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Abstract. In Arteara (Canary Island), a Holocene rock avalanche comprises accumulation of 

large reddish blocks which cover the Fataga ravine. This course, is entrenched into the 

Phonolitic Formation, an alternating sequence of lava flows and ignimbrites. The avalanche 

defines an elongated deposit of variable thickness. A low friction angle was deduced, which is 

related to an easily weathered bedrock favorable to the rolling of the blocks. The movement 

would have been a dry granular flow with a component of saltation at the head and of turbulent 

flow at the intermediate and distal areas. The deposit varies widely in size and is structured in 

bands of blocks with a polymodal distribution and low selection. The geomechanical properties 

of the rocks involved vary substantially in each block and along a longitudinal profile of the 

deposit. Schmidt Hammer rebound measured in 233 blocks show a polymodal dispersion. 

Some facies have been differentiated in the blocks, not only by their appearance, but also by 

their rebound index (R). The different hardness reflects the differences in density and porosity. 

The hardness zoning shows the differential weathering of the blocks, which depends on the 

rock anisotropy and the flow turbulence, which determines the influence of abrasion and 

punching of the blocks. The rebound shows a direct correlation with the bulk density and an 

inverse correlation with the distance to the source area. 

1.  Introduction 

 

1.1. Objective 

How does the alteration of a rock evolve over time? What is the law that relates the mechanical 

strength of a lithotype to the different degrees of weathering that it can experience? In this paper, the 

bases are laid to estimate the pattern that follows the mechanical alteration of two volcanic lithotypes: 

phonolite and non-welded ignimbrite. For this, the determination of the Schmidt Hammer rebound has 

been chosen. The tests were carried out in the blocks of a rock avalanche deposit. 

This analysis is required to propose a relationship that follows the Barton-Bandis failure criterion 

and that describes the evolution of the friction angle as a function of the rebound index. 

It is assumed as hypothesis that the mechanical weathering experienced by the blocks during a dry 

granular flow can be correlated with the effect of time on the chemical weathering process. In this 

way, field surveys would be reduced, because to characterize a lithotype it would not be required to 
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correlate the data obtained in several rock masses with different degrees of weathering. It would be 

enough to locate an avalanche deposit that can be sectorized in different degrees of weathering. 

 

1.2. Background 

There are previous works that correlate the rebound between the different Schmidt-Hammer types [1- 

2] in the field and with respect to other laboratory tests (uniaxial compressive strength, Young's 

modulus, etc.) in a geological-geotechnical context [3-17]. This approach has also been applied in 

volcanic territories, but less frequently [18-21]. 

In civil engineering, the Schmidt-Hammer has been used to evaluate the quality of construction 

materials [22-23] and the excavability of the rock massif [24-25]. 

The use of the Schmidt-Hammer for the relative dating of rock avalanches has a long tradition. 

These works relate the exposure of an outcrop with the alteration of the rock, based on the surface 

hardness of the material. Most of the contributions have been collected in reviews [26-30]. 

The combined use of the Schmidt-Hammer with the analysis of exposure to cosmogenics has 

increased the reliability of the proposed chronological sequences in igneous massifs. The work carried 

out on volcanic rocks has experienced a resurgence due to the use of chlorine [31] and Helium 

isotopes [32]. 

This work aims to characterize the geomechanical properties of volcanic materials involved in a 

large rock avalanche, following the methodology of previous authors [33-42]. The results obtained 

will be correlated with the ages of exposure to cosmogenics and the detachment of the initial block 

and the flow of the avalanche will be modeled. 

 

1.3. Context 

The present study is located in Arteara (figure 1), a ravine in Gran Canaria (Canary Islands), where a 

very recent-looking rock avalanche deposit (figure 2) covers a steep slope of the Fataga ravine, 

embedded about 600m in a monotonous series in which phonolitic and ignimbritic lava flows 

alternate. Two materials with a very different rheological behavior. Phonolite is more dense, massive 

and resistant to compression than ignimbrite. The avalanche deposit covers a previously slipped rock 

mass and is partially covered at the headwaters by a sequence of active scree (figure 3). 

