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Abstract: Nickel-based and cobalt-based metal alloys are frequently used in dentistry. The intro-
duction of various elements in the alloy changes its characteristics, and a thorough study of each
alloy should be completed to determine its appropriate corrosion resistance and biocompatibility
in contact with physiological fluids. There are scarce investigations on these widely used dental
alloys in Ringer solution, and findings in this research bring new experimental data and information.
The present study evaluated and compared the corrosion behavior of six NiCr- and two CoCr-based
dental materials in Ringer solution, using the following techniques: potentiostatic polarization curves
(chronoamperometry), microstructural analysis, and EIS (electrochemical impedance spectroscopy).
The results obtained in this investigation showed that in the NiCr-based specimens Ni4, Ni5, and
Ni6 the stability of the passive layer was destroyed after polarization and a development and growth
of stable pits was found in the microstructural analysis after electrochemical treatment. In terms of
susceptibility to corrosion, two different groups of specimens were derived from this investigation.
A first group which included the two CoCr (Co1 and Co2) and three of the six NiCr alloys studied
(Ni1, Ni2, and Ni3). A second group with the other NiCr alloys investigated Ni4, Ni5, and Ni6.

Keywords: metal alloys; NiCr; CoCr; electrochemical characterization; corrosion; Ringer solution

1. Introduction

Nickel-based and cobalt-based metal alloys are frequently used in dentistry for
prosthodontic restorations due to their advantageous characteristics [1–8]. Nickel in an
alloy can cause allergic reactions and toxicity, according to some studies [9–13], but others
report very different results and conclusions [14–16]. Furthermore, the introduction of
chromium in their composition favors the stability of the alloy in order to be used as
biomaterial [17,18]. According to several investigations, the chromium’s percentage found
in the alloy is a decisive factor in the formation of the passive layer and the resistance to
corrosion [19–21]. Cobalt-based alloys are frequently used biomaterials with applications
in the dental and cardiac fields, as well as in orthopedic implants [22,23], due to the con-
siderable wear and corrosion resistance properties given by this metallic element [24,25].
As dental materials, they are used for crowns with porcelain fused to metal [26–30], in
fixed and removable dental prostheses [31–35], orthodontic wire leads [36,37], oral im-
plants [38–40], and are very suitable in patients whose exposure to nickel might cause an
allergic reaction [41,42].

The introduction of other elements in the alloy varies its characteristics. Aluminum,
iron, copper, manganese, molybdenum, niobium, silicon, and tungsten can be found on dif-
ferent Ni- and Co-based alloys. As an example, it has been reported that the molybdenum
content increases the corrosion resistance of the alloys [20,21] and their appropriateness to
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be used in the human body [19] as a biomaterial. Therefore, a thorough study of each alloy
should be completed in order to determine its corrosion resistance and biocompatibility.
Current research is focused on the investigation of materials to be used in the human
body [43].

The alloys studied in this investigation, whether nickel- or cobalt-based, all had
chromium in their composition, which makes them supposedly stable and safe to be used
as dental alloys and are found in world markets for prosthodontic restorations. However,
not all alloys have the same biocompatibility in contact with physiological fluids. The
resistance to corrosion is the most important factor to be taken into account, because due
to the corrosion process, elements are released into the oral cavity, causing problems that
make biological safety difficult [44,45]. Certainly, materials in contact with human tissue
must be non-toxic and not cause allergies or inflammations to be biocompatible [46].

Accordingly, in order to safely use these NiCr and CoCr alloys, a thorough analysis
must be performed regarding their corrosion behavior. Electrochemical studies for a
limited number of NiCr and CoCr alloys in artificial saliva medium were conducted by our
group [47–49], and we are now investigating in simulated body fluid (Ringer solution). We
have recently presented our study of CoCr alloys [50], but there are scarce investigations
on these widely used materials in Ringer solution, and further studies are imperative to
analyze and compare these alloys. Findings in this research bring new experimental data
and information on these worldwide used NiCr and CoCr dental alloys in simulated body
fluid. The present study evaluated and compared the corrosion behavior of six NiCr and
two CoCr dental materials in Ringer solution, using microstructural analysis, potentiostatic
polarization curves (chronoamperometry), and EIS techniques.

