

Que la Comisión Académica del Programa de Doctorado, en su sesión de
fecha 16 de junio de 2021 tomó el acuerdo de dar el consentimiento para su
tramitación, a la tesis doctoral titulada “A new approach for the effective
processing of hyperspectral images: application to pushbroom-based anomaly
detection and compression systems” presentada por la doctoranda Dña. María
Díaz Martín y dirigida por el Doctor D. Sebastián López Suárez. Esta Tesis
cuenta además con Mención Internacional.

Y para que así conste, y a efectos de lo previsto en el Artº 11 del
Reglamento de Estudios de Doctorado (BOULPGC 7/10/2016) de la
Universidad de Las Palmas de Gran Canaria, firmo la presente en Las Palmas
de Gran Canaria, a 16 de junio de dos mil veintiuno.

D. GUSTAVO MARRERO CALLICÓ, COORDINADOR DEL PROGRAMA DE
DOCTORADO EN TECNOLOGÍAS DE TELECOMUNICACIÓN E INGENIERÍA
COMPUTACIONAL DE LA UNIVERSIDAD DE LAS PALMAS DE GRAN
CANARIA,

INFORMA,

Instituto: INSTITUTO UNIVERSITARIO DE MICROELECTRÓNICA APLICADA

Programa de doctorado: DOCTORADO EN TECNOLOGÍAS DE LA
TELECOMUNICACIÓN E INGENIERÍA COMPUTACIONAL

Título de la Tesis

A NEW APPROACH FOR THE EFFECTIVE PROCESSING OF

HYPERSPECTRAL IMAGES: APPLICATION TO PUSHBROOM-BASED

ANOMALY DETECTION AND COMPRESSION SYSTEMS.

Tesis Doctoral presentada por Dña. MARÍA DÍAZ MARTÍN

Dirigida por el Dr. D. SEBASTIÁN LÓPEZ SUÁREZ

El Director/a, La Doctoranda
(firma) (firma)

Las Palmas de Gran Canaria, a 28 de Mayo de 2021

DIVISIÓN DE DISEÑO DE SISTEMAS INTEGRADOS

TESIS DOCTORAL

A new approach for the effective processing
of hyperspectral images: application to

pushbroom-based anomaly detection and
compression systems.

 María Díaz Martín

Abstract

Hyperspectral imagery has gained an increasing interest by the scientific community in

the last years in such a manner that it has been consolidated as one of the mainstream

terrestrial Earth observing systems. Its growing popularity lies in the large amount of in-

formation along the electromagnetic spectrum that this technology brings for each single

image pixel. In this regard, hyperspectral images (HSIs) are able to capture the reflection

distribution from the observed objects along a broader range of the electromagnetic spec-

trum dividing it in many contiguous spectral bands. This characteristic enables detailed

examinations of the land surfaces and the identification of visually similar materials.

Currently, there is a wide variety of remote sensing data acquisition systems, such as satel-

lites, aircraft and more recently, drones. Nonetheless, the onboard real-time hyperspectral

image processing still poses several challenges before it becomes a reality. Indeed, this

situation jeopardizes the real-time response of time-sensitive applications that demand

quick response. In this regard, images acquired by remote Earth observation platforms

are traditionally downloaded to the ground segment for being off-line processed on super-

computing systems. Unfortunately, the main problem lies in the data transmission since

important delays are introduced related to the communication of large amount of data

and the bottleneck represented by the limited communication bandwidth of the downlink

system. Consequently, this operating mode clearly compromises the efficient and safe

execution of stringent applications that require immediate results.

Regrettably, the algorithms traditionally proposed for the hyperspectral analysis normally

give rise to complex algorithms characterized by computationally costly operations, inten-

sive memory requirements, high implementation costs and a non-scalable nature. This is

because the algorithm developers are normally more concerned about the mathematical

methods that optimize the quality of the results than the importance of their real-time

performance in power-constrained scenarios, such as the onboard processing.

The aforementioned context becomes even more challenging when different time-sensitive

applications coexist in the same computing device. The simplest and the most commonly

adopted solution is to select a different mathematical algorithm from the wide assortment

of proposals encountered in the literature for each hyperspectral image processing type to

be performed and then, to accelerate them using parallel computing devices. The issue

arises when they have to be sequentially processed onto the same computing device due to

restrictions in terms of power, weight and size. Therefore, there is a need in the literature

for new algorithmic solutions that take into consideration the above mentioned currently

existing constrains imposed by nowadays remote sensing applications. Additionally, the

causality inherent to real-time frameworks based on pushbroom/whiskbroom scanners

must be also met through the definition of non-global algorithms capable of independently

processing blocks of image pixels. In turn, this prevents the storing and management

of large data volumes, thereby reducing the computing resources and speeding up the

execution process.

Against this backdrop, we have dealt in this Thesis work with the issue around the on-

board execution of multiple hyperspectral image analysis techniques onto the same piece

of hardware, paving the way for the real-time performance of the hyperspectral image

processing. The main objective of this Thesis is to provide the research community with

a set of common core operations that extract useful information from the HSIs for many

applications; such as anomaly detection, target detection, lossy compression, classifica-

tion, and unmixing. On the one hand, it results in many benefits in view of hardware

acceleration in terms of a reduction in the execution times, hardware resources and above

all, in human endeavours. Concerning this latter, it implies the studio and analysis of only

a single mathematical approach, which consequently permits to focus the efforts from a

methodological and productivity points of view. On the other hand, it also permits the

simultaneous execution of many different tasks at the same time with the advantage of

sharing the most computationally intensive operations. As a consequence, it promotes

the decrease in the amount of computational resources compared with those scenarios in

which different state-of-the-art algorithms are independently executed for each targeted

processing analysis.

Based on the aforementioned set of core operations, a new algorithm for the detection of

anomalous spectra has been also developed in this Thesis, named A Line-by-Line Fast

Anomaly Detector for Hyperspectral Imagery (LbL-FAD). The LbL-FAD algorithm is a

subspace-based anomaly detector designed to fulfil the constraints imposed by nowadays

remote sensing applications based on pushbroom/whiskbroom scanners. In this regard,

the LbL-FAD algorithm is able to independently process blocks of hyperspectral pixels

with not taking into consideration any spatial alignment requirement.

Additionally, a performance-enhancing version of the state-of-the-art Lossy Compression

Algorithm for Hyperspectral Image Systems (HyperLCA) has been proposed for the spec-

tral decorrelation and compression of HSIs. In this sense, the original algorithmic proposal

has been widened in this Thesis work in order to be adapted and, thereby, fallen within

the proposed set of core operations. Moreover, an efficient and comprehensive compres-

sion system has been also introduced. As a further advantage, the HyperLCA algorithm

permits compressing blocks of image pixels independently. This feature promotes, on the

one hand, the reduction of the data to be managed at once, besides, the hardware re-

sources to be allocated and, on the other hand, it becomes a very competitive solution for

most applications based on pushbroom/whiskbroom scanners.

The feasibility of the concurrent execution of multiple hyperspectral analysis techniques

based on the same mathematical method has been also demonstrated. In particular, it

was verified the suitability of the proposed methodology for the concurrent execution

of both the lossy compression of HSIs and the detection of anomalous signatures. To

meet this issue, two optimized versions were eventually proposed. The former, referred

to as Optimized proposal for the simultaneous detection of anomalous pixels and the lossy

compression of HSIs (ADeLoC), searches for the highest accuracy in the detection and

compression results. The latter, named Hardware-friendly proposal for the simultaneous

detection of anomalous pixels and the lossy compression of HSIs (HADeLoC) prioritizes

the optimization of the hardware resources and the minimization of the execution times

at the expense of a loss of accuracy in the compression results.

In the interest of confirming the benefits of developing algorithmic solutions based on the

same mathematical method and, also to verify the suitability of the developed algorithms

for real-time applications, the main algorithmic proposals of this Thesis have been also

implemented on different parallel devices, namely GPUs and FPGAs. Concretely, the

LbL-FAD, the HyperLCA and the HADeLoC methods have been accelerated on a Xilinx

system on chip (SoC) FPGA device, while the HyperLCA has been adapted to be launched

in embedded computing boards from NVIDIA.

We have also briefly discussed the possibility of extending the use of the set of core

operations proposed in this Thesis work, in the fields of band selection, target detection,

unmixing and classification. Although the analysis made is far from being as exhaustive

as those carried out by LbL-FAD detector and the HyperLCA compressor, it indeed

represents a turning point in the way of future research works.

Finally, the algorithms and implementations carried out ratifies the suitability of the

proposed algorithmic solution in the field of the onboard real-time processing of HSIs,

certainly in the line of the research goals to be accomplished in this Thesis.

Resumen

En los últimos años, la tecnoloǵıa hiperespectral se ha convertido en una herramienta de

gran interés para la comunidad cient́ıfica en el campo de la teledetección y la observación

de la superficie terrestre. Su creciente popularidad se fundamenta en su capacidad para

recoger información sobre la escena observada en muchas y continuas longitudes de onda

a lo largo del espectro electromagnético. Esto deriva en la posibilidad de detectar e

identificar distintos tipos de materiales presentes en la naturaleza que a simple vista

pudiesen parecer el mismo ente.

En la actualidad, existen una gran variedad de plataformas de adquisición de datos hi-

perespectrales, como son los satélites, las aeronaves y recientemente, los drones. Sin

embargo, el procesamiento a bordo y en tiempo real de las imágenes hiperespectrales

aún presenta importantes retos a abordar para convertirse en una realidad. Esto a su

vez presenta ciertos inconvenientes prioritarios, sobre todo para aquellas aplicaciones que

requieren de resultados inmediatos. En este sentido, el procedimiento tradicional se ha

centrado en el procesamiento en la superficie terrestre de los datos capturados remota-

mente tras su transmisión y descarga. Sin embargo, el principal problema radica en la

transmisión de los datos debido a los importantes retrasos derivados del limitado ancho de

banda de los sistemas de comunicación. Por lo tanto, este sistema de operación claramente

compromete la ejecución eficiente, segura y en tiempo real de aplicaciones que requieren

de respuestas inmediatas o en un corto periodo de tiempo.