 

 

 

 
Figure 1. Location of the study area. (b) Canary 

Islands. (a and c) Gran Canaria. (d) Arteara rock 

avalanche in the Fataga ravine. 

 Figure 2. The rock avalanche of Arteara seen 

from the South, lining the right side of the Fataga 

ravine. 

 

The study focuses on the analysis of the rebound index measured in a population of 233 blocks 

selected from among the 471 inventoried elements (Table 1; figure 4) that are part of the deposit of a 

rock avalanche that has a longitudinal development of about 1500 m, which extends over an area of 

about 0.565 km² and has an estimated volume of about 12203055 m³ to 6101527 m³, depending on a 

thickness of 10 m or 5 m, respectively [43-45]. 
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Table 1. Distribution of the blocks tested according to geomorphological sectors, morphometric 

classes and differentiated lithotypes. Note: Headland scarp data has been omitted because the rebound 

was measured directly on the rocky outcrop. 

Sector Lithotype Volume (m³) Partial Total 

  0-27 27-64 64-125 >125   

Scree 

Phonolite (P) 3 11 0 0 14 

14 Non-welded ignimbrite (NWI) 0 0 0 0 0 

welded ignimbrite (WI) 0 0 0 0 0 

Top Area 

Phonolite (P) 4 7 0 0 11 

17 Non-welded ignimbrite (NWI) 0 3 1 0 4 

welded ignimbrite (WI) 0 2 0 0 2 

Middle Area 

Phonolite (P) 5 14 3 0 22 

35 Non-welded ignimbrite (NWI) 1 5 1 2 9 

welded ignimbrite (WI) 0 3 0 1 4 

Distal Area 

Phonolite (P) 58 18 20 21 117 

167 Non-welded ignimbrite (NWI) 17 20 8 4 49 

welded ignimbrite (WI) 1 0 0 0 1 

TOTAL  89 83 33 28 233 233 

 

The proposed objective is to determine whether the deduced low friction angle (Φ = 21 °) 

previously estimated  [43] and the high longitudinal development that it presents is related to the 

existence of a previous slope favorable to the bearing of the blocks and to the lubricating action of the 

non-welded ignimbrites [43-45] or, it requires an initial speed of the fall of the initial block that was 

related to a Holocene earthquake-volcanic crisis. 

To solve the question raised, a geotechnical approach has been proposed: evaluate the spatial 

distribution of the rebound index obtained with the Schmidt Hammer, along the longitudinal axis of 

the deposit. A 2D type profile. 

Geomorphological observations made in previous studies [43-45] have allowed us to suppose that 

the movement of the blocks would have been a dry granular flow with a saltation component at the 

head and turbulent flow in the middle and middle areas. distal. 

The criterion followed in the choice of the tested blocks has tried to include the different typologies 

identified in the set by the previous studies, both lithological [46-49], as well as morphometric and 

geomorphological. 

From the lithological point of view, it has been ensured that the largest number of lithotypes 

identified in the vicinity (phonolite, non-welded ignimbrite, welded ignimbrite and non-welded and 

hydrothermally altered ignimbrite) by the previous phases of this work were present [46-49], although 

the most abundant sample corresponds to the phonolite and non-welded ignimbrite classes (figure 4). 

Regarding morphometry, size blocks corresponding to the different classes identified in the 1m / 

pix precision orthophoto (0-8m³; 8-27m³; 27-64m³; 64-125m³) have been sampled. 

With regard to geomorphology, data have been collected from the five areas in which the deposit 

has been sectorized (Head Escarpment, Canchal, Upper Landing, Middle Section and Distal Area). 
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Figure 3. The rock avalanche (yellow) covers a 

previous translational rock slide (red) and is 

partially covered at the head by a sequence of 

active scree (green). The longitudinal axis on 

which the R measured with the Schmidt Hammer 

has been projected is indicated in red. 

 Figure 4. Location of the 233 blocks included in 

the rock avalanche that have been tested with the 

Schmidt Hammer. 

