# Técnicas de aprendizaje máquina para detección y cuantificación de lluvia sobre imágenes de videovigilancia

Autora: Naira D. Rosales Hernández

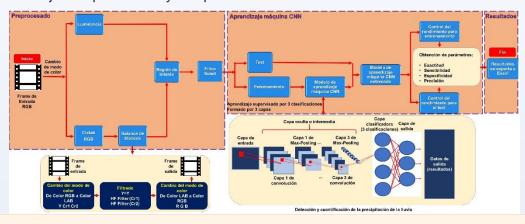
Tutores: Dr. Juan Luis Navarro Mesa y Dr. Iván Daniel Guerra Moreno

Máster Universitario en Ingeniería de Telecomunicación, 9 de Julio 2021





#### **INTRODUCCIÓN**


Este TFM es un proyecto que se basa en sistemas de videovigilancia meteorológica para el seguimiento de riesgos medioambientales. Para ello, se ha implementado algoritmos Machine Learning para la detección y cuantificación de la precipitación de lluvia basado en las imágenes de las cámaras de dichos sistemas distribuidas por diferentes zonas de observación. Esto incluye, previamente, un preprocesado de la señal.

#### **OBJETIVOS**

- Estudio de las características de los dispositivos de captación de imágenes.
- Estudio de los distintos modos de almacenamiento y codificaciones de imagen.
- Realización de un preprocesado de la señal: Cambio de modo de color, balance de blancos, regiones de interés y filtro Sobel.
- Estudio de algoritmos de reconocimiento de imágenes y detección de eventos.
- Estudio de la cuantificación de la precipitación de lluvia.

#### **METODOLOGÍA**

La metodología presentada se basa en técnicas aplicadas de aprendizaje máquina para la detección y cuantificación de la precipitación de la lluvia sobre imágenes de videovigilancia. En la siguiente figura se muestra los tres bloques en los que se divide el TFM: bloque de preprocesado, bloque del aprendizaje máquina CNN y bloque de obtención de los resultados.



## **RESULTADOS**

Este TFM estima los parámetros de calidad en tres grupos de estudio:

- 1. Sólo detección Simple:
  - Se dispone de dos clases, NL y SL.
- 2. Sólo cuantificación:
  - Se dispone de tres clases, NL\_NN, SL\_NB, SL\_NA.
- 3. Cuantificación-detección:
  - Se dispone de tres clases, NL\_NN, SL\_NB, SL\_NA.

|      |                     |     |   | Lluvia detectada o predicción                                                    |    |   |                                                                                  |     |  |
|------|---------------------|-----|---|----------------------------------------------------------------------------------|----|---|----------------------------------------------------------------------------------|-----|--|
|      |                     |     |   | NL                                                                               |    |   | SL                                                                               |     |  |
|      | Lluvia              |     | L | No se detecta Iluvia y no hay datos meteorológicos reales de Iluvia.             |    | m | Si se detecta<br>lluvia y no hay<br>datos<br>meteorológicos<br>reales de lluvia  |     |  |
|      | real u<br>observada | SI  | L | No se detecta<br>lluvia y si hay<br>datos<br>meteorológicos<br>reales de lluvia. |    | m | Si se detecta<br>lluvia y si hay<br>datos<br>meteorológicos<br>reales de lluvia. |     |  |
| 12 1 | ΓN                  | F   | P |                                                                                  | FN |   | TP                                                                               |     |  |
| 13   |                     | 214 |   | 1                                                                                |    | 0 |                                                                                  | 225 |  |

