

gpdsHMM: A HIDDEN MARKOV MODEL TOOLBOX

IN THE MATLAB ENVIRONMENT
Sébastien David, Miguel A. Ferrer, Carlos M. Travieso, Jesús B. Alonso

Dpto. De Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria
Campus de Tafira, 35017 Las Palmas de Gran Canaria

 SPAIN
Tel: +34 928 451 269 Fax: +34 928 451 243, e-mail: gpds@gi.ulpgc.es

Abstract

A Hidden Markov Model (HMM) Toolbox within the
Matlab environment is presented. In this toolbox, the
conventional techniques for the continuous and discrete
HMM are developed for the training as well as for the
test phases. The ability to make different groups of
components for the vector pattern is provided. Multi-
labeling techniques for the discrete HMM is also
provided. The toolbox includes procedures suitable for
the classical applications based on the HMM, as pattern
recognition, speech recognition and DNA sequence
analysis.

Key words
Pattern recognition, Hidden Markov Model, Matlab
Toolbox.

1. Introduction

A Hidden Markov Model (HMM) is a type of stochastic
model appropriate for non stationary stochastic
sequences, with statistical properties that undergo
distinct random transitions among a set of different
stationary processes. In other words, the HMM models
a sequence of observations as a piecewise stationary
process. Over the past years, Hidden Markov Models
have been widely applied in several models like pattern
[1, 2], pathologies [3] or speech recognition [4, 5], and
DNA sequence analysis [6, 7]. The HMMs are suitable
for the classification from one or two dimensional
signals and can be used when the information is
incomplete or uncertain.

 To use a HMM, we need a training phase and a test
phase. For the training stage, we usually work with the
Baum-Welch algorithm to estimate the parameters (π,
A, B) for the HMM [8, 9]. This method is based on the
maximum likelihood criterion.

In addition to the Baum-Welch algorithm, it is
necessary to estimate the Alfa and Beta matrices thanks
to the forward and backward procedures. To compute
the most probable state sequence, the Viterbi algorithm
is the most suitable.

 In order to apply the HMM techniques, the authors
have developed a HMM toolbox called gpdsHMM in

the Matlab environment. Several toolbox for the HMM
already exist [10]. This work was carried out in order to
offer a friendlier tool through didactics and graphics
examples. This toolbox also contains two new concepts
developed recently in the literature: the multi-labeling
and the gathering methods which, when used in suitable
conditions, improve significantly the results obtained
with the HMM [11].

 In section 2, we introduce the classical Hidden
Markov Models. Section 3 is an introduction to the key
points of the HMM toolbox, and the conclusions of this
paper are presented in section 4.

2. Basic HMM

A HMM model is basically a stochastic finite state
automaton, which generates an observation string, that
is, the sequence of observation vectors, O=O1 ,…, Ot ,…
,OT. Thus, a HMM model consists of a number of N
states S={Si} and of the observation string produced as
a result of emitting a vector Ot for each successive
transitions from one state Si to a state Sj. Ot is d-
dimension and in the discrete case takes its values in a
library of M symbols. The state transition probability
distribution between state Si to Sj is A={aij}, and the
observation probability distribution of emitting any
vector Ot at state Sj is given by B={bj(Ot)}. The
probability distribution of initial state is Π={πi}.

 aij=)(1 ikjk SqSqP ==+

 (1)
 bj(Ot)=)(jtt SqP =O (2)

 πi =)(0 iSqP = (3)

 Then, given a observation sequence O, and a HMM
model λ=(A, B, Π), we can compute P(O | λ) the
probability of the observed sequence by means of the
forward-backward procedure [12]. Concisely, the
forward variable is defined as the probability of the
partial observation sequence O1 , O2 ,…,Ot (until time t)
and state Si at time t, with the model λ, as αt(i). And the
backward variable is defined as the probability of the
partial observation sequence form t+1 to the end, given
state Si at time t and the model λ, as βt(i). The
probability of the observation sequence is calculated as:

 ∑ ∑
= =

==
N

i

N

i
Ttt iiiP

1 1

)()()()(αβαλO (4)

and the probability of being in state Si at time t, given
the observation sequence O, and the model λ, as:

)(
)()(

)(
λ

βα
γ

OP
ii

i tt
t = (5)

