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Clinical procedure for mild cognitive impairment (MCI) is mainly based on clinical records and short cognitive tests. However, low
suspicion and difficulties in understanding test cut-offs make diagnostic accuracy being low, particularly in primary care. Artificial
neural networks (ANNs) are suitable to design computed aided diagnostic systems because of their features of generating
relationships between variables and their learning capability. The main aim pursued in that work is to explore the ability of a
hybrid ANN-based system in order to provide a tool to assist in the clinical decision-making that facilitates a reliable MCI
estimate. The model is designed to work with variables usually available in primary care, including Minimental Status
Examination (MMSE), Functional Assessment Questionnaire (FAQ), Geriatric Depression Scale (GDS), age, and years of
education. It will be useful in any clinical setting. Other important goal of our study is to compare the diagnostic rendering of
ANN-based system and clinical physicians. A sample of 128 MCI subjects and 203 controls was selected from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). The ANN-based system found the optimal variable combination, being AUC,
sensitivity, specificity, and clinical utility index (CUI) calculated. The ANN results were compared with those from medical
experts which include two family physicians, a neurologist, and a geriatrician. The optimal ANN model reached an AUC of 95.2%,
with a sensitivity of 90.0% and a specificity of 84.78% and was based on MMSE, FAQ, and age inputs. As a whole, physician
performance achieved a sensitivity of 46.66% and a specificity of 91.3%. CUIs were also better for the ANN model. The proposed
ANN system reaches excellent diagnostic accuracy although it is based only on common clinical tests. These results suggest that
the system is especially suitable for primary care implementation, aiding physicians work with cognitive impairment suspicions.

1. Introduction

The rising trend of an aging population is an enormous social
and economic challenge because of the high prevalence of
noncommunicable diseases [1]. Dementia, with Alzheimer

disease (AD) as its main cause, and cognitive impairment
(CI) are a public healthcare challenge.

The MCI concept was proposed to group patients that
only display intermediate cognitive deficit between normal
aging and the dementia stage, without significant functional
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impact [2]. These patients present an increased risk of con-
version to dementia, with annual rates between 5 and 10%
[3]. This figure targets that population as a key objective for
early detection and the introduction of measures that could
delay its advancement. Early detection of MCI is also consid-
ered beneficial because it allows for treatment in the initial
stages, which can extend the autonomy of the patients and
reduce uncertainty for the family and the patient. Authors
in this field have made recommendations for future research
that focuses on the use and development of appropriate func-
tional and neuropsychological measures and combinations of
them which will improve diagnostic accuracy [4].

Diagnostic procedure for CI is usually initiated by general
practitioners. The level of detection at primary care setting is
still low, in particular for MCI [5]. Diagnostic protocols are
based mainly on clinical records and short cognitive tests,
but barriers such as low suspicion index or difficulties about
understanding cut-offs have led to low levels of diagnostic
accuracy. Furthermore, in CI, the evolution from healthy
aging to AD, through the MCI, does not precisely fit a linear
model [6], leaving a rather complex problem with nonlinear
characteristics. To solve these drawbacks, an approximation
based on neural computation for detection of MCI is
proposed.

Artificial neural networks can be defined as a cognitive
information processing structure (massively parallel dynam-
ical system) based upon models of brain function which are
intended to interact with the environment. They are com-
posed of highly interconnected computational elements with
a graph topology. Its most appealing property is its learning
capability. The ANN behavior emerges from structural
changes driven by local learning rules, and they are capable
of generalization. They can capture high-dimensional inputs
and generate relationships between the inputs and outputs
from a training set. In addition, this data-driven procedure
also captures the similarity in the input that results in gener-
alizations. They can approximate any real valued function
mapping and face tasks close to processes which are thought
to occur in the brain.

ANNs can be characterized in the three following levels:
connectivity topology, neurodynamics, and learning. Con-
nectivity topology indicates the shape in which the different
neural processing elements are interconnected among them-
selves [7]. Neurodynamics cover the local information pro-
cessing carried out by the units [7]. Learning is the capacity
of a system of absorbing information from the environment,
without a need for the system to be programmed externally.
The learning processes produce changes in the network in
order to try and achieve a new way to respond more effi-
ciently to the specific task.