|   |                               |       |       | NL_NN                                                                                                                                     | SL_NB                                                                            | SL_NA                                                                            |  |
|---|-------------------------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
|   |                               | N     |       | No se detecta<br>lluvia y no hay<br>datos<br>meteorológicos<br>reales de lluvia.                                                          | Si se detecta<br>lluvia y no hay<br>datos<br>meteorológicos<br>reales de lluvia. | Si se detecta<br>lluvia y no hay<br>datos<br>meteorológicos<br>reales de lluvia. |  |
|   | Lluvia<br>real u<br>observada |       | SL_NB | No se detecta Iluvia y si hay datos meteorológicos reales de Iluvia. Si se detecta Iluvia y si hay datos meteorológicos reales de Iluvia. |                                                                                  | Si se detecta<br>Iluvia y si hay<br>datos<br>meteorológicos<br>reales de lluvia. |  |
|   |                               |       | SL_NA | No se detecta<br>lluvia y si hay<br>datos<br>meteorológicos<br>reales de lluvia.                                                          | Si se detecta<br>lluvia y si hay<br>datos<br>meteorológicos<br>reales de lluvia. | Si se detecta<br>Iluvia y si hay<br>datos<br>meteorológicos<br>reales de Iluvia. |  |
|   |                               | A     |       | В                                                                                                                                         | С                                                                                | D                                                                                |  |
| 5 | 1                             |       |       | NL_NN                                                                                                                                     | SL_NB                                                                            | SL_NA                                                                            |  |
|   | 2                             | NL_NN |       | 214                                                                                                                                       | 1                                                                                | C                                                                                |  |
|   | 3                             | SL_NB |       | 0                                                                                                                                         | 216                                                                              | (                                                                                |  |
|   | 4                             | SL_N  | Α     | 0                                                                                                                                         | 9                                                                                | C                                                                                |  |

|   |                 |                     |                 | 33,             | 33,77 100,00 33,00  |                 | 33,50           |                     |                 |
|---|-----------------|---------------------|-----------------|-----------------|---------------------|-----------------|-----------------|---------------------|-----------------|
| 4 | Α               | В                   | С               | D               | E                   | F               | G               | Н                   | 1               |
| 1 | LI Exactitud NN | <b>Exactitud NN</b> | LS Exactitud NN | LI Exactitud NB | <b>Exactitud NB</b> | LS Exactitud NB | LI Exactitud NA | <b>Exactitud NA</b> | LS Exactitud NA |
| 2 | 0,98            | 1,00                | 1,00            | 0,99            | 1,00                | 1,00            | 0,00            | 0,00                | 0,00            |
| 3 | 0,98            | 1,00                | 1,00            | 0,81            | 0,86                | 0,90            | 0,42            | 0,56                | 0,68            |
| 4 | 0,99            | 1,00                | 1,00            | 0,98            | 1,00                | 1,00            | 0,93            | 1,00                | 1,00            |
| 5 | 0,99            | 1,00                | 1,00            | 0,98            | 1,00                | 1,00            | 0,77            | 1,00                | 1,00            |
| 6 | 1,00            | 1,00                | 1,00            | 0,99            | 1,00                | 1,00            | 0,94            | 0,97                | 0,98            |
| 7 | 0,99            | 1,00                | 1,00            | 0,99            | 1,00                | 1,00            | 1,00            | 1,00                | 1,00            |
| 8 | 0,99            | 1,00                | 1,00            | 0,95            | 0,96                | 0,97            | 1,00            | 1,00                | 1,00            |
|   |                 |                     |                 |                 |                     |                 |                 |                     |                 |

### CONCLUSIONES

- Se ha implementado algoritmos de Machine Learning para la detección y cuantificación de la precipitación de la lluvia basado en imágenes de cámaras. Estos algoritmos de CNN han aportado resultados muy satisfactorios.
- Realizar un preprocesado de señal previo al bloque de aprendizaje máquina CNN, ha mejorado considerablemente los resultados finales, gracias al filtrado de balance de blancos, selección de regiones de interés y filtrado de Sobel.

## REFERENCIAS

- Iván D. Guerra, "Algoritmos de Aprendizaje Aplicados a la Monitorización Meteorológica mediante Redes Inalámbricas de Comunicación". 2017.
- Miroslav Kubat, "An Introduction to Machine Learning". 2017.
- Godoy Rosario, "An Approach to Rain Detection using Sobel Image Preprocessing and Convolutional Neural Networks". 2019.
- J. Barrios, "Redes Neuronales Convolucionales" 2020.