2. Materials and Methods
2.1. Materials, Specimens Preparation

Six NiCr and two CoCr dental alloys commercially used for prosthodontic restorations
were studied: three manufactured in Germany, two in Romania, and three in the United
States. The dental materials will hereinafter be referred to as specimens Ni1–6 and Co1,2.

The compositions of the eight investigated dental materials are shown in Tables 1 and 2.
The specimens were cut to 1 cm2 size and each was inserted into an epoxy resin disk.

Then, the samples were mechanically abraded using emery paper up to 2500 grit and
polished with a 1 µm suspension of alumina. Before testing, the specimens used were
cleaned completely in ethyl alcohol and deionized water.

The Ringer solution used as corrosion medium in this investigation had the following
composition: NaCl—6.8 g/L, KCl—0.4 g/L, CaCl2—0.2 g/L, NaCO3H—1 g/L, glucose—1
g/L, MgSO4·7H2O—0.2 g/L and NaH2PO4·H2O—0.14 g/L.

Table 1. NiCr dental material composition.

Composition (in wt.%)
Specimens

Ni1 Ni2 Ni3 Ni4 Ni5 Ni6

Ni 60.1 60.8 63.4 72.1 64.9 53.4

Cr 24.3 23.9 23.2 20 17.9 14.4

Mo 10.1 8.8 3

Fe 2.1 2.4 9 7.5

Nb 1 3.8

Si 1 1.8 1.5

Cu 9.9 9.5

Mn 2 3.6 19.4

Al 1.5 1.6



Materials 2021, 14, 4949 3 of 12

Table 2. CoCr dental material composition.

Composition (in wt.%)
Specimens

Co1 Co2

Co 63.5 63.4

Cr 27 29.0

Mo 5.5 5.2

Fe 2

Ni 1

2.2. Microstructural Characterization

To study the microstructure of the six NiCr- and two CoCr-based dental materials, a
chemical reactant containing 10 mL HNO3, 30 mL HCl and 20 mL glycerine [51] and an
PME 3-ADL microscope (Olympus, Tokyo, Japan), were utilized in the investigation. After
electrochemical treatment, an analysis of the surface modifications of the NiCr and CoCr
alloys using the microscope was conducted.

2.3. Electrochemical Measurements

The analysis was conducted in a three-electrode electrochemical cell, using as a ref-
erence electrode a saturated calomel electrode (or SCE), a platinum auxiliary electrode,
and the sample as working electrode. A Princeton Applied Research (PAR, Oak Ridge,
TN, USA) model 263A potentiostat, a lock-in amplifier 5210 (PAR, Oak Ridge, TN, USA),
and a computer with Electrochemistry Power Suite software (PAR, Oak Ridge, TN, USA)
were used.

2.3.1. Potentiostatic Polarization Studies—Chronoamperometry

Chronoamperometry measurements were performed at a potential of 0.1 V/ESC
on the working electrode. Using the electrochemical chronoamperometry technique, the
induction time could be determined prior to the increase in the current density due to the
breakdown of the passive layer. The current density variations of each of the different
NiCr and CoCr dental alloys polarized at +100 mV/ESC in Ringer solution for 5 h were
analyzed in this research. All tests were performed three times, and data acquisition and
processing was performed with PowerCorr Princeton Applied Research software (PAR,
Oak Ridge, TN, USA). After the potentiostatic polarization tests, the microstructures of
the alloys’ surfaces were examined with the ADL microscope OLYMPUS PME3 (Olympus,
Tokyo, Japan).

2.3.2. EIS—Electrochemical Impedance Spectroscopy

EIS tests of the eight NiCr- and CoCr-based alloys were conducted for analysis and
comparison of the corrosion resistance in Ringer solution following the potentiostatic
polarization studies. The EIS spectra were recorded at the 100 mV/ESC potential after
plotting the potentiostatic curves for 5 h.

Experimental EIS results were analyzed with ZSimpWin Princeton Applied Research
software (PAR, Oak Ridge, TN, USA) to obtain the equivalent circuit (EC) where experi-
mental data and simulated responses fitted well. Following each experiment, impedance
data were displayed as Nyquist plots, Bode |Z|, and Bode phase diagrams. All tests were
performed three times.

3. Results and Discussions

The potentiostatic polarization curves (chronoamperometry) for NiCr alloys in Ringer
solution at a potential of 100 mV/ESC are shown in Figure 1.
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Figure 1. Potentiostatic polarization curves for specimens Ni1, Ni2, Ni3, Ni4, Ni5, and Ni6 in Ringer
solution at a potential of 100 mV/ESC.