Multiple computational and mathematical methods have
been proposed in the diagnosis of dementia [7, 8], creating an
interesting scientific field where a wide body of work exists.
In general, the majority of developed research is centered
on the detection of the existence or absence of a dementia,
usually AD, or performs a differential diagnosis between
two types of dementia, or a diagnosis between AD and MCI
[9–11], or in longitudinal studies, the identification of con-
version from MCI to AD [12, 13].

In this paper, we introduce a different and innovative
proposal, which is directed towards perhaps the most effec-
tive point of intervention, namely, the estimate of MCI. The
main contributions of our proposal are the following: using
ANNs, we provide a tool to assist in the clinical decision-
making that facilitates a reliable MCI estimate, with simple
and multimodal diagnostic criteria. It is useful in any clinical
setting but specially in primary care. Our model provides
performance levels greater than those normally obtained
with clinical and/or computational methods. These levels
are also above the threshold of diagnostic precision that is
recommended as optimal to consider a biological test such
as an AD biomarker [4, 14].

The primary aim of this work is to explore the ability of a
hybrid ANN-based system to differentiate healthy controls
and MCI patients. A secondary objective is to compare the
ANN-based system and physician’s clinical diagnostic.

2. Materials and Methods

2.1. Data Set and Feature Selection.Data used in the prepara-
tion of this article were obtained from the Alzheimer’s dis-
ease Neuroimaging Initiative (ADNI) database (http://adni
.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment and
early Alzheimer’s disease. ADNI is also a comprehensive
study of imaging and omics in AD [15].

The ADNI database includes different diagnostic groups
of AD and MCI. Criteria for subject selection are given in
ADNI protocol. Our dataset includes the scores of three com-
monly used neuropsychological tests along with the years of
education and age, relative to 203 normal control subjects
and 128 subjects who revealed a MCI. The diagnostic instru-
ments, essentially dedicated to the cognitive and functional
assessment, are the MMSE [16], the FAQ [17], and GDS [7].

Table 1: Characteristics of the subjects: demographic features,
education level, and test results of the subjects. SD: standard
deviation; YOE: years of education.

Controls MCI Total

Subjects 203 128 331

Age mean (SD) 74.1 (6.3) 74.9 (7.2) 74.4 (6.7)

Age range 56.3-89.1 56.3-88.0 56.3-89.1

YOE mean (SD) 16.5 (2.6) 15.5 (3.2) 16.1 (2.9)

YOE range 10-20 4-20 4-20

MMSE mean (SD) 29.1 (1.2) 27.2 (1.7) 28.3 (1.7)

MMSE range 24-30 24-30 24-30

FAQ mean (SD) 0.2 (0.6) 3.6 (4.4) 1.5 (3.3)

FAQ range 0-5 0-20 0-20

GDS mean (SD) 0.8 (1.2) 1.6 (1.5) 1.1 (1.3)

GDS range 0-6 0-5 0-6
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Table 1 depicts some information about the demographic
features, test results, and education level of the subjects. The
data set was split up in two parts: a training set with 255 per-
sons and a test set with 76. Both have similar statistical char-
acteristics, and they are balanced in the MCI subjects and
normal control subject ratio.

We propose the design of a system that efficiently, simply,
and quickly detects MCI, using only a set of reduced clinical
criteria commonly used in primary care. This aim is achieved
by joining a simple and powerful feature selection scheme,
the wrapper method [18] with the neural computing meth-
odology. This method uses an ANN as a fitness function
and searches for the best subset of features in the feature
space. The wrapper methodology offers a simple but power-
ful way to address the problem of feature selection, even
though it is computationally more complex and requires
more execution time than other feature selection methods.
A backward elimination search strategy has been applied,
with two restrictions: the minimum dimension of the input
vector must be two, and all the input vectors must have at
least one diagnosis criteria. A total of 24 different feature vec-
tors were obtained. This method is used because of its sim-
plicity and its universal use, and the generated space of all
possible feature subsets under development is not too large;
thus, the search is not computationally hard.