 

2.  Results 

 

2.1. The rebound index in the total set of blocks 

The average data obtained in each of the tests carried out (figure 5) shows a certain inverse correlation 

between the value of the rebound index and the distance to the source area. 

From the headland scarp to the foot, the reduction in average hardness is accompanied by a 

decrease in both the range between the maximum and minimum average values, as well as the 

maximum average value. The maximum-minimum difference varies between 55 at the head and 25 at 

the foot and the maximum values of the average decrease from 75 to 45. 

However, the distribution of the standard deviation (figure 6) shows a slight contraction in the 

middle section. Both the headland and footing values range between 17 and 7, while in the middle 

section, at around 500-1000m, a slight concentration of Ds is observed around 10. 

 

 

 

 

Figure 5. Distribution of the average values of R 

measured with the Schmidt Hammer in the 

avalanche blocks sampled. 

 Figure 6. Distribution of the standard deviation 

values estimated from the R values measured in 

the avalanche blocks sampled. 
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2.2. The rebound index in the phonolite blocks 

The quote graph generated with the data from the phonolite blocks (figure 7) shows, on the one hand, 

the fluctuations experienced by the range between the maximum and minimum values of the average 

throughout the deposit and, on the other hand, shows the decrease in the range itself as the blocks are 

further from the source area. Fluctuations are observed randomly within each of the 5 differentiated 

geomorphological units. For its part, the reduction of the absolute value of the maximum-minimum 

range is more evident in the distal area, where the values go from moving between 100 and 10 to being 

limited within the 60-20 range. 

The sectorial analysis of R measured in the phonolite blocks (figure 8) shows a complex 

distribution pattern for the hard lithotype (phon). In general, the average value of the rebound index 

increases with the distance to the escarpment, within each of the proximal sectors (escarpment, scree 

and headland landing), while it remains constant in the middle and distal sectors. 

 

 
Figure 7. Quote graph generated from the averages and the maximum and minimum values of R 

measured in the sampled phonolite blocks. 

 

The standard deviation recorded in phonolite (Fig 9) and non-welded ignimbrite (fig. 14) is similar 

and oscillates in a range of 5-15. Although the minimum value of the deviation corresponds to the 

phonolite 
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Figure 8. Average values of the phonolite blocks 

calculated from the R measured in the avalanche 

blocks sampled. 

 Figure 9. Values of the estimated standard 

deviation in the phonolite blocks from the R 

measured in the sampled avalanche blocks. 

 

The sector-by-sector of R measured in the phonolitic rock cloths with a massive texture (core 

facies) shows a complex distribution pattern (fig. 10). the pattern is similar to that observed with the 

averages of all the tests performed on the phonolites. It even seems that the effect is amplified. The 

average value of R increases within each sector as it separates from the escarpment (Main Scarp, 

Scree, Top Area, etc.). Although it is true that both the average R, and its increase, is less with 

increasing distance to the escarpment. 

The statistical distribution of R in the phonolite blocks (figure 11) shows the existence of several 

modal intervals. The graphical analysis by sectors was carried out taking as a sample all the tests 

carried out on the phonolites. The pattern of the distribution is similar to that of the average values. 

Within each sector of the avalanche, the adjustment functions have a direct correlation with the 

distance to the main scarp. However, in general terms both the absolute value of the mode and its 

increase decrease as the distance from the escarpment increases. 

 

 

 

 
Figure 10. Average values of R measured in the 

differentiated nucleus facies in the sampled 

phonolite blocks. 

 Figure 11. Values of the principal modes 

estimated in the phonolite blocks from the R 

measured in the sampled avalanche blocks. 

 

2.3. The rebound index in the welded phonolite blocks 

As in the case of the phonolites, the price graph of the non-welded ignimbrites (figure 12) shows, on 

the one hand, the fluctuations experienced by the range between the maximum and minimum values of 

the average throughout the deposit and on the other hand In part, it shows the decrease in the range 

itself as the blocks are further away from the source area. 
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Also in this lithotype, random fluctuations are observed within each of the 5 differentiated 

geomorphological units. Furthermore, the reduction of the absolute value of the maximum-minimum 

range is more evident in the distal area, where the values go from moving between 70 and 10 to being 

limited within the 50-10 range. However, the fluctuations offered by the non-welded ignimbrite stock 

chart are more attenuated than in the phonolites. 

