
membranes

Article

Performance Analysis of a Full-Scale Desalination Plant with
Reverse Osmosis Membranes for Irrigation

Federico Leon * and Alejandro Ramos

����������
�������

Citation: Leon, F.; Ramos, A.

Performance Analysis of a Full-Scale

Desalination Plant with Reverse

Osmosis Membranes for Irrigation.

Membranes 2021, 11, 774. https://

doi.org/10.3390/membranes11100774

Academic Editors: Jianhua Zhang,

Ranil Wickramasinghe and

Hongge Guo

Received: 16 September 2021

Accepted: 8 October 2021

Published: 11 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Departament of Process Engineering, University of Las Palmas de Gran Canaria,
35017 Las Palmas de Gran Canaria, Spain; alejandro.ramos@ulpgc.es
* Correspondence: federicoleon@perezvera.com; Tel.: +34-686-169-516

Abstract: Reverse osmosis (RO) is the most widely used technology for seawater desalination
purposes. The long-term operating data of full-scale plants is key to analyse their performance under
real conditions. The studied seawater reverse osmosis (SWRO) desalination plant had a production
capacity of 5000 m3/d for irrigation purposes. The operating data such as conductivities flows, and
pressures were collected for around 27,000 h for 4 years. The plant had sand and cartridge filters
without chemical dosing in the pre-treatment stage, a RO system with one stage, 56 pressure vessels,
seven RO membrane elements per pressure vessel and a Pelton turbine as energy recovery device.
The operating data allowed to calculate the average water and salt permeability coefficients (A and B)
of the membrane as well as the specific energy consumption (SEC) along the operating period. The
calculation of the average A in long-term operation allowed to fit the parameters of three different
models used to predict the mentioned parameter. The results showed a 30% decrease of A, parameter
B increase around 70%. The SEC was between 3.75 and 4.25 kWh/m3. The three models fitted quite
well to the experimental data with standard deviations between 0.0011 and 0.0015.

Keywords: seawater; reverse osmosis membranes; desalination; operating data; long-term

1. Introduction

Desalination is the industrial process to remove salt from seawater or brackish water,
obtaining desalinated water. 97.5% of the water that exists on our planet is salt water, 2.5%
is fresh water and less than 1% of the latter is suitable for human consumption. Getting
to make seawater drinkable is one of the possible solutions to the shortage of drinking
water [1].

Seawater (SW) desalination in water treatment plants has evolved a lot in the last
five decades, during which the desalination process and its technology have changed and
become more and more profitable and efficient. Initially, the water desalination process
was a thermal process that has been changing with the scientific technological advances
towards a process by reverse osmosis, which dominates the current market [2–5].

Seawater desalination plants have produced potable water for many years to date,
but the process has always been very expensive, both energetically, and economically. The
origin of the energy necessary to produce water is mainly from the electrical systems that are
isolated on islands, different on each island and on the mainland, which causes differences
in the emission factor depending on its energy mix. The quality of the permeated water
(boron rejection) is defined as an essential requirement for the water production that has a
direct impact on the energy cost of the system [6–8].

Following the state of the art in water desalination and the evolution of this process,
not only for a Canary regional level but also for a national and international level, there are
different desalination procedures like multi-effect distillation (MSF), vapor compression
(VC), multi-stage distillation (MED) and reverse osmosis (RO), which currently accounts
for 65% of the total in the world [9–15].
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The objective of this investigation is obtain improvements at desalination plants, based
on the reduction of energy consumption in the production of fresh water. Consequently,
reverse osmosis is the most suitable process due to the energy consumption to produce
permeate water is lower than for other methods, so it occupies a privileged position in
the sector. In fact, in the 21st century, research efforts in water desalination have focused
on advances in reverse osmosis membranes, with higher surface area and lower energy
consumption, as well as energy recovery systems to recover the brine pressure and to
introduce it in the system reducing the energy consumption of the desalination process.
The operation, maintenance and handling of the membranes has been studied in detail,
due to their importance in energy savings, studying the optimization of the process to
increase the energy efficiency [15–19].

