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Abstract 

 

This Master Thesis is related to the classification of medical hyperspectral (HS) data. The 

objective of this Master Thesis is to design a semi-supervised algorithm to carry out the labelling 

of the new acquired hyperspectral (HS) images, with the goal to incorporate these data in a 

supervised classification scheme. To develope this Master Thesis, a database obtained at the 

University Hospital Doctor Negrín was employed. This HS database is composed by 26 HS cubes 

belonging to a total of 16 different patients diagnosed with Glioblastoma primary brain tumour, 

where the test set consisted of 6 captures corresponding to 4 patients. The images were labelled 

with 4 different classes: normal tissue, tumour tissue, hypervascularized tissue, and background. 

The main idea is to solve the problem that arises in these operating rooms, where there is a 

previously labelled database and the new data acquired from the patient who is undergoing 

surgery. The objective is to include this data from the current patient to the database with which 

the classification model is trained and generated. With this proposal it is possible to generate a 

learning model using the labelled data obtained in previous surgical interventions and the 

unlabelled data of the current patient. The main goal is to be able to improve the classification 

results by including data from the new patient. 

To carry out the automatic generation of the current patient labels, it was decided to use the 

k-means algorithm. The chosen method uses the Euclidean distance by default, but a preliminary 

study was carried out to select the distance metric that better fits our database. According to this 

study, the cosine distance was chosen. Subsequently, to optimize the algorithm performance, a 

study was made to select the value of the parameter k.  

Once these parameters have been selected, the current patient data are automatically labelled. 

Labelling was done in two ways, first looking what is the majority class for each cluster and then, 

with the proviso that only those clusters containing more than 60% of the same class will be taken. 

These data are merged together with the database of previous patients (which are annotated 

by skilled neurosurgeons) in a Support Vector Machines (SVM) classifier to generate the model 

and subsequently evaluate its performance. Due to the high computation times of SVM training, 

the same procedure was developed with the Random Forest (RF) algorithm, where a study was 

carried out to evaluate the number of trees to be used and the parameter k was redefined. With a 

k equal to 15 and a number of trees of 100, the data were evaluated. 

Since most clusters were identified as being of the background class, it is proposed to achieve 

the same procedure, but using only the 3 clusters that best represent the normal tissue, 

hypervascularized tissue and the background class in the generation of the current patient labels. 

All results were evaluated with various evaluation metrics, including the kappa coefficient, which 

is useful both for multiclass cases and when classes are unbalanced. 
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Resumen 

Este Trabajo Fin de Máster está relacionado con la clasificación de datos médicos 

hiperespectrales (HS). El objetivo principal es desarrollo de un algoritmo semi-supervisado para 

poder realizar el etiquetado de las nuevas imágenes hiperespectrales (HS) adquiridas, con el 

objetivo de incorporar estos datos al esquema de clasificación supervisada. Para la realización se 

utilizó una base de datos obtenida en el Hospital Universitario Doctor Negrín. Esta base de datos 

de imágenes HS está compuesta por 26 cubos HS pertenecientes a un total de 16 pacientes 

diferentes con un tumor cerebral primario de glioblastoma, donde el conjunto de prueba consta 

de 6 capturas correspondientes a 4 pacientes. Para realizar el etiquetado de cada una de las 

imágenes, se definieron 4 clases: tejido normal, tejido tumoral, tejido hipervascularizado y la clase 

background.  

La idea principal es la de poder solventar el problema que surge en los quirófanos, donde 

existe una base de datos previamente etiquetada y los nuevos datos adquiridos del paciente que 

está siendo intervenido. El objetivo es el de lograr con este estudio incluir estos datos actuales del 

paciente que se encuentra en la sala de operaciones a la base de datos con la que se entrena y se 

genera el modelo de clasificación. Con esta propuesta se consigue generar un modelo de 

aprendizaje utilizando tanto los datos etiquetados obtenidos en intervenciones quirúrgicas 

previas como los no etiquetados del paciente en cuestión. El objetivo principal es poder mejorar 

los resultados de la clasificación al incluir datos del nuevo paciente. 

Para realizar la generación automática de las etiquetas del paciente actual se decide utilizar el 

algoritmo k-means. El método elegido utiliza la distancia euclidiana por defecto, por lo que se 

realiza un estudio preliminar para seleccionar la distancia que mejor se adapta a nuestra base de 

datos. Se escogió la distancia coseno. Posteriormente, para optimizar el rendimiento del 

algoritmo, se realizó un estudio para seleccionar el valor del parámetro k.  

Una vez seleccionados estos parámetros, los datos del paciente actual se etiquetaron 

automáticamente. El etiquetado se realizó de dos maneras, primero teniendo en cuenta la clase 

mayoritaria que conformaba cada uno de los clústeres y luego, con la condición de que sólo se 

utilizaran para la generación de etiquetas aquellos clústeres que contuvieran al menos un 60% de 

algunas de las clases.  

Estos datos etiquetados junto con la base de datos de los pacientes previos (que son 

etiquetados por neurocirujanos expertos) son introducidos en el clasificador Support Vector 

Machine (SVM) para generar el modelo y posteriormente testearlo. Debido a los altos tiempos de 

cómputo, se elaboró el mismo procedimiento con el algoritmo Random Forest (RF), donde se 

realizó un estudio para evaluar el número de árboles a utilizar y se redefinió el parámetro k. Con 

una k igual a 15 y un número de árboles de 100 se evaluaron los datos.  

Debido a que la mayoría de los clústeres se identificaron como de la clase background, se 

propuso realizar el mismo procedimiento, pero utilizando en la generación de las etiquetes del 

paciente actual solo los 3 clúster que mejor representen las clases tejido normal, tejido 

hipervascularizado y la clase background. Todos los resultados fueron evaluados con varias 

métricas de evaluación, incluido el coeficiente kappa, que es útil tanto para los casos multiclase 

como para cuando las clases están desbalanceadas. 
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Chapter 1: Introduction 

This chapter presents the context, objectives and methodology to be followed in this 

Master Thesis. In addition, a detailed description of the structure of the document is 

provided. 

1.1 Context 

This Master Thesis is developed within the research lines for the acquisition and 

processing of hyperspectral (HS) images (HSI) that is currently being carried out by the 

Integrated Systems Division (DSI) of the Institute of Applied Microelectronics (IUMA) 

of the University of Las Palmas de Gran Canaria (ULPGC), specifically in the field of 

medical diagnosis. 

Furthermore, the IUMA has been involved in several projects funded by public and 

private entities, in the field of HSI processing and its application. Among these projects 

are these two, being the first one financed by the European Commission: 

• HELICoiD Project (CNET-IST-618080) 

HELICoiD is a European collaboration project between a total of four universities 

(The University of Las Palmas de Gran Canaria, Technology and Medicine of London, 

Imperial College of Science, Association pour la Recherche et le Développment des 

Methodes et Processus Industriels de Paris and Polytechnic University of Madrid), 

three industrial partners and two hospitals. This project is financed by the Executive 

Research Agency (REA) of the European Union and was coordinated by the IUMA. 

Its main objective was to apply HSI techniques to differentiate between healthy and 

tumour tissue during surgical procedures. This project developed an intraoperative 

experimental configuration based on non-invasive HS cameras connected to a platform 

running a set of algorithms capable of discriminating between healthy and pathological 

tissues in the brain. The database provided by this project will be used in this Master 

Thesis. 

• ITHaCA Project (ProID2017010164) 

The ITHaCA project (IndenTificación Hiperespectral de tumores CerebrAles), is a 

multidisciplinary project consisted of engineers, neurosurgeons and pathologist. It has 

been funded by the Canarian Agency for Research, Innovation and the Information 

Society (ACIISI) of the Canary Islands Government and was promoted by the IUMA and 
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FUNCANIS (Canarian Foundation for Health Research), under the coordination of 

IUMA. The aim of this project was to perform a real-time classification of the brain 

tumour area using HSI. 

1.2 Objectives 

The main objective of this Master Thesis is to design a semi-supervised classification 

system for the detection of brain tumours using HSI. Likewise, the main objective is 

broken down into the following partial objectives, that must be achieved during the 

development of the project. 

• Study of the state of the art. 

• Analysis of patient samples. 

• Propose and implement semi-supervised algorithms for HS data. 

• Study the evaluation metrics to evaluate the classification performance. 

• Determine the technique applied to the semi-supervised classification that 

offers the best precision of the results. 

1.3 Methodology 

The methodology that will be carried out in this Master Thesis to achieve the 

objectives consist of the following steps: 

- A thorough investigation of the scenario and the tools that will be used during 

the development of the work to understand its operation. To this end, 

emphasis is placed on the basic concepts of HS and its applications. 

- To investigate the different semi-supervised classification techniques to be 

used for his in this context. 

- Research the different evaluation metrics to use. We select the ones that best 

adapt to the comparison we want to make. 

- To analyze and evaluate the results obtained. 

1.4 Document organization 

The document of this Master Thesis is structured in the following chapters: 

Chapter 1: Introduction. The objectives of the project are exposed, and a general 

introduction is made about the scenario and the tools used in this Master 

Thesis. 

Chapter 2:  State-of-art. The basic concepts necessary for the development of the 

project are explained. Likewise, a study of the different applications of 

HSI is made. Finally, a brief study of the different types of classifiers is 

carried out. 

Chapter 3: Hyperspectral Image Database. This chapter exposes the procedure 

applied to the captures of HS images of brain tumours. As well as the 

database that will be used during the development of this project. 
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Chapter 4: Methodology. This chapter explains the steps implemented to carry out 

the design of the semi-supervised algorithm. 

Chapter 5: Experimental results. This chapter analyses the results obtained with 

the semi-supervised algorithm designed in this Master Thesis. 

Chapter 6: Conclusions and future lines. The conclusions are presented from the 

in-depth analysis of the results. In addition, possible future directions for 

this final work are considered. 
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Chapter 2: State-of-the-art 

2.1 Introduction 

In this Master Thesis, the classification of brain tumours using semi-supervised 

algorithm is proposed. In this section, fundamental concepts will be introduced, which 

are essential to understand the development of this thesis. First, it is necessary to 

understand what hyperspectral (HS) imaging (HSI) are and their different application 

fields since this type of images will be used during the development of this thesis. 

Secondly, different methods of classification and distances will be explained. Finally, 

several studies where semi-supervised algorithms are applied will be analysed. 