 The ergodic or fully connected HMM is a HMM with
all states linked all together (every state can be reached
from any state). The left-right (also called Bakis) is a
HMM with the matrix transition defined as:

ijifaij <= 0 (6a)
∆+>= ijifaij 0 (6b)

Figure 1. A bakis (or left-right) HMM

 To calculate the HMM model for a given class, we
need a lot of samples from this class. The characteristics
for each sample are then extracted and stored in a
parameter vector sequence xt. The xt is mapped to the
equivalent Ot. In the continuous HMM (CHMM), the
probability distribution functions are a mixture
multivariate of Gaussians and so xt=Ot. In the discrete
HMM (DHMM), the parameters stored in xt are
quantified and assigned to a label (also called code
word) kv , and so Ot is equal to the sequence of the

index corresponding to kv in the codebook. We adjust
the model parameter λ=(A,B,Π) to maximize the
probability of the observation sequence. Consequently,
given W classes to recognize, we need to train λW for
w=1...W HMM, one for each class, with the data set
corresponding to the class w. We accomplish the above
task thanks to the iterative Baum-Welch method, which
is equivalent to the EM (expectation-modification)
procedure.

 The Baum-Welch method, developed in this toolbox,
works as follows:
1. Estimate an initial HMM model as λ=(A,B,Π).
2. Given λ and the observation sequence O, we

calculate a new model),,(Π= BAλ such as
)()(λλ OO PP > .

3. If the improvement

threshold
P

PP
<

−

)(

)()(

λ

λλ

O

OO
, then stop, otherwise put

λ instead of λ and go to step 1.
 In the discrete HMM case, a vector quantizer (VQ)
is required to map each continuous observation vector
into a discrete codebook index. The formulas of Baum-
Welch method used in this toolbox to estimate the
model λ=(A,B, Π) (step 2) are the following [12]:

)(1 ii γπ = (7)

∑

∑

=

−

== T

t
t

T

t
t

ij

i

ji
a

1

1

1

)(

),(

γ

ξ
 (8)

∑

∑

=

=
=

= T

t
t

T

ts
t

t

kj

i

i

b kt

1

..
1

)(

)(

)(
γ

γ
vOv (9)

with
)(

)()()(
),(11

λ
βα

ξ
O

O
P

ibai
ji ttjijt

t
++= (10)

 Thus, it is also important to compute the forward and
backward procedures. In the CHMM, the Baum-Welch
algorithm estimates the means and variances for the
mixture of Gaussians [12].

∑ ∑

∑

= =

−

== T

t

M

k
t

T

t
t

jk

kj

kj
c

1 1

1

1

),(

),(

γ

γ
 (11a)

∑

∑

=

−

=

•
= T

t
t

T

t
tt

jk

kj

kj

1

1

1

),(

),(

γ

γ
µ

O
 (11b)

()()

∑

∑

=

−

=

−−•
= T

t
t

jktjkt

T

t
t

jk

kj

kj
U

1

'
1

1

),(

),(

γ

µµγ OO

ℵ

ℵ

=

∑∑
==

),,(

),,(

)()(

)()(),(

11
jmjmt

M

m

r
jm

jmjmtjk

tt

N

i

tt
t

c

c

jj

jjkj
UµO

UµO

βα

βαγ (11c)

 The Viterbi algorithm can be used to obtain the
estimation of the most probable state sequence. Once all
the HMMs Λ=(λ1 ...λW) are correctly trained, to classify
a sequence for the observation O, Pw=P(O|λW) is
calculated for all the λW. The unknown observation O is
then classified by the process:

Ww
pw w

≤≤
=

1
maxarg*

 (12)

And so, w* is the optimum class for the observation O.

 The initialization and stop criteria must be chosen
adequately for the HMM. It directly interacts on the
relevancy of the HMM [13]. Equiprobable and equal
occupancy methods for the initial models are provided
as well as iteration and rate of the error for the stop
criterion.

