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A simple modelling of braid-like - 

appearing on sandy 
structures (riZZ marks) 
beaches 

Departamento de Maremáricm Faculrad de Ciencias del Mar. Universidad de LAS Palmas de Gran Canaria 

Se presenta un modelo sencillo para la generación de estructuras dendríticas trenzadas (rill marks) que se observan 
en playas arenosas tras la bajadade la marea, y que son debidas al flujo de agua que rezuma de la arena saturada. El modelo 
consiste en un sistema no lineal con término de ruido aditivo. Estéticamente, los ril1,marks se consideran como la 
superposición de varias realizaciones del proceso estocástico solución del sistema. 

A simple approach to modelling rill marks patterns (braid-like structures appearing in the surface of beaches due to 
water oozing after high water) is presented. The model discussed is a numerically treated stochastic nonlinear system, upon 
which adeqiiate conditions are imposed. Aesthetically, rill m a r h  structures are considered as superposition of several 
realizations-of the stochastic proce&. 

INTRODUCTION 

Often one can observe on a flat, sandy, beach that 
some time after high tide, a thin water film gives rise 
to erratic flows tracing wavy figures on the sand. 
This water film is the result of upwelling due mainly 
to settling of the sand bed when the tidal leve1 
decreases. The resulting patterns are the effects of 
various sedimentary transport processes of sand 
particles showing complicated, braidlike intertwining 
figures, known as rill marks. These structures have 
been descnbed long ago (Williamson, 1887, cited in 
Allen [1986]) and severa1 mechanisms for their 
formation are available. ~evertheless no mathema- 
tical model seems to have been developped. See 
Figure 1. 

Rill marks are interesting examples of complex 
nonlinear behaviour in natural systems, and they 
deserve being studied through techniques employed 

for the analysis of oscillations. The typical spatial 
and temporal scales for riU marks are meters and 
seconds, and after formation they remain long 
enough to be easily observable. River meandering is 
another example of this complexity, and its nonlinear 
nature can be conjectured from field observations: 
The sirnilarity between the aerial Rhotograph in 
Allen (1986), page 55, vol. 2, and the solution of a 
Van der Po1 oscillator is astonishing. See Figure 2. 

Here the following physical ideas are considered 
for modelling purposes: 

1. Water flow oozes out of the saturated sand 
and flows upon an erodible bed under the action of 
gravity. Here erodible means that the trajectory of 
the flux and transported sand particles remains 
marked on the bed, without taking into account the 
actual sediment transport mechanism. This assump 
tion is geometncally simple and convenient, though 
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Fig. 1.-Rill Marks. Playa de Maspalomas, Gran Canaria, December 1991. 

particle transport is determinant in carving the 
runoff bed. 

Normally one can observe a tree-like dendritic 
form whose branches are small streams of water 
converging downstream to a common trunk (Figu- 
re 3), where usually an overall braid-like pattern is 
very visible. Only rarely (Pettijohn [1964]) downs- 
tream amplification can also be observed, so it is not 
considered here. Sometimes different densities and 
colours of the sediment mark the general macroscopic 
structure. 

2. Once a water flow starts its way, it undergoes 
complex mechanical interactions with sand particles: 
Thus the trajectory is deviated and oscillations 
around an ideal rectilinear path appear, as well as 
possible drifts depending on the curvature of the 
beach surface and on the saturation leve1 of the wet 
sand. This approach by means of tracking singular 
trajectories has been used by the author elsewhere 
(Pacheco and Femández [1988]). These trajectories 
are the elements of the overall observable braid-like 
patterns. 

The above considerations can be translated into a 
simple mathematical model in order to generate 
patterns that reproduce the observed figures. The 

orthogonal distance of the actual flow filament to 
the ideal rectilinear path (i. e. the axis of the final 
trunk) is taken as the relevant variable. Nevertheless, 
in some modeiling techniques the fundamental 
variable is the angle the stream deviates from the 
ideal axis (Anderson 1988). 

MODELLING 

Adding a multiple of the first derivative xf to the 
simple harmonic oscillator 

(here the natural frequency w models macroscopic 
features) amounts to considering rnicroscopic features 
of the bed, which account for friction effects. 
Among these features are grain size and shape and 
fractal characteristics of individual sand particles, as 
well as saturation of the sand bed. The individual 
effects of these causes are difficult to separate and 
quantify. 

For the coefficient of xf there is a large choice; the 
simplest one is the linear case where it reduces to a 
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Fig. 2.-River meandering and the Van der Po1 oscillator. 

numerical value a. Appropriate combinations of a Jordan and Smith [1987]), as in the case of the 
and o give oscillatory patterns with amplification or above cited Van der Po1 oscillator. 
with decay to O. For this modeliing a decaying In any case we consider a Liénard type equation: 
pattern wili be chosen. 

A nonlinear choice for the coefficient of x' of the x" + f (x, x') X' + u2 x = G(t) 
type f (x, x') is known to produce oscillatory 
behaviours of a more complex nature (see e. g. where the forcing term G(t)represenb environmental 
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Fig. 3.-Schematic representation of a typical rill ntark. 

conditions acting on the system, generally at scales 
too smali to be described with standard measure- 
ments, so they will be considered as noise. The 
above equation in thus equivalent to the system 

where E (t)= ((( t ) .  Here 5 is a measure of noise 
intensity and 6 (t) is Gaussian white noise. With this 
modelling scheme the trajectories are considered as 
realizations of the particular stochastic process 
solution of the nonlinear stochastic system. The idea 
behind it is that the whole observable system can be 
built up by considenng a number of these realizations 
and superimposing them. 