2.2 Hyperspectral images 

 Hyperspectral Imaging (HSI) is also known as imaging spectroscopy. The word 

"imaging” stand for the representation of the appearance or morphology of the object, 

and the term “spectroscopy” indicates the study of the interaction of electromagnetic 

radiation with different materials. Therefore, HSI contains both the spatial (x, y) and the 

spectral (λ) information of a given object. 

This technology can acquire hundreds of contiguous spectral bands, obtaining the 

spectral signature of any material, as shown in the Figure 2-1 where the spectral 

signature extracted from a brain tumour is shown. The spectral signature identifies 

different types of materials[1] by measuring the radiation reflected by each material at 

each wavelength. This thesis tries to identify between four tissues: normal tissue, 

tumour, blood vessels and background. 
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Figure 2-1. Spectral signature and hypercube of brain tumour. 

 

All the information sampled with HSI is stored in a three-dimensional (3D) data 

structure called HS cube. The axis X and Y correspond to the spatial information, which 

indicate the position of the pixels, while λ shows the different wavelength that compose 

the spectral information. 

HSI allows to obtain information about the observed object beyond what is possible 

to perceive to the naked eye. The spectrum of visible light ranges from 400 nm to 750 

nm, and the eye perceives each of these wavelengths as a different colour (red, green and 

blue). On the contrary, HS images are able to sample hundreds of spectral bands, from 

the ultraviolet (UV, 200 nm) to the infrared (IR, 2500 nm) [2][3][4]. 

This type of technology was created for remote sensing applications. However, HSI 

is currently used in several applications, such as remote sensing in the field of the 

meteorology [5], the agriculture [6][7] or the environmental pollution[8]. It also 

supposes a solution for the food industry [9][10][11][12] or medical diagnosis[13][14]. In 

this thesis, this technique will be applied in the medical field, specifically as an aid tool 

for the detection of human brain tumours. 

2.2.1 Medical applications 

In the medical field, HS images have represented a technological breakthrough due 

to their non-invasive nature and because they provide useful information for the 

diagnosis of diseases. For example, for the assessment of oxygenation, perfusion and 

haemoglobin in various tissues during abdominal surgery and the identification of 

malignant breast tissues [15]. 

The work by Moulay Y. [15] presents a system that provide colorized images for 

surgeons during pancreatoduodenectomy (PD). These images indicate the different 

tissue characteristics (tissue oxygenation, organ haemoglobin index and lactate). The 

aim of this study is to contribute to the decision of the best surgical approach during the 

PD. 

Table 2-1 shows liver and stomach HSI measurements in patients with celiac artery 

stenosis (CAS) before and after gastroduodenal artery (GDA) clamping. 
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Table 2-1. HSI measurements of liver and stomach. 

 

Figure 2-2 shows the comparison of a normal and a color-coded image of liver 

oxygenation which can help the surgeon avoid ischemic complications. 

 

Figure 2-2. Color-coded images of the tissue oxygenation in % (Right) and color image (left). 

 

Another study by Aref, Mohamed H. [16], presents a system capable of differentiating 

normal and malignant breast tissues. The HSI is used to measure the diffuse reflection 

(Rd) of breast samples (Figure 2-3). 

 

 

Figure 2-3. Raw data of the Rd of normal (black line) and cancer (red line) sample. 
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 After the selection of the spectral image, the custom algorithm is applied to increase 

the image contrast and delineation of tumour regions as shown in Figure 2-4. 

 

Figure 2-4. Contour delineation of tumour and normal tissue in breast sample. 

 

 The results of the samples were validated by comparing them with the pathological 

reports. The application of this technology in the medical field makes it possible to avoid 

invasive techniques such as biopsies. As a result, a more accurate diagnosis of many 

diseases can be achieved. The real challenge is to design algorithms capable of extracting 

the data in real time. 

2.3 Machine Learning Algorithms 

Machine Learning algorithms are used to extract information from data. Depending 

on the type of learning that the algorithm uses to perform the data analysis, there are 

three classes: supervised, semi-supervised and unsupervised algorithms.  

Supervised learning algorithms employ a set of data with known labels to generate a 

model in order to classify new data. Respect to the unsupervised learning, the technique 

cluster the data in different groups applying a similarity criterium. In the case of semi-

supervised learning, to generate the predictions, both labelled and unlabelled data [17] 

are employed together. 

 

2.3.1 Supervised learning algorithms 

Supervised learning algorithms take as input data whose labels are known to realize 

predictions. Thus, from the data in the training set, the algorithm can generate a model 

which performs predictions for a new data sample. 

In a conceptual way, the supervised classification can be formulated as an 

optimization problem. Consider 𝑋𝜖ℝ𝑛as the domain of the attributes and the labelled set 
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𝐺 = { 𝐺1, 𝐺2, … , 𝐺𝑘}. The aim is to find a mathematic function known as a classifier that 

allows the mapping ℎ(·): 𝑋 → 𝐺, which optimizes a suitable measure of predictive 

capacity when applied to entities with unknown groups data [18]. 

Some examples of supervised learning algorithms are: Support Vector Machine 

(SVM) and Random Forest (RF) among others [19][20][21].  

2.3.1.1 Support Vector Machines algorithm 

SVM is a supervised binary classification algorithm based on the principle of 

structural risk minimization. A simple way to develop a binary classifier is to generate an 

optimal hyperplane as a decision surface, which divides the data according to each 

feature with a maximum margin of separation [22]. 

It proceeds from a separate training data set ∁ = {(𝑥1, 𝑦1) … , (𝑥𝑛, 𝑦𝑛)} which consist of 

an ordered sequence of data (𝑥i) and labels (𝑦𝑖), where 𝑥i ∈  ℝ𝑑 and 𝑦𝑖  ∈ {+1, −1} that 

are defined as a separating hyperplane whose lineal function is able to separate the data 

of the set given by the expression (2.1), where 𝑤𝑖 ∈ ℝ  ∀𝑖= 1, … , 𝑑𝑦𝑏 ∈  ℝ 

𝐷(𝑥) = (𝑤1𝑥1 + ⋯ + 𝑤𝑑𝑥𝑑) + 𝑏 = 〈𝑤, 𝑥〉 + 𝑏1 (2.1) 

The hyperplane must fulfil the inequalities (2.2) and (2.3) 

〈𝑤, 𝑥𝑖〉 +   𝑏 ≥ 0 𝑖𝑓 𝑦𝑖=+1 ∀𝑖=1, …, 𝑛 (2.2) 

〈𝑤, 𝑥𝑖〉 +   𝑏 ≥ 0 𝑖𝑓 𝑦𝑖=-1   ∀𝑖 = 1, … , 𝑛 (2.3) 

Where if  𝑦𝑖 = +1  the class is positive and, otherwise, when 𝑦𝑖 = −1   the class is 
negative. 

 

Figure 2-5.  Separating Hyperplane (linear separable case). 

Figure 2-5 shows an example of the SVM algorithm, which employs the support 

vectors of the training data to develop the decision surface. From a practical point of 

view, the maximum margin has proven to have a good generalization capability, avoiding 

the problem of overfitting to the training examples [23]. 

2.3.1.2 Random Forest 

Within the decision trees that recursively segment the feature space and assign a label 

to each resulting partition there are the RF.  This decision allows to classify the new data 

points [24]. 
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This type of supervised algorithm generates several decision trees, each tree gives a 

prediction, and it is the forest that chooses the most repeated prediction. 

 

Figure 2-6. General structure of the Random Forest algorithm. 

 

As it can be seen in Figure 2-6, the forest is the one which selects the average of the 

results of all the trees. RF has been proven to offer high generalization performance and 

high computational efficiency in HSI [25]. 

2.3.2 Unsupervised algorithms 

Unsupervised learning is a kind of automatic learning algorithms, which the dataset 

is mined without the requirement of human intervention. In other words, information 

can be extracted from the input data even when the labels are unknown.  

The most common algorithms are clustering methods, which are based on exploring 

the data and finding patterns or clusters. Some examples of clustering algorithms are 

spectral clustering, k-means and k-medoids clustering, or Gaussian mixtures models 

[26]. 

 

Figure 2-7.  Visual example of data grouping by the clustering method 
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In Figure 2-7, an example of the clustering algorithm is shown. In the first image 

(Original unclustered data, Figure 2-7) at least two groups of points can be identified 

with the naked eye. The first, in the lower right quadrant and the second made up of the 

rest of the points. The second image (clustered data, Figure 2-7) shows the result of using 

a clustering algorithm, where three different data sets are identified. 

2.3.2.1 K-means algorithm 

The k-means method assembles the existing data into groups. It looks for the 

similarity levels between the different groups to have a low value. This similarity is 

calculated from the mean value of the group or centroid [27]. 

This algorithm has an input parameter k, which represents the number of clusters. 

K-means partitions a set of n objects into k clusters looking for high intra-cluster 

similarity and low inter-cluster similarity. From a given data set, it associates each point 

to the nearest centroid. 

The K-means algorithm consists of the following steps: 

1. The k centroids are initialized with random data samples from the data set. 

2. A similarity metric between each sample of the dataset and the k centroids is 

calculated. 

3. Each data sample is assigned to the cluster whose centroid is the nearest. 

4. The value of the centroid is updated to the mean value of the data composing 

the cluster. This last stage is performed until the centroids do not move or 

change, elsewhere repeat from 2 [28]. 

2.3.3 Semi-supervised algorithms 

In supervised learning, the Machine Learning model is generated from a large, 

labelled training set. However, in many practical classification applications the number 

of available unlabelled samples is larger, since the collection of labelled samples is 

complicated. The assignment of labels to these unlabelled data is a process that requires 

human effort and experience. For this reason, it is interesting to develop algorithms that 

can use both labelled and unlabelled samples in the classification process to obtain high-

performance classifiers [29]. 

In this case, semi-supervised learning (SSL) algorithms are interesting to be applied 

when the number of labelled data is limited, and there are available unlabelled samples. 

SSL is a powerful tool to generate learning models when the number of labelled samples 

is low [30]. Most SSL approaches rely on the design of specialized learning algorithms to 

effectively use the data. Generally, supervised learning algorithms are the ones selected 

to generate the models, so SSL aims to improve the performance of the selected 

supervised algorithm using the available unlabelled data [31][32] [33]. In the literature, 

the most important types of SSL are: 

- Generative models, which involve the estimation of conditional density 𝑝(𝑥|𝑦) 

[34]. 