2.2. Counterpropagation Network. The foundation of modu-
lar neural networks (MNN) relies on the possibility that a
single neural network can be freely combined with other
types of artificial neural networks. Each monolithic neural
network can be considered as a module. An important aspect
of the MNN is its biological background, as biological neural

systems also are characterized by a combination of a hierar-
chy of networks. Modular neural networks are generally
more powerful than flat unstructured ones [19]. The key idea
in these networks is to solve complex problems in a simpler,
quicker, and more manageable way [20]. One of these highly
effective modular networks is Counterpropagation Network
(CPN) [21, 22].

The Counterpropagation Network (CPN) is a hybrid
modular neural network [21]. It is seen as an extension of
the Kohonen approximation and is made up of a network
hierarchy, each one specialized in different tasks, by using
similarities with natural systems. CPN faces the classification
process in a modular way using different learning algorithms.
One part of the network uses self-organizing learning for
quantification which processes initial input, and afterwards,
a supervised learning scheme occurs, which deals with the
discrimination process performed by the network [20].

Therefore, CPN is a modular neural architecture of two
independent-learning cascaded layers (Figure 1). The first
layer is competitive, the Kohonen self-organizing Map
(SOM). It produces a clustering of the input space, preserving
its topology, which is related to an n-dimension Voronoi dia-
gram and maps to a space with a reduced dimensionality,
generally two. SOM presents an input layer that has a full-
connectivity with the output layer by means of excitatory
connections. The output layer is organized in an m-dimen-
sional space which matches the desired map form. This out-
put layer is characterized by a neighborhood relationship that
is present between the nodes, typically from a square or hex-
agonal lattice shape or another geometric shape. This layer
may even have a thyroidal connectivity structure. All of the
units in this layer simultaneously present inhibitory lateral
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Figure 1: Structure of a Counterpropagation Network.
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connections among neural neighbors as well as excitatory
self-connections. Said connections are those that facilitate
the competitive process while searching for the winning neu-
ron. Its neurodynamics in practice are usually simplified by
carrying out the Euclidean distance of the inputs and the
neuron prototypes (Equation (1) and Equation (2)). The win-
ning unit is the one which is closest (higher similarity) to the
input vector.

netl xð Þ = x − wlk k, ð1Þ

ul =
1 if l = arg min

k
netk xð Þð Þ,

0 otherwise:

( )
ð2Þ

The unsupervised learning process belongs to the winner
take all category, similar to the simple competitive learning
process. The main variations are seen in the modification of
the synaptic weights, which not only affects the winning neu-
ron but also to a lesser degree the set of neurons in the win-
ner’s neighborhood N , and consequently are able to
generate topological relations (Equation (3)).

Δwli =
α xi −wlið Þ if l ∈N arg min

k
netk xð Þð Þ
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An interesting aspect of this neural architecture lies in the
neighborhood relationship between nodes, and the learning
rates are functions of time. They decrease during the training
period.

The Grossberg layer carries out the second stage of the
CPN. Its neurodynamic is given by a linear combination of
the SOM output. Each unit on this layer rapidly reaches an
equilibrium value equal to the value of the actual weight in
the connection to the winning unit of the competitive layer,
following (Equation (4)).

yj =〠
l

ulz jl, ð4Þ

A threshold on these output units can be established in
classification processes. When the activation value of the unit
is greater than the threshold, the input pattern is considered
to belong to the class, which is represented by that unit. Man-
agement of this threshold allows the network to be tuned,
resulting in classifiers with different sensitivities or
specificities.

This layer uses outstar learning [23]. A straightforward
gradient descent on this cost function provides the necessary
weight update (Equation (5))

Δzjl = γ dj − yj
� �

ul; ; ð5Þ

where dj is the value of the wanted output for the j neuron
and γ is the learning rate.

The advantages obtained with this model mainly lie in
the reduction of complexity regarding equivalent monolithic
models, allowing for simultaneous training of both layers,
increasing strength and the incremental character of gener-
ated applications, and its rate in computing time. The
increase in the computing rate is achieved because of the sim-
plification in the self-organizing stage [20].

