-1. HELICoiD demonstrator acquisition platform. (a, b) VNIR and NIR HS cameras
mounted on the scanning platform; (c-e) Light source QTH connected to the fiber optic system for the
transmission of light to obtain a light emission on the scanning platform; (f, g) stepper motor coupled
to the shaft and connected to the stepper motor controller to perform the linear movement of the
cameras; (h) Positioning of the camera used to identify the position of the field of vision of the cameras
(FOV); (i) The Up & Down system used to focus the HS cameras; (j) and (k) Manual pan and tilt systems
used to correctly orient the scanning platform [51].

On the one hand, in the Figure 3-1.a, Hyperspec® VNIR Series A model is presented
covering a spectral range from 400 to 1000 nm and is capable of capturing 826 spectral
bands and 1004 spatial pixels. On the other hand, the Hyperspec® NIR 100 / U model
ranges from 900 to 1700 nm, with 172 spectral channels and 320 spatial pixels is shown
in the Figure 3-1 b. Both are based on the linear scan technique (line scan), a method
used to obtain the hyperspectral cube. This method covers a spectral range of 400 and
1700onm (VNIR and NIR), where the most relevant spectral regions for the application of
this thesis are shown.

Finally, the sensor is a two-dimensional array of detectors, a spatial dimension and a
complete spectral one where the scene is captured in a single shot or frame. The
technique used by these cameras offers a compromise between spectral and spatial
resolution, as well as acquisition time [51].

3.3 Acquisition of HSI

The HELICoiD project has developed a demonstrator capable of simultaneously
obtaining two hyperspectral cubes. Figure 3-2 shows the flowchart of the project.
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Figure 3-2. Data acquisition and labelling procedure of HELICoiD project.

First, prior to the operation, the patient is submitted to a stereotactic imaging guide
(IGS) with compatible Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) scans that are loaded into the IGS system. Once the necessary tests have been
performed, general anaesthesia is applied to the patient, then an incision is made in the
scalp.

At that time, a craniotome is inserted and a craniotomy is performed, a part of the
skull bone known as the bone flap is removed. Images are captured after durotomy and
before the arachnoids and pia mater have ruptured. In case the tumour can be seen on
the surface, by visual appearance, two sterilized markers are placed in the shape of a
rubber ring, as seen in Figure 3-3. Thus, at the surgeon's judgment, both the tumour
position and the healthy part of the brain tissue are identified [52].

Figure 3-3. Pointer of the IGS system on the HELICoiD tumour marker located on the
exposed surface of the brain.
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Lastly, after using the demonstrator, several hyperspectral images were captured with
and without markers. These markers provide an area of the image where the pixels can
be labelled with the surgeon's prior assessment, and this is finally contrasted with the
pathology results [53]. Following the use of the demonstrator, a database of
hyperspectral images of the human brain in vivo is created in hyperspectral cubes.

3.3.1 Tissue resection

After the first hyperspectral image capture, the HELICoiD demonstrator is removed
from the surgical site. Subsequently, the neurosurgeons begin resection of the tumour
and take a sample of the tissue within the tumour marker. Tissue samples obtained from
the marker position are sent to the pathology laboratory for the final tissue diagnosis.
These samples will later be used as a reference for algorithm development.

3.3.2 Expert evaluation

Samples are sent to the Pathology Laboratory where they are histologically processed
and subjected to standard H&E staining and any other if it is required to establish a
definitive histopathological diagnosis. The only ones who can determine whether a tissue
within the marker is a tumour are neuropathologists. This is performed by analysing the
biopsies taken during surgery. The samples are diagnosed as tumour (subdivided into
type and grade) or normal brain (white or grey matter) [54].

3.3.3 Samples labelling

From the information provided by the pathologists, and using the MATLAB tool, some
pixels of each hyperspectral image were labelled (see Figure 3.4). In this way, the ground
truth for training the algorithm is generated. The pixels were labelled in four classes and
assigned a colour to each one: healthy tissue (class 1) represented by green colour,
tumour tissue (class 2) drawn in red, hypervascularized tissue (class 3) figured in blue
and the background (class 4) represented with the black color.

Figure 3-4. Screenshot of the HELICoiD labeling tool.

To carry out this Master Thesis a database subset of images from the HELICOiD and
ITHACA projects was employed. This HS database is composed by 26 HS cubes
belonging to a total of 16 different patients with Glioblastoma primary brain tumour.

In order to evaluate the design of semi-supervised algorithms for this thesis, the
database is divided into two sets. One set for the training (Table 3-1) and the other for
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testing (Table 3-2). The selection of images for the test set was based on the images that
contained the four classes with the aim of trying to predict both classes.

Table 3-1. HELICoiD labelled pixel train dataset.

Patient | Tmage (“-idthsxlz]:eight x #Labeled Pixels
ID D bands) Normal | Tumor | Hypervascularized| Background
4 2 389 x345x 128 4681 0 686 1.746
3 1 483 x 488 x 128 5937 0 1.709 18.960
7 1 582 x400x 128 7.449 0 1.033 0
1 460 x 549 x 128 2225 964 1.204 350
8 2 480 x 553 x 128 1.895 92 834 6.997
10 3 371 x461x 128 | 10.303 0 2.230 3.275
2 1 443 x 497 x 128 4365 820 8495 1306
- 2 445 x 498 x 128 6.413 3115 5407 7.200
13 1 208 x 253 x 128 1.735 0 82 453
14 1 317 x244 x 128 0 0 1 1.715
15 1 376 x 494 x 128 1.176 1.936 3.924 454
1 335x323x128 3944 0 185 9723
2 335x326x12 345 0 0 2.546
16 3 315x321x128 5366 0 192 1343
4 383 x297x128 1.110 64 970 703
5 414 x292 x 128 2591 0 377 4292
17 1 441 x 399 x 128 1.240 57 39 2.171
1 479 x 462 x 128 | 13.196 0 451 9552
18 2 510 x 434 x 128 4614 0 919 5427
19 1 601 x535x128 6437 0 1.267 1.743
20 1 378 x330x 128 1.541 3439 1.370 2180
1 452 x 334 x 128 3.165 0 720 4.406
21 2 448 x 324 x 128 2112 0 391 1518
5 433 x 340 x 128 832 0 1.423 1.088
. 1 597 x 327 x 128 2.803 0 934 3436
2 611 x527x128 8100 0 563 0
16 26 98.775 10.487 35.408 92.788
Total: 237.458
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Table 3-2. HELICoiD labelled pixel test dataset.

Patient | Image . Size ] #Labeled Pixels
(width x height x
ID ID bands) Normal | Tumor | Hypervascularized | Background
g 1 460 x 349 x 128 2225 964 1.204 350
2 480 x 553 x 128 1.895 92 834 6.997
12 1 443 x 497 x 128 4.365 820 8.495 1.306
2 445 x 498 x 128 6.413 3.115 5.407 7.200
15 1 376 x 494 x 128 1.176 1.936 3924 454
20 1 378x330x 128 1.541 3439 1.370 2.180
4 ] 17.615 10.366 21.234 18.687
Total: 67.902

Since the leave-one-out methodology has been used during the development of this
thesis, the remaining HS test images are also included in the training database (see
Chapter 4: 4.2.1 Leave-one-out Cross-Validation technique). Table 3-3 and Table 3-4
illustrate the RGB images and the gold reference of the patients who were included in the
test set.