The damping function f (x, y) will not, in general, 
satisfy conditions for the system to be Hamiltonian. 
This prevents a simple theoretical analysis, so 
numerical modelling will be employed in the study 
of these patterns. 

For the noiseless or deterministic system: 

the only equilibrium point is the origin, where the 
eigenvalues of the linearized system are the roots of 
the quadratic equation: 

Darnped osciiiations appear if f (0,O) > 0 and if 
the discriminant of the quadratic is also negative. 

This happens whenever the natural frequency 

f(o' O) . If this last ine- satisfies the inequality w >- 
2 

quality is reversed, the system trajectories decay to 
the origin without oscillation. The attraction basin 
of the origin will be bounded by a limit cycle, whose 
existente is guaranteed if f (x, y) and the linear term 

x satisfy the hypothesis of the Bendixson critenon. 
Otherwise the basin of attraction is the whole phase 
plane. 

With the introduction of the additive noise E (5) 
(Langevin type problem) the trajectories are now 
determined via the probability density function 
obtained after studying the corresponding Fokker- 
Planck equation. An analysis can be carried on in 
order to study topological variations of the probabi- 
lity density of the solution process, which are the 
stochastic counterparts of bifurcations in the deter- 
ministic case. For the linear case the deterministic 
system is the average of the noisy one. In the real 
nonlinear case this is no longer true, although under 
weak noise the noniinear deterministic system 
behaves approximately as an average of the noisy 
one (see Feistel and Ebeling [1989] for details). This 
will be the case in the model presented. See 
Figure 4 for an illustration. 

NUMERICAL MODELLING 

According to observations, the typical ratio 
between the length of the branched portion and that 
of the trunk in the tree-like structure (see Figures 1 
and 3) is 113. The tips of the branches are distri- 
buted randomly at orthogonal distances of the 
trunk axis varying from O to some 20 cm apart. The 
overall length of the pattern rarely exceeded 100 cm. 
Flow speed was estimated in 3 cmlsec. 

For numerical experiments the foliowing as- 
sumptions are made: 

1. The damping term is chosen as f (x, y) = 
1 + a x2 where a is a heuristicaiiy estimated parame- 
ter. A convenient value is a = 0.19 por small x the 
behaviour is approximately linear and the nonlinear 
effect is negligible. This damping term provides a 
positive damping decaying with time, in agreement 
with field data. 

2. The natural frequency w is chosen near the 
bifurcation limit between the damped osciiiatory 
behaviour and the purely decaying one. For the 

1 specific choice of f (x, y) the bifurcation value is - 
2 

and the attraction basin of the origin is the whole 
phase space. 
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Fig. 4.-Deterministic and noisy Van der Pol oscillators. Observe the deterministic case as averaging the noisy one. A tendency 
towards bifurcation in this one to a double-peaked density functions is also observed. 

3. Initial conditions for x and y are chosen as 
follows: For x(0) a random value is sampled in a 
N (0,IJ) distribution, i.e. upwelling is supposed to 
take place at locations on a line orthogonal to the 
trunk. For y (O) any smail value, e. g. 0.1 is 
reasonable, because the upwelling water filament 
shows a divagating behaviour in the first instants. 

4. The noise term is split into two: In the first 
third of the simulation we allow a larger noise 
intensity than in the rest. This is consistent with 
observations, for in the last part of the trajectory, 
where flow is steadier, only small deviations of the 
larger central stream are observed, while in the first 
part (the branches) the weaker streams show a more 
erratic behaviour. In both cases we take Gaussian 
white noises with different noise intensities. Typical 
values are sampled in N(0,5) and N(0,2) distribu- 
tions. 

5. The simulation time was 25 seconds, and the 
numerical procedure a Runge-Kutta fourth order 
scheme with a 0.1 mesh interval. 

Numerical simulation was carried on with the aid 
of the modelling package STELLA (Richmond 
[1987]). This package is designed primarily for 
building and analyzing models in various scientific 
areas, but it was used here as a convenient tool for 
solving (systems of) ordinary differential equations, 
including those with stochastic terms. The patterns 
generated by severa1 runs of the model are consistent 
with observed field data in general shape and 
dimensions. Compare Figures 1, 3 and 5. A statis- 

tical analysis of five samples at the Playa de 
Maspalomas (Gran Canaria) and severa1 tens of 
computer runs shows general agreement in trunk/ 
branches ratio and overaii length. Thus this modeiiing 
scheme is proposed as an auxiliary tool in the study 
of some interesting geomorphological features. 

FINAL COMMENTS AND REMARKS 

This modeiiing technique emphasizes the nonlinear 
and stochastic aspects of the physical reality, but 
gives only a rough account of the causal mechanism: 
These are embodied in the various parameters and 
require more elaborate analyses. 

From the mathematical viewpoint there is an 
interesting drawback to this modelling scheme: The 
little water streams start at different points distributed 
randomly on a twodimensional domain, a fact that 
is not captured by our model, where'tve consider al1 
trajectories starting at points chosen randomly in 
some line orthogonal to the trunk. Nevertheless, a 
stochastic twodimensional modelling could be 
achieved by considering water upweiling as random 
in a plane domain and imposing adequate reflecting 
bamers at the boundaries. 

A purely syntactic fractal approach (Crilly 1991) 
could provide an upstream reconstruction of the 
pattern. In this view the variable of interest will be 
the angle of deviation frorn the comrnon trunk of a 
particular fdament in the stream. 
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Fig. 5.-Typical realizations of the stochastic process modelling rill marks. Time unit is second and displacement unit is 10 cms. 
Compare with Figure 3. 
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