Lamentablemente, los algoritmos tradicionalmente propuestos para el análisis de los datos

hiperespectrales dan lugar a propuestas algoŕıtmicas muy complejas, dif́ıcilmente imple-

mentables debido a la ejecución de operaciones computacionalmente costosas, intensivas

en consumo de memoria y recursos hardware y caracterizadas por altas dependencias de

datos. Esto se debe a que los desarrolladores de soluciones algoŕıtmicas normalmente cen-

tran sus esfuerzos en los métodos matemáticos, buscando la optimización en los resultados

obtenidos pero dejando en segundo plano la importancia de su funcionalidad en tiempo

real y en escenarios limitados en términos de recursos, como es el procesamiento a bordo.

El escenario anteriormente planteado se vuelve aún más complicado cuando distintos pro-

cesos de análisis hiperespectral deben ser ejecutados de manera simultánea y coexistir en

un único dispositivo de cómputo asegurando respuestas en tiempo real. En este sentido,

la solución más simple y comúnmente utilizada se basa en la selección de distintos algo-

ritmos para cada aplicación a llevar a cabo y acelerarlos usando dispositivos de cómputo

paralelo. El problema radica en el momento de su ejecución concurrente en un mismo dis-

positivo hardware en escenarios caracterizados por restricciones en términos de consumo,

recursos de cómputo, peso y espacio disponibles, como son los drones. Por lo tanto, hay

una gran necesidad en la literatura de soluciones algoŕıtmicas que tengan en consideración

las actuales restricciones y limitaciones existentes en las aplicaciones demandadas hoy en

d́ıa. Además, también se requiere de la definición de nuevas alternativas algoŕıtmicas que

tengan en cuenta la causalidad inherente a los procesos de captura realizados por sistemas

de tipo pushbroom y whiskbroom.

Partiendo de este contexto, la realización de esta Tesis Doctoral ha contribuido al campo

del procesamiento abordo y en tiempo real de las imágenes hiperespectrales en aplicaciones

donde múltiples técnicas de análisis deban coexistir en un único dispositivo de cómputo.

Su principal objetivo se centra en proveer a la comunidad cient́ıfica con un conjunto de

operaciones capaces de extraer información espectral de utilidad para la realización de

múltiples técnicas de análisis hiperespectral. El hecho de centrarse en la utilización de un

único método matemático es especialmente beneficioso para la aceleración hardware de

estos procesos. Por una parte, esto se traduce en un ahorro de tiempo, costes y esfuerzo

humano durante la etapa de implementación hardware de estas soluciones algoŕıtmicas

pues sólo un único método matemático debe ser estudiado, comprendido y desarrollado.

Por otra parte, esta metodoloǵıa permite la ejecución conjunta de diversas tareas de proce-

samiento con la ventaja de compartir las operaciones más computacionalmente costosas

y complejas, con los beneficios derivado de ello.

Basado en el conjunto de operaciones anteriormente citado, se ha desarrollado un nuevo

algoritmo para la detección de agentes anómalos llamado A Line-by-Line Fast Anomaly

Detector for Hyperspectral Imagery (LbL-FAD). Dicho algoritmo ha sido especialmente

diseñado para contribuir a la literatura con algoritmos capaces de procesar las imágenes

ĺınea a ĺınea y por tanto, está especialmente destinado a ser empleado en aplicaciones

basadas en sistemas de adquisición del tipo pushbroom/whiskbroom.

También se ha propuesto una versión mejorada del algoritmo del estado del arte titu-

lado Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA) para la

decorrelación espectral y compresión de las imágenes hiperespectrales. En este sentido,

la metodoloǵıa descrita en sus inicios se ha ampliado con el fin de ser adaptada y poder

ejecutarse con el conjunto de operaciones propuesto en esta Tesis Doctoral. Además,

también se ha definido un sistema de compresión de imágenes hiperespectrales completo

que incluye la etapa de codificación entrópica de los vectores que conforman los datos

comprimidos. Este a su vez permite realizar una compresión linea a ĺınea, lo que con-

vierte esta propuesta en una candidata idónea para sistemas a bordo basados en sensores

de tipo pushbroom/whiskbroom.

La viabilidad de la ejecución conjunta de múltiples técnicas de análisis hiperespectral

basadas en el mismo método matemático también ha sido verificada en esta Tesis Doc-

toral. En particular, se ha verificado la idoneidad de la metodoloǵıa propuesta para la

ejecución simultánea de la compresión con pérdidas de imágenes hiperespectrales y la de-

tección de firmas espectrales anómalas. Para atender esta problemática se han propuesto

dos soluciones algoŕıtmicas optimizadas. La primera, denominada Optimized proposal for

the simultaneous detection of anomalous pixels and the lossy compression of HSIs (ADe-

LoC), busca la mayor precisión en los resultados en términos de detección y compresión.

La segunda propuesta, denominada Hardware-friendly proposal for the simultaneous de-

tection of anomalous pixels and the lossy compression of HSIs (HADeLoC), prioriza la

optimización de los recursos hardware y la minimización de los tiempos de ejecución a

expensas de una pérdida en la precisión y la calidad de los resultados en la etapa de

compresión.

En aras de confirmar los beneficios derivados de desarrollar soluciones algoŕıtmicas basadas

en el mismo método matemático y también verificar la idoneidad de las propuestas al-

goŕıtmicas desarrolladas para aplicaciones en tiempo real, estas han sido implementadas

en diversos dispositivos de cómputo paralelo, tales como FPGAs y GPUs. En concreto,

los algoritmos LbL-FAD, HyperLCA y HADeLoC han sido acelerados en plataformas SoC,

de sus siglas en inglés System on Chip, basados en FPGAs de Xilinx. Además, el com-

presor HyperLCA también ha sido adaptado para su ejecución en plataformas embebidas

basadas en GPU de NVIDIA.

También se ha analizado brevemente la posibilidad de extender la metoloǵıa propuesta,

basada en el conjunto de operaciones propuesta en esta Tesis Doctoral, a otras técnicas de

procesamiento de imágenes hiperespectrales, como son la selección de bandas, el desmez-

clado, la detección de objetivos de interés y la clasificación.

Finalmente, los algoritmos e implementaciones desarrollados ratifican la idoneidad de la

solución algoŕıtmica propuesta en el campo del procesamiento a bordo y en tiempo real de

las imágenes hiperespectrales, lo que claramente va en la ĺınea de los objetivos planteados

para la consecución de esta Tesis Doctoral.

Acknowledgements

This has been a long roller coaster ride that finally came to an end. There have been mo-

ments of euphoria and happiness but, also times of uncertainty and frustration. Nonethe-

less, the experiences lived in the last years have really made me grow both professionally

and personally. They have shown me that it is possible to do whatever you want in life

with confidence and perseverance. Thus, I would like to thank those people who have

been part of this long journey.

For starters, my Thesis director Sebastián López, not only due to his role of mentoring

but also, for his good tips and the confidence in me and my work. I highly appreciate

the warm encouragement and constructive comments given by José López and Roberto

Sarmiento. I am also grateful to Jesús Barba and Julián Caba for the great welcome I

had in my stay in their facilities and their great commitment and implication in the works

carried out. I certainly cannot forget all my team mates with whom I have actually a

beautiful friendship. Thank you so much for your support, the good conversations, the

coffees and the patience to bear ”my craziness”.

Over the years, I have received funding from several entities, which have supported me

while I completed my PhD. I would like to thank the Agencia Canaria de Investigación,

Innovación y Sociedad de la Información (ACIISI) of the Conserjeŕıa de Economı́a, Indus-

tria, Comercio y Conocimiento of the Gobierno de Canarias, jointly with the European

Social Fund (FSE) (POC2014-2020, Eje 3 Tema Prioritario 74 (85%)) and, the Institute

for Applied Microelectronics (IUMA) for their financial support.

My special acknowledgement goes to my family who has offered me unconditional aid and

support during this adventure. In particular to my parents and my little sister, it does not

matter how hard the battle is, I will win with their support. I would also like to have a

special attention to my comrade of thousand discussions and experiences, Raúl, for being

my source of inspiration and believing in me. Thanks also to who I call ”my little girls”

for installing me the confidence that I sometimes lose.

