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Abstract: Hydrological modelling requires accurate climate data with high spatial-temporal resolu-
tion, which is often unavailable in certain parts of the world—such as Central America. Numerous
studies have previously demonstrated that in hydrological modelling, global weather reanalysis
data provides a viable alternative to observed data. However, calibrating and validating models
requires the use of observed discharge data, which is also frequently unavailable. Recent, global-scale
applications have been developed based on weather data from reanalysis; these applications allow
streamflows with satisfactory resolution to be obtained. An example is the Global Flood Awareness
System (GloFAS), which uses the fifth generation of reanalysis data produced by the European Centre
for Medium-Range Weather Forecasts (ERA5) as input. It provides discharge data from 1979 to the
present with a resolution of 0.1◦. This study assesses the potential of GloFAS for calibrating hydro-
logical models in ungauged basins. For this purpose, the quality of data from ERA5 and from the
Climate Hazards Group InfraRed Precipitation and Temperature with Station as well as the Climate
Forecast System Reanalysis (CFSR) was analysed. The focus was on flow simulation using the Soil
and Water Assessment Tool (SWAT) model. The models were calibrated using GloFAS discharge data.
Our results indicate that all the reanalysis datasets displayed an acceptable fit with the observed
precipitation and temperature data. The correlation coefficient (CC) between the reanalysis data and
the observed data indicates a strong relationship at the monthly level all of the analysed stations
(CC > 0.80). The Kling–Gupta Efficiency (KGE) also showed the acceptable performance of the
calibrated SWAT models (KGE > 0.74). We concluded that GloFAS data has substantial potential for
calibrating hydrological models that estimate the monthly streamflow in ungauged watersheds. This
approach can aid water resource management.

Keywords: SWAT; satellite weather dataset; ERA-5; GloFAS; hydrological modelling; El Salvador

1. Introduction

Hydrological models are commonly used to understand changes in hydrological
processes due to changes in the climatic or the land use [1,2]. Such changes in land use
and climatic conditions are especially important in Central America. Recent studies have
highlighted deforestation as the main land-use change in this area [3]. However, climate
change can also strongly affect the hydrological cycle by altering the timing and intensity
of rainfall, recharge and runoff. This change has intensified the mid-summer drought
characteristic of Central America’s weather [4].

In addition to forecasting and estimating the quantity and quality of water for decision-
makers, hydrological models can assist local authorities in forecasting the effects of natural
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and anthropogenic changes on water resources. Furthermore, they can characterise the
temporal and spatial availability of water resources to enable the design of appropriate
strategies to mitigate water-related hazards. These includes droughts, floods and the
discharge of pollutants.

Several conceptual and semi-distributed models have been applied at grid scale in
tropical climatology. Srivastava et al. (2017) [5] successfully implemented the variable
infiltration capacity (VIC) model for the Kangsabati River Basin and obtained satisfactory
evapotranspiration estimates at the monthly scale. Srivastava et al. (2020) [6] compared
two models, namely VIC and the model for the identification of unit hydrograph and
components flows from rainfall, evapotranspiration and streamflow (IHACRES). They
concluded that IHACRES is a very useful model for data-scarce regions. Paul et al. (2018) [7]
similarly reported the successful implementation of a modified time-variant spatially
distributed hydrograph technique integrated into the satellite-based hydrological model
(SHM) for the Kabini River Basin.

The distributed Soil and Water Assessment Tool (SWAT) model has also been widely
used in tropical basins [8]. Darbandsari and Coulibaly (2020) [9] demonstrated the useful-
ness of lumped hydrological models for simulating hydrological processes in data-scarce
watersheds. However, in the current study, the distributed SWAT model is used, because
once calibrated, it allows further analyses related to land-use changes. SWAT is one of
several models employed to assess the influence of land use and land management changes
on water resources [10].

Accuracy in simulating a basin’s water resources fundamentally depends on the input
data used for modelling and on the capability of the hydrological model. Primary input
data are meteorological and geographical data (e.g., precipitation and temperature as well
as data from digital elevation models and land-use and soil maps). In recent years, several
ready-to-use global-scale maps have been developed that provide good results and make
the SWAT model application easier [11].

The application of hydrological models is usually limited by the sparse distribution of
rainfall observation stations. In most watersheds, the actual density of a rainfall network is
notably lower than the values recommended by the World Meteorological Organization.
Ground-based precipitation observation is also unevenly distributed in many countries
due to economic constraints [12], and this issue can affect model estimates of streamflow
performance. Missing values in rainfall data negatively affect the quality of hydrological
modelling. Tan and Yang (2020) [13] demonstrated that missing values of more than
20% significantly affected the streamflow simulation for tropical climates. To overcome
limitations arising from the scarcity of data or from poor-quality observations, numerous
studies have compared gridded rainfall datasets with local datasets. The aim is to assess
their suitability of those datasets in various hydrological models [14–17] for watersheds
around the world.