- Low density separation algorithms, which seek the maximum margin of the 

labelled and unlabelled samples simultaneously, such as inductive and 

transductive SVMs [35]. 
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- Graph-based methods, where each sample scatters its labelled information to its 

neighbours. This is repeated until a steady state is achieved across the entire 

dataset [36][37]. 

The use of HSI have increased in many application fields such remote sensing 

[38][39][40], military, agriculture or medical field [41][16]. However, assigning a label 

to each pixel is a difficult task due to the shortage of labelled samples. For this reason, it 

is becoming necessary to design new solutions such as the implementation of semi 

supervised algorithms. 

2.3.3.1 Applications/Examples 

The following paper focuses on a semi-supervised classification and aims to carry out 

a study of tomatoes using the segmentation:  vine tomatoes, background, stalk and flesh. 

The first step in the design is the unsupervised classification of the hypercube with three 

different algorithms: k-means clustering, the agglomerative hierarchical and the 

multivariate Gaussian Mixture Models (GMM). The second step is a classification of new 

data in a supervised way with three different techniques: SVM, Partial Least Squares 

Discriminant Analysis (PLS-DA) and Soft Independent Modelling of Class Analogy 

(SIMCA). Finally, the last step is the evaluation phase where a supervisor should decide 

if the segmentation is acceptable [42]. 

From the results obtained from the unsupervised learning approaches, the 5 spectra 

of pixels with the most information were selected then, they are used to build the 

supervised model.  

 

Table 2-2. Results of the three unsupervised techniques. 

 

 

On the one hand, the first table (Table 2-2)  shows the results of the three 

unsupervised techniques. The k-means with the square Euclidean distance achieved the 

best result. On the other hand, the best supervised method was the PLS-DA with an 

accuracy of 97%, what is shown in the table Table 2-3.  

Table 2-3. Results of the three supervised techniques. 

 

 

For the former example, the semi-supervised segmentation algorithm that has been 

elaborated with the combination of the supervised and unsupervised techniques have 
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achieved for this database a correct classification rate of 97%.  In this case, the semi 

supervised approach improved the results of the supervised classification. 

In the study performed by Tatyana V. Bandos, a semi-supervised graph-based method 

was proposed. This design is intended to produce smoother classifications. To do this, 

the authors exploit both the spatial and contextual information of the images through 

composite kernels (Spatial, spectral, stacked, summation and cross-information) [37]. 

They used a reduced training with 3, 5, 10 samples per class through 3-fold cross 

validation. The design was tested with whole image where better integration of the spatial 

information is achieved by the graph-based (Figure 2-8).  

 

Figure 2-8. Classified images with the SVM-based and the graph-based with 5 training pixels by class. 

 

The evaluation metric used was the hit rate. The Table 2-4, shows the overall accuracy 

(OA) obtained for each kernel as well as the number of labelled samples per class. The 

results are shown as SVM/GRAPH. As it can be observed for the graph method, a better 

OA value is obtained respect to the SVM method. 

 

Table 2-4. Overall Accuracy (OA%) obtained with SVM and Graph methods. 

 

 

2.4 Similarity Metrics 

In this Master Thesis, different similarity metrics have been used. For this reason, 

this section explains different types of mathematical distance metrics that allow to 

calculate the similarity between data samples. The most commonly used mathematical 

models are: Minkowski, Euclidean, Cosine, City-block and Chebyshev distances. 
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2.4.1 Minkowski distance 

This distance is calculated using the following formula (2.8), where 𝑑𝑠𝑡 is the 

Minkowski distance between the vectors 𝑥𝑠 and 𝑦𝑡,: 

𝑑𝑠𝑡 =   √∑ |𝑥𝑠𝑗 − 𝑦𝑡𝑗|𝑝

𝑛

𝑗=1

𝑝

 

(2.8) 

The Table 2-5 shows the special cases of the Minskowski distance [43].  

Table 2-5. Special cases of Minskowski distance. 

 

Minskowski Distance 

 

p=1 
Manhattan or City-block 

distance 

p=2 Euclidean distance 

p=∞ 
Supremum or Chebyshev 

distance 

 

This distance can be considered a generalization of the Euclidean and Manhattan 

distances. 

2.4.2 Euclidean distance 

The Euclidean distance is used to calculate the distance between two points in a two-

dimensional space, a smaller value indicates more similar points [44]. 

The Euclidean distance is defined (2.4) as follows: 

𝑑2
𝑠𝑡 = (𝑥𝑠 −  𝑦

𝑡
) (𝑥𝑠 − 𝑦

𝑡
)′ (2.4) 

Where 𝑑𝑠𝑡 is the Euclidian distance between the vectors 𝑥𝑠 and 𝑦𝑡, which is given in a 

data matrix. It is a special case of the Minkowski distance, but with p=2 (see section 

¡Error! No se encuentra el origen de la referencia.). Its use is recommended 

when the variables are homogeneous and are measured in similar units. 

2.4.3 Cosine distance 

The Cosine distance (2.5) calculates the angle between two vectors projected in a 

multidimensional space. This measure deals with the magnitude and the result is 

confined by the interval (-1, 1) [45]. 

This distance is calculated as follow: 

𝑑𝑠𝑡 =   1 −  
𝑥𝑠  𝑦

𝑡
′

√(𝑥𝑠 𝑥𝑠
′ )(𝑦

𝑡
 𝑦

𝑡
′ )

 (2.5) 

It is recommended because if the vectors are similar and separated by Euclidean 

distance, due to the large size of the data, they may still be oriented closer together. The 

Cosine distance is related to the Spectral Angle similarity metric, which is commonly 

used in HSI applications [46][47]. 
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2.4.4 City-block distance 

The City-block or Manhattan distance calculates the exact distance between two 

points and not the estimate of the shortest distance[48].  

This measure is represented by the following equation (2.6): 

𝑑𝑠𝑡 =  ∑ |𝑥𝑠𝑗 − 𝑦
𝑡𝑗

|

𝑛

𝑗=1

   
(2.6) 

It is the Minkowski distance with p=1. In most cases this distance produces similar 

results to the Euclidean distance. 

2.4.5 Chebyshev distance 

The Chebyshev distance gives the maximum difference and is a special case of the 

Minkowski distance with p=∞ [49]. It is determined by the next formula (2.7): 

𝑑𝑠𝑡 =  𝑚𝑎𝑥𝑗{|𝑥𝑠𝑗 − 𝑦𝑡𝑗|} (2.7) 

2.5 Summary 

In the medicine field, collecting labelled samples is often costly, since label 

assignment is a process that requires human effort and expertise, in this case, from 

medical experts. For this reason, it is an interesting challenge to develop algorithms that 

can use both labelled and unlabelled data for classification. 

This chapter has presented the fundamental concepts that must be taken into account 

to understand the development of this thesis. It was considered necessary to understand 

both the composition and specifications of HSI systems. For this purpose, a brief 

introduction of the different fields of application was made to understand the scope of 

this technique. In addition, different types of algorithms and classifiers that will be used 

in this Master Thesis to classify the content of a HS image using SSL are presented. SSL 

is a promising technique in cases where the proportion of labelled data instances is small 

compared to the unlabelled instances. 
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Chapter 3: Hyperspectral image 

database 

3.1 Introduction  

This chapter describes the database used to evaluate the classification of HS with the 

SSL algorithm designed in this Master Thesis. Likewise, the procedure carried out to 

obtain the images in the HELICoiD research project is described. 

HELICoiD was a European project of the Future and Emerging Technologies program 

(FET-Open), within the framework of the seventh Framework Program of the European 

Union [50]. This project applied advanced hyperspectral image classification techniques 

for the detection of brain tumours. The aim was to generate a demonstrator capable of 

discriminating between healthy and tumour tissue in real time during neurosurgery 

interventions. Thus, an intraoperative experimental system was developed which allows 

neurosurgeons to confirm the complete resection of the tumour tissue in real time from 

maps indicating the area of the tumour. 

3.2 HSI procedure 

For HSI of the surface of the human brain during neurosurgical operations, the 

hyperspectral pushbroom cameras selected were the Hyperspec® VNIR (Visual and 

Near-Infrared) Series A model and the Hyperspec® NIR (Near-Infrared)100/U model.  

Figure 3-1 shows the platform installed in the preoperative area of University 

Hospital Doctor Negrín that was used in the HELICoiD project to acquire the images 

with the selected pushbroom cameras. The illumination system is a 150 W Quartz 

Tungsten lamp (QTH), with a broadband emission between 400 and 2200 nm, due to 

the great homogeneity of its spectrum that it offers throughout the spectral range. 
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Figure 3-1. HELICoiD demonstrator acquisition platform. (a, b) VNIR and NIR HS cameras 
mounted on the scanning platform; (c-e) Light source QTH connected to the fiber optic system for the 
transmission of light to obtain a light emission on the scanning platform; (f, g) stepper motor coupled 
to the shaft and connected to the stepper motor controller to perform the linear movement of the 
cameras; (h) Positioning of the camera used to identify the position of the field of vision of the cameras 
(FOV); (i) The Up & Down system used to focus the HS cameras; (j) and (k) Manual pan and tilt systems 
used to correctly orient the scanning platform [51]. 

 

On the one hand, in the Figure 3-1.a, Hyperspec® VNIR Series A model is presented 

covering a spectral range from 400 to 1000 nm and is capable of capturing 826 spectral 

bands and 1004 spatial pixels. On the other hand, the Hyperspec® NIR 100 / U model 

ranges from 900 to 1700 nm, with 172 spectral channels and 320 spatial pixels is shown 

in the Figure 3-1 b. Both are based on the linear scan technique (line scan), a method 

used to obtain the hyperspectral cube. This method covers a spectral range of 400 and 

1700nm (VNIR and NIR), where the most relevant spectral regions for the application of 

this thesis are shown. 

Finally, the sensor is a two-dimensional array of detectors, a spatial dimension and a 

complete spectral one where the scene is captured in a single shot or frame. The 

technique used by these cameras offers a compromise between spectral and spatial 

resolution, as well as acquisition time [51]. 

3.3 Acquisition of HSI  

The HELICoiD project has developed a demonstrator capable of simultaneously 

obtaining two hyperspectral cubes. Figure 3-2 shows the flowchart of the project. 
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Figure 3-2. Data acquisition and labelling procedure of HELICoiD project. 

First, prior to the operation, the patient is submitted to a stereotactic imaging guide 

(IGS) with compatible Computed Tomography (CT) and Magnetic Resonance Imaging 

(MRI) scans that are loaded into the IGS system. Once the necessary tests have been 

performed, general anaesthesia is applied to the patient, then an incision is made in the 

scalp. 