ix

Contents

Abstract i

Resumen v

Acknowledgements ix

List of Figures xvii

List of Tables xxiii

Abbreviations xxvii

1 Introduction 1

1.1 Rationale . 2

1.2 Preliminary concepts . 6

1.2.1 Characterization and resolution of the spectral images 6

1.2.2 Data collection systems . 8

1.2.3 Hyperspectral data analysis methods and applications 9

1.2.4 Acceleration through parallel computing platforms. 14

1.3 Motivations, research goals and contributions of this Thesis 16

1.3.1 Motivations of this Thesis . 16

1.3.2 Research goals of this Thesis . 18

1.3.3 Contributions of this Thesis . 20

1.4 Organization of this document . 22

1.4.1 Chapter 2: Set of Core Operations 22

1.4.2 Chapter 3: Hyperspectral Anomaly Detection 23

1.4.3 Chapter 4: Hyperspectral Lossy Compression 23

1.4.4 Chapter 5: Concurrent Execution of Multiple Hyperspectral Imag-
ing Applications . 24

1.4.5 Chapter 6: Hyperspectral imaging acceleration through the utiliza-
tion of embedded systems . 24

xi

xii Contents

1.4.6 Chapter 7: Conclusions and further research lines 25

1.4.7 Appendix A: Application of the proposed methodology to other
hyperspectral image processing research fields 25

2 Set of Core Operations 27

2.1 Rationale . 28

2.2 Background Notions . 29

2.3 The Set of Core Operations . 33

2.3.1 The Gram-Schmidt Orthogonalisation Method 34

2.3.2 General Notations . 36

2.3.3 Description of the proposed Set of Core Operations 36

2.4 Computational Complexity of the Set of Core Operations 38

2.5 Data types and precision evaluation . 40

2.6 Conclusions . 44

3 Hyperspectral Anomaly Detection 47

3.1 Rationale . 48

3.2 State-of-the-art in hyperspectral anomaly detection 50

3.3 Proposed anomaly detection algorithm: A Line-by-Line Fast Anomaly De-
tector for Hyperspectral Imagery (LbL-FAD) 53

3.3.1 Line-by-Line extraction of the background reference spectra 54

3.3.2 Overall background subspace estimation 56

3.3.3 Orthogonal Subspace to the one spanned by the background samples 56

3.3.4 Detection of anomalies . 57

3.4 Hardware-Friendly LbL-FAD (HW-LbL-FAD) 59

3.5 Experimental Results . 63

3.5.1 Reference Hyperspectral Data . 63

3.5.2 Reference Algorithms . 69

3.5.3 Assessment Metrics . 70

3.5.4 Detection performance of the LbL-FAD algorithm 72

3.5.5 Benchmarking against other state-of-the-art anomaly detectors . . . 76

3.5.6 Benchmarking performance among data types and precision: LbL-
FAD vs HW-LbL-FAD . 80

3.5.7 Computational complexity analysis 82

3.6 Conclusions . 84

4 Hyperspectral Lossy Compression 89

4.1 Rationale . 90

4.2 State-of-the-art in hyperspectral data compression 92

4.3 Lossy hyperspectral image compression with the HyperLCA algorithm . . . 95

4.3.1 Background notions about the HyperLCA Transform 97

4.3.2 Description of the extended version of the HyperLCA algorithm . . 98

4.3.2.1 HyperLCA Initialization 98

4.3.2.2 HyperLCA Transform . 99

Contents xiii

4.3.2.3 HyperLCA Preprocessing 100

4.3.2.4 HyperLCA Entropy Coding 102

4.3.2.5 Bitstream Generation . 102

4.4 Experimental Results . 104

4.4.1 Reference Hyperspectral Data . 104

4.4.2 Assessment Metrics . 105

4.4.3 Benchmarking performance among data types and precision 107

4.4.4 Compression performance of the HyperLCA algorithm 110

4.4.4.1 Effect of the HyperLCA input parameters in the algorithm
performance . 111

4.4.4.2 Evaluation of the HyperLCA performance for the lossy
compression of HSIs . 114

4.4.5 Evaluation of the distortions introduced by the lossy compression
for the subsequent anomaly detection 117

4.4.6 Computational complexity analysis 118

4.5 Conclusions . 123

5 Concurrent Execution of Multiple Hyperspectral Imaging Applications
127

5.1 Rationale . 128

5.2 Towards the Concurrent Execution of Multiple Hyperspectral Imaging Ap-
plications . 129

5.2.1 Using the proposed set of core operations for the detection of anoma-
lous spectra OR for the lossy compression of HSIs 129

5.2.2 Using the proposed set of core operations for the concurrent execu-
tion of the anomaly detection issue AND the lossy compression of
HSIs . 134

5.2.2.1 First approximation towards the simultaneous detection
of anomalous pixels and the lossy compression of HSIs . . 134

5.2.2.2 Optimized proposal for the simultaneous detection of
anomalous pixels and the lossy compression of HSIs (ADe-
LoC) . 136

5.2.2.3 Hardware-friendly proposal for the simultaneous detection
of anomalous pixels and the lossy compression of HSIs
(HADeLoC) . 137

5.3 Experimental Results . 144

5.3.1 Reference Hyperspectral Data . 144

5.3.2 Assessment Metrics . 145

5.3.3 Compression performance of the proposed HADeLoC approach . . . 146

5.3.4 Anomaly Detection performance of the proposed HADeLoC approach154

5.3.5 Discussions about the HADeLoC performance 154

5.3.6 Computational Complexity Analysis 156

5.3.7 General discussions . 160

5.4 Conclusions . 162

xiv Contents

6 Hyperspectral imaging acceleration through the utilization of embedded
systems 165

6.1 Rationale . 166

6.2 Materials . 168

6.2.1 Reference Hyperspectral Data . 168

6.2.2 Targeted parallel computing devices 170

6.3 Real-time FPGA implementation of the algorithms proposed in this Thesis 171

6.3.1 Descriptions of the HLS modules that implement the proposed set
of core operations . 172

6.3.1.1 Avg Cent HLS module: average pixel calculation and im-
age centralization . 173

6.3.1.2 Brightness HLS module: brightness pixel calculation . . . 176

6.3.1.3 Proj Sub HLS module: projection vector calculation and
spectral information subtraction 178

6.3.1.4 Stop cond HLS module: stopping condition inherent to
the HW-LbL-FAD and the HADeLoC algorithms 179

6.3.1.5 Other considerations about the FPGA-based implementa-
tion of the proposed set of core operations 179

6.3.2 FPGA-based implementation of the HyperLCA lossy compressor . . 180

6.3.2.1 HyperLCA Transform HWacc 182

6.3.2.2 HyperLCA Entropy Coder HWacc 182

6.3.3 FPGA-based implementation of the HW-LbL-FAD algorithm for
the detection of anomalous spectra 185

6.3.4 FPGA-based implementation of the HADeLoC solution for the si-
multaneous execution of the anomaly detection process and the
lossy compression of HSIs . 188

6.3.5 Experimental results . 190

6.3.5.1 Evaluation of the HyperLCA Hardware Accelerator 191

6.3.5.2 Evaluation of the HW-LbL-FAD Hardware Accelerator . . 194

6.3.5.3 Evaluation of the HADeLoC Hardware Accelerator 196

6.3.5.4 General discussions about the obtained results 198

6.4 Real-time implementation of the HyperLCA algorithm on embedded GPUs 200

6.4.1 Graphics Processing Units . 202

6.4.1.1 GPU hardware platforms 203

6.4.1.2 Streams and Concurrency 204

6.4.2 CUDA implementation of the HyperLCA algorithm 205

6.4.2.1 GPU implementation of the HyperLCA Transform 207

6.4.2.2 Host-Device Model of the HyperLCA lossy compressor . . 211

6.4.3 Experimental results . 215

6.4.3.1 Performance of the parallel implementations of the Hyper-
LCA compressor in embedded LPGPUs in terms of speed-up216

6.4.3.2 Performance of the parallel implementations of the Hyper-
LCA compressor in embedded LPGPUs in terms of aver-
age compression frame rates 219

Contents xv

6.5 Benchmarking between the different parallel devices for the acceleration of
the HyperLCA algorith . 222

6.6 Conclusions . 225

7 Conclusions and further research lines 229

7.1 Conclusions . 230

7.2 Future Research Lines . 236

A Application of the proposed methodology to other hyperspectral image
processing research fields 239

A.1 Rationale . 240

A.2 Dimensionality Reduction: band selection 242

A.3 Target Detection . 245

A.3.1 Description of the proposed methodology for the detection of targets
of interest . 247

A.3.1.1 Line-by-Line extraction of the background reference spectra247

A.3.1.2 Overall background subspace estimation 247

A.3.1.3 Selection of the most representative spectral bands 248

A.3.1.4 Target Detection . 248

A.3.2 Experimental Results . 249

A.3.2.1 Reference Hyperspectral Data 251

A.3.2.2 Target Detection performance of the proposed methodology251

A.4 Unmixing . 254

A.4.1 Description of the proposed methodology for linearly unmixing HSIs 256

A.4.1.1 Estimation of the number of endmembers and their ex-
traction . 256

A.4.1.2 Abundance Estimation . 257

A.4.2 Experimental Results . 258

A.4.2.1 Reference Hyperspectral Data 259

A.4.2.2 Performance of the proposed method for hyperspectral un-
mixing and abundance calculation 260

A.5 Classification . 262

A.5.1 Description of the proposed methodology for the classification of
the HSIs . 264

A.5.1.1 Abundance Estimation . 264

A.5.1.2 Classification using abundance maps 265

A.5.2 Experimental Results . 265

A.5.2.1 Reference Hyperspectral Data 265

A.5.2.2 Performance of the proposed method for the classification
of HSIs . 267

A.6 Conclusions . 268

B Sinopsis en español 271

xvi Contents

B.1 Introducción . 272

B.2 Objetivos y metodoloǵıa de trabajo . 275

B.3 Contribuciones generales y principales concluciones extráıdas 276

C Publications 283

C.1 Journals . 284

C.2 International Conferences . 286

References 289

List of Figures

1.1 Spectral signatures of different materials (image extracted from [1]). 7

1.2 Spectral data cube (image extracted from [2]). 7

1.3 Remote sensing scanners. a) WhiskBroom b) Pushbroom (images extracted
from [3]). 9

2.1 Example of the Gram-Schmidt orthogonalization for vector e2 with respect
to vector e1; q2 represents the amount of information in e2 which is not
contained in e1; u1 and u2 are unitary vectors with the directions spanned
by q1 and q2, respectively. 34

2.2 Example of unlikely situations where some vector elements increase their
value after the orthogonal projection process. Vector a = [0, 0.80, 0.80,
0.80, -0.80, -0.80, -0.80] is projected onto vector b = [0, 0.25, -0.25, 0.25, -
0.25, 0.25 , -0.25] and the maximum and minimum values to be represented
with the available dynamic range is (-1, 1]. The result is vector c = [0, 0.53,
1.06, 0.53, -0.53, -1.06, -0.53], where some elements exceed the limit values 42