 

 
Figure 12. Quotation graph generated from the averages and the maximum and minimum values of R 

measured in the non-welded ignmbrite blocks sampled. 

 

The graphical distribution of the average R values measured in the non-welded Ignimbrites (figure 

13) shows a variable trend and a poor correlation with the distance to the main scarp. In general terms, 

a slight inverse R-Distance correlation is observed, however a rebound in surface hardness is observed 

in the blocks of the middle section that have been sampled. 

In any case, the averages recorded oscillate in a range of values (20-50) much lower than that of the 

phonolite blocks. 

As already mentioned, the standard deviation recorded in phonolites (figure 9) and non-welded 

ignimbrite (figure 14) is similar and ranges from 5-15. Although the minimum value of the deviation 

corresponds to the phonolites. 

In general terms, the standard deviation in the ignimbritic lithotype (figure 14) decreases along the 

deposit, moving away from the main escarpment. The behavior of the blocks located in the distal area 

would be an exception. At the edge of the foot there is a slight upturn in dispersion. 
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Figure 13. Average values of non-welded 

ignimbrite blocks calculated from R measured in 

the avalanche blocks sampled. 

 Figure 14. Values of the estimated standard 

deviation in the non-welded ignimbrite blocks 

from the R measured in the sampled avalanche 

blocks. 

 

The graphical distribution of R in the block facies (skeleton) of the ignimbrites (figure 15) shows a 

trend similar to that observed when analyzing the entire non-welded ignimbrite block. However, the 

averages recorded oscillate in a wider range of values (20-60), although it is still lower than that of the 

phonolite blocks. 

 

 

 

 

 
Figure 15. Average values of non-welded 

ignimbrite blocks (skeleton facies) calculated 

from R measured in the avalanche blocks 

sampled. 

 Figure 16. Average values of non-welded 

ignimbrite blocks (matrix facies) calculated from 

R measured in the avalanche blocks sampled. 

 

The rebound values measured in the non-welded ignimbrite matrix facies (figure 16) offer variable 

trends and a low fit. A behavior similar to that shown by the total data of each block. 

However, the averages recorded in the matrix oscillate in a higher range of values (15-45) than that 

presented by the blocks considered as a whole. 

The statistical distribution of R shows the existence of several modal intervals in the non-welded 

ignimbrite lithotype (figure 17), as in the case of phonolite (figure 11). The graphical analysis by 

sectors was carried out taking as a sample all the tests carried out in the non-welded ignimbrite blocks. 

The pattern of the distribution is highly variable. More than in the case of the phonolite. Within each 

sector of the avalanche, the adjustment functions have a direct poor correlation with the distance to the 
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main scarp. However, in general terms, both the absolute value of the mode and its range or 

fluctuation decrease with increasing distance from the escarpment. 

 

 
Figure 17. Values of the principal modes estimated in the non-welded ignimbrite blocks from the R 

measured in the sampled avalanche blocks. 

 

Two other rare lithotypes have been identified in the avalanche deposit from visual observations. 

One welded ignimbrite and one non-welded and hydrothermally altered ignimbrite. The small number 

of sampled blocks does not allow to propose consistent hypotheses in relation to their rheological 

behavior. However, in a first approximation, some observations are offered. 

In global terms, the graphical fit of the average values calculated for the welded ignimbrite blocks 

shows a constant trend with increasing distance to the main scarp. The fit is poor, the trend falls within 

a moderate range of values (20-40) and the standard deviation is small (approx 10). 

3.  Discussion 

 

3.1. The rebound index in the total set of blocks 

The reduction in surface hardness with stopping distance is consistent with the increase in blows and 

friction between blocks typical of the dry flow process that characterizes rock avalanches (figure 5). 