Table 3-3. RGB of hyperspectral test set.

Op8C1 Op8C2 Op12C1
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Table 3-4. Ground truth maps of hyperspectral test set.

Op8C1 . Op8Ca
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3.4 Summary

This chapter has presented the procedure for the capture of hyperspectral images of
brain tissues. It is noted that, in order to obtain these images, the neurosurgeon must
follow a strict procedure to extract the images that are part of the database of this thesis.
For this reason, it is necessary to perform a craniotomy and extract some tissues (fibrous
covers) to reach the brain tissue that will later be indicated with the markers. Finally, the
samples were labelled obtaining a total of 26 HS cubes from 16 patients. The dataset was
divided into two sets: the training set composed by 16 patients and 26 HS cubes
(containing a total of 237.458 labelled pixels) and the test set (consisting of 6 captures
from 4 patients). This test set have a total of 67.902 labelled pixels of which 10.366
correspond to tumour samples.
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Chapter 4: Methodology

4.1 Introduction

In this chapter, the methodology followed to perform a semi-supervised classification
of our database is explained.

The objective of this Master Thesis is to design a semi-supervised algorithm. It is
decided to make a pre-labelling using the data set of previous patients to label the current
patient, with the goal of using the data for the current patient for the classification. The
idea is to simulate real cases in the operating room, where there is a previously labelled
database and the new acquired data of the patient who is going to receive the
intervention. The objective is to include this current patient data in the database with
which to train and generate the SVM and RF models.

First, the k-means method will be used to generate the labels of the current patient.
The chosen method uses the default Euclidean distance, so a preliminary study is carried
out to select the distance that better suits our database. The study has been performed
for the following distances: Euclidean, Cosine, City-block, Minkowski and Chebyshev.
The sample label generation decision is made in two ways. 1) By voting, this method
counts the label value given by each distance. For example, if three distances identified
that pixel belonged to the normal tissue class and two distances identified it as
background, the pixel will be labelled as normal tissue, label with value 1. 2) By the best
result, which selects the distance that best fits the database. In this case, the label is
assigned to the pixel based on the distance that obtained the smallest value. After
evaluating the results, the best selection method is chosen to determine the distance that
best suits our database.

Once the most suitable distance has been selected, based on the results of the k-
means method, the data are processed to find out to which class each cluster belongs.
First, it is decided which clusters are assigned to a class based on the majority. This
decision is initially made by the percentage of pixels which belong to the same class (the
cluster is assigned the class that has the highest number of labelled pixels for a certain
class). However, in this approach it may happen that there are clusters in which there is
a high number of pixels of various classes. This could lead to errors in the final label
assignment. In order to avoid this issue, a second labelling generation approach is
proposed. In this second approach, only those clusters which contain more than 60% of
the same class will be taken (the cluster is assigned a label if one class has a hit greater
than 60%). From there, the current patient data is labelled taking into account the
minimum distance between the pixels and the closest centroid.

Finally, these semi-automatic labels (unsupervised assignment of labels to the
current patient data) are merged with the training dataset (corresponding to previous
patient data) directly to the classifier to generate the model. The results were assessed
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with several evaluation metrics, including the kappa metric which is a useful coefficient
for multiclass cases and when classes are unbalanced.

4.2 Proposed methodology

The methodology proposed in this Master Thesis to develop the semi-supervised
classification of HS images of brain tumours is as follows: It starts from a database that
consist of pre-processed and previously labelled hyperspectral images. With this
database, the labelling of a new patient is performed by using the distance of each pixel
with respect to the mean of the complete database without such patient. Once the
distance metric selection is done, an evaluation is made of which distance metric best fits
our database and then use this parameter in the k-means method. The database of the
previous patients without the new patients used in the k-means to get the different
clusters. Once it is known which cluster belongs to which class, the labels of the new
patient are generated (Figure 4-1).

LABEL

GENERATION
DATASET DISTAMCES * K-MEANS — SVM/RF

Figure 4-1. Block diagram corresponding to the proposed procedure.

RESULTS
EVALUATION

The new patient labelled with this methodology and the dataset of the previous
patients are fed into the classifiers, in order to train it, generate a model and finally
evaluate its performance. For this purpose, the following evaluation metrics have been
employed: accuracy, which is the success rate or precision, the confusion matrix,
specificity, sensitivity and, finally, the kappa coefficient. To obtain these metrics, a data
partition based on the leave-one-out cross-validation technique (explained in the next
section) are used.

In the classification stage, it was decided to use the SVM algorithm. After conducting
an exhaustive analysis on different studies from the literature. Being this algorithm the
one that has obtained the best results in the cases in which high-dimensional data
classification is used and the training samples are limited [55][56]. This same procedure
is subsequently proposed using the RF algorithm, with the aim of reducing computation
times and being able to compare the results of the proposed procedure (Figure 4-1).

The procedure followed consists of using the spectral signatures to train the classifier.
Likewise, to separate the training and test data and to provide validity to the evaluation
metrics, the leave-one-out cross-validation technique is used.

4.2.1 Leave-one-out Cross-Validation technique

The cross-validation technique allows estimating the precision of the generated
model. For this, a partition of the data is performed where, on the one hand, there will
be a training set and, on the other hand, a group of test data to assess the model
performance [57].
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In the cross-validation process there are different methodologies: k-fold and leave-
one-out.

The k-fold cross-validation is an improvement to the hold-out method. In the hold-
out data partition strategy, the data is divided into two subsets, a training part and a test
part. While in the k-fold method the data are divided into k subsets. So that, this process
repeats a set of k iterations [58]. Both methods use the same principle of operation,
testing with data that have not been used during the training so in each subset some
samples are part of the training and others of the test. Finally, all samples are part of the
test set.

In this study, a leave-one-out data partition is implemented. The leave-one-out is a
cross-validation on n, where n is the number of instances in the data set. Each instance
of nis left out and the classifier is trained on all other instances (see Figure 4-2) [59].
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Figure 4-2. Leave-one-out (Cross-validation method).

The n results are averaged, with this average being the representation of the final
error estimate. In addition, the randomly generated subsets for each of the methods are
made to contain approximately the same proportion of labels as the original data set. In
our case, each patient is used as test data (emulating a new patient arriving to the surgical
room), and the data from the remaining patients is used to train the supervised classifier.

4.2.2 First part of the proposed SSL method

The first part of the proposed processing framework aims to evaluate which distance
is best suited to the database employed to optimize the k-means method. For this, the
following steps were followed: first it is necessary to calculate the class means of the
previous set of patients without the current patient to evaluate (performing a leave one
out cross-validation). Then, once the mean signatures have been calculated, pairwise
distances are calculated between each of the mean classes and the mean signatures of
each class. Finally, a comparison is made between the dataset corresponding to the
current patient and the mean signatures obtained for the current patient pixels with the
highest similarity to the mean signatures corresponding to each class. The objective is to
identify which mean signature (4 classes, 4 means) has the greatest similarity with the
pixel to be labelled. This is how the labels are assigned.