In human organisms, pure titanium may be exposed to a maximum potential of about
450 or 550 mV/ESC [52]. For Co–Cr–Mo biomaterials, this information could not be found.
Nevertheless, for physiological conditions in the human body, a metallic biomaterial’s
potential value may fluctuate between −1.0 and 1.2 V, according to Black’s diagram of the
potential pH [53].

In these conditions, it was found for some tested materials with very low poten-
tials, that the stability of the passive layer in human organisms may be achieved at
+100 mV/ESC. For this purpose, the potentiostatic polarization curves were plotted at a
potential of +100 mV/ESC for 5 h, to prove the stability of the passive layer at this potential
of +100 mV/ESC potentially achievable in the human body.

In the case of NiCr-based dental alloys, the polarization current of specimens Ni1, Ni2,
and Ni3 at 100 mV/ESC in Ringer solution oscillated around 0.8 µA/cm2, 0.2 µA/cm2,
and 3.8 µA/cm2, respectively. Specimens Ni4, Ni5, and Ni6 showed an increase in current
density, higher in the cases of specimens Ni4 and Ni5.

Microstructures of specimens Ni1, Ni2, and Ni3 after the 5 h potentiostatic treatment
are shown in Figure 2. No degradation was observed in these specimens after the 5 h
potentiostatic treatment.

Figure 2. Microstructures after electrochemical treatment for (a) specimen Ni3, (b) specimen Ni1, and (c) specimen Ni2.

For specimens Ni4, Ni5, and Ni6 the increase in current density is probably caused by
the active anodic dissolution of the surface due to the film breakdown, with the formation
and growth of stable pits. In Figure 3, microstructures of specimens Ni4, Ni5, and Ni6
before and after electrochemical treatments are presented.
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Figure 3. Microstructures before electrochemical treatments for (a1) specimen Ni5, (b1) specimen Ni4, (c1) specimen Ni6;
after electrochemical treatments for (a2) specimen Ni5, (b2) specimen Ni4, and (c2) specimen Ni6.

The potentiostatic polarization curves for CoCr alloys in Ringer solution at a potential
of 100 mV/ESC are displayed in Figure 4.

Figure 4. The potentiostatic polarization curves for specimens Co1 and Co2 in Ringer solution at a
potential of 100 mV/ESC.

The polarization current of specimens Co1 and Co2 at 100 mV/SCE in Ringer solution
fluctuated around 1 µA/cm2 and 4 µA/cm2, respectively.

Microstructures of specimens Co1 and Co2 after 5 h of potentiostatic treatment are
shown in Figure 5. No degradation was observed in the CoCr-based dental alloys studied
after the 5 h potentiostatic treatment.

After plotting the potentiostatic curves for 5 h, EIS spectra were recorded at the same
potential of 100 mV/ESC. Representative results of Bode spectra and Nyquist plot diagrams
for the NiCr-based dental alloys, polarized at 100 mV/ESC in Ringer solution, are shown
in Figure 6.
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Figure 5. Microstructures after electrochemical treatments for (a) specimen Co2 and (b) specimen Co1.

Figure 6. Bode spectra and Nyquist plot diagrams for NiCr-based dental alloys in Ringer solution at a potential of
100 mV/ESC. (A) Specimen Ni1. (B) Specimen Ni2. (C) Specimen Ni3. (D) Specimen Ni4. (E) Specimen Ni6. (F) Speci-
men Ni5.

Representative results of Bode spectra and Nyquist plot diagrams for the studied
CoCr-based dental alloys, polarized at 100 mV/ESC in Ringer solution, are shown in
Figure 7.
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Figure 7. Bode spectra and Nyquist plot diagrams for CoCr-based dental alloys in Ringer solution at a potential of
100 mV/ESC. (A) Specimen Co1. (B) Specimen Co2.

The experimental measurements are presented in the diagrams as distinct points, and
the theoretical spectra that resulted from the equivalent circuit model used are displayed
as lines.

The Nyquist spectrum showed that all alloys had a capacitive behavior with the
immersion time in Ringer solution, except specimens Ni4, Ni5, and Ni6, which showed an
inductive arc. In the electrochemical system, this arc can be associated with the process of
metallic dissolution, showing values that are negative for the imaginary impedance [54].