At that time, a craniotome is inserted and a craniotomy is performed, a part of the 

skull bone known as the bone flap is removed. Images are captured after durotomy and 

before the arachnoids and pia mater have ruptured. In case the tumour can be seen on 

the surface, by visual appearance, two sterilized markers are placed in the shape of a 

rubber ring, as seen in Figure 3-3. Thus, at the surgeon's judgment, both the tumour 

position and the healthy part of the brain tissue are identified [52]. 

 

Figure 3-3. Pointer of the IGS system on the HELICoiD tumour marker located on the 
exposed surface of the brain. 
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Lastly, after using the demonstrator, several hyperspectral images were captured with 

and without markers. These markers provide an area of the image where the pixels can 

be labelled with the surgeon's prior assessment, and this is finally contrasted with the 

pathology results [53]. Following the use of the demonstrator, a database of 

hyperspectral images of the human brain in vivo is created in hyperspectral cubes.  

3.3.1 Tissue resection 

After the first hyperspectral image capture, the HELICoiD demonstrator is removed 

from the surgical site. Subsequently, the neurosurgeons begin resection of the tumour 

and take a sample of the tissue within the tumour marker. Tissue samples obtained from 

the marker position are sent to the pathology laboratory for the final tissue diagnosis. 

These samples will later be used as a reference for algorithm development. 

3.3.2 Expert evaluation 

Samples are sent to the Pathology Laboratory where they are histologically processed 

and subjected to standard H&E staining and any other if it is required to establish a 

definitive histopathological diagnosis. The only ones who can determine whether a tissue 

within the marker is a tumour are neuropathologists. This is performed by analysing the 

biopsies taken during surgery. The samples are diagnosed as tumour (subdivided into 

type and grade) or normal brain (white or grey matter) [54]. 

3.3.3 Samples labelling 

From the information provided by the pathologists, and using the MATLAB tool, some 

pixels of each hyperspectral image were labelled (see Figure 3.4). In this way, the ground 

truth for training the algorithm is generated. The pixels were labelled in four classes and 

assigned a colour to each one: healthy tissue (class 1) represented by green colour, 

tumour tissue (class 2) drawn in red, hypervascularized tissue (class 3) figured in blue 

and the background (class 4) represented with the black color. 

 

Figure 3-4. Screenshot of the HELICoiD labeling tool. 

To carry out this Master Thesis a database subset of images from the HELICOiD and 

ITHACA projects was employed. This HS database is composed by 26 HS cubes 

belonging to a total of 16 different patients with Glioblastoma primary brain tumour.  

In order to evaluate the design of semi-supervised algorithms for this thesis, the 

database is divided into two sets. One set for the training (Table 3-1) and the other for 
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testing (Table 3-2). The selection of images for the test set was based on the images that 

contained the four classes with the aim of trying to predict both classes. 

Table 3-1. HELICoiD labelled pixel train dataset. 
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Table 3-2. HELICoiD labelled pixel test dataset. 

 

Since the leave-one-out methodology has been used during the development of this 

thesis, the remaining HS test images are also included in the training database (see 

Chapter 4: 4.2.1 Leave-one-out Cross-Validation technique). Table 3-3 and Table 3-4 

illustrate the RGB images and the gold reference of the patients who were included in the 

test set. 

Table 3-3. RGB of hyperspectral test set. 
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Table 3-4. Ground truth maps of hyperspectral test set. 

 

 

3.4 Summary 

This chapter has presented the procedure for the capture of hyperspectral images of 

brain tissues. It is noted that, in order to obtain these images, the neurosurgeon must 

follow a strict procedure to extract the images that are part of the database of this thesis. 

For this reason, it is necessary to perform a craniotomy and extract some tissues (fibrous 

covers) to reach the brain tissue that will later be indicated with the markers. Finally, the 

samples were labelled obtaining a total of 26 HS cubes from 16 patients. The dataset was 

divided into two sets: the training set composed by 16 patients and 26 HS cubes 

(containing a total of 237.458 labelled pixels) and the test set (consisting of 6 captures 

from 4 patients). This test set have a total of 67.902 labelled pixels of which 10.366 

correspond to tumour samples. 
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Chapter 4: Methodology 

4.1 Introduction 

In this chapter, the methodology followed to perform a semi-supervised classification 

of our database is explained.  

The objective of this Master Thesis is to design a semi-supervised algorithm. It is 

decided to make a pre-labelling using the data set of previous patients to label the current 

patient, with the goal of using the data for the current patient for the classification. The 

idea is to simulate real cases in the operating room, where there is a previously labelled 

database and the new acquired data of the patient who is going to receive the 

intervention. The objective is to include this current patient data in the database with 

which to train and generate the SVM and RF models. 

First, the k-means method will be used to generate the labels of the current patient. 

The chosen method uses the default Euclidean distance, so a preliminary study is carried 

out to select the distance that better suits our database. The study has been performed 

for the following distances: Euclidean, Cosine, City-block, Minkowski and Chebyshev. 

The sample label generation decision is made in two ways. 1) By voting, this method 

counts the label value given by each distance. For example, if three distances identified 

that pixel belonged to the normal tissue class and two distances identified it as 

background, the pixel will be labelled as normal tissue, label with value 1. 2) By the best 

result, which selects the distance that best fits the database. In this case, the label is 

assigned to the pixel based on the distance that obtained the smallest value. After 

evaluating the results, the best selection method is chosen to determine the distance that 

best suits our database. 

Once the most suitable distance has been selected, based on the results of the k-

means method, the data are processed to find out to which class each cluster belongs. 

First, it is decided which clusters are assigned to a class based on the majority. This 

decision is initially made by the percentage of pixels which belong to the same class (the 

cluster is assigned the class that has the highest number of labelled pixels for a certain 

class). However, in this approach it may happen that there are clusters in which there is 

a high number of pixels of various classes. This could lead to errors in the final label 

assignment. In order to avoid this issue, a second labelling generation approach is 

proposed. In this second approach, only those clusters which contain more than 60% of 

the same class will be taken (the cluster is assigned a label if one class has a hit greater 

than 60%). From there, the current patient data is labelled taking into account the 

minimum distance between the pixels and the closest centroid. 

Finally, these semi-automatic labels (unsupervised assignment of labels to the 

current patient data) are merged with the training dataset (corresponding to previous 

patient data) directly to the classifier to generate the model. The results were assessed 
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with several evaluation metrics, including the kappa metric which is a useful coefficient 

for multiclass cases and when classes are unbalanced. 

4.2 Proposed methodology 

The methodology proposed in this Master Thesis to develop the semi-supervised 

classification of HS images of brain tumours is as follows: It starts from a database that 

consist of pre-processed and previously labelled hyperspectral images. With this 

database, the labelling of a new patient is performed by using the distance of each pixel 

with respect to the mean of the complete database without such patient. Once the 

distance metric selection is done, an evaluation is made of which distance metric best fits 

our database and then use this parameter in the k-means method. The database of the 

previous patients without the new patients used in the k-means to get the different 

clusters. Once it is known which cluster belongs to which class, the labels of the new 

patient are generated (Figure 4-1). 

 

Figure 4-1. Block diagram corresponding to the proposed procedure. 

 

The new patient labelled with this methodology and the dataset of the previous 

patients are fed into the classifiers, in order to train it, generate a model and finally 

evaluate its performance. For this purpose, the following evaluation metrics have been 

employed: accuracy, which is the success rate or precision, the confusion matrix, 

specificity, sensitivity and, finally, the kappa coefficient. To obtain these metrics, a data 

partition based on the leave-one-out cross-validation technique (explained in the next 

section) are used. 

In the classification stage, it was decided to use the SVM algorithm. After conducting 

an exhaustive analysis on different studies from the literature. Being this algorithm the 

one that has obtained the best results in the cases in which high-dimensional data 

classification is used and the training samples are limited [55][56]. This same procedure 

is subsequently proposed using the RF algorithm, with the aim of reducing computation 

times and being able to compare the results of the proposed procedure (Figure 4-1). 

The procedure followed consists of using the spectral signatures to train the classifier. 

Likewise, to separate the training and test data and to provide validity to the evaluation 

metrics, the leave-one-out cross-validation technique is used. 

4.2.1 Leave-one-out Cross-Validation technique 

The cross-validation technique allows estimating the precision of the generated 

model. For this, a partition of the data is performed where, on the one hand, there will 

be a training set and, on the other hand, a group of test data to assess the model 

performance [57]. 
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In the cross-validation process there are different methodologies: k-fold and leave-

one-out.  

The k-fold cross-validation is an improvement to the hold-out method. In the hold-

out data partition strategy, the data is divided into two subsets, a training part and a test 

part. While in the k-fold method the data are divided into 𝑘 subsets. So that, this process 

repeats a set of 𝑘 iterations [58]. Both methods use the same principle of operation, 

testing with data that have not been used during the training so in each subset some 

samples are part of the training and others of the test. Finally, all samples are part of the 

test set. 

In this study, a leave-one-out data partition is implemented. The leave-one-out is a 

cross-validation on 𝑛, where 𝑛 is the number of instances in the data set. Each instance 

of 𝑛 is left out and the classifier is trained on all other instances (see Figure 4-2) [59]. 

 

 

Figure 4-2. Leave-one-out (Cross-validation method). 

 

The 𝑛 results are averaged, with this average being the representation of the final 

error estimate. In addition, the randomly generated subsets for each of the methods are 

made to contain approximately the same proportion of labels as the original data set. In 

our case, each patient is used as test data (emulating a new patient arriving to the surgical 

room), and the data from the remaining patients is used to train the supervised classifier. 

4.2.2 First part of the proposed SSL method 

The first part of the proposed processing framework aims to evaluate which distance 

is best suited to the database employed to optimize the k-means method. For this, the 

following steps were followed: first it is necessary to calculate the class means of the 

previous set of patients without the current patient to evaluate (performing a leave one 

out cross-validation). Then, once the mean signatures have been calculated, pairwise 

distances are calculated between each of the mean classes and the mean signatures of 

each class. Finally, a comparison is made between the dataset corresponding to the 

current patient and the mean signatures obtained for the current patient pixels with the 

highest similarity to the mean signatures corresponding to each class. The objective is to 

identify which mean signature (4 classes, 4 means) has the greatest similarity with the 

pixel to be labelled. This is how the labels are assigned.  