3.1 Diagram of the LbL-FAD stages. Stage 1: Line-by-line background spectra
extraction. Stage 2: Overall background subspace estimation. Stage 3:
Orthogonal subspace calculation. Stage 4: Detection of anomalies. 55

3.2 RGB representation of the HSIs used in the experiments. (a) Synthetic
Image. (b) WASP RIT scene. (c) AVIRIS WTC scene. (d) ground-truth
Synthetic Image. (e) ground-truth WASP RIT scene. (f) ground-truth
AVIRIS WTC scene. 65

3.3 Google Maps pictures of the farming areas corresponding to the HSIs used
in this work. (a) Location of the terrains on the island of Gran Canaria
(Spain). (b) Area covered by the first flight campaign over a banana plan-
tation. (c, d) Area covered by the second and third flight campaigns over
different vineyards. 66

3.4 RGB representation of the hyperspectral data acquired in each mission
campaign swath that was used in this work. Color squares highlight the
regions selected for the experiments. 67

3.5 RGB representation of the employed test bench. Pixels enclosed in blue
circles represent the anomalous entities to be detected. (a) Drone Image
1. (b) Drone Image 2. (c) Drone Image 3. (d) Drone Image 4. (e) Drone
Image 5. (f) Drone Image 6. 68

xvii

xviii List of Figures

3.6 Example of spectral signatures corresponding to some real pixels within
Drone Image 1 (Figure 3.5 a). (a) Pixel locations. (b) Pixel spectral sig-
natures. 69

3.7 3D plots of the detection results obtained by the LbL-FAD algorithm for
the nine data sets. (a) Synthetic Image. (b) WASP RIT scene. (c) AVIRIS
WTC scene. (d) Drone Image 1. (e) Drone Image 2. (f) Drone Image 3.
(g) Drone Image 4. (h) Drone Image 5. (i) Drone Image 6. 73

3.8 Anomaly detection results obtained by the LbL-FAD algorithm for the
Synthetic Image, the WASP RIT scene and the AVIRIS WTC scene. Lines
in blue color represent the nf frames employed to estimate the background
distribution. Pixels marked in red corresponds to the anomalous pixels
detected by the LbL-FAD algorithm. (a) Synthetic Image. (b) WASP RIT
scene. (c) AVIRIS WTC scene. 74

3.9 Anomaly detection results obtained by the LbL-FAD algorithm for the
HSIs sensed by the UAV-sensed acquisition system. Lines in blue color
represent the nf frames employed to estimate the background distribution.
Green lines represent the hyperspectral frames free of anomalies. Red lines
highlight those frames identified by the LbL-FAD algorithm to be corrupted
by anomalous pixels. Pixels enclosed in red circles represent the exact
locations of detected anomalous pixels. (a) Drone Image 1. (b) Drone
Image 2. (c) Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f)
Drone Image 6. 75

3.10 Anomaly detection results for the HSIs displayed in Figure 3.5 obtained by
the LbL-FAD, the OSPRX, the LSMAD and the PLP-KRXD. Red lines
highlight those frames identified by the different algorithms to be corrupted
by anomalous pixels. Pixels enclosed in red circles represent the detected
anomalous pixels. 78

4.1 Data flow among the different computing stages of the HyperLCA compressor. 96

4.2 (a) General structure of the bitstream generated by the HyperLCA al-
gorithm. (b) Header distribution. (c) Data package structure for non-
stopping condition algorithm configuration. (d) Data package structure
when a stopping condition based on quality metrics is enabled. 103

4.3 RGB representation of the employed test bench. Pixels enclosed in blue
circles represent some anomalous spectra. (a) Drone Image 1. (b) Drone
Image 2. (c) Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f)
Drone Image 6. 105

4.4 Average values of the SNR obtained for the Float32, Int32, Int16 and
Int16-rd versions of the HyperLCA algorithms. (a) Nbits = 12. (b) Nbits = 8.110

4.5 Average values of the MAD obtained for the Float32, Int32, Int16 and
Int16-rd versions of the HyperLCA algorithms. (a) Nbits = 12. (b) Nbits = 8.111

4.6 Average values of the RMSE obtained for the Float32, Int32, Int16 and
Int16-rd versions of the HyperLCA algorithms. (a) Nbits = 12. (b) Nbits = 8.111

4.7 Average values of the SSIM obtained for the Float32, Int32, Int16 and
Int16-rd versions of the HyperLCA algorithms. (a) Nbits = 12; (b) Nbits = 8.112

List of Figures xix

4.8 Evaluation of the HyperLCA compression results according to the average
results in terms of (a) the reached compression ratios (CR) and (b) the
number of extracted characteristic pixels (p) per image block, Mk. 112

4.9 Evaluation of the HyperLCA compression results according to the average
results in terms of (a) SNR, (b) MAD, (c) RMSE and (d) SSIM. 115

4.10 SNR distribution per spectral band: (a) Drone Image 1, Drone Image 2
and Drone Image 3, (b) Drone Image 4, Drone Image 5 and Drone Image 6. 116

4.11 Anomaly detection results obtained by the LbL-FAD algorithm using the
compressed images obtained by the HyperLCA algorithm for BS = 1024. . 119

4.12 Anomaly detection results obtained by the LbL-FAD algorithm using the
compressed images obtained by the HyperLCA algorithm for BS = 512. . . 120

4.13 Anomaly detection results obtained by the LbL-FAD algorithm using the
compressed images obtained by the HyperLCA algorithm for BS = 256. . . 121

5.1 Proposed scheme for the execution of the set of core operations applied to
anomaly detection or lossy compression of HSIs. 130

5.2 Detailed view of the schematic diagram displayed in Figure 5.1. (a) Lossy
Compression. (b) Anomaly Detection, Stage 1. (c) Anomaly Detection,
Stage 2. (d) Anomaly Detection, Stages 3 and 4. 131

5.3 Proposed methodology for the simultaneous performance of the anomaly
detection process and the lossy compression of HSIs. 137

5.4 Detailed view of the schematic diagram displayed in Figure 5.3. (a) Stage
1. (b) Stage 2. (c) Stages 3 and 4. (d) Stage 5. 140

5.5 Data package structure for the different stages of the HADeLoC proposal
for the simultaneous execution of the anomaly detection process and the
lossy compression of HSIs. (a) Stage 1. (b) Stage 2. (c) Stages 3 and 4
(no anomalies in the image block, Mk). (d) Stages 3, 4 and 5 (existence of
anomalies in the image block, Mk). 143

5.6 RGB representation of the employed test bench. Pixels enclosed in blue
circles represent some anomalous spectra. (a) Drone Image 1. (b) Drone
Image 2. (c) Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f)
Drone Image 6. 146

5.7 Comparison among the compression ratios obtained by the HyperLCA al-
gorithm for different settings of the input parameters CR = [12, 16, 20]
and Nbits = [12, 8] and, by the HADeLoC proposal with Nbits = [14, 10].
(a) Nbits = 14 and 12. (b) Nbits = 10 and 8. 148

5.8 Comparison among the quality of the compression results obtained by the
HyperLCA algorithm for different settings of the input parameters CR =
[12, 16, 20] and Nbits = [12, 8] and, by the HADeLoC proposal with Nbits

= [14, 10]. (a) SNR for Nbits = 14 and 12. (b) SNR for Nbits = 10 and 8.
(c) MAD for Nbits = 14 and 12. (d) MAD for Nbits = 10 and 8. (e) RMSE
for Nbits = 14 and 12. (f) RMSE for Nbits = 10 and 8. (g) SIIM for Nbits

= 14 and 12. (h) SIIM for Nbits = 10 and 8. 149

5.9 Portion of the MAD value map around the anomalous entity located in
Image Drone 5. 151

xx List of Figures

5.10 Comparison among the quality of the compression results obtained by the
HyperLCA algorithm with Nbits = [12,8] and by the HADeLoC proposal
with Nbits = [14,10] for similar reached CRs. (a) SNR for Nbits = 14 and
12. (b) SNR for Nbits = 10 and 8. (c) MAD for Nbits = 14 and 12. (d)
MAD for Nbits = 10 and 8. (e) RMSE for Nbits = 14 and 12. (f) RMSE
for Nbits = 10 and 8. (g) SIIM for Nbits = 14 and 12. (h) SIIM for Nbits =
10 and 8. 153

5.11 Anomaly detection results obtained by the HW-LbL-FAD algorithm and
by the HADeLoC proposal. 155

5.12 Reduction in the number of OPs (%) performed by the ADeLoC and the
HADeLoC algorithms compared with the serial execution of both the lossy
compression and the anomaly detection processes as two independent al-
gorithms. 159

6.1 RGB representation of the employed test bench. Pixels enclosed in blue
circles represent some anomalous spectra. (a) Drone Image 1. (b) Drone
Image 2. (c) Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f)
Drone Image 6. 169

6.2 Overview of the benchmark HWacc that performs the proposed set of core
operations. (a) Not considering stopping condition (HyperLCA algorithm).
(b) Considering stopping condition (HW-LbL-FAD and HADeLoC meth-
ods). Light blue and white boxes represent modules implemented using
HLS. Light red boxes, arrays and FIFOs represent the glue logic and mem-
ory elements designed and instantiated using VHDL language. 174

6.3 Overview of the Avg HLS sub-module that implement the average pixel,
µ̂, calculation. 175

6.4 Overview of the Cent HLS sub-module that manages the centralization of
the image, C. 175

6.5 Overview of the Brightness HLS module. (a) Not considering stopping con-
dition (HyperLCA algorithm). (b) Considering stopping condition (HW-
LbL-FAD and HADeLoC methods). 177