The influence of temperature data on hydrological balance and discharge in simulated
river basins has rarely been analysed (Tan et al., 2021). In Southeast Asia,
Tan et al. (2017) [18] recommended combining the Asian Precipitation Highly Resolved
Observational Data Integration Towards Evaluation (APHRODITE) dataset [19] with the
maximum and minimum temperatures from the Climate Forecast System Reanalysis
(CFSR) dataset [20]. The objective was to model ungauged or gauge-limited catchments. In
Ethiopia, Duan et al. (2019) [21] recommended the use of Climate Hazards Group Infrared
Precipitation with Stations (CHIRPS) data [22] together with temperature data from CFSR
for hydrological modelling.

Due to advances in satellite technology, many satellite weather products have been
developed to monitor weather conditions on a global scale. Some are called reanalysis
products; they combine satellite data with observed data to improve weather representation.
An example is the CFSR dataset. It is widely used for hydrological modelling in the
SWAT model, because—in addition to precipitation—it includes other meteorological
variables that are easily downloadable from the SWAT website [23]. Additional reanalysis
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datasets that include precipitation and temperature data for simulations have recently been
launched. For example, the CHIRPS precipitation dataset has recently been complemented
with temperature data to yield the Climate Hazards Center InfraRed Temperature with
Stations CHIRTS [24]. This data is available for the global scale at a spatial resolution
of 0.05◦.

Another recently launched dataset that includes precipitation and temperature is
the ERA5 global reanalysis dataset [25]. It provides data from 1950 to the present at
a spatial resolution of 31 km. It was released recently and has not yet been tested in
hydrological modelling for several areas of the world. However, Tarek et al. (2020) [26]
tested the potential of ERA5 in hydrological modelling across North America. Their results
highlighted many advantages over the previous dataset, ERA-Interim, and demonstrated
a level of efficiency similar to that obtained in hydrological models that use observed
data for most of the territory analysed. Kolluru et al. (2020) [27] concluded that ERA5 is
efficient for detecting rainfall patterns, whereas CHIRPS dysplays better flow simulation.
Jiang et al. (2021) [28] obtained highly varying results depending on the regions analysed
and identified the general underestimation of extreme rainfall.

Model calibration and validation are key steps for obtaining accurate estimates of
streamflow from hydrological models. These steps are generally performed using observed
data [29]. However, in situ flow data are commonly unavailable for much of the land area,
especially in developing countries, and the number of operational stations is decreasing
rapidly. The recent availability of global-scale remote sensing climate products (such as
those discussed above) has led to the development of hydrological models that provide
discharge estimates at a global scale [30–32].

One such application is the Global Flood Awareness System (GloFAS), developed
by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration
with the University of Reading and the Joint Research Centre of the European Commission.
This system couples the Hydrology Tiled ECMWF Scheme for Surface Exchanges over
Land (HTESSEL) [33] and LISFLOOD models [34]; it provides streamflow estimates at
a global scale from 1979 to the present, using ERA5 as the climatological input data.
Global hydrological models are powerful tools for reconstructing components of the water
balance because they generate continuous data, which can be used in applications such as
hydrological model calibration [35]. Given the recent release of GloFAS, its potential has
not been fully explored.

Central America is an area in which remotely sensed data can be highly useful for
hydrological modelling to improve estimates of water resources [36]. Tan et al. (2021) [37]
reviewed 123 articles regarding the use of alternative climate products in SWAT modelling.
The authors found only one study conducted in Mexico and no precedents of this type of
study for Central America.

In light of the above, this work may be of interest to stakeholders who model water-
sheds located in Central America. We selected the Grande San Miguel (GSM) River Basin
as a case study, because many of the problems discussed above occur there. These include
a low density of stations that provide precipitation and temperature records, a substantial
percentage of missing data, and difficulty in obtaining streamflow data to enable model
calibration. Using monthly flow data provided by the Ministry of Environment and Nat-
ural Resources in El Salvador for the period 2005–2010, we explored the potential of the
GLoFAS-ERA5 river discharge reanalysis dataset for calibrating hydrological models in
ungauged watersheds. The use of remotely sensed rainfall data for hydrological simulation
is common in recent literature [37]. However, the use of globally generated flow data from
remotely sensed data for calibrating a hydrological models is very novel because the release
of these products is so recent [38,39].

This paper addresses the following objectives: (1) to evaluate the performance of pre-
cipitation and temperature variables using satellite reanalysis data such as CFSR, CHIRPS
and ERA5 throughout the GSM River Basin; and (2) to assess the GLoFAS-ERA5 river
discharge reanalysis dataset’s potential for calibrating hydrological models and its relation
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to precipitation and temperature reanalysis data used as input data. To date, few stud-
ies [21,40] have analysed the effectiveness of reanalysis data that includes temperature
for simulating hydrological processes in a watershed. Most studies have considered only
precipitation data.