To automatically perform the new labelling of the surgical samples of the current 

patient, two methods are initially proposed, by voting, i.e. how many distances claim that 

this pixel belongs to the same class? and by the best result obtained (Show Figure 4-3). 
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Figure 4-3. Flow diagram of the study of distances. 

 

A total of five distances were evaluated: Euclidean, Cosine, Cityblock, Minkowski and 

Chebyshev distance. Once the results were obtained, the voting method was discarded 

due to the autocorrelation between distances, so for this study the best result method 

was used to generate the new labels of the current patient and evaluate the different 

distances. The evaluation metrics are applied when comparing the result with the 

reference image, where the value of the labels was already known. 

4.2.3 Second part of the proposed method 

Once the distance is selected, an attempt is made to optimize the k-means algorithm 

a little more. A study is made to select the best value of k and the index of the MaxIter 

parameter, which is the maximum number of iterations. This last parameter has a default 

value of 100. Three different values 100, 1000 and 3000 are tested and the value with 

the best result is selected.   

The next step is to use the k-means algorithm in this process to find and cluster the 

data in 𝑘 groups by evaluating a similarity metric between samples. 

The k-means algorithm needs the input parameter 𝑘, with which it divides the 

ensemble samples into 𝑘 clusters. This method tries to find that the similarity level 

between the members of a cluster is high and with the samples of other clusters very low. 

The similarity of the cluster to the members is measured by the proximity of the object 

to the mean value of the cluster or centroid [27]. 

For this case, the similarity seeks to measure the distance between the hyperspectral 

signatures of each pixel. The goal is to find the signatures that are most similar to each 

other and group them together. The k-means uses the default Euclidean distance to 

perform this calculation. 
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Figure 4-4. Flow diagram of k-means method. 

 

Once the distance that best suits our database is selected, (see Section 4.2.2), the 

following steps are illustrated in Figure 4-4.  In order to identify the best value for the 

parameter 𝑘 a sweep is performed with a range value from 4 to 24, which represents the 

number of groups into which the set of observations will be divided [60].  

After studying the data, it was analysed how the k-means grouped the data. As the k 

value is increased, it was possible to separate the classes more efficiently, however, it is 

possible that one cluster has pixels from different classes, for that reason, it is decided to 

develop two conditions for the final classification.   

The next step is to identify to which class each cluster belongs. As it is commented 

before, two mechanisms are proposed for this decision. The first mechanism is the 

unconditional one. It consists of assign the cluster to the majority class, i.e., if in cluster 

1 (C1) 61% of the pixels belong to class 1 (Normal), 1% to class 2 (Tumour), 7% to 3 (Blood 

vessel) and 32% to 4 (Background), then that cluster C1 belongs to class 1. The second 

proposed mechanism consist in using a condition, i.e., if the class with the highest 

percentage of that cluster does not exceed 60%, its means that this cluster has a lot of 

data variability, so it is discarded for the final labelling. 

4.2.4 Third part of the proposed method 

To evaluate the obtained results, the SVM and RF classifiers were used. The final block 

of the general process is shown in more detail in Figure 4-5. As it is a semi-supervised 

algorithm, what is sought is to increase the database with which the model is generated. 
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Figure 4-5. Final flow diagram of the evaluation metrics computation with the implementation of SVM and RF 
algorithms. 

The Train set together with the current patient labelled are entered into the SVM and 

RF algorithm. With these data, the SVM is trained, and the RF algorithm generates the 

decision trees. Once the generated models are obtained, the Test set is used to evaluate 

its performance with the different evaluation metrics. 

4.3 Evaluation metrics 

To validate the results, it is advisable to contrast with at least more than one metric, 

since using only one metric could not be enough to describe the goodness of the results 

of a classifier and could lead to wrong conclusions. This section describes the evaluation 

metrics used to assess classification accuracy.  

4.3.1 Overall Accuracy 

Overall Accuracy (OA) refers to the hit rate and determines the accuracy with which 

the classifier is able to correctly predict the classes of the pixels samples. It indicates how 

many pixels could be correctly identified by the classification algorithm. This metric is 

calculated as the success rate of the predictions of the classifier and is defined by the 

equation (4.1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.1) 

Where TP (True Positives), corresponds to the correctly detected conditions. In 

other words, the sample label is positive, and the result of the classification is positive. 

False Positives (FP) are the incorrectly detected conditions. The sample label is negative, 

but the result of the classification is positive. True Negatives (TN) correctly rejected 

conditions. The sample label is negative, and the result of the classification is negative 

and the False Negatives (FN) the incorrectly rejected conditions. The sample label is 

positive, but the result of the classification is negative [61]. 
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4.3.2 Specificity 

Specificity is the proportion of true negatives which the classifier identifies as such. 

It is calculated by the expression (4.2): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4.2) 

 

4.3.3 Sensitivity 

The sensitivity corresponds to the proportion of true positives that have been 

correctly identified such as positives. The equation to calculate this percentage is shown 

in (4.3). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.1) 

 

4.3.4 Kappa coefficient 

The Kappa Coefficient (𝑘) determines the interobserver agreement, it can be 

calculated on tables of any dimension. This coefficient is constructed from a quotient 

shown in the following equation (4.4) [62].  

𝑘 =  
[(∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑠) − (∑ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑠)]

[(𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠)  − (∑ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑠)]
 (4.4) 

The Kappa coefficient is, in other words, the ratio between observed and non-random 

agreement divided by the total possible concordance not produced by chance. 

The range of values that the kappa coefficient is between +1 and -1. A positive kappa 

indicates that the observers agree more frequently than would be randomly expected, 

meaning that there is a strongest degree of interobserver concordance. If the value is 𝑘=1 

it indicates a completed agreement. Conversely, if 𝑘=0, it denotes that the concordance 

is as expected by chance. A negative kappa indicates that disagreement between 

observers is more frequent than expected by chance. Finally, if 𝑘=-1, it indicates a totally 

disagreement [63]. 

4.4 Summary 

This chapter has described the methodology followed throughout this Master Thesis 

to design a semi supervised algorithm and evaluate the results.  

First, to optimize the k-means method, a study of the distances best suited to our 

database was carried out. Then, a study was conducted to select the parameter 𝑘 for the 

k-means clustering. Once the parameters of the k-means algorithm were defined, the 

train database was introduced into the k-means method with the objective of dividing 

the samples in 𝑘 clusters. The class presence in each cluster was calculated to generate 

the current patient labels. For this purpose, two methods were proposed. The first 

method is the unconditional one, where the cluster gets the label value of the class with 

the highest percentage. The second method, consist in using a condition, i.e., if the class 
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with the highest percentage of that cluster does not exceed 60% its means that this cluster 

has a lot of data variability, so it is discarded for the final labelling. Once the clusters have 

been identified, the algorithm was trained, and the models were generated for both 

approaches to label the current patient data. Finally, both ways of automatic label 

generation were evaluated. 

 





 

 

Chapter 5: Experimental results 

5.1 Introduction 

 

This section shows the results obtained for the proposed semi supervised algorithms, 

with the aim of evaluating and defining which proposed method performs best for the 

classification of brain HS data. This chapter will be divided as follows: 

1. Selection and evaluation of the results obtained with each of the distances. 

2. Choice of the value of the parameter k to optimize the unsupervised k means 

algorithm. 

3. Use of the unsupervised algorithm for the generation of new patient labels and 

evaluation of the supervised classification models generated with the SVM and RF 

algorithms. 

First, the different distances are analysed to observe which one best fits the HS brain 

database and use it for the proposed semi-supervised classification. Once the distance 

metric is chosen, the value of the parameter k is selected to optimize the k-means 

algorithm. After selecting the k-means parameters, the labels are generated for the 

current patient with and without conditions. These data and annotations from the 

current patient are included to the database of previous patients and are introduced into 

the SVM supervised classifier, where the model is trained and generated for further 

evaluation. To be able to make a broader comparison, the study is performed again by 

changing the SVM algorithm for the RF allowing to analyse different values of k.  

 For the analysis and selection of the best distance to use, the following evaluation 

metrics were used: OA (Overall accuracy), kappa coefficient, standard deviation, 

sensitivity, specificity. While for the evaluation of the final results the selected metrics 

were: accuracy, specificity, sensitivity and confusion matrix. 

5.2 Distance selection and evaluation. 

In this section the results obtained for Euclidean, Cosine, Cityblock, Minkowski and 

Chebyshev distances are presented. To perform this evaluation, the current patient labels 

were generated in two ways: Voting and Best Result methods. Once the labels have been 
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generating according to these similarity measurements, the different evaluation metrics 

are calculated. 

5.2.1 Voting method results 

The voting selection process consists of assigning to each pixel of the HS image the 

class that has appeared most often among the distances. That is, if three distances 

identify a pixel as the background class and two distances identify the same pixel as the 

healthy class, then, being the majority, the label assignment for that pixel will be the 

background class. 

Table 5-1 shows the overall accuracy, sensitivity, specificity, and kappa coefficient 

obtained after classifying the pixels by the voting method. The results show that OA has 

a value of 52.88%. As explained in Chapter 4, there is an autocorrelation. For example, 

the City-block distance is a special case of the Minkowski but with p=1 (see 2.4.1 

Minkowski distance). For this reason, the results obtained by this labelling method are 

discarded. 

Table 5-1. Results obtained with the voting method. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 28.10% 0.06 0.24 0.36 1.00 0.90 0.42 0.95 0.32 0.12 

P8C2 67.69% 1.00 0.31 0.94 0.55 0.61 0.97 1.00 1.00 0.48 

P12C1 73.66% 0.47 0.03 0.89 1.00 0.91 0.85 0.81 0.98 0.58 

P12C2 43,.41% 0.59 0.01 0.92 0.13 0.46 0.81 0.63 0.96 0.24 

P15C1 72.14% 1.00 0.81 0.55 0.98 0.69 1.00 0.99 0.98 0.62 

P20C1 32.29% 0.96 0.00 0.61 0.16 0.24 0.58 0.98 0.98 0.11 

AVG 52.88% 68.03% 23.27% 71.26% 63.73% 63.47% 77.01% 89.23% 86.81% 0.36 

Std ±0.18 ±0.32 ±0.26 ±0.20 ±0.35 ±0.22 ±0.19 ±0.12 ±0.23 ±0.19 
 

 

5.2.2 Best result method results 

In this section, the samples are labelled, making the decision based on the best result 

obtained with each of the distances. For this method, like the previous one, several 

evaluation metrics are used, highlighting the kappa coefficient widely used for multiclass 

and unbalanced cases. 