Different configurations of CPNs, for all 24 correspond-
ing feature vector, were developed by varying their parame-
ters. Hexagonal and square neighborhoods in SOM, with
toroidal and/or planar connectivity structure, were used.
The threshold value of the Grossberg layer is chosen in such
a way that the values of sensitivity and specificity for each
network are the most similar possible. The CPN input space
was normalized and scaled into linear format.

2.3. Performance Measures. The efficacy of the proposed
diagnostic system is determined using different performance

Table 2: Results for the CPN systems using different input
combinations from wrapper method. AUC: area under the ROC;
Acc: accuracy; Sen: sensitivity; Spc: specificity; YOE: years of
education.

AUC
(%)

Acc
(%)

Sen
(%)

Spc
(%)

Age +MMSE + FAQ 95.11 86.84 90.00 84.78

MMSE + FAQ 94.42 85.53 90.00 82.61

Age +MMSE + FAQ +GDS 92.97 88.16 86.67 89.13

Age + FAQ 92.25 82.90 96.67 73.91

MMSE + FAQ +GDS 90.98 81.58 86.67 78.26

MMSE + FAQ +GDS + YOE 90.87 86.84 80.00 91.30

Age +MMSE + FAQ + YOE 90.22 86.84 70.00 97.83

FAQ + GDS 90.22 84.21 73.33 91.30

Age + FAQ + GDS 88.44 81.58 86.67 78.26

Age +MMSE + FAQ +GDS + YOE 87.97 88.16 80.00 93.48

MMSE + FAQ + YOE 87.75 82.90 70.00 91.30

FAQ + YOE 86.70 85.53 80.00 89.13

MMSE + GDS + YOE 86.49 80.26 73.33 84.78

Age +MMSE + GDS 86.23 84.21 80.00 86.96

Age +MMSE 86.23 80.26 70.00 86.96

Age +MMSE + YOE 86.09 80.26 70.00 86.96

Age +MMSE + GDS + YOE 85.58 78.95 76.67 80.44

MMSE + GDS 85.36 73.68 93.33 60.87

MMSE + YOE 84.31 75.00 93.33 63.04

Age + FAQ + YOE 82.17 81.58 70.00 89.13

FAQ + GDS + YOE 80.58 73.68 83.33 67.39

Age + FAQ + GDS + YOE 80.00 80.26 60.00 93.48

Age + GDS 71.92 65.79 76.67 58.70

Age + GDS + YOE 66.88 60.53 83.33 45.65

Age + YOE 65.69 65.79 56.67 71.74

GDS + YOE 63.41 53.95 90.00 30.44
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measures: sensitivity, specificity, accuracy, the receiver oper-
ating characteristic (ROC) curves, and the area under the
ROC (AUC).

Errors made by a classifier in a specific scope, such as
the medical setting, can lead to a different level of impor-
tance. Two measures, sensitivity and specificity, are com-
monly used to consider this difference in the importance

of the diagnosis. Sensitivity is the probability that a test
result will be positive when the disease is present (true
positive rate (TPR)), and specificity is the probability that
a test result will be negative in the absence of the disease
(true negative rate (TNR)). In the context of binary clas-
sifiers, these measures are equivalent to calculating
accuracy.

Table 3: Comparison of the results of the optimal CPN system versus cut-off points for the scales and medical experts from the specialized
area physicians (neurologist and geriatrician) and the primary care physicians. AUC: area under the ROC; Acc: accuracy; Sen: sensitivity; Spc:
specificity; PCP1 and PCP2: primary care physicians.