2. Study Area and Weather Data Sources
2.1. Study Area

The GSM River Basin is geographically located in the east of El Salvador; it covers
2377 km2 up to the outlet control point (Figure 1). The basin is among the largest in El
Salvador. The city of San Miguel is situated at its core and is El Salvador’s second most
populous city. The basin is ecologically sensitive in terms of international protection, such
as the protected zones of Tepaca-San Miguel and Jiquilisco Bay. Tecapa-San Miguel is
known for its coffee plantations, coastal plain wetlands, and volcanic craters; the area
includes several lagoons listed under the Ramsar Convention on Wetlands. Since 2005, the
Jiquilisco Bay—which is located at the mouth of the Grande de San Miguel River—has
been designated as a Ramsar site and a UNESCO biosphere reserve.
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Figure 1. The study area location: (a) location of the Grande San Miguel river basin in Central
America, (b) digital elevation model (DEM), sub-basins, and river stream delineation in the Grande
San Miguel river basin, (c) soil map, and (d) land-use map.
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Polluted water and the potential need for agricultural water are the two most pressing
challenges in the GSM River Basin. [41]. To propose effective governance methods to
mitigate the effect of these stress factors, the precise simulation of hydrological processes at
the basin scale is crucial.

This region’s climate is tropical, with high annual precipitation rates. However, the
intra-annual distribution is uneven, with 90% of precipitation falling during the rainy
season between May and October and scattered showers occurring during the dry season
between November and April [36,42]. According to weather station measurements, the
average annual precipitation is 1700 mm. The wettest months are from May to October
and the driest months are from November to April. The basin is occasionally crossed
by hurricanes, especially in September and October, which cause substantial flooding.
Maximum temperatures are as high as 37 ◦C, and minimum temperatures drop to 17 ◦C.
The altitude ranges from sea level to higher than 2000 m at the San Miguel Volcano.

Andosols, phaeozems, and regosols are the three most common soil types in the area
(Figure 1c). The andosols that cover the area around the San Miguel Volcano are volcanic
soils, which are highly permeable and have ideal agricultural qualities [43]. Regosols are
unconsolidated materials with fine granulometry, common in mountainous areas. This
is the dominant soil type at the northern boundaries. By contrast, phaeozem soils are
abundant in the eastern part of the basin; they accommodate wet grasslands and forest
regions because they are porous and fertile, and they provide excellent agricultural land
(FAO, 2008). Grassland and pasture (43%), crops (32%), and forest (17%) are the most
common land uses. The land-use map of the basin is shown in Figure 1d.

2.2. In Situ Rainfall and Temperature Data

Figure 1 shows the spatial distribution of rainfall stations in the GSM River Basin.
Most of the existing weather stations are located in the lowlands, between 100 m and
200 m above sea level. As indicated in Table 1, three of the four available meteorological
stations had more than 20% of data missing during the period under study (2005–2010).
According to Tan and Yang (2020) [13], missing data of more than 20% significantly affects
the simulation of flows in tropical climates. Given this fact and the low density of available
stations, we used observed data to analyse the performance of the rainfall and temperature
reanalysis data, but we did not simulate flows based on observed data.

Table 1. Summary of the weather stations used in this study.

Code Station Latitude (◦) Longitude (◦) Elevation (m) Missing Data
(%) 1

MIG San Miguel 13.4690 −88.1590 98 11.3/1.2
CHA Chapeltique 13.6424 −88.2608 207 25.4
DEL El Delirio 13.3274 −88.1416 92 41.4
VIL Villerías 13.5187 −88.1795 109 51.7

1 At San Miguel station, daily precipitation and temperature data are obtained. The percentages of missing data on precipitation and
temperature data are 11.3% and 1.2% respectively.

2.3. Reanalysis Precipitation and Temperature Datasets Used in This Study
2.3.1. ERA5 Reanalysis Dataset

The ECMWF’s most advanced reanalysis output is ERA5. This output was recently
released with a resolution of roughly 30 km and can be used to compute many atmospheric
variables from January 1950 to near real-time [25]. In the current study, the ERA5 hourly
rainfall and temperature were extracted from the toolbox available on the Copernicus
Climate Data Store website (https://cds.climate.copernicus.eu, accessed on 1 April 2021)
and aggregated to the daily time step.

https://cds.climate.copernicus.eu
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2.3.2. CHIRPS and CHIRTS

The CHIRPS dataset is the result of a collaboration between the United States Geologi-
cal Survey and the University of California. It consists of a rainfall grid with a geographical
resolution of 0.05◦ that combines data from satellites with data from on-site rainfall stations.
The dataset was created using the following sources [22]:

• the Tropical Rainfall Measuring Mission (TRMM) 3B42 product from NASA
• the monthly precipitation climatology (CHPClim)
• atmospheric model rainfall fields from the National Oceanic and Atmospheric Admin-

istration (NOAA) Climate Forecast System version 2 (CFSv2)
• quasi-global geostationary thermal infrared (IR) satellite observations from two

NOAA sources
• in situ rainfall observations

More recently, a temperature dataset with the same spatial resolution as CHIRPS has
been developed on a daily scale. It entailed merging the monthly CHIRTS and disaggregat-
ing the monthly data using daily temperatures from ERA5 [24]. On the Climate Hazards
Group website (https://www.chc.ucsb.edu/data/, accessed on 5 April 2021), users can
obtain daily CHIRPS v2.0 and CHIRTS v1.0 data.