6.6 Example of the Projection and Subtraction sub-modules that implement
the projection vector calculation, vn, and the spectral information retained
for the next iterations, respectively. 178

6.7 Map-reduce programming model and data packaging on the Cent module. 180

6.8 Overview of the HyperLCA Entropy Coder HWacc. 184

6.9 Overview of the HW-LbL-FAD HWacc. 186

6.10 Overview of the HADeLoC HWacc. 190

6.11 Comparison in terms of the resource utilization made by the HWaccs devel-
oped for the FPGA implementation of the HyperLCA, the HW-LbL-FAD
and the HADeLoC methods. Additionally, they have been also compared
with a parallel and independent implementation of the HyperLCA and the
HW-LbL-FAD methods on the same hardware device. 199

List of Figures xxi

6.12 Comparison in terms of the maximum processing data rates achieved by
the HWaccs developed for the FPGA implementation of the HyperLCA,
the HW-LbL-FAD and the HADeLoC methods. Additionally, they have
been also compared with a sequential execution of the HyperLCA and the
HW-LbL-FAD algorithms on the same hardware device. 201

6.13 GPU thread-level parallelism (image extracted from [4]). 203

6.14 Pipeline of warps in a SM with two warp schedulers. 204

6.15 Pipeline with a gap of time where no warps are eligible. 205

6.16 Flow-chart of the HyperLCA Transform in the Host-Device model 209

6.17 Parallel Model 1: HyperLCA compressor stages are sequentially performed
in a single CPU process but the HyperLCA Transform stage is accelerated
in the GPU [5]. 212

6.18 Parallel Model 2: the HyperLCA Transform and the Entropy Coding stage
are managed by two independent CPU processes. The HyperLCA Trans-
form is also executed by the GPU [5]. 213

6.19 Parallel Model 3: the HyperLCA Transform has been implemented on the
GPU using three non-default streams while theEntropy Coding stage is
running in another CPU process [5]. 214

6.20 Speed-up obtained by the described parallel models with respect to the
reference version of the HyperLCA compressor in the NVIDIA Jetson TK1
board. 217

6.21 Speed-up obtained by the described parallel models with respect to the
reference version of the HyperLCA compressor in the NVIDIA Jetson TX2
board. 217

6.22 Comparison of the speed-up obtained in the compression process, in terms
of FPS and the input parameter CR, reached by a Xilinx Zynq-7020 pro-
grammable SoC and some NVIDIA power-efficient embedded computing
devices, such as the Jetson Nano, Jetson TX2 and Jetson Xavier-NX. (a)
Nbits = 12, BS = 1024. (b) FPS Nbits = 8, BS = 1024. 224

6.23 Comparison of the energy efficiency in the compression process, in terms
of the ratio between obtained FPS and power consumption and the input
parameter CR, reached by a Xilinx Zynq-7020 programmable SoC and some
NVIDIA power-efficient embedded computing devices, such as the Jetson
Nano, Jetson TX2 and Jetson Xavier-NX. (a) Nbits = 12, BS = 1024. (b)
FPS Nbits = 8, BS = 1024. 225

A.1 Graphical representation of the variables and their dimensions involved by
each proposed core operation when using the original hyperspectral data
for the extraction of characteristic pixels and the transpose of the data for
band selection. 246

A.2 RGB representation of the HSIs employed in the experiments (a) Drone
Image 1. (b) Drone Image 2. (c) Drone Image 3. (d) Laboratory-controlled
scene. 252

A.3 Location of the spectra employed to generate the average target signatures
to be detected. 252

xxii List of Figures

A.4 Target Detection results. (a) Drone Image 1. (b) Drone Image 2. (c) Drone
Image 3. (d) Laboratory-controlled scene - bean spectra. (e) Laboratory-
controlled scene - plastic spectra. 253

A.5 Example of two vectors, u*
1 and u*

2 , estimated by the FUN algorithm for
the calculation of the abundances. 256

A.6 RGB representation of the HSIs employed in the experiments. (a) Samson
data and the ground truth abundance maps. (b) Jasper Ridge data and
the ground truth abundance maps. (c) Urban data and the ground truth
abundance maps. (d) AVIRIS Cuprite data and the reference endmember
spectra. 261

A.7 Classification maps obtained from the ground-truth of the abundance es-
timation and the ones obtained by our proposal for the Samson data, the
Jasper Ridge data and the Urban data. 263

A.8 RGB representation of the HSIs employed in the experiments. (a) Image
1. (b) Image 2. (c) Image 3. (d) Image 4. (e) Image 5. Pixels highlighted
in colour are used as labelled training samples. 266

A.9 Classification maps obtained by the proposed method. (a) Image 1. (b)
Image 2. (c) Image 3. (d) Image 4. (e) Image 5. Colours represent each
user-defined class label. 269

B.1 Principales contribuciones de esta Tesis Doctoral. 282

List of Tables

2.1 Number of OPs and computational complexity of the proposed set of core
operations defined in Algorithm 2. 40

2.2 Number of bits used for representing the integer and decimal parts of the
variables involved in the proposed set of core operations. 44

3.1 Number of OPs performed by the LbL-FAD algorithm and the HW-LbL-
FAD method for computing the projection separation index, d, for the BS
pixels within a HSI block, Mk. 63

3.2 Assessment metric summary about the quality of the anomaly detection
results obtained by the LbL-FAD, the OSPRX, the LSMAD and the PLP-
KRXD algorithms for the data set displayed in Figure 3.2. 76

3.3 Number of bits used for representing the integer and decimal parts of the
variables involved by the HW-LbL-FAD algorithm. 81

3.4 Detection performance of the original LbL-FAD algorithm and the four
different versions proposed for the HW-LbL-FAD method. The TPR and
the FPR are in percentage. 82

3.5 Number of OPs required by the OSPRX and the HW-LbL-FAD methods
for the Synthetic Image, the WASP RIT scene, the AVIRIS WTC scene
and the Drone Image1. 84

4.1 Number of bits used for representing the integer and decimal parts of the
variables involved by the HyperLCA Transform. 108

4.2 Compression Results. Achieved CR and bppp for the six datasets. 113

4.3 Compression Results. Achieved SNR, MAD, RMSE and SSIM for Drone
Image 1, Drone Image 2 and Drone Image 3. 114

4.4 Compression Results. Achieved SNR, MAD RMSE and SSIM for Drone
Image 4, Drone Image 5 and Drone Image 6. 116

4.5 Number of OPs required by the HyperLCA Trasnform and the Entropy
Coding stages to process a single block of BS hyperspectral pixels 122

4.6 Evaluation of the number of OPs required by the HyperLCA Transform and
the HyperLCA Entropy Coding to process an image block of BS pixels, Mk.122

5.1 Compression Results. Achieved CR, bpppb, SNR, MAD, RMSE, PSNR
and SSIM for the six data sets. 147

xxiii

xxiv List of Tables

5.2 Number of OPs performed for the processing of one image block, Mk, by
the HyperLCA compressor, the HW-LbL-FAD algorithm and the proposed
methodologies for the simultaneous execution of the anomaly detection
process and the lossy compression of HSIs, that is, the ADeLoC and the
HADeLoC approaches. 158

6.1 Most relevant characteristics of the NVIDIA modules Jetson TK1, Jetson
Nano, Jetson TX2 and Jetson Xavier-NX, as well as the ZedBoardTM de-
velopment kit. 170

6.2 Post-Synthesis results for the different versions of the HyperLCA Transform
HWacc for a Xilinx Zynq-7020 programmable SoC and image block up to
160 bands. 192

6.3 Post-Synthesis results for the HyperLCA Entropy Coder HWacc for a Xilinx
Zynq-7020 programmable SoC and pixel size up to 160 bands. 192

6.4 Maximum frame rates (FPS) obtained by the HyperLCA Transform HWacc
on a Xilinx ZynQ-7020 programmable SoC at a clock frequency of 143 MHz
for hyperspectral images with 160 bands. Evaluation is made according to
different PE settings. 193

6.5 Post-Synthesis results for the different versions of the HW-LbL-FAD HWacc
for a Xilinx Zynq-7020 programmable SoC and image block up to 160 bands.194

6.6 Maximum frame rates (FPS) obtained by the HW-LbL-FAD HWacc on
a Xilinx ZynQ-7020 programmable SoC at a clock frequency of 143 MHz
for hyperspectral images with 160 bands. Evaluation is made according to
different PE settings. 195

6.7 Post-Synthesis results for the different versions of the HADeLoC HWacc
for a Xilinx Zynq-7020 programmable SoC and image block up to 160 bands.197

6.8 Maximum frame rates (FPS) obtained by the HADeLoC HWacc on a Xilinx
ZynQ-7020 programmable SoC at a clock frequency of 143 MHz for hyper-
spectral images with 160 bands. Evaluation is made according to different
PE settings. 198

6.9 Kernel configurations in terms of CUDA threads and thread blocks. 211

6.10 Evaluation of the average execution times and frame rates obtained by the
NVIDIA Jetson TK1 and the Jetson TX2 boards. 221

6.11 Evaluation of the average frame rates obtained by the NVIDIA Jetson TK1,
the Jetson Nano, the Jetson TX2 and the Jetson Xavier-NX boards using
the Parallel Model 3. 222

6.12 Maximum frame rates obtained in the compression process by a Xilinx
Zynq-7020 programmable SoC and some NVIDIA power-efficient embedded
computing devices, such as the Jetson Nano, Jetson TX2 and Jetson Xavier-
NX. 224

A.1 Comparison of the spectral signatures obtained by the proposed method,
the FUN algorithm and the VCA algorithm. 262

List of Tables xxv

A.2 RMSE values obtained after the comparison between the reference abun-
dance maps and the ones obtained by our proposal using the reference
signatures of the endmembers for the Samson, Jasper Ridge and Urban
data sets. 262