AUC (%) Cut-off Acc (%) Sen (%) Spc (%) CUI+ CUI-

Optimal CPN system 95.11 — 86.84 90.00 84.78 0.7147 0.7873

FAQ cut-off 88.80 0/1 86.84 83.33 89.13 0.6944 0.7944

MMSE cut-off 80.65 28/29 73.68 80.00 69.57 0.5053 0.5858

GDS cut-off 56.12 2/3 64.47 23.33 91.30 0.1485 0.5900

Neurologist — — 77.63 86.67 71.74 0.5778 0.6398

Geriatrician — — 78.95 56.67 93.48 0.4817 0.7178

PCP1 — — 69.74 23.33 100.00 0.2333 0.6667

PCP2 — — 68.42 20.00 100.00 0.2000 0.6571
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Figure 2: ROC curves for the test set and cut-off points in the different tests.
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Another aspect that should be borne in mind when
comparing classifiers or when their performance is ana-
lyzed is the precision of the classifiers on the parameter
adjustment, since they influence detected TPR and TNR.
The use of ROC curves [24] is a good method for this
evaluation. ROC is a bidimensional graphical representa-
tion of sensitivity versus (1 − specificity) according to
how the classifier discrimination threshold changes.
Threshold in this work refers to Grossberg layer of CPN.
AUC is a very good measure of fit for classifiers and is
used in this work. AUC is statistically consistent and more
discriminating measure than accuracy [25].

In order to evaluate the clinical value of our proposal
with regard to the simultaneous utilization of cognitive
and functional measures, the clinical utility index (CUI)
[26] and the corresponding optimum cut-off over each
one of the FAQ, MMSE, and GDS tests were also used.
In this way, we have deemed the clinical applicability of
the diagnostic system, in the same sense as the clinical
applicability of a test [27].

In order to define a clinically valuable diagnostic test
or diagnostic system, high values of positive predictive
value and high sensitivity values are needed. In a formal
way, the positive utility index (for rule-in accuracy) is a

product of sensitivity and positive predictive value, and
the negative utility index (for rule-out accuracy) is a prod-
uct of specificity and negative predictive value. Qualitative
grades of CUI (CUI+ and CUI-) have been proposed,
adapted from kappa agreement [26, 27] giving a scores
conversion into qualitative grades as follows: excellent
utility ≥ 0:81, good utility ≥ 0:64, satisfactory utility ≥ 0:49,
and poor utility <0.49 [28].

Lastly, we have also compared the proposed method to
reach a reliable and quick diagnosis of MCI, with physicians’
performances. Specifically, a neurologist, a geriatrician, and
two primary care physicians were involved. All the physi-
cians are blinded with respect to patients, and their diagnoses
are only based on the ADNI scales scores, exactly the same
data as the hybrid ANN.

3. Results and Discussion

Obtained results presented in this section show the efficacy
of the proposed diagnostic system. Table 2 displays the
results of the CPN configurations by applying a wrapper
method, ordered from highest AUC value of convex
ROCs. The optimal CPN configuration occurred with the
MMSE, FAQ, and age input combination, reaching
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Figure 3: ROC curves for the test set and best CPN system.
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95.11% of AUC, while the same combination, but without
age, is slightly worse, AUC of 94.2%. This result is better
than that communicated by MMSE and FAQ in the bibli-
ography [26, 29]. The optimal combination is above the
threshold of recommended diagnostic precision level for
a biological test to be considered as a biomarker of AD
[14]. The CUI values for the best CPN configuration were
in the range of good clinical utility (CUI + = 0:7147; CUI
− = 0:7873) as measured on the Mitchell scale, which
confirm the goodness of this proposal.

As seen in Table 2, the best combinations generally
included FAQ. This could seem paradoxical when considering
that the preservation of daily routines is one of the criteria in
the accepted definition of MCI. Nevertheless, ADNI database
may have overdimensioned the degree in which the functional
level has been affected, and its impact must be considered.
GDS was the input variable which contributed the least
amount of information when identifying the MCI.