An equivalent circuit, EC, gives the most notable corrosion indicators that can be
applied to the substrate–electrolyte system and is formed by a group of different capacitors,
resistances, and other circuit components. It is essential to have a proper model of the
electrochemical reactions taking place at the electrodes to be able to interpret the system’s
electrochemical behavior from EIS spectra. An EC representing an electrochemical cell
displays impedance to a small sinusoidal excitation.

Starting with the easiest one, several models of electrical circuits were examined when
analyzing the impedance data [28,55] for specimens Ni1, Ni2, Ni3, Co1, and Co2, with the
best fit obtained for all the determinations using the EC presented in Figure 8.
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Figure 8. EC used to generate the simulated data for specimens Ni1, Ni2, Ni3, Co1, and Co2.

In the model presented in Figure 8, the ohmic resistance of the electrolyte was desig-
nated Rsol, the resistance of the passive film was designated R1, the passive film capacitance
was represented as CPE1, the charge transfer resistance (Rct) was designated R2, and the
double-layer capacitance was represented as CPE2. The EC model was very similar to
that from M. Meticos-Hukovic et al. [56] for CoCr alloys dipped in Hank’s solution. As
a result of the heterogeneous and thin oxide layer formed on the surface of the metallic
alloys and the noticeable Bode plots’ deviations, it was necessary to substitute the “ideal”
capacitance with a constant phase element (CPE), for which impedance is given by Z =
(jω)−nY0, where j is an imaginary number (j2 = −1),ω is the angular frequency (rad·s−1),
Y0 is the constant of CPE (Scm−2sn), n is the power number indicating the deviation from
ideal behavior, n = α(π/2), and α is the constant phase angle of the CPE (rad).

The main parameters of the EC model for specimens Ni1, Ni2, Ni3, Co1, and Co2
are shown in Table 3. These parameters had the same meaning for all the alloys studied.
The value around 10−4 from the χ2 or chi-squared distribution test proves that it was
correct to use the constant phase element in the EC model, and also indicated a very good
correspondence of fitted values and experimental data.

Table 3. Main parameters of the EC used for specimens Ni1, Ni2, Ni3, Co1, and Co2.

Specimens Rsol
Ω cm2

R1
Ω cm2

Y01
Scm−2sn n1

R2
Ω cm2

Y02
Scm−2sn n2 χ2

Ni1 28 5 × 103 8.9 × 10−6 0.83 5.5 × 105 9.7 × 10−6 0.8 2 × 10−4

Ni2 35 3 × 103 1.9 × 10−5 0.9 6.2 × 105 1 × 10−5 0.88 4 × 10−4

Ni3 49 1.5 × 104 8.4 × 10−6 0.89 5.9 × 105 7.1 × 10−6 0.82 5 × 10−4

Co1 37 1.5 × 104 7.8 × 10−6 0.9 9.1 × 105 8.3 × 10−6 0.83 2 × 10−4

Co2 55 1.4 × 104 6.1 × 10−6 0.9 1.2 × 106 8.6 × 10−6 0.83 6 × 10−4

In the case of specimens Ni4, Ni5, and Ni6 polarized for 5 h in Ringer solution at a
potential of 100 mV/ESC, the best simulations were performed using the equivalent circuit
exhibited in Figure 9; the main parameters are shown in Table 4.

As previously stated, the value of around 10−4 from the χ2, or chi-squared distribution
test, proved that it was correct to use the constant phase element in the EC model, and
indicated an outstanding correspondence of fitted values and experimental data.
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Figure 9. EC used to generate the simulated data for specimens Ni4, Ni5, and Ni6.

Table 4. Main parameters of the EC used for specimens Ni4, Ni5, and Ni6.

Specimens Rsol
Ω cm2

R1
Ω cm2

Y01
Scm−2sn n1

Rind
Ω cm2

L
Henri cm2 χ2

Ni4 20 4.5 × 103 3.1 × 105 0.8 1.7 × 103 1.4 × 103 8 × 10−4

Ni5 38 1.1 × 104 1.5 × 10−5 0.84 9 × 102 3 × 103 6 × 10−4

Ni6 34 260 2.4 10−3 0.4 240 231 6 × 10−4

In the model exhibited in Figure 9, the ohmic resistance of the electrolyte was desig-
nated Rsol, and the surface film resistance and capacitance were designated R1 and CPE1,
respectively. It was found that the presence of an inductive process was characterized by
a resistance Rind and an inductance L, associated with an adsorption–desorption process
that occurred in the formation of the surface film.