Abbreviations

2D Two-Dimensional

3D Three-Dimensional

HSI Hyperspectral Image

AAT Arbitrary Affine Transform

ACE Adaptive Coherence/Cosine Estimator

AD Anomaly Detection

ADeLoc Optimized proposal for the simultaneous detection of anomalous pixels

and the lossy compression of HSIs

AISA Airborne Imaging Spectrometer for Applications

ASIC Application Specific Integrated Circuits

AutoGAD Autonomous Global Anomaly detector

AVIRIS Airborne Visible/InfraRed Imaging Spectrometer

bpppb Bits Per Pixel Per Band

BS Block size

CASI Compact Airborne Spectrographic Imager

CCSDS Consultative Committee for Space Data Systems

xxvii

xxviii Abbreviations

CHRIS Compact High Resolution Imaging Spectrometer

CEM Constraint Energy Minimization

CNN Convolutional Neural Network

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CR Compression ratio

CRD Collaborative-representation-based Detector

CUDA Computer Unified Device Architecture

DAIS Digital Airborne Imaging Spectrometer

DBN Deep Belief Network

DWT Discrete Cosine Transform

DDR Double Data Rate

DMR Dual Modular Redundancy

DDR Dynamic range

DSP Digital Signal Processing

DWT Discrete Wavelet Transform

eMAS Enhanced MODIS Airborne Simulator

ESA European Space Agency

EnMAP Environmental Mapping and Analysis Program

EO Earth observation

FCLSU Fully Constrained Least Squares linear spectral Unmixing

FF FlipFlops

Abbreviations xxix

FIFO First in, First out

FL Fast Lossless

FLEX Fast Lossless EXtended

FLOP Floating-Point Operation

FPGA Field-Programmable Gate Array

FUN Fast algorithm for linearly UNmixing hyperspectral images

FOV Field of view

FPR False positive rate

FP False positive

FPS Frame per second

FSM Finite State Machine

FWHM Full width at half maximum

GAN Generative Adversarial Network

GBs Giga-bytes

GIPREBAD Global Iterative Principal Component Analysis

Reconstruction-Error-based anomaly detector

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

HYDICE Hyperspectral Digital Imagery Collection Experiment

HyMap Hyperspectral Imaging Sensor

HyperLCA Lossy Compression Algorithm for Hyperspectral image systems

xxx Abbreviations

HySIME Hyperspectral Subspace Identification by Minimum Error

HyT Hyperspectral Thermal Imaging

HW-LbL-FAD Hardware-friendly Line-by-Line Fast Anomaly Detector for

Hyperspectral Imagery

HADeLoC Hardware-friendly proposal for the simultaneous detection of anomalous

pixels and the lossy compression of HSIs

IASI Infrared Atmospheric Sounding Interferometer

ICA Independent Component Analysis

IQ Interquartile range

ICR Infrared

IP Intellectual property

IWT Integer Wavelet Transform

JPEG Joint Photographic Experts Group

KLT Kahrunen-Loève Transform

LbL-FAD A Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery

LMM Linear Mixing Model

LMS Least Mean Square

LPGPU Low-power Graphics Processing Unit

LRASR Low Rank and Sparse Representation anomaly detector

LRR Low-Rank Representation

LRX Local Reed-Xiaoli

LSMAD Low-rank and Sparse matrix decomposition-based Mahalanobis distance

method

Abbreviations xxxi

LUT Look-up-table

LWIR Long Wavelength InfraRed

MAC Maximum abundance classification

MAD Maximum absolute difference

MaxSE Maximum single error

MF Matched Filter

MSE Mean Square Error

MWIR Medium Wavelength InfraRed

NASA National Aeronautics and Space Administration

NIR Near InfraRed

OP Operation

OSP Orthogonal Subspace Projection

OSPRX Orthogonal Subspace Projection after Reed-Xiaoli

PCA Principal Component Analysis

PCI Peripheral Component Interconnect

PE Processing Element

pFUN parallel Fast algorithm for linearly UNmixing hyperspectral images

PL Programmable Logic

PLP-KRXD Progressive Line Processing of a Kernel version of the RX algorithm

POT Pairwise Orthogonal Transform

PPI Pixel Purity Index

PRISMA Precursore Iperspettrale della Missione Applicativa

xxxii Abbreviations

PS Processor System

PSNR Peak Signal-to-Noise Ratio

RAM Random Access Memory

RGB Red, Green, Blue

RHBD Radiation Hardened By Design

RIT Rochester Institute of Technology

RMSE Root Mean Square Error

ROIS Reflective Optics System Imaging Spectrometer

RTL Register Transfer Language

RX Reed-Xiaoli

RXD Reed-Xiaoli Detector

SAM Spectral Angle Mapper

SAFL Spectral Adversarial Feature Learning

SNR Signal-to-Noise Ratio

SM Streaming multiprocessor

SoC System on chip

SRAM Static Random Access Memory

SSH (Secure Shell Protocol

SSRX Subspace Reed-Xiaoli

SSRX Structural Similarity Index

SVD Singular Value Decomposition

SUnSAL Spectral Unmixing by variable Sitting and Augmented Lagrangian

Abbreviations xxxiii

SVM Support Vector Machine

SWIR Short Wavelength Infrared

TMR Triple Modular Redundancy

TPR True Positive Rate

TP True Positive

UAV Unmanned aerial vehicles

UNRS Unsupervised Nearest Regularized Subspace

USGS U.S. Geological Survey

UTD Uniform Target Detector

VCA Vertex Component Analysis

VD Virtual Dimensionality

Verilog HDL Verilog Hardware Description Language

VHDL VHSIC Hardware Description Language

VNIR Visible and Near InfraRed

VSWIR Visible Shortwave InfraRed

WASP Wildfire Airborne Sensor Program

WLAN Wireless local area network

WTD World Trade Center

Chapter 1

Introduction

The main objective of this Chapter is to present the motivations for this Thesis, whose ma-

jor contributions are in the field of hyperspectral image processing oriented to pushbroom-

based systems working on real or near real-time constraints. Firstly, the basics about

hyperspectral imaging are briefly outlined alongside with the most typical capturing pro-

cesses and their applications. Secondly, the issue around the onboard processing of hyper-

spectral images is discussed as well as the necessity of new hardware-friendly algorithmic

solutions that permits the coexistence of multiple hyperspectral analysis techniques onto

the same computing device. Finally, the research goals and contributions of this Thesis

as well as the organization of this document are presented.

1

2 Chapter 1. Introduction

1.1 Rationale

In the last decades, hyperspectral imagery systems have become one of the most powerful

tools for the observation and data acquisition of the Earth surface. Nowadays, hyperspec-

tral technology is widely used in multiple remote sensing applications such as precision

agriculture, geoscience, environmental monitoring, surveillance and homeland security,

among others [6–11]. In addition, hyperspectral imaging is also increasingly being used in

other fields such as biomedical, commercial and industrial applications for food quality,

medical diagnosis, quality control in recycling plants, in-line material sorting, etc. [12–16].

This rising popularity is driven by the great richness of spectral information that this

three-dimensional (3D) imaging technique collects along the electromagnetic spectrum.

Whereas the human eyes are sensitive to three broadband spectral bands (red, green

and blue), hyperspectral sensors gather spectral information of hundreds of continuous

and narrow wavelengths along the electromagnetic spectrum, which allows the analysis of

spectrum areas beyond the visible light such as the near-infrared (NIR) or the infrared

(IR). Therefore, any single pixel within a hyperspectral image (HSI) is associated with

a full continuous spectrum in a given range, commonly called spectral signature of the

pixel, that is helpful for the detection and identification of specific materials or targeted

entities on the basis of their unique spectral signature.

Hence, the potential of the hyperspectral imaging systems for the Earth observation is

clearly evident. For this reason, remote sensing is the field in which hyperspectral imaging

techniques have traditionally acquired more relevance. In this sense, hyperspectral data

analysis permits performing a detailed examination of the land surfaces and the iden-

tification of visually similar materials, as well as the estimation of physical parameters

of many complex surfaces. Within this domain, three different hyperspectral acquisition

platforms have been extensively utilized, such as aeroplanes, satellites and drones.

Airborne hyperspectral sensors; such as Airborne Visible/InfraRed Imaging Spectrome-

ter (AVIRIS) [17], Compact Airborne Spectrographic Imager (CASI) [18], Hyperspectral

Digital Imagery Collection Experiment (HYDICE) [19], Digital Airborne Imaging Spec-

trometer (DAIS) [20], Reflective Optics System Imaging Spectrometer (ROSIS) [21], Air-

borne Imaging Spectrometer for Applications (AISA) [22], Hyperspectral Imaging Sensor

(HyMap) [23], Enhanced MODIS Airborne Simulator (eMAS) [24], among others [25];

Chapter 1. Introduction 3

have played a decisive role in the inclusion of the hyperspectral research in the develop-

ment of the current remote sensing applications and data science due to the well trade-off

between spatial and spectral resolution.

Nonetheless, airborne systems do not allow regular and synoptic coverages over large areas

as spaceborne sensors [6]. For this reason, different spaceborne missions carrying hyper-

spectral satellites have been launched since 1992, such as Hyperion (EO-1 Mission) [26],

Compact High Resolution Imaging Spectrometer (CHRIS) [27], Precursore Iperspettrale

della Missione Applicativa (PRISMA) [28], Environmental Mapping and Analysis Pro-

gram (EnMAP) [29]. This reduced number of hyperspectral spaceborne sensors is rooted

by the high volume of data to be stored and processed against the limited hardware re-

sources, apart from other issues, such as involved sensor costs and external factors as

atmospheric distortions.