The decrease in both the range between the values of the maximum and minimum averages, as well 

as the maximum value of the average is consistent with the idea that the transport process manages to 

homogenize the geomechanical characteristics of the material, for example: hardness and size (figure 

5). 

The reduction of the deviation in the intermediate section corroborates the ideas pointed out when 

analyzing the data of the mean values (figure 6). 
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3.2. The rebound index in the phonolite blocks 

The fluctuations in the range offered by the stock chart (figure 7) are consistent with the assumption 

that several events have occurred in time and that their deposits are overlapping in space. 

Small values of R in the main escarpment would be related to two different factors. On the one 

hand, with the advanced state of chemical weathering in which the upper erosion surface is found, 

whose antiquity dates back to at least 9 Ma. And, on the other hand, with the intense mechanical 

weathering that affects the main escarpment in the sectors where the massif is highly 

compartmentalized by a network of open cracks that have arisen in the back of the main fracture that 

triggered the rock avalanche (figure 7). 

Just as the distribution graph of the average values of R shows an inverse correlation with distance, 

in the case of the stock graph (figure 7) a decrease in the range between the values of the maximum 

and minimum averages is clearly observed. in the distal area, as well as its homogenization, at least in 

the distal area. The low values of R in the distal area are consistent with the higher degree of 

mechanical weathering that the blocks transported a greater distance withstand, as well as with the 

idea that the transport process manages to homogenize the geomechanical characteristics of the 

transported material, for example: the hardness and size. 

The wide ranges between the values of the maximum and minimum averages observed in the 

headwater escarpment (figure 7) are related to the fact that the sampled phonolytic lava blocks and 

outcrops offer several textural facies with different degrees of alteration: the jointed, altered, flaked 

facies and the core facies. 

The jointed facies corresponds to the sector of a block that presents the discontinuities between 

lava flows opened by an energetic impact received during a flow in which saltation transport would 

predominate. 

The altered facies corresponds to the sector of the block that has been affected by mechanical 

grinding caused by friction between blocks during the dry flow of the avalanche. The energy of this 

flow would be less than that assumed for the jointed facies and could be attributed to a laminar flow in 

which rolling transport would predominate. This facies gives the surface of the blocks a homogeneous 

appearance, without discontinuities, which is usually partially covered by a tapestry of bryophytes. 

The scale facies corresponds to the sectors in which the chemical weathering process has 

penetrated the rock enough to define several layers with different degrees of cohesion, which 

determines the appearance of a joint parallel to the surface of the block in favor from which the crust 

of the block is peeled. 

The core facies offers the highest R values. This facies corresponds to the healthy heart of a rock 

that is exposed by the breakage of a rock chip or wedge, the consequence of a high-energy impact. 

The information transmitted by the R analysis by sectors shows a complex pattern for the phonolite 

lithotype (figure 8). In general terms, it seems that by increasing the route made by the blocks, their 

homogenization increases. The increase in R within the proximal sectors suggests several hypotheses. 

The first, that there would have been several events of different energy that would have happened in 

time. The most energetic events would have determined the greater reach of the blocks (middle and 

distal sectors). The less energetic events would be related to most of the blocks located in the proximal 

sectors. It seems logical to assume that the oldest events would have been the most energetic. This 

makes it possible to recognize more modern and less energetic deposits by partially covering older and 

energetic event deposits. The opposite would be impossible. The second hypothesis is that the oldest 

events correspond to episodes related to a rocky block of greater dimensions or related to earthquake-

volcanic activity. In both cases the total starting energy would be greater and, consequently, the 

distance reached by the blocks. Third, it seems logical to think that, after a highly energetic event, 

such as a rock avalanche, lower-energy events will occur that release the residual stresses of the 

massif. These events would have resulted in episodic landslides and scree sequences and would be like 

an echo of the original event. 

On the other hand, the moderate dispersion of R (standard deviation, figure 9) estimated in the 

phonolite blocks suggests the recent character of the deposit. The weathering process does not appear 
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to have advanced significantly. In fact, the most significant dispersion is located in the main 

escarpment, where fresh and healthy rock layers coexist with highly fragmented rock wedges. 

