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ABSTRACT Motion pattern analysis uses methods for the recognition of physical activities recorded
by wearable sensors, video-cameras, and global navigation satellite systems. This paper presents the motion
analysis during cycling, using data from a heart rate monitor, accelerometric signals recorded by a navigation
system, and the sensors of a mobile phone. The set of real cycling experiments was recorded in a hilly area
with each route about 12 km long. The associated signals were analyzed with appropriate computational
tools to find the relationships between geographical and physiological data including the heart rate recovery
delay studied as an indicator of physical and nervous condition. The proposed algorithms utilized methods
of signal analysis and extraction of body motion features, which were used to study the correspondence of
heart rate, route profile, cycling speed, and cycling cadence, both in the time and frequency domains. Data
processing included the use of Kohonen networks and supervised two-layer softmax computational models
for the classification of motion patterns. The results obtained point to a mean time of 22.7 s for a 50 %
decrease of the heart rate after a heavy load detected by a cadence sensor. Further results point to a close
correspondence between the signals recorded by the body worn accelerometers and the speed evaluated from
the GNSSs data. The accuracy of the classification of downhill and uphill cycling based upon accelerometric
data achieved 93.9 % and 95.0 % for the training and testing sets, respectively. The proposed methodology
suggests that wearable sensors and artificial intelligence methods form efficient tools for motion monitoring
in the assessment of the physiological condition during different sports activities including cycling, running,
or skiing. The use of wearable sensors and the proposed methodology finds a wide range of applications in
rehabilitation and the diagnostics of neurological disorders as well.

INDEX TERMS Multimodal signal analysis, computational intelligence, machine learning, motion
monitoring, accelerometer-derived cycling data, classification.

I. INTRODUCTION
The discipline of motion recognition, using a range of mea-
surement techniques to characterise the motion associated
with different of physical activities, is an increasingly im-
portant topic. Applications include the assessment of re-

habilitation exercises, gait analysis [1]–[4], breathing [5],
detection of neurological disorders [6], the effect of cycling
on cognitive functions [7], and the evaluation of fitness
level in sports disciplines. Measurement techniques include
the use of wearable sensors, smartphones, smartwatch-based
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FIGURE 1. The area of cycling experiments presenting (a) the cycling route in
the geographical environment, (b) the altitude GPS signal recorded by the
Garmin system, (c) the accelerometric (ACC) signal recorded by the mobile
sensor, and (d) spectrogram of a selected experiment.

biometrics [8], and computational intelligent methods for
data processing.

Many motion tracking systems [9], [10] make use of
global navigation satellite systems (GNSSs). They benefit
from the increasing accuracy of GNSSs that are based on the
use of new satellite systems, including Galileo [11] and the
global positioning system (GPS). These systems may also be
used for monitoring cycling routes [12]. Further commonly
used sensors include accelerometers [13], [14] inside mobile
phones [15], gyrometers, and sensors to monitor the heart rate
[16] and further physiological functions. Mobile applications
for smartphones can use these sensors, making them a viable
alternative to bike computers [17]. Camera systems [18],
[19] that use red-green-blue, depth and thermal sensors [20]–
[22], and ultrasound systems [23] are very important as well.
Associated studies include the assessment of road surface
roughness [24] and three-dimensional modelling.

Separate accelerometers or their synchronized systems are
used in many different applications, which employ standard
or deep learning methods for classification of motion pat-
terns. For example, these methods are used in the diagnosis
of motion disorders in neurology and ataxic gait monitoring
[25], [26]. Analysis of the sensor placement for the best
separation ability is one of the fundamental problems of
these studies. In addition, accelerometers have been used to
evaluate motion symmetry [14] and to monitor rehabilitation
exercises. These sensors are now included in most mobile
phones and the possibility to use such wearable sensors
enables the monitoring of different sport activities [27].

Appropriate methods of signal and image processing are
then applied for information extraction. These methods in-
clude signal analysis in both spectral and scale domains, and
modern methods that are based on wavelet transforms [28],
artificial intelligence using machine learning, dimensionality
reduction [29]–[31], classification methods, and deep convo-
lutional neural networks.

The present paper is devoted to the analysis of data
recorded during cycling [27], [32]–[35] in real conditions
on the route presented in Fig. 1, which is located in a
hilly area and is about 12 km long, and visualized in the
Matlab environment using its mapping toolbox. Positioning
data recorded by the GNSSs are synchronized with the heart
rate and accelerometric data. The goal of this study is to
show how wearable sensors can be used for post-exercise
analysis of cycling-related information to detect the rela-
tionship between physiological data, accelerometric signals
acquired at the specific body position, and the route profile
recorded by the GNSSs. Our mathematical analysis is based
on spectrograms using the Kohonen network learning system
for data clustering and the two layer neural network for
classification of accelerometric signals. Selected results are
compared with those evaluated on a home exercise bike [36].