The OA obtained for the Euclidean distance (Table 5-2) is 51.91% and a kappa of 0.35. 
For the Cosine distance (Table 5-3), the OA is 65.98% and the kappa has a moderate 
value of 0.51. The Chebyshev distance (Table 5-4) obtained an OA of 50.28% and a kappa 
coefficient of 0.34 while the City-block distance ( 

 

Table 5-5) manages to improve a bit on this value with a success rate of 53.84% and a 
0.37 kappa. Finally, the Minkowski distance (Table 5-6) obtained an OA of 51.91%, 
however, the kappa coefficient decreased with respect to the City-block distance, with a 
value of 0.35. As can be observed, the Minkowski distance provides the same results as 
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the Euclidean distance do. The reason may be due to the fact that the Euclidean distance 
is a special case of the Minkowski with p = 2 as discussed in Section 2.4.1. It can be 
observed that the Cosine distance is the one with the highest hit rate and the best kappa 
with a moderate value of 0.51, being the selected distance method. This indicates that the 
disagreement between the observations is less frequent than is expected.  

Table 5-2. Euclidean distance results. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 27.15% 0.06 0.24 0.32 1.00 0.90 0.40 0.95 0.30 0.11 

P8C2 67.29% 1.00 0.31 0.93 0.55 0.61 0.96 1.00 1.00 0.48 

P12C1 71.65% 0.41 0.03 0.89 1.00 0.91 0.82 0.80 0.98 0.55 

P12C2 42.47% 0.56 0.00 0.92 0.13 0.46 0.80 0.62 0.95 0.23 

P15C1 70.64% 1.00 0.80 0.52 0.98 0.67 1.00 0.98 0.97 0.60 

P20C1 32.27% 0.96 0.00 0.61 0.15 0.24 0.58 0.99 0.98 0.11 

AVG 51.91% 66.35% 23.18% 69.87% 63.67% 63.01% 76.08% 88.97% 86.39% 0.35 

Std ±0.19 ±0.36 ±0.28 ±0.23 ±0.38 ±0.23 ±0.21 ±0.14 ±0.25 ±0.20 

 

Table 5-3. Cosine distance results. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 54.87% 0.48 0.52 0.52 0.91 0.90 0.61 0.80 0.93 0.39 

P8C2 87.58% 0.97 0.25 0.99 0.84 0.97 0.91 1.00 0.97 0.77 

P12C1 77.64% 0.85 0.02 0.93 0.16 0.92 0.86 0.85 1.00 0.63 

P12C2 58.44% 0.93 0.01 0.95 0.28 0.60 0.90 0.74 1.00 0.44 

P15C1 78.97% 0.86 0.92 0.75 0.51 0.83 0.93 0.98 0.96 0.69 

P20C1 38.40% 0.97 0.00 0.75 0.30 0.83 0.67 0.99 0.44 0.17 

AVG 65.98% 84.43% 28.67% 81.45% 50.07% 84.18% 81.25% 89.30% 88.31% 0.51 

Std ±0.17 ±0.17 ±0.34 ±0.16 ±0.29 ±0.12 ±0.12 ±0.10 ±0.20 ±0.20 

 

Table 5-4. Chebyshev distance results. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 23.46% 0.03 0.01 0.43 1.00 0.96 0.57 0.48 0.21 0.08 

P8C2 66.52% 0.98 0.41 0.91 0.55 0.60 0.97 1.00 0.99 0.47 

P12C1 66.04% 0.73 0.27 0.60 1.00 0.69 0.89 0.89 0.97 0.48 

P12C2 42.17% 0.77 0.10 0.62 0.13 0.37 0.82 0.71 0.98 0.23 

P15C1 50.83% 0.99 0.53 0.27 0.99 0.57 0.93 0.91 0.73 0.37 

P20C1 52.67% 0.91 0.00 0.55 0.98 0.45 0.98 0.97 0.91 0.40 

AVG 50.28% 73.65% 21.99% 56.26% 77.38% 60.71% 86.05% 82.56% 79.94% 0.34 

Std ±0.15 ±0.33 ±0.20 ±0.20 ±0.33 ±0.19 ±0.14 ±0.18 ±0.28 ±0.14 
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Table 5-5. Cityblock distance results. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 28.99% 0.06 0.24 0.40 1.00 0.89 0.45 0.95 0.31 0.13 

P8C2 68.26% 1.00 0.09 0.96 0.56 0.62 0.97 0.99 1.00 0.49 

P12C1 75.08% 0.45 0.03 0.93 1.00 0.94 0.86 0.75 0.98 0.59 

P12C2 43.12% 0.56 0.01 0.95 0.13 0.47 0.82 0.59 0.95 0.24 

P15C1 76.55% 1.00 0.78 0.65 0.99 0.74 1.00 0.98 0.98 0.67 

P20C1 31.03% 0.96 0.00 0.66 0.09 0.23 0.55 0.98 0.98 0.10 

AVG 53.84% 66.91% 19.07% 75.72% 62.81% 64.94% 77.72% 87.26% 86.79% 0.37 

Std ±0.20 ±0.35 ±0.28 ±0.21 ±0.40 ±0.25 ±0.20 ±0.15 ±0.25 ±0.22 

 

Table 5-6. Minkowski distance results. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 27.15% 0.06 0.24 0.32 1.00 0.90 0.40 0.95 0.30 0.11 

P8C2 67.29% 1.00 0.31 0.93 0.55 0.61 0.96 1.00 1.00 0.48 

P12C1 71.65% 0.41 0.03 0.89 1.00 0.91 0.82 0.80 0.98 0.55 

P12C2 42.47% 0.56 0.00 0.92 0.13 0.46 0.80 0.62 0.95 0.23 

P15C1 70.64% 1.00 0.80 0.52 0.98 0.67 1.00 0.98 0.97 0.60 

P20C1 32.27% 0.96 0.00 0.61 0.15 0.24 0.58 0.99 0.98 0.11 

AVG 51.91% 66.35% 23.18% 69.87% 63.67% 63.01% 76.08% 88.97% 86.39% 0.35 

Std ±0.19 ±0.36 ±0.28 ±0.23 ±0.38 ±0.23 ±0.21 ±0.14 ±0.25 ±0.20 

 

With this labelling method, Best Result, it is observed that the average OA obtained is 

65.98% (see Table 5-7), being slightly higher than the discard method shown in Section 

5.2.1. In addition, a higher kappa coefficient is also obtained, with a value of 0.51 

compared to 0.36 of the voting method. There are some images in which the method 

works well (P8C2, P12C1), others in which it works more or less (P8C1 and P12C2), and 

a patient in which it works poorly (P20C1). Although labelling of the current patient is 

not 100% effective, there is a possibility that adding some labelled samples may improve 

the classification. The sensitivity is especially low in the tumour class, so adding data 

from this class could worsen the classification. 
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Table 5-7. Results obtained with the Best Result mehotd. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 54.87% 0.48 0.52 0.52 0.91 0.90 0.61 0.80 0.93 0.39 

P8C2 87.58% 0.97 0.25 0.99 0.84 0.97 0.91 1.00 0.97 0.77 

P12C1 77.64% 0.85 0.02 0.93 0.16 0.92 0.86 0.85 1.00 0.63 

P12C2 58.44% 0.93 0.01 0.95 0.28 0.60 0.90 0.74 1.00 0.44 

P15C1 78.97% 0.86 0.92 0.75 0.51 0.83 0.93 0.98 0.96 0.69 

P20C1 38.40% 0.97 0.00 0.75 0.30 0.83 0.67 0.99 0.44 0.17 

AVG 65.98% 84.43% 28.67% 81.45% 50.07% 84.18% 81.25% 89.30% 88.31% 0.51 

Std ±0.17 ±0.17 ±0.34 ±0.16 ±0.29 ±0.12 ±0.12 ±0.10 ±0.20 ±0.20 

 

After comparing all the results obtained with each of the distances, it is found that the 

best result was always obtained with the cosine distance (Figure 5-1). Therefore, all the 

values shown in the table above (Table 5-7) correspond to those of the cosine distance. 

With this type of distance, all classes, except background, obtain the best specificity and 

sensitivity results. 

 

Figure 5-1. Graph of the OA obtained with each distance. 

 

5.3 Optimization k for the k-means clustering. 

Once the most suitable distance metric is selected, the value of the input parameter k 

is calculated, with which the k-means method divides the samples into k groups. The 

range evaluated was from 4 to 24. To make this decision, the k-means algorithm is 

executed with that range of values, the decision was based on observing what the 

percentage of each class was grouped in each cluster. This evaluation has been performed 

using the dataset belonging to the previous patients. 

Evaluating the results shown in the following graphs (Figure 5-2, ¡Error! No se 

encuentra el origen de la referencia., Figure 5-3, Figure 5-4 and Figure 5-5) it is 
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found that as the value of k increases, more of the background class is present. This was 

to be expected due to the high variability of this class, but the rest of the classes are well 

identified with this method, except for the tumour class. No value of k can group in such 

a way that in at least one cluster its majority class is the tumour tissue. The data are 

evaluated and k=10 is enough to be able to identify the other three classes in at least one 

cluster, a higher k would increase the computation time unnecessarily. 

As we can see in the Figure 5-2, for patient P8C1LOO with k=5, cluster 1 contains most 

of the pixels of the healthy class. However, for this value of k, no cluster is formed mostly 

by the blood vessel class. Most of the rest of the clusters belong to the background class. 

With a k = 10, it is possible to identify some cluster as of the blood vessel class, being 

identified in some of the clusters three of the four classes. 

 

 

Figure 5-2. Percentage graph of the of the classes contained in each each cluster (k = 5). 

 

 

 

Figure 5-3. Percentage graph of the of the classes contained in each each cluster (k = 10). 
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Figure 5-4. Percentage graph of the of the classes contained in each each cluster (k = 15). 

 

 

Figure 5-5. Percentage graph of the of the classes contained in each each cluster (k = 20). 

The rest of the graphs can be found in Annex I where it is possible that, as the k-value 

increases, the results remain constant. 

5.4 Evaluation of semi-supervised algorithm 

using the SVM classifier.  