To automatically perform the new labelling of the surgical samples of the current
patient, two methods are initially proposed, by voting, i.e. how many distances claim that
this pixel belongs to the same class? and by the best result obtained (Show Figure 4-3).
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Figure 4-3. Flow diagram of the study of distances.

A total of five distances were evaluated: Euclidean, Cosine, Cityblock, Minkowski and
Chebyshev distance. Once the results were obtained, the voting method was discarded
due to the autocorrelation between distances, so for this study the best result method
was used to generate the new labels of the current patient and evaluate the different
distances. The evaluation metrics are applied when comparing the result with the
reference image, where the value of the labels was already known.

4.2.3 Second part of the proposed method

Once the distance is selected, an attempt is made to optimize the k-means algorithm
a little more. A study is made to select the best value of k and the index of the MaxIter
parameter, which is the maximum number of iterations. This last parameter has a default
value of 100. Three different values 100, 1000 and 3000 are tested and the value with
the best result is selected.

The next step is to use the k-means algorithm in this process to find and cluster the
data in k groups by evaluating a similarity metric between samples.

The k-means algorithm needs the input parameter k, with which it divides the
ensemble samples into k clusters. This method tries to find that the similarity level
between the members of a cluster is high and with the samples of other clusters very low.
The similarity of the cluster to the members is measured by the proximity of the object
to the mean value of the cluster or centroid [27].

For this case, the similarity seeks to measure the distance between the hyperspectral
signatures of each pixel. The goal is to find the signatures that are most similar to each
other and group them together. The k-means uses the default Euclidean distance to
perform this calculation.
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Figure 4-4. Flow diagram of k-means method.

Once the distance that best suits our database is selected, (see Section 4.2.2), the
following steps are illustrated in Figure 4-4. In order to identify the best value for the
parameter k a sweep is performed with a range value from 4 to 24, which represents the
number of groups into which the set of observations will be divided [60].

After studying the data, it was analysed how the k-means grouped the data. As the k
value is increased, it was possible to separate the classes more efficiently, however, it is
possible that one cluster has pixels from different classes, for that reason, it is decided to
develop two conditions for the final classification.

The next step is to identify to which class each cluster belongs. As it is commented
before, two mechanisms are proposed for this decision. The first mechanism is the
unconditional one. It consists of assign the cluster to the majority class, i.e., if in cluster
1 (C1) 61% of the pixels belong to class 1 (Normal), 1% to class 2 (Tumour), 7% to 3 (Blood
vessel) and 32% to 4 (Background), then that cluster C1 belongs to class 1. The second
proposed mechanism consist in using a condition, i.e., if the class with the highest
percentage of that cluster does not exceed 60%, its means that this cluster has a lot of
data variability, so it is discarded for the final labelling.

4.2.4 Third part of the proposed method

To evaluate the obtained results, the SVM and RF classifiers were used. The final block
of the general process is shown in more detail in Figure 4-5. As it is a semi-supervised
algorithm, what is sought is to increase the database with which the model is generated.
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Figure 4-5. Final flow diagram of the evaluation metrics computation with the implementation of SVM and RF
algorithms.

The Train set together with the current patient labelled are entered into the SVM and
RF algorithm. With these data, the SVM is trained, and the RF algorithm generates the
decision trees. Once the generated models are obtained, the Test set is used to evaluate
its performance with the different evaluation metrics.

4.3 Evaluation metrics

To validate the results, it is advisable to contrast with at least more than one metric,
since using only one metric could not be enough to describe the goodness of the results
of a classifier and could lead to wrong conclusions. This section describes the evaluation
metrics used to assess classification accuracy.

4.3.1 Overall Accuracy

Overall Accuracy (OA) refers to the hit rate and determines the accuracy with which
the classifier is able to correctly predict the classes of the pixels samples. It indicates how
many pixels could be correctly identified by the classification algorithm. This metric is
calculated as the success rate of the predictions of the classifier and is defined by the
equation (4.1).

| _ TP +TN )
CCUraSY = TP X TN + FP + FN '

Where TP (True Positives), corresponds to the correctly detected conditions. In
other words, the sample label is positive, and the result of the classification is positive.
False Positives (FP) are the incorrectly detected conditions. The sample label is negative,
but the result of the classification is positive. True Negatives (TN) correctly rejected
conditions. The sample label is negative, and the result of the classification is negative
and the False Negatives (FN) the incorrectly rejected conditions. The sample label is
positive, but the result of the classification is negative [61].
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4.3.2 Specificity

Specificity is the proportion of true negatives which the classifier identifies as such.
It is calculated by the expression (4.2):

e TN
Specificity = TN+ FP (4.2)

4.3.3 Sensitivity

The sensitivity corresponds to the proportion of true positives that have been
correctly identified such as positives. The equation to calculate this percentage is shown
in (4.3).

TP

Sensitivity = m (41)

4.3.4 Kappa coefficient

The Kappa Coefficient (k) determines the interobserver agreement, it can be
calculated on tables of any dimension. This coefficient is constructed from a quotient
shown in the following equation (4.4) [62].

k= [(X observer concordances) — (3, random concordances)]

[(Total observations) — (3, random concordances)] (4.4)
The Kappa coefficient is, in other words, the ratio between observed and non-random
agreement divided by the total possible concordance not produced by chance.

The range of values that the kappa coefficient is between +1 and -1. A positive kappa
indicates that the observers agree more frequently than would be randomly expected,
meaning that there is a strongest degree of interobserver concordance. If the value is k=1
it indicates a completed agreement. Conversely, if k=0, it denotes that the concordance
is as expected by chance. A negative kappa indicates that disagreement between
observers is more frequent than expected by chance. Finally, if k=-1, it indicates a totally
disagreement [63].

4.4 Summary

This chapter has described the methodology followed throughout this Master Thesis
to design a semi supervised algorithm and evaluate the results.

First, to optimize the k-means method, a study of the distances best suited to our
database was carried out. Then, a study was conducted to select the parameter k for the
k-means clustering. Once the parameters of the k-means algorithm were defined, the
train database was introduced into the k-means method with the objective of dividing
the samples in k clusters. The class presence in each cluster was calculated to generate
the current patient labels. For this purpose, two methods were proposed. The first
method is the unconditional one, where the cluster gets the label value of the class with
the highest percentage. The second method, consist in using a condition, i.e., if the class
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with the highest percentage of that cluster does not exceed 60% its means that this cluster
has a lot of data variability, so it is discarded for the final labelling. Once the clusters have
been identified, the algorithm was trained, and the models were generated for both
approaches to label the current patient data. Finally, both ways of automatic label
generation were evaluated.
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Chapter 5: Experimental results

5.1 Introduction

This section shows the results obtained for the proposed semi supervised algorithms,
with the aim of evaluating and defining which proposed method performs best for the
classification of brain HS data. This chapter will be divided as follows:

1. Selection and evaluation of the results obtained with each of the distances.

2. Choice of the value of the parameter k to optimize the unsupervised k means
algorithm.

3. Use of the unsupervised algorithm for the generation of new patient labels and
evaluation of the supervised classification models generated with the SVM and RF
algorithms.