Seawater desalination plants have produced potable water for many years to date, but
the process has always been very expensive, energetically, and economically. The origin
of the energy necessary to produce water is mainly from the electrical systems that are
isolated on islands, different on each island and on the mainland, which causes differences
in the emission factor depending on its energy mix. The quality of the permeated water
(boron rejection) is defined as an essential requirement for the water production that has a
direct impact on the energy cost of the system [20–24].

Regarding the production of desalinated seawater, for the specific case of SWRO
plants in the Canary Islands, the following permeate flows can be confirmed: Gran Canaria
(220,870 m3/d), Tenerife (106,034 m3/d), Fuerteventura (90,755 m3/d) and Lanzarote
(87,480 m3/d). This represents a significant portion of the carbon footprint with respect
to the overall footprint of each island, especially on Fuerteventura and Lanzarote. In
this sense, renewable energies, mainly wind and solar photovoltaic, can make a great
contribution. Therefore, the possibility of introducing renewable energies for the supply of
electricity to the SWRO plants in Canaries is being studied to decrease the ecological and
carbon footprints of the sector and also because of its considerable influence on the whole
archipelago [25–29].

The long-term success of SWRO plants is due to the performance of the membranes
loaded. Greater energy consumption is required in seawater desalination plants compared
to of brackish water, for this reason the present study focuses on achieving energy con-
sumption improvements in seawater desalination plants. The long-term operating data
analysis is key to understand the viability of this process and to improve the performance
of this kind of facilities [20–29]. The objective of this investigation is to study the operation
data and to improve the energy consumption along 27,000 h over four years of operation
of a SWRO plant in the Canaries used to produce water for irrigation [30–34].

The novelty of this work is based on how to maintain a good operation and perfor-
mance for a long-term studying the operation data of a full-scale RO seawater desalination
plant. BY following this long-term operating data, it was possible to study an RO de-
salination plant and to maintain the performance of the plant during four years without
membrane replacement or chemical cleaning steps.

2. Materials and Methods

The SWRO plant (Figure 1) situated in Gran Canaria was designed to produce water
for irrigation purposes. All the data of this installation during 27,000 h of operation for four
years has been taken. The RO design is constituted by one bank with 56 pressure vessels.
Each vessel has seven elements (Toray, city, state abbreviation if USA, country). Moreover,
the system includes a Pelton turbine to recover energy.

The average water coefficient (A) and the salt permeability coefficient (B) are calculated
using the operation data taken at this plant. It is thus possible to calculate the specific energy
consumption (SEC) of the SWRO membranes during these four years. The calculation
of the coefficient A permits to fit the parameters of three different models to get the
commented parameter.
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Figure 1. Desalination and plant diagram.

Figure 1 describes how the process is managed to get the appropriate high quality
permeate water. There is an open intake with a feed water tank and pumping before
physical pretreatment with sand filters in a first stage and cartridge filters in a second stage.
No chemical pretreatment (not even an anti-scalant) is used due to the high quality of the
feed water. After pretreatment, there is a high-pressure pump before the reverse osmosis
system in one stage. The brine goes directly to the Pelton turbine and the product ends up
in the potable water tank.

The operating conditions of any RO desalination plant such as pressure, flux recovery,
and feedwater conditions can change, causing a variation in the product flow and the per-
centage of rejection. The average water and salt permeability coefficient were determined
to evaluate the operation of the membranes installed which have the following technical
specifications expressed in Table 1.

Table 1. Technical specifications of the RO membranes.

Feed Water Seawater

Salt rejection 99.75%

Product Flow rate 16.00 m3/day

Greater energy consumption is required in seawater desalination plants compared
to brackish water, and for this reason the present study focuses on achieving energy
improvements in seawater desalination plants.

The carbon footprint is defined as the total amount of greenhouse gases emitted by
direct or indirect effect of an individual, organization, event, or product. The energy mix
is the distribution and weighting of the different energy sources (fossil energy, nuclear,
renewable) necessary to respond to the needs of a demand determined. The ecological
footprint is an index that refers to a specific demand of the nature of an organization or
population. Their ecological footprint is the area of natural environment necessary for
producing the resources they consume and absorb the waste they generate.