Additionally to the previous solutions, the unmanned aerial vehicles (UAVs) are gain-

ing momentum in the last years in applications oriented to collect data for inspection,

surveillance and monitoring in the areas of defence, security, environmental protection,

precision agriculture and civil domains, among others [11, 30, 31]. The potential of these

aerial platforms in relation to the previous solutions, such as satellites or manned airborne

platforms, is that they represent a lower-cost approach with a more flexible revisit time

and a better spatial and spectral resolution, which permits a deeper and more accurate

data analysis. UAVs have also attractive features in terms of flexibility to carry different

types of sensors and to plan and modify a trajectory if necessary. The main drawbacks

of these aerial observation platforms are their limited autonomy due to the battery life,

which is around 30 minutes for a commercial product [32].

Nevertheless, despite the variety of remote sensing platforms, images are traditionally

downloaded to the ground segment in order to be off-line pre-processed and then dis-

tributed to the final users that perform the final processing (classification, unmixing,

target detection, anomaly detection, etc.) on supercomputing systems typically based

on Graphics Processing Units (GPUs), Central Processing Units (CPUs), heterogeneous

CPU/GPU architectures, or even Field-Programmable Gate Array (FPGAs) [33]. The

main reasons behind this are the limited available onboard computational resources as

well as the restrictions in power budget and storage space [34, 35].

Unfortunately, the limited bandwidth of the downlink connection from the remote sensing

platforms to the Earth surface introduces delays related to the transmission of a large

amount of data between the source and the final target. This introduces a bottleneck

4 Chapter 1. Introduction

that can seriously reduce the effectiveness of real-time applications or applications that

demand prompt replies [36, 37]. Consequently, real-time onboard processing has become

a very interesting topic within the remote sensing field to provide a solution to this type

of applications [37–40].

Nevertheless, it is still necessary to overcome many other obstacles imposed by the avail-

able aboard hardware devices in order to efficiently carry out this alternative and to exe-

cute onboard the hyperspectral data processing. In this context, many different algorithms

have been developed in the last decades for providing solutions to all the aforementioned

applications using the hyperspectral technology. However, hyperspectral imaging appli-

cations under real or near real-time constraints require prompt response and hence, to

rapidly execute the algorithmic proposals. On this basis, the most commonly used solution

consists in implementing the hyperspectral processing algorithms into high performance

architectures that are suitable for parallel computing, such as GPUs and FPGAs. In

fact, many works have been uncovered during the last years for implementing different

algorithms for processing HSIs into parallel hardware with the purpose of speeding up the

hyperspectral analysis process [41–47].

Regrettably, the algorithms traditionally proposed for the hyperspectral analysis have

been addressed as independent entities, using those mathematical methods that better

maximize the results for each particular case. In addition, these approaches normally give

rise to complex algorithms characterized by computationally costly operations, intensive

memory requirements, high implementation costs and a non-scalable nature. For instance,

some of the most widely used operations are eigenvalue decomposition, covariance ma-

trix computation, matrix inverse computation and factorization, resulting in very hard

problems. For these reasons, a great deal of effort has been made to reduce the heavy com-

putational burden required by these operations in order to accelerate the process through

alternative mathematical methods or through parallel computing via high-performance

architectures. Nevertheless, this last alternative results in very inefficient hardware im-

plementations where there is little room for speeding them up due to the mathematical

complexity of the involved operations as well as the so many data dependencies.

All of this makes the onboard processing of the acquired hyperspectral data not fully

viable, especially under real-time constraints [38, 48]. In view of the computationally

intensive nature of the hyperspectral imaging algorithms found in the literature, many

efforts have been done in the last years in order to develop lower computational complexity

algorithmic solutions. Unfortunately, many of these state-of-the-art methods need to work

Chapter 1. Introduction 5

with the entire hyperspectral image cube to perform the hyperspectral analysis. This

represents an important limitation for real-time applications, specially considering that

the most widely used sensors in remote sensing applications are based on pushbroom

scanners [49], [31], which sense the data in a line-by-line fashion, perpendicular to the

flight direction of the capturing platform [50], [51].

This situation becomes even more stringent when multiple time-sensitive image process-

ing techniques have to be executed. In this case, the simplest and most commonly used

solution is to select a different mathematical algorithm from the wide assortment of pro-

posals encountered in the literature for each hyperspectral data analysis technique to be

addressed and accelerated using parallel hardware devices. The problem arises in that

they have to be sequentially processed onto the same computing device due to restrictions

in terms of power, weight and size. In this sense, FPGAs offer the appealing possibility of

adaptively selecting a hyperspectral processing algorithm to be applied due to their inher-

ent reconfigurability nature while GPUs deliver up to hundreds and thousands of Gigaflops

of double-precision peak performance. However, all of this is not without challenges in

terms of energy, flexible parallelization strategies, execution times, resource optimization

and human endeavours invested during the implementation stage [52, 53].

Unfortunately, the above mentioned issues make the onboard execution of hyperspectral

imaging processing not fully viable, specially under real-time constraints when different

time-sensitive applications coexist onto the same computing device. In this context, this

Thesis has contributed to address the existing needs of nowadays remote sensing applica-

tions as follows:

� Developing hardware-friendly algorithmic solutions that are thought from their con-

ception for being implemented into parallel computing devices.

� Adapting the proposed methods for being executed in a line-by-line fashion in order

to provide a compromise performance for applications based on pushbroom/whiskb-

room sensors.

� Defining a set of reusable core operations that permits the simultaneous execution

of many different tasks at the same time with the advantage of sharing the most

computationally intensive operations. As a consequence, it promotes the decrease

in the amount of computational resources compared with those scenarios in which

different state-of-the-art algorithms are independently executed for each targeted

processing analysis.

6 Chapter 1. Introduction

� Demonstrating the real-time performance of the proposed algorithmic solutions

through their acceleration in low-power parallel computing devices, such as FPGAs

and GPUs.

1.2 Preliminary concepts

The following subsections introduce the reader to the main topics that will be repeat-

edly mentioned throughout this document, including a definition about spectral images

and how they are characterized according to their spectral and spatial resolutions, an

explanation about the different types of existing data collection systems and, a brief ex-

planation of the motivations of this Thesis. On this later point, the issues around the

onboard processing of HSIs are listed as well as the majority of hyperspectral imaging

analysis techniques and the methods traditionally employed to address them. Addition-

ally, a short clarification of how we have tackled this matter with the set of core operations

proposed in this Thesis is also given.

1.2.1 Characterization and resolution of the spectral images

Spectroscopy studies the interaction between the light that is emitted by or reflected from

materials and its variation in energy with wavelength. As applied to the field of optical

remote sensing, spectroscopy exploits the fact that materials reflect, scatter, absorb and

emit electromagnetic radiation in ways characteristic of their molecular composition and

their macroscopic scale and shape [54]. In the field of reflected-light spectroscopy, spectral

imaging sensors are designed to measure the ratio of reflected energy to incident light as

a function of wavelength. In this context, reflectance variation with the wavelength is a

property of the materials that selectively absorb the incident energy in certain regions of

the electromagnetic spectrum. On this basis, by measuring the reflectance arriving at a

sensor at many broad spectral bands, the resulting pattern or spectrum can be used to

identify the materials in a scene and discriminate among different classes of materials, as

shown in Figure 1.1 where the spectrum of different materials are plotted.

All this leads to 3D spectral images composed of a stack of two-dimensional (2D) images

that represent the reflectance in one respective band or wavelength interval [55]. Due

to this interpretation, HSIs are also termed data cubes where the spatial information is

Chapter 1. Introduction 7

Figure 1.1: Spectral signatures of different materials (image extracted from [1]).

represented in the X-Y plane and the spectral information in the Z-direction, as shown in

Figure 1.2 where Nr, Nc and Nb are the number of rows, columns and bands, respectively.

Figure 1.2: Spectral data cube (image extracted from [2]).

In terms of the geometrical properties of a spectral image, the spatial resolution refers to

the size of each pixel in the X-Y plane, which is a function of the field of view (FOV)

of the remote sensing imaging system, while the spectral resolution is determined by

the bandwidth of the spectral bands. Since images are spatially and spectrally sampled

by digital sensors, it is also needed to define an extra resolution measurement named

radiometric resolution. This corresponds with the sensitivity of the imaging system to

discriminate very slight differences in the magnitude of the captured electromagnetic

energy. In other words, the radiometric resolution is defined by the number of bits required

8 Chapter 1. Introduction

for storing the energy sensed in each spectral band of each spatial pixel. The higher

radiometric resolution of the sensor, the more sensitive it is to detect small differences in

the reflected energy and the more bits are required.

While the radiometric resolution of the spectral imaging sensors is typically set to 8 to 16

bits per pixel and per band, the spatial and spectral resolutions widely vary depending

on the sensor and the targeted application. For this reason, spectral images are typically

classified according to their spectral resolution and number of spectral bands as multi-

spectral, hyperspectral and ultraspectral images. Although there is is not one mind of

issues of how to stablish the differences between them, HSIs are defined in this work as

those that collect at least 100 spectral bands of less than 20 nm width. On the con-

trary, multispectral sensors are referred to as those collecting less than 20 non-contiguous

spectral bands [56]. For this reason, hyperspectral sensors are more sensitive to subtle

variations in reflected energy since it is measured in narrower and more numerous bands

than multispectral sensors. This feature provides an almost continuous spectral measure-

ment across the entire electromagnetic spectrum, allowing the detection of even slight

differences among spectra.

Although the spatial resolution is not considered for making a distinction between hy-

perspectral and multispectral images, there is a trade-off between the increment in the

number of bands of the spectral images and the spatial resolution. Normally, a higher

spectral resolution is linked to a reduction in the spatial resolution. Hence, multispectral

systems typically provide higher spatial resolutions than hyperspectral ones. Neverthe-

less, for certain applications, there is a need of a really high spectral resolution and hence,

a larger number of spectral bands but, on the downside, with a lower spatial resolution.