The research area includes a general methodology for
multimodal data evaluation [37]–[39]. This points both to the
rapid evolution of new engineering systems for data acqui-
sition and to modern methods for signal processing, which
will enable the application of deep learning, modelling of
sophisticated structures, and the application of smart devices
and assisted technologies in the future.

II. METHODS
A. DATA ACQUISITION

Fig. 1 presents the geographical data that were acquired by
the GNSS and the associated accelerometric signals that were
recorded by the mobile phone. The cycling route was located
in a hilly area of Moravia close to Vsetin, and included seg-
ments with different surface qualities and occasional traffic
that contributed to random errors in the recorded signals. The
associated route profile with further Garmin and heart rate
data are presented in Fig. 2 for a selected cycling experiment.

The cycling cadence-derived data [40] were used for seg-
mentation of accelerometric and heart rate signals in different
route areas.

The GNSS and motion data (time stamps, longitude, lat-
itude, altitude, cycling distance, the speed, and the cycling
cadence) were simultaneously recorded by a Garmin fitness
watch (Fenix 5S). The heart rate data were acquired by a
Garmin chest strap that was connected to a Garmin watch by
ANT+ technology. All of the datasets were acquired during
26 cycling experiments in a hilly area on a route that is 12 km
long, with an altitude difference of 300 m. Records were
subsequently stored to the Garmin Connect website, exported
as TCX files, converted to CSV files, and then imported to the
MATLAB software for further processing.
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FIGURE 2. Signals recorded on the cycling route presenting (a) the cycling
profile, (b) speed, (c) heart rate, and (d) the cadence recorded during a
selected experiment.

Accelerometric data were recorded by the mobile phone
in the spine position, which was selected following previous
studies [25], [41], which described the higher discriminative
abilities of sensors located in the upper half of the body
[42], [43] in comparison to other positions. The sampling
frequency of the Android mobile phone sensor was 100 Hz
during all cycling routes.

All procedures involving human participants were in ac-
cordance with the ethical standards of the Institutional re-
search committee and with the 1964 Helsinki Declaration and
its later amendments.

B. SIGNAL PROCESSING
The proposed data evaluation method included a prepro-
cessing stage. All sensors recorded both time stamps and
observed values, but the sampling rate varied. This is the
reason why resampling was necessary. The new sampling
period Ts was selected as the average sampling period of
the observed values and linear interpolation was then applied
for their evaluation. In the case of accelerometric signals,
the median filtering was applied to remove gross errors from
observed sequences.

In the next step, the linear acceleration data without ad-
ditional gravity components were processed. Their modulus
Aq(n) was evaluated from the components Axq(n), Ayq(n),
and Azq(n) recorded in three directions by relation

Aq(n) =
√

Axq(n)2 + Ayq(n)2 + Azq(n)2 (1)

for all values n = 0, 1, 2, · · · , N − 1 in each experiment
q = 1, 2, · · · , Q of N values. In this way, the accelerometric
values invariant to the rotation of the sensor during observa-
tions were evaluated.

The processing of multimodal records {d(n)}N−1
n=0 of the

accelerometric and heart rate signals was performed by sim-
ilar numerical methods. After high-pass filtering removed

FIGURE 3. Feature extraction for (a) the cycling route recorded by the GNSS
signal and divided into segments with a selected length of 60 s,
(b) spectrogram of the accelerometric signal, (c,d) features specified into two
selected spectral regions, and clustering results from the unsupervised
Kohonen learning process.

the slowly varying signal components, short-time discrete
Fourier transform was applied to detect the time-varying
frequency parts.

Each accelerometric signal {d(n)}N−1
n=0 of N samples that

was observed during each experiment was processed in time
windows TW = 30 s long to evaluate the associated signal
spectrum, covering the full frequency range of 〈0, fs/2〉 Hz
for fs = 1/Ts. This method was used to evaluate the
spectrogram for each experiment. The accelerometric signal
and its spectrogram are presented in Figs. 1(c,d) for a selected
cycling experiment.

The following two frequency bands were then selected for
evaluation of accelerometric features:

• Range r1 = 〈fc1, fc2〉,
• Range r2 = 〈fc3, fc4〉.

for cutoff frequencies fc1, fc2, fc3, fc4 less than fs/2. The
relative power p(i, j) in each frequency range r1 and r2 was
then estimated by the relation

p(i, j)=

∑
k∈Φi

|Dj(k)|2∑N/2
k=0 |Dj(k)|2

, Dj(k)=
N−1∑
n=0

dj(n) e−j kn
2π
N

(2)
where Φi is the set of indices for the range of frequencies
fk ∈ ri, i = 1, 2, and j = 1, 2, · · · , Q for the total
number of experiments Q. This method was used to define
the pattern matrix P2,Q. The locations of these features in
the 2D domain for a selected experiment are presented in
Fig. 3(d).
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FIGURE 4. Time synchronisation of observed signals presenting (a) the
cadence signal, (b) the Garmin altitude signal, (c) heart rate signal, and
(d) spectrogram evaluated from the accelerometric signal recorded during the
cycling route.