First, the different distances are analysed to observe which one best fits the HS brain
database and use it for the proposed semi-supervised classification. Once the distance
metric is chosen, the value of the parameter k is selected to optimize the k-means
algorithm. After selecting the k-means parameters, the labels are generated for the
current patient with and without conditions. These data and annotations from the
current patient are included to the database of previous patients and are introduced into
the SVM supervised classifier, where the model is trained and generated for further
evaluation. To be able to make a broader comparison, the study is performed again by
changing the SVM algorithm for the RF allowing to analyse different values of k.

For the analysis and selection of the best distance to use, the following evaluation
metrics were used: OA (Overall accuracy), kappa coefficient, standard deviation,
sensitivity, specificity. While for the evaluation of the final results the selected metrics
were: accuracy, specificity, sensitivity and confusion matrix.

5.2 Distance selection and evaluation.

In this section the results obtained for Euclidean, Cosine, Cityblock, Minkowski and
Chebyshev distances are presented. To perform this evaluation, the current patient labels
were generated in two ways: Voting and Best Result methods. Once the labels have been
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generating according to these similarity measurements, the different evaluation metrics
are calculated.

5.2.1 Voting method results

The voting selection process consists of assigning to each pixel of the HS image the
class that has appeared most often among the distances. That is, if three distances
identify a pixel as the background class and two distances identify the same pixel as the
healthy class, then, being the majority, the label assignment for that pixel will be the
background class.

Table 5-1 shows the overall accuracy, sensitivity, specificity, and kappa coefficient
obtained after classifying the pixels by the voting method. The results show that OA has
a value of 52.88%. As explained in Chapter 4, there is an autocorrelation. For example,
the City-block distance is a special case of the Minkowski but with p=1 (see 2.4.1
Minkowski distance). For this reason, the results obtained by this labelling method are
discarded.

Table 5-1. Results obtained with the voting method.

Sensitivity Specificity
Blood Blood
0OA Normal | Tumour Vessel Background | Normal | Tumour Vessel Background | Kappa
P8C1 28.10% 0.06 0.24 0.36 1.00 0.90 0.42 0.95 0.32 0.12
P8C2 67.69% 1.00 0.31 0.94 0.55 0.61 0.97 1.00 1.00 0.48
P12C1 | 73.66% 0.47 0.03 0.89 1.00 0.91 0.85 0.81 0.98 0.58
P12C2 | 43,.41% 0.59 0.01 0.92 0.13 0.46 0.81 0.63 0.96 0.24
P15C1 | 72.14% 1.00 0.81 0.55 0.98 0.69 1.00 0.99 0.98 0.62
P20C1 | 32.29% 0.96 0.00 0.61 0.16 0.24 0.58 0.98 0.98 0.11
AVG | 52.88% | 68.03% | 23.27% | 71.26% 63.73% 63.47% | 77.01% | 89.23% | 86.81% 0.36
Std +0.18 +0.32 +0.26 | +0.20 +0.35 +0.22 +0.19 +0.12 +0.23 +0.19

5.2.2 Best result method results

In this section, the samples are labelled, making the decision based on the best result
obtained with each of the distances. For this method, like the previous one, several
evaluation metrics are used, highlighting the kappa coefficient widely used for multiclass
and unbalanced cases.

The OA obtained for the Euclidean distance (Table 5-2) is 51.91% and a kappa of 0.35.
For the Cosine distance (Table 5-3), the OA is 65.98% and the kappa has a moderate
value of 0.51. The Chebyshev distance (Table 5-4) obtained an OA of 50.28% and a kappa
coefficient of 0.34 while the City-block distance (

Table 5-5) manages to improve a bit on this value with a success rate of 53.84% and a
0.37 kappa. Finally, the Minkowski distance (Table 5-6) obtained an OA of 51.91%,
however, the kappa coefficient decreased with respect to the City-block distance, with a
value of 0.35. As can be observed, the Minkowski distance provides the same results as
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the Euclidean distance do. The reason may be due to the fact that the Euclidean distance
is a special case of the Minkowski with p = 2 as discussed in Section 2.4.1. It can be
observed that the Cosine distance is the one with the highest hit rate and the best kappa
with a moderate value of 0.51, being the selected distance method. This indicates that the

disagreement between the observations is less frequent than is expected.

Table 5-2. Euclidean distance results.

Sensitivity Specificity
Blood Blood
0A Normal | Tumour | Vessel | Background | Normal | Tumour | Vessel | Background | Kappa
P8C1 27.15% 0.06 0.24 0.32 1.00 0.90 0.40 0.95 0.30 0.11
P8C2 67.20% 1.00 0.31 0.93 0.55 0.61 0.96 1.00 1.00 0.48
P12C1 | 71.65% 0.41 0.03 0.89 1.00 0.91 0.82 0.80 0.98 0.55
P12C2 | 42.47% 0.56 0.00 0.92 0.13 0.46 0.80 0.62 0.95 0.23
P15C1 | 70.64% 1.00 0.80 0.52 0.98 0.67 1.00 0.98 0.97 0.60
P20C1 | 32.27% 0.96 0.00 0.61 0.15 0.24 0.58 0.99 0.98 0.11
AVG | 51.91% | 66.35% | 23.18% | 69.87% 63.67% 63.01% | 76.08% | 88.97% | 86.39% 0.35
Std +0.19 +0.36 | +0.28 | +0.23 +0.38 +0.23 +0.21 +0.14 +0.25 +0.20
Table 5-3. Cosine distance results.
Sensitivity Specificity
Blood Blood
OA Normal | Tumour | Vessel Background | Normal | Tumour Vessel Background | Kappa
P8C1 54.87% 0.48 0.52 0.52 0.91 0.90 0.61 0.80 0.93 0.39
P8C2 87.58% 0.97 0.25 0.99 0.84 0.97 0.91 1.00 0.97 0.77
P12C1 | 77.64% 0.85 0.02 0.93 0.16 0.92 0.86 0.85 1.00 0.63
P12C2 | 58.44% 0.93 0.01 0.95 0.28 0.60 0.90 0.74 1.00 0.44
P15C1 | 78.97% 0.86 0.92 0.75 0.51 0.83 0.93 0.98 0.96 0.69
P20C1 | 38.40% 0.97 0.00 0.75 0.30 0.83 0.67 0.99 0.44 0.17
AVG | 65.98% | 84.43% | 28.67% | 81.45% 50.07% 84.18% | 81.25% | 89.30% | 88.31% 0.51
Std +0.17 +0.17 | +0.34 | +0.16 +0.29 +0.12 | +0.12 | +0.10 +0.20 +0.20
Table 5-4. Chebyshev distance results.
Sensitivity Specificity
Blood Blood
OA Normal | Tumour | Vessel Background | Normal | Tumour Vessel Background | Kappa
P8C1 23.46% 0.03 0.01 0.43 1.00 0.96 0.57 0.48 0.21 0.08
P8C2 66.52% 0.98 0.41 0.91 0.55 0.60 0.97 1.00 0.99 0.47
P12C1 | 66.04% 0.73 0.27 0.60 1.00 0.69 0.89 0.89 0.97 0.48
P12C2 | 42.17% 0.77 0.10 0.62 0.13 0.37 0.82 0.71 0.98 0.23
P15C1 | 50.83% 0.99 0.53 0.27 0.99 0.57 0.93 0.91 0.73 0.37
P20C1 | 52.67% 0.91 0.00 0.55 0.98 0.45 0.98 0.97 0.91 0.40
AVG | 50.28% | 73.65% | 21.99% | 56.26% 77.38% 60.71% | 86.05% | 82.56% | 79.94% 0.34
Std +0.15 +0.33 +0.20 | +0.20 +0.33 +0.19 +0.14 +0.18 +0.28 +0.14
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Table 5-5. Cityblock distance results.