3. gpdsHMM toolbox functionality

In this first version of the gpdsHMM, our goal is to
propose a toolbox which contains the most usual
functions for the HMM development. Both discrete
HMM and continuous HMM were developed. We
propose, in particular, a function to migrate from a
DHMM to a CHMM and so to predict the initials
parameters for the mixture of Gaussians. The generals
Bakis (or left-right) and ergodic models are proposed. A
multi-labeling method (for the DHMM) is also
provided. The authors wished to develop some classical
and useful examples in order to make this tool as
didactic as possible. The functions for the CHMM use
the netlab utility available from:

http://www.ncrg.aston.ac.uk/netlab/
A freely distributed version of the gpdsHMM toolbox is
available from:
http://www.gpds.ulpgc.es/download/index.htm
This toolbox is distributed as binary (dll files) and
source code format. For a wide promotion, we ask the
users to make a reference to this paper. For any remarks
about this toolbox, do not hesitate to contact the authors
sending an e-mail to: gpds@gi.ulpgc.es

 In addition to the classical techniques for the HMM,
the authors have developed the multi-labeling and the
gathering methods and proposed several functions to
facilitate the use of the HMM. For further information
about those functions, please refer to the appendix.

Multi-labeling

In the discrete Hidden Markov Model approach, the
conventional VQ technique is applied. In our toolbox,
the library of labels (also called codebook) is calculated
from the training database thanks to the k-mean or the
LBG algorithms. In our toolbox, for each incoming
vector the quantifier performs a hard decision about
which of its code word is the best match, and so the
information about how the incoming vector matches
other code words is discarded. Because of the discrete
quantification variability, the vector of parameters can
be displaced in such a way that this displacement is a
potential source of misrecognition.

Unlike the conventional VQ, multi-labeling makes a
soft decision about which code word is the closest to the
input vector, generating an output vector whose
components indicate the relative closeness of each code
word to the input [11].

So, the multi-labeling codebook used in this toolbox
maps the input vector xt into an observable vector
Ot={w(xt,vk)}k=1,…,M, whose components are calculated
with:

∑
=

= M

m
mt

kt
kt

d

d
w

1

),(/1

),(/1
),(

vx

vx
vx (13)

These components are positive, their sum is 1. Thus,
this toolbox provides a lineal combination of code
words vk in order to improve the representations for the
xt. Under the standard DHMM approach, w(xt,vk) would
take value 1 for the code word with the best match and
value 0 for the rest. For the multi-labeling, the toolbox
enables to use the C closest labels with C<M (number
of symbols) weighted with the w(xt,vk.) calculated in
(13) and re-scaled in order to have the sum equal to 1.
The probability of an observable vector bj(Ot) is given
by:

∑
=

=
C

k
kjkttj bwb

1

)(),()(vvxO

With respect to Baum-Welch estimation formulas for
the transition probabilities aij (formula 8) and the initial
state probabilities πi (formula 7) are generalized in the
same manner. Regarding the estimation of bj(vk), the

better recognition scores were obtained just using the
next heuristic estimation formula:

∑

∑

=

== T

t
t

kt

T

t
t

kj

i

wi
b

1

1

)(

),()(
)(

γ

γ vx
v (14)

 Although the above equation does not guarantee the
convergence of the training process, in practice its use
decrease the required number of iterations.
Furthermore, to work out the observable vector Ot,
multi-labeling can be simplified using, only the C most
significant values of w(xt,vk) for each xt (C labels),
where C is lower than the codebook size M. The
corresponding improvement for the recognition rate
makes the multi-labeling Hidden Markov Model
(MLHMM) approach extremely efficient. The
MLHMM approach is closely related to the semi
continuous approach.

Gathering

The gathering is the fact to group together different
types of characteristics stored in a vector pattern.
Instead of gathering all the parameters in one HMM, the
gathering builds one HMM by group of parameters. The
input xt of d-dimension is now described as a group of
vector of R characteristics with the sum of the
dimension for each characteristic d(r) equal to d.
The following variables described as “yr” stand for the
variable “y” of the characteristic “r”.
In the continuous case, where Ot=xt, bj(Ot) is calculated
as:

∏
=

=
R

r

r
tjtj bb

1

)()(OO (15a)

),,()(
1

r
jm

r
jm

r
t

M

m

r
jm

r
tj cb UµOO ∑

=

ℵ= (15b)

In the discrete case, we calculate a number of R
vector quantifiers with code vectors Rr

Mk
r
k

,...,2,1
,...,2,1}{ =

=v , and

quantify each parameter r
tx with its vector quantifier as

follows:
kmallforddiff r

m
r
t

r
k

r
t

r
k

r
t ≠<=),(),(vxvxvO

∏
=

=
R

r

r
tjtj bb

1

)()(OO (16)

with:)()(r

kj
r
tj bb vO = (17)

 And the new estimation formula is:

∑

∑

=

=
=

= T

t
t

T

ts
t

t

r
kj

i

i

b
r
k

r
t

1

..
1

)(

)(

)(
γ

γ
vOv (18)

 Finally, in the discrete case, it is possible to combine
the gathering with the multi-labeling methods.