The Kohonen learning rule was then applied during the
unsupervised learning process for data clustering to evaluate
the network model later used to classify these features. The
results of this clustering process with a one-layer neural
network for a selected cycling experiment are presented in
Figs. 3(c,d). The outputs from two neurons suggest separate
signal classes.

The cadence cycling signal was then used to synchronise
the separate signals. This approach was based on the assump-
tion that this signal drops to zero on the top of each hill;
as presented in Fig. 4(a), which corresponds with the route
altitude profile in Fig. 4(b). This simple segmentation process
enabled the evaluation of the signal features in each downhill
route segment. A polynomial approximation of the signals in
these cycling segments was then applied.

The spectrograms of accelerometric signals were then
examined to classify the motion patterns using the selected
neural network model. The supervised learning process was
applied to classify the frequency components in time win-
dows of the selected length. Time synchronisation of the
signals and GNSS data enabled to the expected target values
for the model’s construction to be specified.

Results obtained after the chosen number of training
epochs were then evaluated by the receiver operating charac-
teristic (ROC). The machine learning process finds the num-
ber of true-negative (TN), false-positive (FP), true-positive
(TP) and false-negative (FN) values in the negative set
(class 1: downhill cycling) and positive set (class 2: uphill
cycling). The associated performance metrics can then be
used to evaluate:

• The true positive rate (TPR, sensitivity), the true neg-
ative rate (TNR, specificity), the false negative rate
(FNR), and the false positive rate (FPR)

TPR =
TP

TP + FN
, TNR =

TN

TN + FP
(3)

FNR =
FN

TP + FN
, FPR =

FP

TN + FP
(4)

• The negative predictive value (NPV), the positive pre-
dictive value (PPV, precision), and the accuracy (ACC)

NPV =
TN

TN + FN
, PPV =

TP

TP + FP
(5)

ACC =
TP + TN

TP + TN + FP + FN
(6)

The confusion matrices of the training and testing sets were
then used as measures of the generalisation abilities of the
classification model.

III. RESULTS
Analysis of the cycling experiments includes 26 cycling
routes and 933 segments in the same hilly area which are
all about 12 km long, as presented in Fig. 1. All of the
evaluations were done in the MATLAB 2021a computational
system. All of the longitude and latitude positioning data
recorded during each cycling experiment by the satellite nav-
igation network were projected into the geographical envi-
ronment with the associated visualisation using the following
MATLAB commands:

>> geoplot([Latitude],[Longitude],’.r’)
>> geolimits([49.34 49.38],...
>> [17.98 18.05])
>> geobasemap satellite

The red dots point to the route and the selection of the
satellite geographical base map.
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FIGURE 5. The polynomial approximation of the heart rate and the speed
during a selected cycling experiment in (a) segment 1 and (b) segment 2 with
the dash line separating downcycling and upcycling specified by the cadence
sensor.
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Fig. 5 presents the polynomial approximation of the fifth
order applied to the heart rate and the speed during a selected
cycling experiment in two route segments, with their initial
points specified by the first and the second peak of the cycling
route. Complete results for all experiments are presented
in Fig. 6. Starting times are defined by the cadence signal
and the length of the downhill cycling is projected from
the altitude GPS signal. For a selected experiment, the heart
rate, the speed, and the relative accelerometric power in the
frequency band of 〈30, 40〉 Hz are emphasised in individual
subplots.

FIGURE 6. Comparison of the heart rate vs. speed, the relative mean power
of the accelerometric signal in the frequency range 〈30, 40〉 Hz vs. speed, and
the heart rate vs. the relative mean power in the frequency range 〈30, 40〉 Hz
for 26 cycling experiments and the dash line separating downcycling and
upcycling specified by the cadence sensor.

IV. DISCUSSION
The signals presented in Fig. 6 were used to evaluate the
correspondence between selected signals and to eliminate
any experiments with gross errors. The processing of each
experiment included the polynomial approximation to each
record and the evaluation of the delay between separate

TABLE 1. Comparison of delays and standard deviations (STD) of selected
variables recorded during cycling for two selected cycling segments and the
set of cycling routes for Heart Rate vs Speed (HRS), Power vs Speed (PWS),
Heart rate vs Power (HRPW), and Heart Rate vs Cadence Change (HRC).