For this circuit, the total impedance was:

Zeq = Rsol +
1

jwC1 +
1

R1+
1

1
Rind

+ 1
jwL

(1)

After standard calculations, the following equation was obtained:

Zeq = Rsol +
R − w2RT + w2AB

(1 − w2T)2 + w2R2
+ jw

B − RA − w2TB

(1 − w2T)2 + w2A2
(2)

where R = R1 + Rind, T = τ1 τ2, A = τ1 + τ2 + C1 Rind, B = τ2 R1, τ1 ≡ time constant of
process at passive layer [s], and τ2 ≡ time constant of inductive process [s].

The equivalent circuit has a physical meaning associated with the passive layer itself,
R2CPE2, and the passive layer/electrolyte interface, R1CPE1. The passive film was not
destroyed by polarization at 100 mV/ESC for the two CoCr-based alloys (Co1 and Co2)
or the NiCr-based alloys Ni1, Ni2, and Ni3. This fact was confirmed by potentiostatic
polarization curves and surface microscopy after polarization.

From the data presented in Table 3, it was found that the stability of the materials was
high at this potential due to the polarization resistance, which had high values compared
to those obtained after one week of immersion in Ringer solution (greater than 105 Ω cm2).
The most stable alloy at the 100 mV/ESC potential was one based on CoCr, specimen
Co2. Its polarization resistance of 106 Ω cm2, according to different studies and the ASM
Handbook [57–60], is characteristic of alloys with very high corrosion resistance.

The resultant parameters of the equivalent circuit, for the other three NiCr alloys, are
presented in Table 4. Results showed that after polarization at 100 mV/ESC, the passive
layer was destroyed (the inductance L is associated with the film dissolution).



Materials 2021, 14, 4949 10 of 12

When specimens Ni4, Ni5, and Ni6 were polarized at 100 mV/ESC, the passive layer
developed on these alloys was considerably destroyed, and the impedance of the alloys
was related to the Rct or charge transfer resistance. As a result, there was no protective
passive layer.

Additionally, it was observed that out of the three alloys, depending on the value of
the polarization resistance (Rp = R1 + Rind), the highest stability was presented by specimen
Ni5 and the lowest by specimen Ni6. A comparison with the polarization resistance values
obtained after 7 days of immersion in Ringer solution revealed decreases of approximately
70-fold in the case of specimen Ni5, nearly 100-fold in the case of specimen Ni4, and about
500-fold for Specimen Ni6.

4. Conclusions

This investigation evaluated and compared the corrosive behavior of six NiCr- and
two CoCr-based dental alloys in Ringer’s solution. Using potentiostatic polarization curves
(chronoamperometry), microstructural analysis, and EIS, the following conclusions were
derived:

1. The stability of the passive layer was not destroyed for the CoCr-based specimens Co1
and Co2, or the NiCr-based specimens Ni1, Ni2, and Ni3. This fact was confirmed by
potentiostatic polarization curves and surface microscopy after polarization;

2. In the cases of specimens Ni4, Ni5, and Ni6, it was found that the passive layer was
destroyed after polarization. Therefore, there was no longer a protective passive layer
on these alloys;

3. Findings from the micrographs of the different NiCr and CoCr dental alloys studied
after electrochemical treatments showed that there was no degradation for specimens
Ni1, Ni2, Ni3, Co1, and Co2, but the development and growth of stable pits was
discovered on the surfaces of specimens Ni4, Ni5, and Ni6;

4. According to the results obtained, in terms of susceptibility to corrosion from the
spectral data, the NiCr and CoCr dental alloys were divided in two different groups. A
first group which included the two CoCr (Co1 and Co2) and three of the six NiCr alloys
studied (Ni1, Ni2, and Ni3), where the polarization resistance showed high values. In
this group, the most stable alloy was specimen Co2, with a polarization resistance
in the order of 106 Ω cm2, characteristic of alloys highly resistant to corrosion. A
second group with the other NiCr alloys investigated, Ni4, Ni5, and Ni6, where
the passive layers were destroyed after polarization and the polarization resistance
determinations were significantly lower than those exhibited by the first group. In this
second group, specimen Ni5 had the highest stability and specimen Ni6 the lowest,
based on polarization resistance values.
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