We are faced with the problem of membrane aging, which means an increase in the
pressure and energy consumption, a reduction in quality and a decrease in the flow of
permeated in time. It has been observed as a useful tool for improving energy efficiency
the introduction of testing with high rejection and low consumption reverse osmosis
membranes to reduce the costs.

3. Results

The raw water conductivity varied during the seasons, but it never exceeded 55,000 µS/cm
(Figure 2). Feed water inorganic composition is shown in Table 1.
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Figure 2. Feed conductivity.

As shown in the Figure 3 the feed pressure was between 6.1 MPa and 6.8 Mpa. This
was due to increased performance decay of the pressure vessels, specially fouling, scaling
and compaction during these years.
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Figure 3. Feed pressure.

The results show a certain dispersion of the data (especially related to those of feed
pressure and correlation with the feed water conductivity). An increase of feed water
conductivity will increase the feed water pressure and vice versa. Therefore, new re-
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sources would be required to continue studying this plant. This study tries to compare the
performance of the membranes and to determine the optimal configuration.

According to the results, feed water conductivity decreases, and feed pressure de-
creases mainly after 600 days operation, both together. One can find bthe ion concentrations
of the feed water in Table 2.

Table 2. Feed water inorganic composition.

Ion Concentration mg/L

Ca2+ 165

Mg2+ 306

Na+ 12,514

K+ 642

HCO3
- 488

SO4
2- 1076

NO3
- 308

Cl- 19,586

SiO2 20

TDS 35,313

Figure 4 shows the feed SDI, which is mostly lower than 1 and on average below
around 0.3. The low SDI, shown in the figure, indicate an opportunity to avoid a com-
plicated chemical pre-treatment for this seawater reverse osmosis system. In fact, it is
operating without any sodium metabisulphite, no sodium hypochlorite, no sulphuric acid
and also no anti-scalant. According to the registered data this installation is operating well,
within projected requirements, with good results for the client.

Membranes 2021, 11, x FOR PEER REVIEW 5 of 11 
 

 

would be required to continue studying this plant. This study tries to compare the perfor-
mance of the membranes and to determine the optimal configuration. 

According to the results, feed water conductivity decreases, and feed pressure de-
creases mainly after 600 days operation, both together. One can find bthe ion concentra-
tions of the feed water in Table 2. 

Table 2. Feed water inorganic composition. 

Ion Concentration mg/L 
Ca2+ 165 
Mg2+ 306 
Na+ 12,514 
K+ 642 

HCO3- 488 
SO42- 1076 
NO3- 308 
Cl- 19,586 

SiO2 20 
TDS 35,313 

Figure 4 shows the feed SDI, which is mostly lower than 1 and on average below 
around 0.3. The low SDI, shown in the figure, indicate an opportunity to avoid a compli-
cated chemical pre-treatment for this seawater reverse osmosis system. In fact, it is oper-
ating without any sodium metabisulphite, no sodium hypochlorite, no sulphuric acid and 
also no anti-scalant. According to the registered data this installation is operating well, 
within projected requirements, with good results for the client. 

 
Figure 4. Feed SDI. 

Figure 5 shows the water feed flow, which was between 410 and 510 m3/h during the 
operating period. Therefore, the feed flow is stable in between this interval. 

Figure 4. Feed SDI.

Figure 5 shows the water feed flow, which was between 410 and 510 m3/h during the
operating period. Therefore, the feed flow is stable in between this interval.
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Figure 5. Feed flow.

Figure 6 shows the decrease of the system recovery from 46% to 38% operating with
56 pressure vessels of seven elements each one. Therefore, after approximately 900 days of
operation the number of pressure vessels was increased to 60 to boost the system recovery
to at least 40%. This figure shows an increased performance decay which could be due to
fouling, scaling and compaction occurred during the years of operation.
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Figure 6. Recovery.