The corresponding optimum cut-off over each of the
FAQ, MMSE, and GDS tests was also calculated. These cut-
offs allowed us to evaluate the efficacy of individual diagnostic
instruments against our proposal, with simultaneous utilization
of cognitive and functional measures. As shown in Table 3, their
values are worse than the ones produced by the CPN-based sys-
tem, which combines two of these diagnostic criteria and also
considers the risk factor of age. These results can also be
observed in the ROC curves for the cut-off of the different scales
(Figure 2) and in the convex ROC curves of the two best CPN-
based diagnosis systems (Figure 3). The optimal points and the
results of the medical experts are indicated on the curves
according to Table 2. It is clear that the CPNs are clearly supe-
rior to the cut-off points of the tests, outperforming them by
more than 6%, with respect to the best of the cut-off point cases
and by almost 39% with respect to the worst, considering the
AUC value. Regarding sensitivity, the CPN-based system is also
better, 6.33% above the sensitivity of FAQ, 10% of the MMSE,
and 66.67% above that of the GDS. Similarly, the CPN system
shows a better CUI than the one corresponding to each test
individually. FAQ was the only measure that reached a CUI+
of good level, -0.6944 (Table 3).

Lastly, as shown in Table 3, the CPN system outper-
formed clinician results. The best sensitivity was achieved
by neurologist, 86.7%, and the best specificity and accuracy
were by geriatrician, 93.48% and 78.95%, respectively. On
the other hand, primary physicians achieved the lowest sen-
sitivity and specificity values. These results could be
explained by the prevalence of MCI, which is much greater
in the neurology consultations than in geriatric ones or in
primary care. All the physicians’ CUIs were also worse than
the CPN system. The better results from our system are also
noteworthy [30, 31]. This occurs even though our model was
simpler and uses less invasive critical criteria, at a cheaper
costs and with possibilities of use in all clinical scopes, pri-
mary and specialized care.

4. Conclusions

We have got all proposed aims, and important conclusions
have also reached, in this work. We designed an intelligent

system, based on hybrid ANNs, providing a tool to aid in a
reliable detection of MCI, which is underdiagnosed, in a pri-
mary care setting. It was built on the evaluation of the cogni-
tive and functional domains, considering age and academic
studies as modifying factors.

The combination of MMSE, FAQ, and age led to the best
diagnostic performance [32]. The proposed CPN system
improves the results obtained by statistical methods of other
authors. Our method offers greater control when searching
for a balance between sensitivity and specificity. It works with
the simultaneous use of multimodal diagnostic criteria, con-
firming a higher effectiveness than each separate test. Our
proposal overcomes methodological challenges, such as the
choice of an administration strategy and the calculation of
cut-offs, which are present when multiple tests are used. It
provides evidence that age was more significant than aca-
demic studies for an improvement in the detection of MCI.
The CPN diagnosis system performances were not impeded
by physician bias, which offers greater reliability.

We propose, based on the obtained results from our
study, that the best solution to solve MCI detection in a pri-
mary care setting and in the general consultations of neurol-
ogy and geriatrics could be to use systems incorporating
diagnostic aid based on hybrid ANNs. The use of systems
goes beyond the use of cut-offs over different cognitive tests.
Under this proposed scenario, it is possible to standardize
diagnostic criteria for the detection of MCI, which at present
is absent in MCI diagnosis as well as in AD. This tool can also
contribute to standardize diagnostic procedures, speeding up
the time in consultation and reducing the degree of uncer-
tainty in diagnosis, which are some of the limitations that
block the diagnostic work of primary care doctors. Thus, this
tool can be specifically appropriate in primary care, which is
where the patient enters into the majority of health public
systems. It can also be used for the screening and early diag-
nosis of cognitive impairment. The use of this tool in the
diagnosis of MCI is part of the expansion of the e-Health era.

Our study reveals that the use of computational intelli-
gence methods in the design of clinical decision systems for
diagnostic aid in the setting of cognitive impairment and
dementia is beneficial. These results are very promising and
encourage us to continue research along this line. Similar to
what occurs in clinical practice, the use of longitudinal infor-
mation from different visits can be integrated into the ANNs
improving precision and reliability of the computational
models, so we propose to improve our advances by introduc-
ing longitudinal design and extending it into the bimodal
diagnostic to the differential, where AD is present. The
research is of particular interest given that the moment in
which the MCI is diagnosed may be the most effective point
for intervention and of significant use for public health plan-
ning. This early diagnosis can lead to a delayed progression
from the preclinical stage of dementia to the full-blown clin-
ical syndrome.

Data Availability
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