Once it is known to which class each cluster belongs, the current patient is labelled by 

calculating the distance between the current patient pixels and the centroids of the 

resulting clusters. First without any conditions (all clusters are used) and then with a 

condition (only the clusters that presents high presence of classes, more than 60%, are 
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used) for automatic label generation. Finally, the semi-automatic labelled data are 

introduced together with the database of previous patients in the supervised 

classification algorithm to train and generate the model that will subsequently be 

evaluated.  

The code is firstly executed without the semi-supervised part to have a reference result 

to compare with. The Table 5-8 shown these reference results with the SVM algorithm. 

Table 5-8. Results obtained with the SVM algorithm. 

  Sensitivity Specificity 

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background 

P8C1 58.23% 0.68 0.15 0.61 1.00 0.80 0.90 0.80 0.73 

P8C2 95.12% 0.97 0.34 0.99 0.95 0.96 0.99 1.00 0.97 

P12C1 93.32% 0.99 0.47 0.94 0.99 0.92 1.00 0.98 1.00 

P12C2 79.27% 0.97 0.04 0.98 0.80 0.87 1.00 0.83 0.99 

P15C1 88.31% 1.00 0.67 0.94 0.98 0.87 1.00 1.00 0.99 

P20C1 58.37% 0.97 0.00 0.80 1.00 0.50 1.00 1.00 0.96 

AVG 78.77% 93.00% 28.03% 87.44% 95.39% 81.96% 98.09% 93.32% 93.94% 

Std ±0.14 ±0.10 ±0.22 ±0.12 ±0.07 ±0.14 ±0.04 ±0.08 ±0.09 
 

 

5.4.1 Results of SVM without condition 

Table 5-9 shows the results obtained with the semi-supervised processing framework 

developed, in which the automatic generation of labels from the current patient samples 

is performed without discarding any of the 10 clusters. Remember that, as mentioned in 

Section 5.3, it was decided to work with k = 10. 

For this proposed methodology, an average OA of 45,57% with a standard deviation 

(Std) of ±23% is achieved. This value shows the dispersion of the data with respect to the 

mean. A high Std value indicates a greater dispersion of the data and therefore a lower 

precision. 

Table 5-9. Results obtained in the semi-supervised process with the SVM algorithm with the generated label 
method without condition. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 39.51% 0.81 0.01 0.22 0.00 0.15 0.98 0.99 0.59 . 

P8C2 92.34% 0.98 0.01 0.62 0.97 0.97 1.00 1.00 0.83 0.83 

P12C1 52.42% 0.36 0.08 0.56 1.00 0.61 1.00 0.55 0.92 0.22 

P12C2 44.61% 0.56 0.02 0.62 0.39 0.46 1.00 0.64 0.89 0.23 

P15C1 11.04% 0.00 0.00 0.10 0.68 0.79 1.00 1.00 0.06 0.00 

P20C1 33.48% 0.00 0.00 0.65 0.85 0.89 1.00 1.00 0.14 0.10 

AVG 45.57% 45.18% 1.90% 46.34% 64.69% 64.53% 99.62% 86.34% 57.10% 
             

0.25  

Std ±0.23 ±0.35 ±0.02 ±0.20 ±0.33 ±0.26 ±0.01 ±0.18 ±0.33 ±0.25 
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Focusing on the sensitivity, it is observed that it is not possible to identify the tumour 

class, obtaining an average value of 1.90%. This result was to be expected, since for 

automatic labelling it was not possible to obtain any cluster that consisted mainly of this 

class. This value improves for the rest of the classes, although it is only exceeded 50% 

with the background class. 

The specificity values obtained for this case study are mostly good, indicating a high 

probability that a pixel that is not of that class will be identified as not being of that class. 

This would explain the value obtained for the tumour class of 99.62%. Finally, a kappa 

value of 0.25 was obtained where it can be seen that the strength of agreement between 

the samples is fair. 

5.4.2 Results of SVM with condition 

Table 5-10 shows the results obtained when the decision to generate labels is made 

based on a condition. The clusters used must contain at least 60% of one of the classes, 

otherwise the cluster is discarded, and the data are not included in the training set. 

Table 5-10. Results obtained in the semi-supervised process with the SVM algorithm with the generated label 
method with condition. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C1 27.46% 0.23 0.00 0.26 1.00 0.98 0.96 0.99 0.18 0.14 

P8C2 90.25% 0.79 0.01 0.56 1.00 1.00 1.00 1.00 0.69 0.77 

P12C1 51.17% 0.95 0.06 0.24 0.99 0.35 1.00 1.00 0.89 0.31 

P12C2 54.78% 0.91 0.00 0.19 0.72 0.48 1.00 0.88 0.84 0.36 

P15C1 11.04% 0.00 0.00 0.10 0.68 0.79 1.00 1.00 0.06 0.00 

P20C1 33.48% 0.00 0.00 0.65 0.85 0.89 1.00 1.00 0.14 0.10 

AVG 44.70% 48.05% 1.43% 33.26% 87.28% 74.95% 99.30% 97.64% 46.76% 
             

0.28  

Std ±0.23 ±0.38 ±0.02 ±0.19 ±0.13 ±0.23 ±0.01 ±0.04 ±0.32 ±0.23 
 

 

For this semi-supervised design, an AVG of 44.70% was obtained, with a Std of ±23%. 

The OA obtained for the samples from the patient 15 (P15C1 and P15C2) and patient 20 

(P20C1) is maintained with respect to the previous case (see Table 5-10). However, it is 

lower with respect to the SVM without condition in patient 8 (P8C1 and P8C2) and in 

patient 12 (P12C1). Improving only this value in patient 12 (P12C2). For this sample, the 

sensitivity of the normal and background class improves considerably, but there are still 

problems in identifying tumour pixels, obtaining a sensitivity of 1.43% and a specificity 

of 99.30% for this case study. Regarding the Kappa value, it has been improved a little 

with respect to the generated labels without condition method and now the coefficient 

value is 0.28. With the proposed semi-supervised method, the SVM classification results 

are worse compared to the supervised method. 
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5.5 Evaluation of semi-supervised algorithm 

using the RF classifier 

As the SVM computation times are too long, the same procedure is proposed, but in 

this case using the RF classification algorithm. For the implementation, the value of the 

parameter k was re-evaluated to try to define the number of clusters with which the k-

means will work. This time it is decided to use a k = 15 (Table 5-11), since it is the only 

one that meets the same criteria as k = 10 but with the difference that the condition no 

longer needs to be applied. The procedure will only have to be performed once, since the 

criterion used was that all clusters should consist of at least 60% of a class. 

On the other hand, P8C1 was used as a sweep to select the number of trees. This 

capture is left as a validation set. If we look at the results shown in Table 5-11, it can be 

observed that the best result is obtained for 100 trees. Where 62.2% of OA was achieved 

and where the highest sensitivity values are also obtained for most of the classes, 

highlighting 81.0% for the normal class and 25.2% of the tumour class. Furthermore, in 

all cases a sensitivity of 100% was achieved for the background class. 

 

Table 5-11. Results obtained with different values of trees (from 50 to 300) with RF. 

  Sensitivity Specificity 

RF 
 

OA Normal Tumour 
Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background 

50 55.7% 63.4% 20.6% 53.6% 100.0% 73.8% 86.6% 81.3% 73.1% 

100 62.1% 81.0% 25.3% 45.2% 100.0% 65.0% 85.7% 89.5% 87.3% 

150 58.6% 71.1% 18.1% 54.6% 100.0% 73.5% 86.6% 82.5% 78.4% 

200 60.7% 78.4% 16.8% 51.8% 100.0% 70.3% 87.0% 84.5% 82.8% 

250 59.9% 74.8% 16.5% 54.9% 100.0% 72.3% 87.1% 83.3% 80.7% 

300 60.5% 77.0% 15.8% 54.3% 100.0% 72.5% 87.4% 83.2% 81.6% 

avg 59.57% 74.29% 18.84% 52.40% 100.00% 71.24% 86.73% 84.05% 80.65% 

std ±0.02 ±0.05 ±0.03 ±0.03 ±0.00 ±0.03 ±0.01 ±0.02 ±0.04 

 
 

Once the parameter k of the k-means algorithm and the number of trees in the RF 

algorithm have been selected, the code is executed without the semi-supervised part in 

order to have a reference result to compare with. These reference results are shown in 

Table 5-12) 
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Table 5-12. Results obtained with the RF algorithm. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C2 94.08% 0.92 0.31 0.96 0.96 0.96 1.00 1.00 0.93 0.88 

P12C1 90.94% 1.00 0.14 0.92 1.00 0.88 1.00 0.99 1.00 0.85 

P12C2 73.01% 0.99 0.01 0.94 0.65 0.75 1.00 0.81 1.00 0.62 

P15C1 68.88% 0.98 0.03 0.88 0.99 0.65 1.00 0.99 0.97 0.55 

 P20C1 58.05% 0.96 0.00 0.79 1.00 0.60 1.00 0.99 0.66 0.46 

AVG 76.99% 97.04% 9.91% 89.79% 91.73% 76.92% 99.88% 95.67% 91.09% 
             

0.67  

Std ±0.12 ±0.03 ±0.11 ±0.06 ±0.12 ±0.12 ±0.00 ±0.07 ±0.11 ±0.15 

 
  

For the RF algorithm, an average accuracy value of 76.99% and a considerable kappa 

value of 0.67 were obtained (see Table 5-12), being the best kappa value achieved so far. 

In the semi-supervised process proposed with the RF algorithm, an AVG of 46.56% and 

an acceptable kappa value of 0.27 were obtained (Table 5-13). 

Table 5-13. Results obtained in the semi-supervised process with the RF algorithm. 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C2 79.49% 0.29 0.00 0.52 0.99 0.99 1.00 1.00 0.35 0.45 

P12C1 22.83% 0.01 0.00 0.21 1.00 0.98 1.00 1.00 0.14 0.08 

P12C2 57.95% 0.62 0.00 0.30 0.95 0.96 1.00 0.89 0.42 0.38 

P15C1 24.05% 0.66 0.00 0.10 1.00 0.93 1.00 1.00 0.17 0.14 

P20C1 48.49% 0.66 0.00 0.56 1.00 0.97 1.00 1.00 0.30 0.31 

AVG 46.56% 44.80% 0.07% 33.96% 98.77% 96.55% 99.92% 97.67% 27.48% 0.27 

Std ±0.20 ±0.24 ±0.00 ±0.16 ±0.02 ±0.02 ±0.00 ±0.04 ±0.10 ±0.13 

 

With this new approach, the same problem is still detected when identifying the 

tumour class pixels. In general, the results of the classification worsen in all cases, except 

the specificity of the normal class, which increases.  