Furthermore, the amplified response offered by the graph of the core facies (figure 10) corroborates 

the hypothesis that the dry granular flow only affects the surface crust of the blocks, which behave like 

the aggregates in the Los Angeles test or in the Microdeval assay. 

Finally, the existence of up to three main modes in the analyzed sample (figure 11) corroborates the 

hypothesis that phonolite blocks present several textural facies. These facies express the differential 

alteration experienced by the blocks involved in the dry granular flow. An alteration that mainly 

affects the surface layer (jointed, altered, flaking facies) and, to a lesser extent, its interior (core 

facies). 

This observation makes it possible to propose a variation of the internal friction angle of the 

materials involved, depending on the tendency shown by the rebound measured with the Schmidt 

Hammer. This will be done by applying the Barton failure criterion. All these previous analyzes will 

facilitate the estimation of the pattern of mechanical alteration experienced by the different lithotypes 

involved in the flow process. 

 

3.3. The rebound index in the non-welded phonolite blocks 

The interpretation of the stock chart (figures 7 and 12) is similar in both lithotypes. The fact that the 

range fluctuations are attenuated in the non-welded ignimbrite (figure 12) suggests the homogenizing 

character of the matrix facies, whose surface hardness oscillates in a similar range throughout the 

entire deposit (0-25). 

Non-welded ignimbrite blocks are composed of particles of different size and composition that are 

welded together at high temperatures. The abundance of one or the other size makes it possible to 

differentiate three facies: the matrix facies, characterized by the exclusive presence of particles with a 

size between millimeter and centimeter. The skeletal facies, represented by particles of intermediate 

size (decimetric order). Finally, there would be the fragment facies, which would be represented by 

fragments of lava of decimeter to metric order. In general, the skeletal facies is usually enveloped by 

the matrix facies and defines a sustained matrix texture. It is not common to identify grainy-tended 

facies in which skeletal clasts predominate. 

The low values reached by the average R in the non-welded ignimbrite (figure 13) is related to the 

low surface hardness of the matrix. This facies lowers the global average of the blocks. 

On the other hand, the clear downward trend offered by the average R values seems consistent with 

the increase in the distance to the main escarpment (figure 13). The upturn in hardness observed in the 

intermediate section, 700-900m from the main escarpment, requires a particular analysis. 

The slight increase in R in the distal area could be attributed to the fact that these blocks have 

hardly been impacted by other blocks that experienced saltation transport. On the other hand, in the 

proximal sector (scree and head landing), many blocks are observed with notches from high energy 

impacts and, in some cases, chipped and partially covered by splinters from the impact block (figure 

13). 

The moderate value of the dispersion (figure 14) corroborates the recent nature of the deposit. The 

rebound in the standard deviation observed in the foot could be attributed to the fact that this lithotype 

has the behavior of a soft rock with a certain capacity to absorb deformations in the plastic range, 

which allows us to suppose that its reaction to roughing or Faced with punching, it would have given 

rise to an advanced state of microfracturing that would determine the dispersion of the rebound in the 

same block, depending on whether the test is performed on the matrix facies or on the block facies. 

The amplified response offered by the graph of the block facies (figure 15) corroborates the 

hypothesis that the non-welded ignimbrite macro-factory is heterogeneous and that it can be 

assimilated to that of a sedimentary gap made up of two fractions of different sizes: a skeleton of 

Coarse and angular clasts enveloped and pasted by a detritical matrix made up of granular material 

with a particle size one or two orders of magnitude smaller than the clasts of the skeleton. 
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The slight differences observed in the mechanical response offered by the non-welded ignimbrite 

blocks (figure 13) and the skeletal facies (figure 15) could be attributed to the structural variability of 

the material. non-welded ignimbrite is the result of mixing, in highly variable proportions, elements 

with different porosity and degree of welding. 

The variability of the trends and the low adjustment of the rebound data (figure 13), together with 

moderate but constant standard deviation values throughout the entire deposit (figure 14), corroborate 

the hypothesis that non-welded ignimbrite is a lithotype with variable rheological behavior, which is 

conditioned by a heterogeneous macro-factory. 