Sensitivity Specificity
Blood Blood
0OA Normal | Tumour Vessel Background | Normal | Tumour Vessel Background | Kappa
P8C1 28.99% 0.06 0.24 0.40 1.00 0.89 0.45 0.95 0.31 0.13
P8C2 | 68.26% 1.00 0.09 0.96 0.56 0.62 0.97 0.99 1.00 0.49
P12C1 | 75.08% 0.45 0.03 0.93 1.00 0.94 0.86 0.75 0.98 0.59
P12C2 | 43.12% 0.56 0.01 0.95 0.13 0.47 0.82 0.59 0.95 0.24
P15C1 | 76.55% 1.00 0.78 0.65 0.99 0.74 1.00 0.98 0.98 0.67
P20C1 | 31.03% 0.96 0.00 0.66 0.09 0.23 0.55 0.98 0.98 0.10
AVG | 53.84% | 66.91% | 19.07% | 75.72% 62.81% 64.94% | 77.72% | 87.26% | 86.79% 0.37
Std +0.20 +0.35 +0.28 +0.21 +0.40 +0.25 +0.20 +0.15 +0.25 +0.22
Table 5-6. Minkowski distance results.
Sensitivity Specificity
Blood Blood
0OA Normal | Tumour Vessel Background | Normal | Tumour Vessel Background | Kappa
P8C1 27.15% 0.06 0.24 0.32 1.00 0.90 0.40 0.95 0.30 0.11
P8C2 | 67.29% 1.00 0.31 0.93 0.55 0.61 0.96 1.00 1.00 0.48
P12C1 71.65% 0.41 0.03 0.89 1.00 0.91 0.82 0.80 0.98 0.55
P12C2 | 42.47% 0.56 0.00 0.92 0.13 0.46 0.80 0.62 0.95 0.23
P15C1 [ 70.64% 1.00 0.80 0.52 0.98 0.67 1.00 0.98 0.97 0.60
P20C1 | 32.27% 0.96 0.00 0.61 0.15 0.24 0.58 0.99 0.98 0.11
AVG | 51.91% | 66.35% | 23.18% | 69.87% 63.67% 63.01% | 76.08% | 88.97% | 86.39% 0.35
Std +0.19 +0.36 +0.28 | +0.23 +0.38 +0.23 +0.21 +0.14 +0.25 +0.20

With this labelling method, Best Result, it is observed that the average OA obtained is
65.98% (see Table 5-7), being slightly higher than the discard method shown in Section
5.2.1. In addition, a higher kappa coefficient is also obtained, with a value of 0.51
compared to 0.36 of the voting method. There are some images in which the method
works well (P8C2, P12C1), others in which it works more or less (P8C1 and P12C2), and
a patient in which it works poorly (P20C1). Although labelling of the current patient is
not 100% effective, there is a possibility that adding some labelled samples may improve
the classification. The sensitivity is especially low in the tumour class, so adding data
from this class could worsen the classification.
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Table 5-7. Results obtained with the Best Result mehotd.

Sensitivity Specificity
Blood Blood
OA Normal | Tumour Vessel Background | Normal | Tumour Vessel Background | Kappa
P8C1 54.87% 0.48 0.52 0.52 0.91 0.90 0.61 0.80 0.93 0.39
P8C2 87.58% 0.97 0.25 0.99 0.84 0.97 0.91 1.00 0.97 0.77
P12C1 | 77.64% 0.85 0.02 0.93 0.16 0.92 0.86 0.85 1.00 0.63
P12C2 | 58.44% 0.93 0.01 0.95 0.28 0.60 0.90 0.74 1.00 0.44
P15C1 | 78.97% 0.86 0.92 0.75 0.51 0.83 0.93 0.98 0.96 0.69
P20C1 | 38.40% 0.97 0.00 0.75 0.30 0.83 0.67 0.99 0.44 0.17
AVG | 65.98% | 84.43% | 28.67% | 81.45% 50.07% 84.18% | 81.25% | 89.30% | 88.31% 0.51
Std +0.17 +0.17 | +0.34 | +0.16 +0.29 +0.12 | +0.12 | +0.10 +0.20 +0.20

After comparing all the results obtained with each of the distances, it is found that the
best result was always obtained with the cosine distance (Figure 5-1). Therefore, all the
values shown in the table above (Table 5-7) correspond to those of the cosine distance.
With this type of distance, all classes, except background, obtain the best specificity and
sensitivity results.
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Figure 5-1. Graph of the OA obtained with each distance.

5.3 Optimization k for the k-means clustering.

Once the most suitable distance metric is selected, the value of the input parameter k
is calculated, with which the k-means method divides the samples into k groups. The
range evaluated was from 4 to 24. To make this decision, the k-means algorithm is
executed with that range of values, the decision was based on observing what the
percentage of each class was grouped in each cluster. This evaluation has been performed
using the dataset belonging to the previous patients.

Evaluating the results shown in the following graphs (Figure 5-2, iError! No se
encuentra el origen de la referencia., Figure 5-3, Figure 5-4 and Figure 5-5) it is
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found that as the value of k increases, more of the background class is present. This was
to be expected due to the high variability of this class, but the rest of the classes are well
identified with this method, except for the tumour class. No value of k can group in such
a way that in at least one cluster its majority class is the tumour tissue. The data are
evaluated and k=10 is enough to be able to identify the other three classes in at least one
cluster, a higher k would increase the computation time unnecessarily.

As we can see in the Figure 5-2, for patient PBC1LOO with k=5, cluster 1 contains most
of the pixels of the healthy class. However, for this value of k, no cluster is formed mostly
by the blood vessel class. Most of the rest of the clusters belong to the background class.
With a k = 10, it is possible to identify some cluster as of the blood vessel class, being
identified in some of the clusters three of the four classes.
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Figure 5-4. Percentage graph of the of the classes contained in each each cluster (k = 15).
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Figure 5-5. Percentage graph of the of the classes contained in each each cluster (k = 20).

The rest of the graphs can be found in Annex I where it is possible that, as the k-value
increases, the results remain constant.

5.4 Evaluation of semi-supervised algorithm

using the SVM classifier.
Once it is known to which class each cluster belongs, the current patient is labelled by
calculating the distance between the current patient pixels and the centroids of the

resulting clusters. First without any conditions (all clusters are used) and then with a
condition (only the clusters that presents high presence of classes, more than 60%, are
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Experimental results

used) for automatic label generation. Finally, the semi-automatic labelled data are
introduced together with the database of previous patients in the supervised
classification algorithm to train and generate the model that will subsequently be
evaluated.

The code is firstly executed without the semi-supervised part to have a reference result
to compare with. The Table 5-8 shown these reference results with the SVM algorithm.

Table 5-8. Results obtained with the SVM algorithm.