Comparison Segment 1 Segment 2
Delay [s] STD Delay [s] STD

HRS 29.2 11.6 33.9 15.7
PWS 16.6 9.0 10.8 6.1

HRPW 17.7 11.7 23.4 15.6
HRC 20.2 5.3 25.2 8.7

signals for a 50 % decrease of the heart rate after the cadence
change. The difference between these peak values outside the
given range excluded 9.9 % of experiments. A summary of all
of the results is presented in Table 1, with similar results in
both segments. The mean delay of the heart rate change and
acceleration change was 20.6 s in the given conditions. The
relative accelerometric power was evaluated in the frequency
band of 〈30, 40〉 Hz and 933 time windows 30 s long were
used for the following classification.

Results indicate an average value of 22.7 s for the heart
rate to decrease by 50 % between its highest and lowest value
resulting from the cadence change. This result corresponds
with experiments on the exercise bike [25] for a healthy
person. The heart rate recovery delay is considered to be an
indicator of physical and nervous condition [44].

Figure 7 presents the results of the classification of the
spectral features of the accelerometric data into two classes
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FIGURE 7. Classification of spectrogram features related to accelerometric
data of all experiments using the relative mean power in selected frequency
ranges (F1 : 〈10, 15〉 Hz and F2 : 〈30, 40〉 Hz ) presenting segments
belonging to class 1 (downhill cycling) and class 2 (uphill cycling) using the
two layer neural network with centers of gravity of individual classes and
c-multiples of standard deviations for c = 0.2, 0.5, 1.
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(class 1: downhill cycling, class 2: uphill cycling) using the
two layer neural network with 10 elements in the first layer
for the whole set of cycling experiments. The features were
defined as the relative mean power in selected frequency
ranges (F1 : 〈10, 15〉 Hz and F2 : 〈30, 40〉 Hz ). The
optimisation process was applied for a standard neural net-
work with 10 neurons in the first layer that included the
sigmoidal transfer function and 2 elements in the second
softmax layer. Figure 7 also presents the centers of gravity of
the individual classes and c-multiples of standard deviations
for c = 0.2, 0.5, 1.

The confusion matrix for the training and testing sets is
presented in Table 2. The accuracy achieved was 93.9 % and
95.0 % for the training and testing sets, respectively.

TABLE 2. Confusion matrix of the classification by the two layer neural
network model for the training and testing sets with true positive values on the
matrix diagonal (in the bold), true positive/negative rates TR(k), and
positive/negative prediction values PV (k).

Precision Colorbar
82 84 86 88 90 92 94 96 98 100

(a) CONFUSION MATRIX / Train Set
Class Target

PV (k)

O
ut

pu
t

k Class 1 Class 2
Class 1 166 15 89.7
Class 2 21 447 95.5

TR(k) 88.8 95.9 ACC: 93.9

(b) CONFUSION MATRIX / Test Set
Class Target

PV (k)

O
ut

pu
t

k Class 1 Class 2
Class 1 31 4 88.6
Class 2 3 102 97.1

TR(k) 92.2 96.2 ACC: 95.0

The supplementary material includes the animation of
signals recorded during a selected cycling segment and their
processing.

V. CONCLUSION
This paper has presented the use of selected wearable sensors
and appropriate computational method for the assessment
of physical activities and motion monitoring during cycling
in real conditions. Positioning data recorded by the GNSS
system, heart rate data, cycling cadence-derived data, and
accelerometric data recorded by a sensor in the mobile phone
were used to detect a number of motion patterns. Using
the event data records, the paper helps cyclists to analyse
cycling-related information.

A new methodology is presented in which cycling cadence
and time stamps are used, allowing accurate segmentation
and synchronization of signals recorded by different wear-
able sensors. The paper moreover presents results which

indicate the heart rate recovery delay after a cadence change,
with motion patterns successfully derived from acceleromet-
ric signals in real conditions. The results suggest that cycling
cadence, accelerometric, and heart rate data can be used to
evaluate and recognise motion patterns during cycling in
different route conditions. The observed mean delay of the
change of the heart rate that was related to the change of
the mean power of the accelerometric signal in the high-
frequency band was 20.6 s for the given set of experiments
in real conditions and hilly route areas.

The proposed methodology was based on the Kohonen
learning rule and a softmax neural network structure. Our
future work will be devoted to the use of more sophisticated
models and a deep learning strategy. Applications will be
developed using a similar methodology to characterise mo-
tion in different sports activities including running and skiing
with a modified approach to the synchronization of signals
from different sensors. Particular attention also will be paid to
medical applications where advances may be expected in the
detection of neurological disorders, ataxic gate monitoring,
and rehabilitation, through motion pattern analysis.
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