2.3.3. CFSR

The CFSR product was developed by the National Centers for Environmental Pre-
diction (NCEP) [44]. It uses advanced data-assimilation methods and data from a global
network of weather stations and satellite-based products; it also draws on complex atmo-
spheric, oceanic, and surface modelling elements coupled with a resolution of 0.30◦ and
covering any land location in the world [20]. The available CFSR data is available for 1979
to 2014 and can be downloaded from the SWAT website (https://globalweather.tamu.edu/,
accessed on 5 April 2021).

2.4. GloFAS River Discharge Reanalysis Dataset

The GloFAS is part of the Copernicus Emergency Management Service (CEMS). The
dataset was developed through collaboration between the ECMWF, the Joint Research
Centre of the European Commission and the University of Reading (www.globalfloods.eu,
accessed on 22 March 2021). The GLoFAS river discharge reanalysis dataset is a product of
CEMS and is produced by coupling surface and subsurface runoff data from the HTESSEL
surface model used forced by ERA5 reanalysis data [25] with the Distributed Water Balance
and Flood Simulation (LISFLOOD) hydrological and channel routing model [34].

The model was calibrated using more than a thousand flow stations located in
66 different countries. It achieved a median Kling–Gupta efficiency (KGE) values of 0.67
and a correlation value of 0.80 [35]. The river discharge reanalysis, with daily time steps
and 0.1◦ spatial resolution, is freely available to download for the period 1979 until near-
present through the Copernicus Climate Data Store (https://cds.climate.copernicus.eu,
accessed on 1 April 2021).

3. Materials and Methods

The methodological approach followed in this study is illustrated in Figure 2. It con-
sisted of two main steps: (1) a comparison of rainfall and temperature data from reanalysis
products with observed weather gauge data; and (2) an evaluation of the applicability of
the flow data available in GLoFAS for the calibration of the SWAT hydrological model on a
monthly scale. In the latter step, the weather input data used were ERA5, CHIRPS-CHIRTS
and CFSR.

https://www.chc.ucsb.edu/data/
https://globalweather.tamu.edu/
www.globalfloods.eu
https://cds.climate.copernicus.eu
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Figure 2. Flowchart of the methodological approach used in this study.

To perform the evaluation, streamflows were first assessed using each of the reanal-
ysis products as input values; the monthly streamflows were simulated from the default
values of the parameters in the SWAT model. Second, each simulation was calibrated
independently using the GLoFAS data as the observed data. Finally, the accuracy of the
GLoFAS-calibrated models for reproducing the observed monthly flows was assessed.

3.1. SWAT Model Description

The SWAT model is a physically based and distributed, and continuous, time model.
It is used to model rainfall runoff at the basin scale [10]. Several global studies have
applied the SWAT model to investigate hydrological and water quality processes [45–47],
the impact of human pressure on water resources [48–50], and the consequences of cli-
mate change [36,51–53]. The model’s GIS interface [54] allows for simple and quick data
processing, such as watershed delineation and spatial and tabular data handling.

A watershed is divided into multiple sub-watersheds by SWAT. These are further
subdivided into hydrological response units (HRUs), which include homogeneous land
use, soil, and land slope. Water balance components, sediment flow, plant development
and nutrient loss are some of the major processes that the model can replicate. To simulate
the water balance components, SWAT solves the following equation:

SWt = SW0 +
t

∑
i=1

(
Rday − Qsur f − Ea − Wseep − Qgw

)
, (1)

where SWt is the final soil water content (mm), SW0 is the initial soil water content (mm),
t is the time in days, Rday is the precipitation (mm), Qsur f is the surface runoff (mm), Ea
is the evapotranspiration (mm), Wseep is the percolation (mm) and Qgw is the return flow
(mm). Neitsch et al. (2012) [55] provide more information on the operation of the SWAT
hydrological model.
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3.2. SWAT Model Setup

We used the QGIS interface for SWAT, namely QSWAT version 3 [54], to build the
model with publicly available information. In this study, the spatial data for the SWAT
model includes a digital terrain model, land-use map, and soil map. For basin delineation,
we acquired the Advanced Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model (ASTER GDEM) from the official website, with a resolution
of 30 m (Figure 1b). The Harmonized World Soil Database, published by the United
Nations Food and Agriculture Organization (using a grid size of 1 km × 1 km) was used to
extract soil data (Figure 1c). El Salvador’s Ministry of Environment and Natural Resources
provided the land-use map (Figure 1d). Potential evapotranspiration rates were calculated
using the Hargreaves method [56] because it requires only temperature data.

3.3. SWAT Model Calibration

To evaluate the remote-sensing precipitation and temperature data and the monthly
flow simulation, we selected the periods 2005–2008 and 2009–2010 were selected as the
calibration and validation periods, respectively. Precipitation and temperature data from
ERA5, CHIRPS-CHIRTS, and CFSR were available for a longer period, which allowed us
to use a three-year warming period (2002–2004) to drive the SWAT model to a steady state.
Twelve regularly used flow calibration parameters and their ranges were chosen, based
on past experiences with similar watersheds [36] to integrate the components of surface
runoff, groundwater, and soil data. The SWAT Calibration and Uncertainty Program
(SWATCUP) [57] includes the Sequential Uncertainty Fitting Procedure version 2 (SUFI-2)
optimisation method. We used this to perform monthly automatic calibration. The Nash–
Sutcliffe model efficiency coefficient (NSE) was employed as the objective function, and
2000 simulations were performed.