Sensitivity Specificity
Blood Blood
OA Normal Tumour Vessel Background Normal Tumour Vessel Background
P8C1 58.23% 0.68 0.15 0.61 1.00 0.80 0.90 0.80 0.73
P8C2 95.12% 0.97 0.34 0.99 0.95 0.96 0.99 1.00 0.97
P12C1 93.32% 0.99 0.47 0.94 0.99 0.92 1.00 0.98 1.00
P12C2 | 79.27% 0.97 0.04 0.98 0.80 0.87 1.00 0.83 0.99
P15C1 88.31% 1.00 0.67 0.94 0.98 0.87 1.00 1.00 0.99
P20C1 | 58.37% 0.97 0.00 0.80 1.00 0.50 1.00 1.00 0.96
AVG 78.77% | 93.00% | 28.03% | 87.44% 95.39% 81.96% | 98.09% | 93.32% 93.94%
Std +0.14 +0.10 +0.22 +0.12 +0.07 +0.14 +0.04 +0.08 +0.09

5.4.1 Results of SVM without condition

Table 5-9 shows the results obtained with the semi-supervised processing framework
developed, in which the automatic generation of labels from the current patient samples
is performed without discarding any of the 10 clusters. Remember that, as mentioned in
Section 5.3, it was decided to work with k = 10.

For this proposed methodology, an average OA of 45,57% with a standard deviation
(Std) of £23% is achieved. This value shows the dispersion of the data with respect to the
mean. A high Std value indicates a greater dispersion of the data and therefore a lower
precision.

Table 5-9. Results obtained in the semi-supervised process with the SVM algorithm with the generated label
method without condition.

Sensitivity Specificity
Blood Blood
OA Normal Tumour Vessel Background Normal | Tumour Vessel Background | Kappa
P8C1 39.51% 0.81 0.01 0.22 0.00 0.15 0.98 0.99 0.59
P8C2 92.34% 0.98 0.01 0.62 0.97 0.97 1.00 1.00 0.83 0.83
P12C1 52.42% 0.36 0.08 0.56 1.00 0.61 1.00 0.55 0.92 0.22
P12C2 44.61% 0.56 0.02 0.62 0.39 0.46 1.00 0.64 0.89 0.23
P15C1 11.04% 0.00 0.00 0.10 0.68 0.79 1.00 1.00 0.06 0.00
P20C1 | 33.48% 0.00 0.00 0.65 0.85 0.89 1.00 1.00 0.14 0.10
AVG | 45.57% | 45.18% | 1.90% | 46.34% 64.69% 64.53% | 99.62% | 86.34% 57.10% 0.25
Std +0.23 +0.35 | +0.02 | +0.20 +0.33 +0.26 | +0.01 | +0.18 +0.33 +0.25
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Focusing on the sensitivity, it is observed that it is not possible to identify the tumour
class, obtaining an average value of 1.90%. This result was to be expected, since for
automatic labelling it was not possible to obtain any cluster that consisted mainly of this
class. This value improves for the rest of the classes, although it is only exceeded 50%
with the background class.

The specificity values obtained for this case study are mostly good, indicating a high
probability that a pixel that is not of that class will be identified as not being of that class.
This would explain the value obtained for the tumour class of 99.62%. Finally, a kappa
value of 0.25 was obtained where it can be seen that the strength of agreement between
the samples is fair.

5.4.2 Results of SVM with condition

Table 5-10 shows the results obtained when the decision to generate labels is made
based on a condition. The clusters used must contain at least 60% of one of the classes,
otherwise the cluster is discarded, and the data are not included in the training set.

Table 5-10. Results obtained in the semi-supervised process with the SVM algorithm with the generated label
method with condition.

Sensitivity Specificity
Blood Blood
OA Normal | Tumour Vessel Background | Normal | Tumour Vessel Background | Kappa
P8C1 27.46% 0.23 0.00 0.26 1.00 0.98 0.96 0.99 0.18 0.14
P8C2 90.25% 0.79 0.01 0.56 1.00 1.00 1.00 1.00 0.69 0.77
P12C1 51.17% 0.95 0.06 0.24 0.99 0.35 1.00 1.00 0.89 0.31
P12C2 54.78% 0.91 0.00 0.19 0.72 0.48 1.00 0.88 0.84 0.36
P15C1 11.04% 0.00 0.00 0.10 0.68 0.79 1.00 1.00 0.06 0.00
P20C1 | 33.48% 0.00 0.00 0.65 0.85 0.89 1.00 1.00 0.14 0.10
AVG | 44.70% | 48.05% | 1.43% | 33.26% | 87.28% | 74.95% | 99.30% | 97.64% | 46.76% 0.28
Std +0.23 +0.38 | +0.02 | t0.19 +0.13 +0.23 | +0.01 | +0.04 +0.32 +0.23

For this semi-supervised design, an AVG of 44.70% was obtained, with a Std of +23%.
The OA obtained for the samples from the patient 15 (P15C1 and P15C2) and patient 20
(P20C1) is maintained with respect to the previous case (see Table 5-10). However, it is
lower with respect to the SVM without condition in patient 8 (P8C1 and P8C2) and in
patient 12 (P12C1). Improving only this value in patient 12 (P12C2). For this sample, the
sensitivity of the normal and background class improves considerably, but there are still
problems in identifying tumour pixels, obtaining a sensitivity of 1.43% and a specificity
of 99.30% for this case study. Regarding the Kappa value, it has been improved a little
with respect to the generated labels without condition method and now the coefficient
value is 0.28. With the proposed semi-supervised method, the SVM classification results
are worse compared to the supervised method.
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5.5 Evaluation of semi-supervised algorithm
using the RF classifier

As the SVM computation times are too long, the same procedure is proposed, but in
this case using the RF classification algorithm. For the implementation, the value of the
parameter k was re-evaluated to try to define the number of clusters with which the k-
means will work. This time it is decided to use a k = 15 (Table 5-11), since it is the only
one that meets the same criteria as k = 10 but with the difference that the condition no
longer needs to be applied. The procedure will only have to be performed once, since the
criterion used was that all clusters should consist of at least 60% of a class.

On the other hand, P8C1 was used as a sweep to select the number of trees. This
capture is left as a validation set. If we look at the results shown in Table 5-11, it can be
observed that the best result is obtained for 100 trees. Where 62.2% of OA was achieved
and where the highest sensitivity values are also obtained for most of the classes,
highlighting 81.0% for the normal class and 25.2% of the tumour class. Furthermore, in
all cases a sensitivity of 100% was achieved for the background class.

Table 5-11. Results obtained with different values of trees (from 50 to 300) with RF.

Sensitivity Specificity
Blood Blood

RF OA Normal Tumour Vessel Background Normal Tumour Vessel Background
50 55.7% 63.4% 20.6% 53.6% 100.0% 73.8% 86.6% 81.3% 73.1%
100 62.1% 81.0% 25.3% 45.2% 100.0% 65.0% 85.7% 89.5% 87.3%
150 58.6% 71.1% 18.1% 54.6% 100.0% 73.5% 86.6% 82.5% 78.4%
200 60.7% 78.4% 16.8% 51.8% 100.0% 70.3% 87.0% 84.5% 82.8%
250 59.9% 74.8% 16.5% 54.9% 100.0% 72.3% 87.1% 83.3% 80.7%
300 60.5% 77.0% 15.8% 54.3% 100.0% 72.5% 87.4% 83.2% 81.6%
avg 59.57% | 74.29% | 18.84% | 52.40% | 100.00% 71.24% | 86.73% | 84.05% 80.65%
std +0.02 +0.05 +0.03 +0.03 +0.00 +0.03 +0.01 +0.02 +0.04

Once the parameter k of the k-means algorithm and the number of trees in the RF
algorithm have been selected, the code is executed without the semi-supervised part in
order to have a reference result to compare with. These reference results are shown in
Table 5-12)
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Table 5-12. Results obtained with the RF algorithm.