 To evaluate the efficiency of the HMM, a function
calculates, thanks to the results of the HMM, a matrix
of confusion for each set of parameters. The matrix of
confusion is a matrix built during the test phase. It
shows how and where the HMM fails. Thus, the

recognition rate and the matrix of confusion give a good
idea about the pertinence for the given set of parameters
within the recognition task.

 To have a more didactic approach of the HMM,
various functions and examples have been developed.
Those functions cover manipulating sequences,
probabilities matrices (like the Alfa, Beta or Gamma
matrices) and maximum likelihood.

4. Conclusions

In this paper, a brief description of the gpdsHMM
toolbox for Matlab is presented. This HMM toolbox is
designed in order to provide the multi-labeling and
gathering functionality in a didactic tool. The authors
would like to exchange, through this toolbox, their
experience in this area. The toolbox is structured so that
everyone can customize a new HMM and extend it to fit
a wide field of applications or can use the examples as a
base.

5. Acknowledgement

We acknowledge the financial support form the Spanish
government (TIC2003-08956-C02-02).

6. References

[1] J. A. Sánchez, C. M. Travieso, I. G. Alonso, M. A.

Ferrer, Handwritten recognizer by its envelope and
strokes layout using HMM's, 35rd Annual 2001
IEEE Internacional Carnahan Conference on
Security Technology, (IEEE ICCST'01), London,
UK, 2001, 267-271.

 [2] M. A. Ferrer, J. L. Camino, C. M. Travieso, C.
Morales, Signature Classification by Hidden Markov
Model, 33rd Anual 1999 IEEE Internacional
Carnahan Conference on Security Technology,
(IEEE ICCST'99), Comisaría General de Policía
Científica, Ministerio del Interior, IEEE Spain
Section, COIT, SSR-UPM, Seguritas Seguridad
España S.A, Madrid, Spain, Oct. 1999, 481-484.

[3] J. B. Alonso, C.Carmona, J. de León y M. A.
Ferrer, Combining Neural Networks and Hidden
Markov Models for Automatic Detection of
Pathologies, 16_th Biennial International Eurasip
Conference Biosignal 2002, Brno, Check Republic,
June 2002.

[4] Renals, S., Morgan, N., Bourlard, H., Cohen, M. &
Franco, H. (1994), Connectionist probability
estimators in HMM speech recognition, IEEE
Transactions on Speech and Audio Processing 2(1),
1994, 161-174.

 [5] L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L.
Mercer, Maximum mutual information estimation
of HMM parameters for speech recognition,. In
Proc. IEEE Intl. Conf. on Acoustics, Speech, and
Signal Processing, , Tokyo, Japan, December 1986,
49-52

[6] Yin, M.M., Wang, J.T.L., Application of hidden

Markov models to gene prediction in DNA,
Information Intelligence and Systems, 1999.]
Proceedings. International Conference on, 1999,
40 – 47.

 [7] Cohen, A., Hidden Markov models in biomedical
signal processing, Engineering in Medicine and
Biology Society, 1998. Proceedings of the 20th
Annual International Conf. of the IEEE, Vol.
3, 1998, 1145 – 1150.

[8] L. Baum, T. Petrie, G. Soules, and N. Weiss. A
maximization technique occurring in the statistical
analysis of probablistic functions of Markov chains.
The Annals of Mathematical Statistics, 41(1), 1970,
164-171.

[9] L. Baum, An inequality and associated
maximization technique in statistical estimation for
probalistic functions of Markov processes.
Inequalities, 3, 1972, 1-8.

[10] Al-Ani, T.; Hamam, Y., An integrated environment
for hidden Markov models, a Scilab toolbox,
Computer-Aided Control System Design, 1996.,
Proceedings of the 1996 IEEE International
Symposium on, Sept. 1996, 446 – 451.

[11] J.Hernando, C.Nadeu, José B. Mariño, Speech
recognition in a noisy environment based on LP of
the one-sided autocorrelation sequence and robust
similarity measuring techniques, Speech
communications, vol. 21, 1997, 17-31.