Figure 7 shows the decrease in the permeate flow during the operating period, due to
the decrease of the recovery. This reduction of the permeate flow and the recovery could
both be due to the fouling of the membranes, scaling and element compaction. Due to this



Membranes 2021, 11, 774 7 of 11

the number of pressure vessels was increased from 56 to 60 to get more permeate flow.
After 1000 days operation the permeate flow was increased again by introducing four more
pressure vessels in the train.
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Figure 8 shows that the permeate water conductivity of the total RO system was in a
range between 200 µS/cm and 800 µS/cm most of the time, which is quite acceptable for
the mentioned irrigated crop. After the addition of 4 pressure vessels with new elements
from Toray, the permeate water conductivity decreased and the permeate flow increased
after 1000 days of operation.
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Figure 9 shows the average water permeability coefficient, which decreased since the
startup of the system until the end of the period. The same happens in Figure 10 with the
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average salt permeability coefficient, but in this case the value is increasing with the aging
of the reverse osmosis membranes.
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Figure 11 shows the energy consumption of the system, which is in between 3.75 kWh/m3

and 4.25 kWh/m3 of produced permeate water, with an average value around 4 kW/m3.
Considering that the energy recovery device is a Pelton turbine these values are acceptable.
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The energy consumption also depends on the feed pressure, which is in between
6.1 MPa and 6.8 MPa, so the difference is not too much, only 0.7 MPa, and the energy
consumption is stable during the studied period of the system.

Finally, the cost of energy consumption in the pumps and mainly in the high-pressure
pump is by far the most significant of a seawater desalination plant and we can reduce it
considerably with the introduction of latest generation reverse osmosis membranes. In this
case, the high-pressure pump consumption is about 3.04 kWh/m3. If we consider a price
of 0.06 EUR/kWh the consumption will be 0.18 EUR/m3 of permeate water. In this plant
with permeate flow of 5000 m3/d the cost of the energy consumption per day is 900 EUR.

It is possible to compare with other plants, for example with reference [5] and the
following graphic for a seawater RO plant of 100,000 m3/d. In our case 900 EUR/day is for
a production of 5000 m3/d so to produce 100,000 m3/d the cost should be 18,000 EUR/day
which is lower than that of the referenced plant [5], thus demonstrating the better perfor-
mance of the plant studied in this article.

Considering these parameters, for a typical production of a seawater plant of 100,000 m3/d
capacity and our plant of 5000 m3/d adjusted to 100,000 m3/d, we obtain the following
common results at an average temperature 22 ◦C for different scenarios (Table 3) [5].

Table 3. Plant comparison under different scenarios.

RO Plant (Age) Pressure (bar) Power (kW) Energy (kWh/d) Cost (€/d)

A (0 years) 66.6 10,023.5 240,564.9 21,625.6
B (1 year) 68.4 10,294.4 247,066.7 22,210.1

C (2 years) 69.6 10,475.0 251,401.2 22,599.7
D (3 years) 70.8 10,655.7 255,735.7 22,989.4
E (4 years) 72.0 10,836.3 260,070.2 23,379.0
F (5 years) 73.2 11,016.9 264,404.7 23,768.7

Our plant (4 years) 55.4 8343.1 200,233.3 18,000.0

4. Conclusions

The calculation of the average A in long-term operation allowed us to fit the parame-
ters of three different models used to predict the mentioned parameter. The results showed
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a 30% decrease of A, while parameter B increased around 70%. The SEC was between
3.75 and 4.25 kWh/m3 which is a good value considering a Pelton turbine was used.

The introduction of more pressure vessels with new elements increased the permeate
flow after 1000 days operation, restoring the permeate quality and energy consumption.

The models fitted could not be shown, but the three models fitted quite well to the
experimental data with standard deviations between 0.0011 and 0.0015.

Using this long-term operating data, it has been possible to study an RO desalination
plant and to improve the performance of the plant during 4 years without membrane
replacement and chemical cleaning steps.

The long operation data will continue to be taken in the future to quickly follow up on
any deviation and to act as soon as possible with any operation decision or even chemical
cleaning to increase the good performance of the elements and the plant.

The future replacement will be studied as a partial replacement, only changing the
first element of each vessel which is the most damaged and introducing the new one in the
last position (on the brine side) to protect it.
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