As there are many clusters where the background class predominates, it was decided 

to carry out the whole procedure again, but this time only using 3 clusters for the 

automatic generation of labels instead of 15. The choice was based on selecting the one 

that is composed of a predominant class (background, blood vessel and normal tissue). 

With the tumour class, this criterion is never met. 

5.5.1 Results of RF evaluating with three clusters 

The following Table 5-14 shows the results obtained using only 3 clusters in the 

generation of labels. One made up entirely of the background class, and the other two 

where the normal and blood vessel class stand out with more than 60%. 
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Table 5-14. Results obtained in the semi-supervised process with the RF algorithm (3 clusters). 

  Sensitivity Specificity  

 

 
OA Normal Tumour 

Blood 
Vessel Background Normal Tumour 

Blood 
Vessel Background Kappa 

P8C2 46.70% 0.65 0.00 0.53 0.41 0.44 0.99 0.95 0.67 0.14 

P12C1 25.92% 0.03 0.00 0.26 0.99 0.39 1.00 0.26 0.85 -0.21 

P12C2 55.57% 0.91 0.00 1.00 0.18 0.79 1.00 0.46 1.00 0.40 

P15C1 45.51% 0.88 0.00 0.46 0.98 0.52 1.00 0.49 0.93 0.21 

P20C1 55.73% 0.73 0.00 0.94 0.99 0.98 1.00 0.91 0.42 0.42 

AVG 45.89% 64.20% 0.03% 63.87% 70,.99% 62.45% 100.00% 61.55% 77.32% 
             

0.19  

Std ±0.10 ±0.29 ±0.00 ±0.26 ±0.32 ±0.20 ±3.27 ±0.24 ±0.19 ±0.21 

 

Although the AVG obtained is 45.89%, a little below that obtained using all 15 clusters 

(see Table 5-13), the sensitivity of the Normal and the Blood Vessel class is considerably 

improved, with a 64,20% and 63,87% respectively. Also, the balance of the sensitivity 

and specificity values of the background class improve with 70.99% sensitivity and 

77.32% specificity, thus giving great validity of diagnostic for this class. The specificity of 

the healthy class has decreased compared to the previous method, and the results are 

worse than without using a semi-supervised mechanism. 

5.6 Summary 

This chapter has analyzed the results obtained with the proposed semi-supervised 

procedure. The decisions taken during the development of this thesis have also been 

justified. 

First, the choice of k was made, where initially its value was 10, since it was a high 

enough value to be able to identify in any of the clusters at least three of the classes 

(normal, blood vessel and background). Once the k is selected, the whole process is 

carried out with the SVM algorithm. In this way the model is generated and trained for 

later testing. The process was repeated with two different ways of generating the labels 

automatically: generating these labels without any conditions and then applying the 

criterion that the clusters must be formed by at least 60% of the same class. If this was 

not fulfilled, the cluster was discarded for decision making. 

Considering the high computation times, it is decided to perform the same procedure 

with the RF algorithm. In addition, the k parameter is re-evaluated, and it is found that 

with a value of k = 15 the 60% criterion is met in all clusters, so no conditions need to be 

applied. The choice of the number of trees is made using the P8C1 and it is decided that 

the number of trees should be 100. 

Take note of that most of the clusters were made up of the background class. It was 

decided to choose from the 15 clusters the 3 that best represented background, blood 

vessels and normal tissue class. With these three clusters, the process was repeated, 

seeking to improve the sensitivity of those same classes. 
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The results with the averages obtained from all patients are shown in Table 5-15, 

where, the highest success rate was obtained for the semi-supervised approach for RF 

with 46.40%. However, the sensitivity obtained from the main classes is lower than for 

the rest of the processes, except for the background class, which is not given with it. 

Table 5-15. Results obtained in all semi-supervised process. 

  Sensitivity Specificity  

  
OA 

Normal Tumour 
Blood 
Vessel 

Background Normal Tumour 
Blood 
Vessel 

Background Kappa 

Supervised process 

SVM 78.77% 93.00% 28.03% 87.44% 95.39% 81.96% 98.09% 93.32% 93.94% - 

RF 
76.99% 97.04% 9.91% 89.79% 91.73% 76.92% 99.88% 95.67% 91.09% 

             
0.67  

Semi-supervised process 

SVM without 
Condition 

45.57% 45.18% 1.90% 46.34% 64.69% 64.53% 99.62% 86.34% 57.10% 0.25 

SVM with 
condition 

44.70% 48.05% 1.43% 33.26% 87.28% 74.95% 99.30% 97.64% 46,.6% 0.28 

RF 46.56% 44.80% 0.07% 33.96% 98.77% 96.55% 99.92% 97.67% 27.48% 0.27 

RF (evaluating 
with three 
clusters) 

45.89% 64.20% 0.03% 63.87% 70.99% 62.45% 100.00% 61.55% 77.32% 
        

0.19  
 

 

Finally, the highest sensitivity value for tumour class was obtained with the SVM 

algorithm without condition at 1.90%, which is still a too low. Focusing on the rest of the 

data, perhaps the RF evaluating with three clusters approach gives the best results for all 

kinds of class except for tumour. The proposed processing method may not be adequate 

to improve the results. The semi-supervised algorithm proposal worsens the 

classification results compared to the non-semi-supervised. 
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Chapter 6: Conclusions & Future Lines 

6.1 Conclusions 

The main problem in this field is working with a limited database. According to the 

exposed problem, the objective of this Master Thesis was to design a semi-supervised 

classification system. This type of classification was intended to increase the existing 

database for the supervised classification. During this process, the HS images described 

in Chapter 3 have been used. 

The proposed methodology consists in that when the patient is in the operating room, 

the images taken by the surgeon will be automatically labelled by a SSL algorithm and 

then, together with the existing database, the model can be generated. To perform the 

labelling of the current patient samples, we proposed a method which rely in the k-means 

algorithm.  

First, to optimize the k-means algorithm, the different types of distances were 

evaluated. The distance selected for this type of study was the cosine distance. Then, a 

study was carried out to choose the parameter k (number of target clusters for k-means), 

choosing a k of 10. Once the k-means parameters have been optimized, this algorithm is 

used to automatically generate the current patient labels. Such labels are included 

together with the database of previous patients and used as training data in the SVM to 

generate the model and evaluate it. This labelling process is implemented in two ways. 

Without any conditions and with the condition that the clusters used must contain at 

least 60% of one of the classes, otherwise the cluster is discarded.  

Due to the long computational times, it was decided to carry out the same procedure 

but this time using the RF algorithm. After conducting a study, it was decided that for 

this database the best number of trees was 100. The parameter k is re-evaluated and a k 

of 15 is established. With this value, it is not necessary to apply any conditions since all 

clusters are made up of at least 60% of some class. 

When evaluating all the results, it is seen that most of the clusters belong to the 

background class. This is due to the great variability of this class. To avoid this, the last 

proposed procedure is performed again but using only 3 clusters, those that represent 

the background, blood vessel and normal tissue class. It is assumed with them that there 

is no cluster identified as being of the tumour class. When analysing these last results, it 

is seen how it is possible to improve the sensitivity of these three classes. 

It is considered that the image used in the semi-supervised to automatically label it 

and thus increase the database with which the model is generated, must be an image that 

does not include any tumour pixels. In this way we ensure that when the automatic 

labelled is generated there are no mislabelled tumour pixels. If we improve the balance 
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of specificity and sensitivity of the rest of the classes, we will also be able to improve it 

for the tumour class. Finally, although a method to improve the classification has been 

proposed, this goal has not been achieved. The proposed methods worsen the original 

supervised classification (without semi-supervised). 

6.2 Future lines 

It is known that the captures made at the beginning of this process in the semi-

supervised algorithms play an important role. As a future line, it is proposed to increase 

the database with HS images of the same patient that contain tumour and captures those 

which do not contain it. Right now, the database of this Master Thesis only contains 

captures with tumour, negatively influencing the results obtained. The data set of 

previous patients could also be balanced when applying the k-means. From this, the data 

would be better grouped avoiding so many clusters belonging to the background class. 

On the other hand, it is proposed to continue improving the techniques proposed for 

the automatic generation of labels, trying to improve the identification of the rest of the 

classes. An option to this end is to make use of dimensionality reduction algorithm (such 

as Principal Components Analysis) in order to establish a more robust similarity metric 

that allows a more accurate label assignment, and hence an improvement of the results.  

Besides, the use of commonly used SSL methods found in the literature (Section 2.3.3) 

may improve the results of the classification. However, the study and implementation of 

such complex approaches are out of the scope of this Master Thesis. Additionally, it could 

be also interesting to evaluate different classifiers such as the ANN, using the same 

proposed methodology.  Finally, in the design of the semi-supervised design that used 

the SVM algorithm, the results could be improved by performing an optimization of the 

hyperparameters. 
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Figure 0-1. Graph of the percentages of the classes that each cluster contains (k = 4). 

 

 

Figure 0-2. Graph of the percentages of the classes that each cluster contains (k = 6). 

 

 

Figure 0-3. Graph of the percentages of the classes that each cluster contains (k = 7). 
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Figure 0-4. Graph of the percentages of the classes that each cluster contains (k = 8). 

 

 

Figure 0-5. Graph of the percentages of the classes that each cluster contains (k = 9). 

 

 

Figure 0-6. Graph of the percentages of the classes that each cluster contains (k = 11). 
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Figure 0-7. Graph of the percentages of the classes that each cluster contains (k = 12). 

 

 

Figure 0-8. Graph of the percentages of the classes that each cluster contains (k = 13). 
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Figure 0-9. Graph of the percentages of the classes that each cluster contains (k = 14). 

 

 

Figure 0-10. Graph of the percentages of the classes that each cluster contains (k = 16). 
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Figure 0-11. Graph of the percentages of the classes that each cluster contains (k = 17). 

 

 

Figure 0-12. Graph of the percentages of the classes that each cluster contains (k = 18). 
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Figure 0-13. Graph of the percentages of the classes that each cluster contains (k = 19). 

 

 

Figure 0-14. Graph of the percentages of the classes that each cluster contains (k = 21). 
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Figure 0-15. Graph of the percentages of the classes that each cluster contains (k = 22). 

 

 

Figure 0-16. Graph of the percentages of the classes that each cluster contains (k = 23). 
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Figure 0-17. Graph of the percentages of the classes that each cluster contains (k = 24). 

 