Table 2 shows the list of adjusted SWAT parameters. The range of variation and the
final values were determined after calibration, as a function of the gridded dataset.

Table 2. Sensitivity analysis of SWAT model parameters for the GSM River Basin.

Parameter Description
ERA5 CHIRPS-CHIRTS CFSR

Ranking p-Value Ranking p-Value Ranking p-Value

CN2.mgt SCS runoff curve number 1 0.000 1 0.000 1 0.000
ALPHA_BF.gw Baseflow alpha factor (day−1) 10 0.551 11 0.799 7 0.552

GWQMN.gw
Threshold depth of water in

the shallow aquifer for return
flow to occur (mm)

2 0.003 4 0.024 2 0.002

GW_REVAP.gw Groundwater revap
coefficient 5 0.114 8 0.229 4 0.068

RCHRG_DP.gw Deep aquifer percolation
fraction 11 0.555 6 0.100 3 0.032

REVAPMN.gw

Threshold depth of water in
shallow aquifer for revap or

percolation to deep aquifer to
occur (mm)

9 0.531 10 0.704 10 0.637

CANMX.hru Maximum canopy storage
(mm) 12 0.573 12 0.909 8 0.564

EPCO.bsn Plant uptake compensation
factor 8 0.451 7 0.186 6 0.531

ESCO.bsn Soil evaporation
compensation factor 4 0.015 2 0.000 5 0.32

SOL_AWC.sol
Available water capacity of

the soil layer (mm H2O/mm
soil)

7 0.202 5 0.037 11 0.672

LAT_TTIME.hru Lateral flow travel time (day) 6 0.175 9 0.489 12 0.806

SLSOIL.hru Slope length for lateral
subsurface flow (m) 3 0.012 3 0.006 9 0.610



Remote Sens. 2021, 13, 3299 9 of 20

3.4. Performance Evaluation of the Reanalysis Datasets and Simulated Streamflow

Our aim was to qualitatively compare the ERA5, CHIRPS, and CFSR reanalysis
datasets with the rain gauge observations. The following statistical indices for validation
were used: the correlation coefficient (CC or R2), mean (M), standard deviation (SD),
mean error (ME), root-mean square error (RMSE), and relative bias (BIAS). The linear
correlation is indicated by CC, the average difference is shown by RMSE, and the average
error magnitude between the reanalysis precipitation and observed rain gauge data is
shown by ME. The systematic bias of the satellite precipitation is described by BIAS.

Rainfall detection capability was analysed using three categorical statistical indices:
(1) the probability of detection (POD); (2) the false alarm rate (FAR); and (3) the critical
success index (CSI). The POD is also known as the hit rate. This is the ratio of total rainfall
events that are successfully recognised by the reanalysis datasets. The FAR indicates the
percentage of falsely warned rainfall events among all warnings. The most balanced and
accurate detection statistic is the CSI, which is a function of POD and FAR [58]. The POD,
FAR, and CSI scores range between 0 and 1, with 1 being a perfect score for POD and CSI
and 0 for FAR. The formulas and further details about the indices appear in Jiang et al.
(2018) [59].

To assess the SWAT model’s accuracy, we included the coefficient of determination
(R2), the Nash–Sutcliffe efficiency ratio (NSE), percentage bias (PBIAS), observed data SD
ratio (RSR), and the Kling–Gupta efficiency ratio (KGE). These statistics are extensively
used in hydrological research [60]. At the monthly scale, when the PBIAS is below 25%
and the NSE and KGE are above 0.5, and the RSR is below 0.7, the model’s performance is
considered to be adequate [61,62].

4. Results and Discussion
4.1. Comparison between Observed and Reanalysis Datasets

Precipitation data from the three reanalysis datasets (CFSR, ERA5, and CHIRPSv2.0)
were directly compared to precipitation data from rainfall stations in the GSM River Basin.
Daily precipitation data was collected from the reanalysis data grid cells closest to the
available weather stations; days with no observed data were omitted from the comparative
analysis. To enable conclusions regarding the flow simulation, we used the same period to
evaluate the accuracy of the precipitation data as the period for which the flow data was
available (2005–2010).

The validation statistics for the GSM River Basin are presented in Table 3. Among
the three reanalysis datasets, the CHIRPS was more accurate; it yielded low ME values
together with higher CC and CSI values. Hence, it performed best in both accuracy and
detection capability. The results obtained from ERA5 and CFSR were also acceptable. In the
case of ERA5, the correlation with observed data was slightly lower than that yielded by
CHIRPS. Of the three reanalysis datasets, ERA5 achieved a monthly SD most similar to that
of the observed data. However, ERA5 presented the highest BIAS of the three reanalysis
datasets analysed, overestimating the rainfall values at some weather stations by more
than 40%. The higher amount of rainfall explained why ERA5 yielded relatively high POD
and FAR values.