Sensitivity Specificity
Blood Blood
OA Normal Tumour Vessel Background Normal Tumour Vessel Background | Kappa
P8C2 94.08% 0.92 0.31 0.96 0.96 0.96 1.00 1.00 0.93 0.88
P12C1 90.94% 1.00 0.14 0.92 1.00 0.88 1.00 0.99 1.00 0.85
P12C2 73.01% 0.99 0.01 0.94 0.65 0.75 1.00 0.81 1.00 0.62
P15C1 68.88% 0.98 0.03 0.88 0.99 0.65 1.00 0.99 0.97 0.55
P20C1 | 58.05% 0.96 0.00 0.79 1.00 0.60 1.00 0.99 0.66 0.46
AVG 76.99% | 97.04% | 9.91% | 89.79% 91.73% 76.92% | 99.88% | 95.67% 91.09% 0.67
Std +0.12 +0.03 +0.11 +0.06 +0.12 +0.12 +0.00 +0.07 +0.11 +0.15

For the RF algorithm, an average accuracy value of 76.99% and a considerable kappa
value of 0.67 were obtained (see Table 5-12), being the best kappa value achieved so far.
In the semi-supervised process proposed with the RF algorithm, an AVG of 46.56% and
an acceptable kappa value of 0.27 were obtained (Table 5-13).

Table 5-13. Results obtained in the semi-supervised process with the RF algorithm.

Sensitivity Specificity
Blood Blood
OA Normal Tumour Vessel Background Normal Tumour Vessel Background | Kappa
P8C2 79.49% 0.29 0.00 0.52 0.99 0.99 1.00 1.00 0.35 0.45
P12C1 22.83% 0.01 0.00 0.21 1.00 0.98 1.00 1.00 0.14 0.08
P12C2 57.95% 0.62 0.00 0.30 0.95 0.96 1.00 0.89 0.42 0.38
P15C1 24.05% 0.66 0.00 0.10 1.00 0.93 1.00 1.00 0.17 0.14
P20C1 | 48.49% 0.66 0.00 0.56 1.00 0.97 1.00 1.00 0.30 0.31
AVG | 46.56% | 44.80% | 0.07% | 33.96% 98.77% 96.55% | 99.92% | 97.67% 27.48% 0.27
Std +0.20 +0.24 | +£0.00 | +0.16 +0.02 +0.02 | +0.00 | +0.04 +0.10 +0.13

With this new approach, the same problem is still detected when identifying the
tumour class pixels. In general, the results of the classification worsen in all cases, except

the specificity of the normal class, which increases.

As there are many clusters where the background class predominates, it was decided
to carry out the whole procedure again, but this time only using 3 clusters for the
automatic generation of labels instead of 15. The choice was based on selecting the one
that is composed of a predominant class (background, blood vessel and normal tissue).
With the tumour class, this criterion is never met.

5.5.1 Results of RF evaluating with three clusters

The following Table 5-14 shows the results obtained using only 3 clusters in the
generation of labels. One made up entirely of the background class, and the other two
where the normal and blood vessel class stand out with more than 60%.
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Table 5-14. Results obtained in the semi-supervised process with the RF algorithm (3 clusters).

Sensitivity Specificity
Blood Blood
0OA Normal | Tumour Vessel Background | Normal Tumour Vessel | Background | Kappa
P8C2 | 46.70% 0.65 0.00 0.53 0.41 0.44 0.99 0.95 0.67 0.14
P12C1 | 25.92% 0.03 0.00 0.26 0.99 0.39 1.00 0.26 0.85 -0.21
P12C2 | 55.57% 0.91 0.00 1.00 0.18 0.79 1.00 0.46 1.00 0.40
P15C1 | 45.51% 0.88 0.00 0.46 0.98 0.52 1.00 0.49 0.93 0.21
P20C1 | 55.73% 0.73 0.00 0.94 0.99 0.98 1.00 0.91 0.42 0.42
AVG | 45.89% | 64.20% | 0.03% | 63.87% | 70,.99% | 62.45% | 100.00% | 61.55% 77.32% 0.19
Std +0.10 +0.29 | +0.00 | +0.26 +0.32 +0.20 +3.27 +0.24 +0.19 +0.21

Although the AVG obtained is 45.89%, a little below that obtained using all 15 clusters
(see Table 5-13), the sensitivity of the Normal and the Blood Vessel class is considerably
improved, with a 64,20% and 63,87% respectively. Also, the balance of the sensitivity
and specificity values of the background class improve with 70.99% sensitivity and
77.32% specificity, thus giving great validity of diagnostic for this class. The specificity of
the healthy class has decreased compared to the previous method, and the results are
worse than without using a semi-supervised mechanism.

5.6 Summary

This chapter has analyzed the results obtained with the proposed semi-supervised
procedure. The decisions taken during the development of this thesis have also been
justified.

First, the choice of k was made, where initially its value was 10, since it was a high
enough value to be able to identify in any of the clusters at least three of the classes
(normal, blood vessel and background). Once the k is selected, the whole process is
carried out with the SVM algorithm. In this way the model is generated and trained for
later testing. The process was repeated with two different ways of generating the labels
automatically: generating these labels without any conditions and then applying the
criterion that the clusters must be formed by at least 60% of the same class. If this was
not fulfilled, the cluster was discarded for decision making.

Considering the high computation times, it is decided to perform the same procedure
with the RF algorithm. In addition, the k parameter is re-evaluated, and it is found that
with a value of k = 15 the 60% criterion is met in all clusters, so no conditions need to be
applied. The choice of the number of trees is made using the P8C1 and it is decided that
the number of trees should be 100.

Take note of that most of the clusters were made up of the background class. It was
decided to choose from the 15 clusters the 3 that best represented background, blood
vessels and normal tissue class. With these three clusters, the process was repeated,
seeking to improve the sensitivity of those same classes.
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The results with the averages obtained from all patients are shown in Table 5-15,
where, the highest success rate was obtained for the semi-supervised approach for RF
with 46.40%. However, the sensitivity obtained from the main classes is lower than for
the rest of the processes, except for the background class, which is not given with it.

Table 5-15. Results obtained in all semi-supervised process.