The low values of surface hardness recorded in the non-welded ignimbrite matrix (figure 16) are 

consistent with the existence of intergranular porosity that does not exist in the skeletal facies and that 

supposes a decrease in overall density and an increase of the plasticity of the material. This plasticity 

would be the determining factor to consider the non-welded ignimbrite lithotype as a soft rock. 

The high porosity of the non-welded ignimbrite matrix determines its alterability. This fact, 

together with its plasticity, suggests the possibility that the ignimbritic lithotype has behaved like a 

carpet that reduced friction in the basal plane of the rock avalanche, conditioning the efficiency of the 

dry granular flow. 

The existence of up to three main modes in the analyzed sample (figure 17) corroborates the 

hypothesis that the non-welded ignimbrite blocks present several textural facies. Skeleton and matrix 

would be the main ones. 

The poor correlation between the rebound index (figure 13) and the distance to the source area 

would corroborate the idea that the variable rheological behavior is conditioned by a heterogeneous 

macro-factory. 

 

3.4. The rebound index in the welded phonolite blocks 

Although the differentiation of lithotypes was made based on visual observation, the results of the 

surface hardness would allow us to compare the hardness of the welded ignimbrite sampled in Arteara 

with the response offered by the matrix of an non-welded ignimbrite. This result is contrary to what 

might be expected. In fact, in other samplings carried out previously, the resistance of the welded 

ignimbrite is much higher than that of the non-welded ignimbrite. 

On the other hand, the low value of the standard deviation suggests that the two facies of the 

lithotype (matrix and skeleton) present a more homogeneous behavior than the non-welded ignimbrite. 

This fact is consistent with the data obtained in other outcrops. 

The causes of this unforeseen behavior are not entirely clear at the moment. 

4.  Conclusion 

In the main escarpment the highest and lowest values of the R are recorded. It is a sector in which 

weathered rock outcrops intermingle (top of the escarpment, partially slipped rock wedges) and 

healthy rock outcrops (fresh rock cloths that have been uncovered in recent times by the effect of 

landslides of large rocky blocks) 

Large blocks of healthy rock of the main lithotypes (phonolite, non-welded ignimbrite) are 

identified in the scree that covers the headwaters. In both cases, the highest values of R have been 

recorded. They are the blocks detached in recent times and come from the fragments of healthy rock 

that were partially detached from the main escarpment after the last major avalanche recorded in this 

sector. This last event uncovered the heart of the massif, an area that had not been able to reach the 

weathering of the rock. 

The middle section offers a wide range of values, with R averages ranging between 20 and 60. In 

addition, it presents an anomaly around the point located 800-900m from the foot of the escarpment. 

In general terms, the R of the phonolite is much higher than that of the non-welded ignimbrite. The 

low resistance of the non-welded ignimbrite matrix greatly reduces the average rebound recorded in 

this lithotype. 
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In the case of the phonolite, there is a notable difference between the behavior offered by the core 

of the blocks and the average of the block as a whole. This difference allows the blocks to be zoned in 

concentric caps and assumes that the flow of the avalanche by jumping and rolling only efficiently 

affects the outer cap. These two types of movement would be conditioning the appearance of stresses 

that would determine the mechanical weathering of the block. On this disaggregation of the material, 

the biogeochemical weathering conditioned by the bryophyte mantles that colonize the surface of the 

blocks and partially cover them would advance with greater efficiency. The saltation process would be 

related to the punching pressure, while the rolling process would be conditioning the surface roughing. 

Finally, there seems to be an inverse correlation between the block size and the range of the 

recorded values, at least in the phonolite lithotype. In fact, phonolite blocks that have a size between 

0.5 and 1m³ usually offer very high and homogeneous R values. This observation would be related to 

the fact that the reduction of the block size by successive breaks also reduces the variability of 

possible facies in the same block. Thus, the core facies would give rise to massive blocks of metric to 

decimeter order, while the rest of the facies would give rise to centimeter-sized gravels, for which 

there is no data. 
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