The CFSR yielded a smaller correlation with the observed data than CHIRPS and
ERA5. Conversely, the BIAS was lower than that shown by ERA5, which signified overesti-
mation or underestimation of the rainfall depending on the station analysed. The lower
BIAS value was related to a lower POD and FAR compared to the results obtained with
ERA5. On average, CSI was similar for both CFSR and ERA5, which implies a similar
detection capability.
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Table 3. Comparison of various validation statistics for the different reanalysis products covering the GSM River Basin. Daily and monthly statistics are shown on the left and right sides of
a/symbol. Gaps in gauge observation records result in different daily and monthly BIAS. Only months with complete daily data were compared.

Station Dataset M SD CC RMSE (mm) ME (mm) BIAS (%) POD FAR CSI

MIG

Observed 1469 274 - - - - - - -

ERA5 2105 303 0.43/0.85 13.54/115.23 6.04/72.05 38.32/40.60 0.91 0.50 0.48
CHIRPS 1752 285 0.52/0.93 10.71/61.44 4.55/41.87 13.33/15.69 0.79 0.35 0.54

CFSR 1441 356 0.27/0.84 12.91/71.01 5.70/51.54 −4.64/−4.75 0.79 0.48 0.44

CHA

Observed 1561 470 - - - - - - -

ERA5 2204 495 0.38/0.80 15.55/124.38 6.87/78.05 18.95/25.19 0.92 0.42 0.55
CHIRPS 1991 268 0.55/0.88 11.56/82.54 5.38/54.25 6.70/10.01 0.82 0.27 0.63

CFSR 1441 356 0.34/0.85 13.54/94.53 6.25/62.46 −21.73/−20.47 0.79 0.41 0.51

DEL

Observed 1136 731 - - - - - - -

ERA5 1994 549 0.49/0.83 14.33/123.69 5.97/82.61 46.89/48.62 0.89 0.53 0.45
CHIRPS 1821 341 0.62/0.86 11.13/97.85 5.06/63.11 31.66/33.74 0.80 0.40 0.52

CFSR 1817 385 0.38/0.86 13.56/92.77 5.97/65.00 27.86/30.30 0.89 0.54 0.43

VIL

Observed 1023 627 - - - - - - -

ERA5 2106 519 0.41/0.86 12.53/103.13 5.56/69.76 49.77/48.90 0.91 0.49 0.48
CHIRPS 1785 263 0.51/0.91 9.73/76.38 4.48/50.54 30.86/31.97 0.79 0.36 0.54

CFSR 1441 356 0.27/0.84 11.50/62.68 5.03/40.79 −0.07/0.78 0.75 0.48 0.44
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Figure 3 shows the probability density function of rainfall events on a daily scale.
It is evident that all the remote-sensing data we analysed missed some rain events and
CHIRPS was most similar to the observed data in this regard. ERA5 clearly overestimated
the amount of light and medium rainfall events (where ‘light’ refers to daily rainfall of
1–5 mm) and medium refers to daily rainfall of 5–20 mm). CFSR, despite overestimating
these rainfall events, was the reanalysis dataset that most closely reflected the observed data
for medium rainfall events. Among the three reanalysis datasets, CHIRPS best represented
light rainfall events, but it significantly overestimated medium rainfall events. Regarding
the highest intensity events (daily rainfall over 20 mm), the three reanalysis datasets yielded
similar performances.
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The general overestimation of the number of rainfall events and the volume of rainfall
may be due to the ability of satellites to detect strong convective events while having more
difficulty in detecting shallow and warm rains. In addition, the bias correction techniques
generally used to correct satellite data often inflate the volume of rainfall in the detected
events to compensate for the missed events [63].

As evident in Figure 4, monthly observed rainfall and variations in rainfall patterns
were also analysed. In the left column, violin plots combine box plots and a kernel density
plot to simultaneously represent the data distribution and probability density. Except for
MIG, the density distribution displayed a consistently more accurate adjustment when
using the CHIRPS data. The median prediction is shown as a white dot in the graphs,
and significant differences were detected. In general, ERA5 overestimated the median
value, except at the CHA station (located at the highest altitude), where the reanalysis
data resulted in an underestimated median value. Similarly, ERA5, CHIRPS and CFSR
adequately reflected the inter-annual variation in precipitation; they indicated the existence
of a dry period from November to April and a wet period from May to October.
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A characteristic aspects of the climate in the study area is a maximum monthly
rainfall that occurs between June and September, interrupted by a typical mid-summer
drought during the month of July [36,64]. This pattern was detected by all the products
we assessed. In addition, unlike CFSR, the ERA5 and CHIRPS datasets overestimated
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the average monthly rainfall reported during the rainy season. We also found that the
scatterplots suggested a higher performance for the CHIRPS data, with an overall closer
fit with the observations. This finding was supported by the calculated CC values. Using
the CHIRPS data, the CC values for the tested weather stations ranged from 0.86 to 0.93.
By contrast, for the CFSR and ERA5 datasets, the CC values ranged from 0.84 to 0.86 and
0.80 to 0.86, respectively.