Sensitivity Specificity
OA Normal | Tumour \E;tle(sxs)gl Background | Normal | Tumour gzle(;(s)gl Background | Kappa
Supervised process
SVM 78.77% | 93.00% | 28.03% | 87.44% | 95.39% | 81.96% | 98.00% | 93.32% | 93.94% -
L 76.99% | 97.04% | 9.91% | 89.79% 91.73% 76.92% | 99.88% | 95.67% | 91.09% 0.67
Semi-supervised process
SVM without o o o o o o o o o
Condition 45.57% | 45.18% | 1.90% | 46.34% | 64.69% | 64.53% | 99.62% | 86.34% | 57.10% 0.25
SR Al % | 48.05% % 6% | 87.28% % % | 97.64% | 46,.6% 8
condition 44.70% | 48.05% | 1.43% | 33.26% 7.28% | 74.95% | 99.30% | 97.64% | 46,.6% 0.2
RF 46.56% | 44.80% | 0.07% | 33.96% | 98.77% | 96.55% | 99.92% | 97.67% | 27.48% 0.27
RF (evaluating
with three 45.89% | 64.20% | 0.03% | 63.87% | 70.99% | 62.45% | 100.00% | 61.55% | 77.32%
clusters) 0-19

Finally, the highest sensitivity value for tumour class was obtained with the SVM
algorithm without condition at 1.90%, which is still a too low. Focusing on the rest of the
data, perhaps the RF evaluating with three clusters approach gives the best results for all
kinds of class except for tumour. The proposed processing method may not be adequate
to improve the results. The semi-supervised algorithm proposal worsens the
classification results compared to the non-semi-supervised.
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Chapter 6: Conclusions & Future Lines

6.1 Conclusions

The main problem in this field is working with a limited database. According to the
exposed problem, the objective of this Master Thesis was to design a semi-supervised
classification system. This type of classification was intended to increase the existing
database for the supervised classification. During this process, the HS images described
in Chapter 3 have been used.

The proposed methodology consists in that when the patient is in the operating room,
the images taken by the surgeon will be automatically labelled by a SSL algorithm and
then, together with the existing database, the model can be generated. To perform the
labelling of the current patient samples, we proposed a method which rely in the k-means
algorithm.

First, to optimize the k-means algorithm, the different types of distances were
evaluated. The distance selected for this type of study was the cosine distance. Then, a
study was carried out to choose the parameter k (number of target clusters for k-means),
choosing a k of 10. Once the k-means parameters have been optimized, this algorithm is
used to automatically generate the current patient labels. Such labels are included
together with the database of previous patients and used as training data in the SVM to
generate the model and evaluate it. This labelling process is implemented in two ways.
Without any conditions and with the condition that the clusters used must contain at
least 60% of one of the classes, otherwise the cluster is discarded.

Due to the long computational times, it was decided to carry out the same procedure
but this time using the RF algorithm. After conducting a study, it was decided that for
this database the best number of trees was 100. The parameter k is re-evaluated and a k
of 15 is established. With this value, it is not necessary to apply any conditions since all
clusters are made up of at least 60% of some class.

When evaluating all the results, it is seen that most of the clusters belong to the
background class. This is due to the great variability of this class. To avoid this, the last
proposed procedure is performed again but using only 3 clusters, those that represent
the background, blood vessel and normal tissue class. It is assumed with them that there
is no cluster identified as being of the tumour class. When analysing these last results, it
is seen how it is possible to improve the sensitivity of these three classes.

It is considered that the image used in the semi-supervised to automatically label it
and thus increase the database with which the model is generated, must be an image that
does not include any tumour pixels. In this way we ensure that when the automatic
labelled is generated there are no mislabelled tumour pixels. If we improve the balance
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of specificity and sensitivity of the rest of the classes, we will also be able to improve it
for the tumour class. Finally, although a method to improve the classification has been
proposed, this goal has not been achieved. The proposed methods worsen the original
supervised classification (without semi-supervised).

6.2 Future lines

It is known that the captures made at the beginning of this process in the semi-
supervised algorithms play an important role. As a future line, it is proposed to increase
the database with HS images of the same patient that contain tumour and captures those
which do not contain it. Right now, the database of this Master Thesis only contains
captures with tumour, negatively influencing the results obtained. The data set of
previous patients could also be balanced when applying the k-means. From this, the data
would be better grouped avoiding so many clusters belonging to the background class.

On the other hand, it is proposed to continue improving the techniques proposed for
the automatic generation of labels, trying to improve the identification of the rest of the
classes. An option to this end is to make use of dimensionality reduction algorithm (such
as Principal Components Analysis) in order to establish a more robust similarity metric
that allows a more accurate label assignment, and hence an improvement of the results.
Besides, the use of commonly used SSL methods found in the literature (Section 2.3.3)
may improve the results of the classification. However, the study and implementation of
such complex approaches are out of the scope of this Master Thesis. Additionally, it could
be also interesting to evaluate different classifiers such as the ANN, using the same
proposed methodology. Finally, in the design of the semi-supervised design that used
the SVM algorithm, the results could be improved by performing an optimization of the
hyperparameters.
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Figure o0-1. Graph of the percentages of the classes that each cluster contains (k = 4).
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Figure 0-2. Graph of the percentages of the classes that each cluster contains (k = 6).
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Figure 0-3. Graph of the percentages of the classes that each cluster contains (k = 7).
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Figure 0-4. Graph of the percentages of the classes that each cluster contains (k = 8).
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Figure 0-5. Graph of the percentages of the classes that each cluster contains (k = 9).

100%

JTTRI |

€ @@ G o o o ¢ G ¢ do0 11 a @@ o o o 6 €7 C o« C0 c1 Q

B

&

[

&
#

4

=
Ed

s
5
E

=]

2 G o ¢ 6 ¢ G < 00 <

PBC1LOO PBC2LO0 P12C1L00

c4 (o o] c7 c . C0 1
P12C2L00 P15C1LO0 P20C1L00

ENormal ETumor MBloodvessel W Background

k=11

100%

®
]
E

@
]
#

4

=
Ed

2

151
Ed

]
B

c1 2 =] ca (o) (o] 7 e Cwo0 11 a 2 =] 4 o 6 7 c8 g Co c11 a cz a3

mNormal mTumor mBloodvessel mBackground

Figure 0-6. Graph of the percentages of the classes that each cluster contains (k = 11).
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Figure o0-7. Graph of the percentages of the classes that each cluster contains (k = 12).
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Figure 0-8. Graph of the percentages of the classes that each cluster contains (k = 13).
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Figure 0-9. Graph of the percentages of the classes that each cluster contains (k = 14).
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Figure 0-10. Graph of the percentages of the classes that each cluster contains (k = 16).

~72 ~



Chapter 2: Annex I

ST

&

Ed

Ed

B3

UG

€1 €2 3 4 (0506 C7 CB (9CI0C11C12C13C14CI5CI6C17 C1 €2 C3 €4 €5 C6 C7 CB (9 CI0CI1CI2CI13C14C15CI6C17 €1 C2 C3 €4 C5 C6 C7 C8 (9 C10C11C12C13 C14C15C16 C17

P12C2LOO P15C1LOO P20C1LO0

mhormal mTumor mBloodVessel mBackground

Figure o-11. Graph of the percentages of the classes that each cluster contains (k = 17).
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Figure 0-12. Graph of the percentages of the classes that each cluster contains (k = 18).
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Figure 0-13. Graph of the percentages of the classes that each cluster contains (k = 19).
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Figure 0-14. Graph of the percentages of the classes that each cluster contains (k = 21).
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Figure 0-15. Graph of the percentages of the classes that each cluster contains (k = 22).
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Figure 0-16. Graph of the percentages of the classes that each cluster contains (k = 23).
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Figure 0-17. Graph of the percentages of the classes that each cluster contains (k = 24).
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