[12] L. R. Rabiner. Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition
Readings in Speech Recognition, chapter A, 1989,
267-295.

[13] M.A. Ferrer, I. Alonso, C. Travieso, Influence of
initialization and Stop Criteria on HMM based
recognizers, Electronics letters of IEE, Vol. 36,
June 2000, 1165-1166.

Figure 2: Block-diagram for a DHMM

Appendix:

The main change between the block-diagram for the
DHMM (figure 2) and the CHMM, is the function
“etiquetado” that is the quantification for the vector of
characteristic. Those functions are more detailed on the
web.

Alfa: this function calculates the Alfa from the HMM
defined with the matrix A, B and Pi. The Alfa is scaled
to avoid the problem of the precision.
AlfaBeta: this function calculates the Alfa and Beta
from the HMM defined with the matrix A, B and Pi.
The Alfa is scaled to avoid the problem of the precision.
Baum: this function computes the Baum Welch
algorithm in order to estimate the HMM parameters,
(formulas 7, 8 and 9).
DHMM_DEF: this script defines the parameters of the
discrete HMM. The type of the HMM and the method
to quantify the library are chosen.
DHMM: this is a script to train and test the HMM.
DHMM_MEN: this script is a small program that
prints some messages to describe the computation of the
HMM.
Etiquetado: this function implements the multi-labeling
for the discrete HMM. To do that, we use a clustering
algorithm like the k-mean to quantify the library VQ.
The multi-labeling enables to give various labels given
a parameter. The possible labels are directly linked to
the number of symbol by state, (formulas 16, 17, and
18).
formato_lectura_secuencial: this function splits the
database to smaller files (located in the c:\temphmm
directory) in order to decrease the HMM computational
time and the memory requirement.
genHmm: this function generates a HMM with N states
and M symbols by state.
gen_bib: this function computes a library for all the
different models of parameters based on the training
vectors. According to the set up made in the
DHMM_DEF, the library is generated with a LBG
algorithm or with a k-means algorithm.
iniciaHMM: this function calculates the HMM optimal
initial model for the Baum-Welch training.

kMedias: this function computes a k-mean algorithm
for the library VQ.
prodBO: this function calculates the product of the
probability to monitor a sequence O with the probability
of the backward B distribution.
ProbSec: this function estimates the log of the
probability to monitor a sequence O given a HMM. We
use the log to avoid numerical problem, formulas (4).
Resulhmm: this function calculates the confusion
matrix group by group according to the gathering made
in the DHMM_DEF.
ROC: this function analyses the results from the HMM.
It particularly deals with the problem of false
acceptance rate (FAR called here FMR false match rate)
and false rejection rate (FRR called here FNMR false
non match rate).
Viterbi: this function calculates the sequence of the
most probable states given the HMM and the sequence
monitored O. We use the algorithm of Viterbi with the
log for the numerical precision problems.

 To implement the continuous HMM, this toolbox
uses the functions from the netlab utility, as mentioned
before (http://www.ncrg.aston.ac.uk/netlab/), and some
of the functions described for the discrete HMM.
Moreover, the following functions were designed to
manage a CHMM.

AlfaBetac: this function is equivalent to the AlfaBeta
function used for the DHMM.
Baumc: it is equal to the function Baum but used for a
CHMM instead of a DHMM, (formulas 11a, 11b, 11c).
CHMM_DEF: this function defines the parameters for
the CHMM and in particular the mixture of Gaussians
used in this case.
CHMM: this is a script to train and test the HMM.
CHMM_MEN: it is equal than the DHMM_MEN.
DHMM2CHMM: this function generates a CHMM
from a DHMM.
GencHMM: it is equivalent to the genHMM but used
for a CHMM.
IniciacHMM: it is equivalent to the genHMM but used
for a CHMM.
Probsimb: this function calculates the probability for a
vector O to be generated from any state Si.
Viterbic: Function to calculate the most probable state
sequence given a CHMM and a sequence monitored O.

DHMM

Training

Test

DHMM DEF DHMM Men Generation of the Library

Gen Bib KMedias

GenHMM

ProbBO

Viterbi

ProbSec

IniciaHMM

Baum

Etiquetado

Database

DB for the
training.

Group of

parameters

DB for the
test

ResultHMM : Thanks to the files of result, it creates the Matrix of confusion group by group.