The observed monthly temperatures were compared to data from ERA5, CHIRTS,
and CFSR, as discussed in the previous section (Figure 5). Although the shape of the
density distribution and the monthly variations showed a good fit, we noted a significant
overestimation of CHIRTS temperatures by 2–3 ◦C, depending on the month considered,
over the year. For CFSR, an overestimation of the monthly mean temperature was also
detected for all months, which was far lower than that observed in CHIRTS. At the MIG
station, which was the only station for which temperature data was available, the data
from ERA5 provided the best fit.
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4.2. Model Performance before Calibration

When data is missing from observations, the performance of an uncalibrated model
is an important indicator of how well the model performs [65]. The main purpose for
which the SWAT model was conceived was to model ungauged rural watersheds [10]. The
suitability of the different reanalysis datasets was evaluated by simulating flows within the
SWAT model framework using default parameters.

Figure 6 shows the observed and simulated monthly runoff in the GSM River Basin for
the period 2005–2010. The criteria for evaluating the model performance are indicated in
Figure 5, from which it is evident that CFSR yielded the best results. This was as expected,
since this dataset contained the least biased reanalysis data. However, it is important
to note that on a monthly scale, all the reanalysis datasets yielded adequate CCs, which
ranged between 0.64 and 0.74. These results suggest that after calibrating the most sensitive
parameters, the overall performance of the models may be acceptable.
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4.3. Model Calibration Using GLoFAS Discharge Data

As shown in Figure 2, we first compared the observed rainfall and temperature data
and the reanalysis data. Then we evaluated the performance of three datasets as inputs
for the SWAT model to simulate the observed flow in the GSM River Basin. For this
purpose, the SWAT model was calibrated for each of the reanalysis products, including
both precipitation and temperature. The SUFI-2 algorithm included in the SWATCUP
software was used to optimise 12 SWAT parameters. Parameter selection was based on
previous studies in nearby catchments in El Salvador [36], as mentioned in Section 3.3.

In addition, a sensitivity analysis was conducted to determine the most sensitive
parameters using each of the reanalysis datasets as input data and performing 500 model
runs. As shown in Table 3, regardless of the reanalysis data used, CN2 was the most
sensitive parameter, followed by GWQMN and ESCO; these parameters obtained the
lowest p-values. The p-value for each parameter represents a test of the null hypothesis
that the regression coefficient is equal to zero. According to Abbaspour et al. (2007) [66],
the more sensitive the parameter, the smaller the p-value.

Table 4 shows the parameter ranges and the final calibrated values for each of the
reanalysis products. Among the calibrated parameters—and as demonstrated by the
sensitivity analysis, CN2 was one of the most sensitive parameters as it is directly related
to runoff generation [67,68]. We thus expected that the calibrated CN2 values would be
substantially reduced to correct the overestimation of precipitation as detected using the
reanalysis data, with the expected reduction being between 11.7% and 19.9%.

Table 4. Calibrated parameter values.

Parameter Range
Calibrated Value

ERA5 CHIRPS-CHIRTS CFSR

CN2.mgt −0.2 to 0.2 −0.199 −0.117 −0.157
ALPHA_BF.gw 0.01 to 1 0.85555 0.5099 0.24333
GWQMN.gw 0 to 5000 4765 3675 195

GW_REVAP.gw 0.02 to 0.2 0.1167 0.1026 0.0846
RCHRG_DP.gw 0 to 1 0.315 0.065 0.785
REVAPMN.gw 0 to 500 356.5 302.5 320.5
CANMX.hru 0 to 100 90.9 95.7 29.5

EPCO.bsn 0 to 1 0.499 0.819 0.365
ESCO.bsn 0 to 1 0.8155 0.801 0.861

SOL_AWC.sol −0.3 to 0.3 0.055 −0.1974 −0.213
LAT_TTIME.hru 0 to 180 48.06 108.90 15.3

SLSOIL.hru 0 to 150 43.35 38.55 35.25
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In addition, ESCO was also reduced from the default value of 0.95 to values between
0.80 and 0.86, which represents an increase in evaporation generated by the model. These
ESCO values are in line with those obtained in other tropical areas [36,69]. The largest
discrepancies between the fitted values and the reanalysis data were noted for the ground-
water parameters (ALPHA_BF, GWQMN, GW_REVAP, RCHRG_DP and REVAPMN). This
result might be attributable to the inherent complexity of the volcanic aquifers in Central
America; the aquifers display high permeability and fissure flows, making them very
complicated to study [70]. However, ALPHA_BF varied from 0.24 (for CFSR) to 0.85 (for
ERA5). The latter value indicates a faster recharge response [71], which is consistent with
the volcanic aquifers in the study area.

The performance of the calibrated model for each of the input datasets is summarised
in Table 5. The statistics show that the SWAT model simulated the GloFAS discharge flows
reasonably well for both calibration (2005–2008) and validation (2009–2010) periods. This
result was independent of the reanalysis data, since all the simulations had a CC ranging
between 0.76 and 0.85, an NSE greater than 0.50, and a KGE value between 0.84 and 0.86.
As expected, the best results were obtained using data from ERA5, which is used to obtain
the global-scale flows in GloFAS.

Table 5. SWAT model performance compared with GloFAS discharge data.

Parameter

Dataset

ERA5 CHIRPS-CHIRTS CFSR

Calibration Validation Calibration Validation Calibration Validation

R2 0.88 0.82 0.78 0.78 0.82 0.60
NSE 0.87 0.81 0.77 0.70 0.81 0.54

PBIAS (%) −11.68 −13.36 7.34 −30.70 −3.29 −32.31
KGE 0.86 0.81 0.85 0.65 0.88 0.47

4.4. Evaluation of the Simulated Monthly Streamflows for Various Scenarios

Finally, the simulated monthly scale flows obtained from the GloFAS calibration
were compared with the observed flows. The simulations performed using CHIRPS-
CHIRTS data showed the best fit, as evident in Figure 7. Nonetheless, all three simulations
performed using ERA5, CHIRPS-CHIRTS, and CFSR data showed an acceptable fit with
the observed streamflows.
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These results demonstrate that when the ERA5 reanalysis data show an adequate fit,
GloFAS discharge data could potentially be used to simulate the hydrological processes
of ungauged catchments at the monthly scale. This would allow the use of distributed
hydrological models such as SWAT to analyse fundamental aspects in water resource
management—such as the impact of changes in land use or the climate. Similar to our
findings, Eini et al. (2019) [72] reported that when precipitation reanalysis data represented
well-observed precipitation (R2 higher than 0.6) in a semi-arid basin in Iran, the result
was reasonable simulations for river discharge. However, these results should be viewed
with caution as they depend on the quality of the GloFAS adjustment to the observed
flows. In this regard, Harrigan et al. (2020) [30] demonstrated that the quality of the
GloFAS adjustment increased substantially along with the size of the catchment. We
thus recommend that the methodology followed in our study should be replicated in
larger catchments.

4.5. Limitations and Future Research Directions

This study demonstrates that when remotely sensed weather data are accurate with
respect to observed climatological data, flow simulation is often accurate. Hence, the use of
discharge data, such as GLoFAS, contributes to the correct simulation of the hydrological
processes in a basin. However, several limitations need to be considered. Firstly, data from
a single flow-gauging station at the outlet of the basin was used to calibrate the model. This
means there is the possibility of equifinality issues with some parameters having optimal
values that are physically unrealistic. Future research should include additional calibration
with other variables that are available through remote sensing, such as evapotranspiration.

Second, NSE has been used as the objective function. This coefficient usually presents
the problem of being weighted towards higher flows. The use of other objective functions
would return different results, and it would be interesting to study the effect of the selected
objective function on the results obtained.

Third, only the SWAT model was employed to test the methodological approach used
in this work. Future research and performance testing with different hydrological models
could help to clarify the limitations and strengths of our methodological approach. Finally,
if observed data is available, future studies could assess the performance of GLoFAS
discharge data on a daily and sub-daily basis.

5. Conclusions

This study evaluates the application of GLoFAS discharge data in model calibration
in El Salvador, Central America. This is a country in which climatological input data and
observed flow data for calibrating hydrological models is scarce or unavailable. GLoFAS
determines the streamflow by applying a global-scale hydrological model that uses ERA5
reanalysis data as the input data. This work tested whether the streamflow data from
GLoFAS provided a suitable option for calibrating hydrological models in ungauged
catchments, as long as there is a good fit between reanalysis precipitation and temperature
data and observed climatological data. Climatological reanalysis data (CHIRPS-CHIRTS
and CFSR) were also evaluated. The following conclusions are presented:

(1) The statistical indicators (CC, RMSE, ME, and BIAS) allowed the accuracy of the
reanalysis data to be quantitatively evaluated. We found that CHIRPS performed
best in reproducing the observed precipitation, despite consistently overestimating
the rainfall.

(2) In terms of rain detection ability, CHIRPS (CSI ranging from 0.52 to 0.63) displayed
the greatest daily accuracy in detecting the precipitation occurrences. The next best
were ERA5 and then CFSR. However, all three reanalysis datasets showed acceptable
rainfall detection capability.

(3) Among the three temperature reanalysis products, the performance of CHIRTS was
the least accurate; it repeatedly overestimated mean temperature by 2–3 ◦C. By
contrast, ERA5 and CFSR presented excellent agreement with the observed data.
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(4) Models that were calibrated using GloFAS data as the observed data, independently of
the precipitation and temperature data (ERA5, CHIRPS-CHIRTS and CFSR) showed
acceptable model performance. This point was evident in the KGE values, which
ranged from 0.74 to 0.79, and the R2 values of between 0.57 and 0.78.

Overall, these findings demonstrate that reanalysis rainfall products can improve
hydrological process modelling for Central American watersheds, where poorly gauged or
ungauged watersheds are common. This research also highlights the GLoFAS dataset’s
potential for model calibration in catchments where the availability of streamflow data is
limited. The availability of a calibrated hydrological model that adequately reflects the
hydrological processes of a basin provides decision-makers with a tool to quantify the
availability of water resources. The modelalso provides the basis for estimating the impact
of land use changes or climate change on water resources.
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