These systems, which typically collect thousands of bands, are classified as ultraspectral

imaging systems.

Finally, most spectral imaging systems work in a wavelength range from the visible to the

infrared, the latter commonly divided in bands called Near InfraRed (NIR), λ: 0.7 - 1.1

µm; Short Wavelength InfraRed (SWIR), λ: 1.1 - 3.0 µm; Medium Wavelength InfraRed

(MWIR), λ: 3.0 - 5.5 µm; and Long Wavelength InfraRed (LWIR), λ: 7.7 - 14 µm.

1.2.2 Data collection systems

Hyperspectral data collection systems typically involve some forms of time-sequenced

imaging. The capturing process can be accomplished by either a time sequence of 2D

Chapter 1. Introduction 9

spatial images at each spectral band of interest, or a time sequence of cross-track one-

dimensional line of spatial pixels with all their spectral bands. Pushbroom and whiskb-

room scanners are based on the second approach where the entire HSI is obtained joining

the one-dimensional spatial images collected over time. They are the most widely used

sensors in remote sensing applications, since they take advantage of the movement of the

aircraft, the satellite or the UAV that carries them for capturing the data.

Figure 1.3 graphically describes the sensing process with these kinds of sensors. As it can

be noticed, whiskbroom scanners (Figure 1.3 a) use a rotating mirror to scan across-track

and to record the data one pixel at a time, that is, pixel-by-pixel and line-by-line. On

the contrary, pushbroom scanners (Figure 1.3 b) collect the data along-track using a row

of sensors arranged perpendicular to the flight direction, that is, the data are collected

line-by-line.

Rotating
mirror

n bands

Prism

Swath width

Scan
direction

Flight
direction

Swath width

Flight
direction

Optics

Array of detectors

Dispersing element

n bands

(a) (b)

Figure 1.3: Remote sensing scanners. a) WhiskBroom b) Pushbroom (images ex-
tracted from [3]).

1.2.3 Hyperspectral data analysis methods and applications

As it was already explained, hyperspectral imaging provides a high spectral resolution by

decomposing the reflected incident light on an observed scene into a large number of very

close spectral bands, so that the spectra of different objects present a nearly continuous

shape. This characteristic turns the spectral analysis into an effective technique for distin-

guishing different objects, especially those land cover types with visually indiscriminate

10 Chapter 1. Introduction

appearances, which enables a myriad of applications requiring fine identification of mate-

rials or estimation of physical parameters. To do this, the majority of hyperspectral data

analysis methods and algorithms for image processing in hyperspectral remote sensing

can be categorized as follows:

1. Anomaly and target detection:

Hyperspectral imagery has been used in reconnaissance and surveillance applications

where targets of interest are detected and identified. In some applications, there is a

prior knowledge about the spectral characteristics of the desired targets. Target de-

tection consists in searching known spectral signatures of interest, for example from

a database. In these situations, the target spectral characteristics can be defined by

a single target spectrum or by a signal subspace obtained from a spectral library or

from a set of training data. The most employed algorithms within this field are the

Constraint Energy Minimization (CEM) algorithm, the Adaptive Coherence/Cosine

Estimator (ACE) detector and the Matched Filter (MF) [57].

On the contrary, anomaly detection is a generalization of target detection where

there is no prior information about the target signature [58], [59]. Anomalies are

regarded as a group of rare pixels whose spectral signature differs significantly from

their surroundings, i.e., those pixels that differ from the background pattern and

whose existence may be indicative of abnormal or suspicious behaviour. Hence,

anomaly detection could be seen as a binary classification problem where targets

are scarce while the background class is predominant. In particular, anomaly de-

tection methods extract characteristic features from the background, considering as

anomalies those groups of pixels that differ more from the pattern. To do that,

anomaly detectors mark every image pixel with a certain score, considering as rare

pixels those whose values are higher than a threshold. In the recent decades, several

anomaly detection algorithms have been proposed. The well-known Reed-Xiaoli

(RX) [60] algorithm is one of the first developments in this field, being viewed as a

benchmark to which other methods are compared. Several variations of the RX de-

tector have been proposed in the literature in order to improve its performance [44].

[61]. Alternatively, different non-RX-based algorithms have been also developed in

the recent decades, which can automatically estimate the background without as-

suming a normal probability function. Concretely, the sparse representation [62, 63]

and the collaborative representation [64] have received considerable attention in the

field of hyperspectral anomaly detection.

Chapter 1. Introduction 11

2. Compression:

Limitations in the transmission bandwidth of the data link between the remote sens-

ing platforms to the Earth surface jointly with the large volume of data sensed by the

latest-generation sensors have positioned the data compression as one of the hottest

topics in the hyperspectral imaging research community in the last decades. The

compression process consists in modifying, encoding or converting the bits structure

of the original hyperspectral data in such a way that it reduces the data volume

to be stored, transmitted and processed. In general terms, lossless or near-lossless

image coding are usually preferred in onboard compression scenarios in order to en-

sure a high fidelity of the reconstructed images. Nevertheless, the former techniques

provide compression ratios that could be considered as moderate [65, 66]. In this

scenario, limited bandwidth and ever-growing data rates make compulsory to reach

higher compression ratios, which forces moving from lossless to lossy compression

solutions.

Generally, hyperspectral compression methods consist of a spatial and/or a spectral

decorrelator, a quantization stage and an entropy coder. The decorrelator can be

transform-based or prediction-based. In the former approach, a transform like the

Discrete Wavelet Transform (DWT), Kahrunen-Loève Transform (KLT), or Prin-

cipal Component Analysis (PCA) is utilized to decorrelate the data, whereas in

the latter, the samples are predicted from neighbouring samples (in the spectral

or spatial domains), and the prediction errors are encoded [3]. Transform-based

methods are mostly preferred for lossy compression and normally are based on 2D

compression techniques coupled by an additional transform in the spectral domain.

A popular approach is to apply a one-dimensional spectral decorrelator, such as

KLT or the DWT, followed by the Joint Photographic Experts Group (JPEG) 2000

standards[67–69]. However, this methodology is considered a too complex solution

that requires significant computational resources, which are not available onboard.

In this scenario, predictive coding paradigm represents an alternative that presents

a good trade-off between performance and computational complexity. Although

they are preferred for lossless compression, near-lossless or lossy compression can be

achieved by means of selecting an appropriate quantization method. In this context,

the Consultative Committee for Space Data Systems (CCSDS) has been working to

develop a family of recommended compression schemes following a general paradigm

of low complexity requirements, including lossy extensions of the standards [70–72].

3. Dimensionality reduction:

12 Chapter 1. Introduction

The extremely high dimensionality and size of the hyperspectral data, resulting

from the improved spatial, spectral and temporal resolutions provided by the new-

generation hyperspectral sensors, makes the processing of HSIs a complex and com-

putationally expensive task. Additionally, the high number of bands causes the

cursed phenomena or Hughes effects, which is intimately bound up with high di-

mensional spaces where the available data become sparse [73]. This sparsity is prob-

lematic for any method that requires statistical significance. In order to address this

issue, the amount of data needed to support the results must grow exponentially

with the dimensionality.

In this context, a dimensionality reduction of the hyperspectral vectors can highly

facilitate the analysis afterwards. As it has been already mentioned, HSIs are spec-

trally and spatially smooth and as a consequence, features of HSIs normally reside

in a subspace that normally has a much smaller dimension than the original number

of spectral bands. On this basis, the goal of dimensionality reduction is to obtain

an image with a reduced number of bands while trying to preserve the most useful

spectral information as possible. In this context, dimensionality reduction consists

in computing an spectral subspace in order to facilitate subsequent processing tasks,

such as classification. Traditionally, methods based on Principal Component Anal-

ysis (PCA) are the most employed ones to decorrelate the spectral information and

project the data in a lower dimensional manifold [74].

4. Unmixing:

There is always a trade-off between the spatial and spectral resolution of an image

sensor. HSIs offer a high spectral resolution in return for a limitation in the spatial

resolution, which is normally less than the size of most land object types, and so,

spectrally mixed pixels exist. Hence, the signal recorded by a hyperspectral sensor

at a given band and from a given pixel is a mixture of the “light” scattered by the

constituent substances located in the respective pixel coverage [55]. Therefore, it is

common that different materials coexist at a subpixel level within the image. This

results in pixels whose spectral signature does not directly correspond with any of

the spectral signatures of the materials that conform a particular pixel, but with a

mix of them. As a consequence, in this scenario is not anymore possible to determine

what materials are present in pixels directly from the measured spectra. Hence, the

discrimination of materials based on their unique spectral response is compromised.

Chapter 1. Introduction 13

In this context, the hyperspectral unmixing paradigm provides a solution to the

spectral mixing modeling issue, which consists in determining the spectrally pure

components, also called endmembers, present in mixed pixels as well as the amount

of spectral information collected by each image pixel that can be represented by

each endmember, also called abundances. In this way, the image interpretation

can be deepened into a subpixel level, which is very useful for accurate land object

mapping and the physically spectra inversion. In the last decades, hyperspectral

spectral unmixing has become one of the hottest topics in the information extrac-

tion field by remote sensed images and thus, many different contributions have been

uncovered. Foremost among them are the Pixel Purity Index (PPI) [75], Vertex

Component Analysis (VCA) [76] and the N-FINDR [77] as algorithms for the ex-

traction of the endmembers and, the Fully Constrained Least Squares linear spectral

Unmixing (FCLSU) [78] and the Spectral Unmixing by variable Sitting and Aug-

mented Lagrangian (SUnSAL)[79] as methods for the calculation of the abundance

fractions.

5. Classification:

HSIs are spectrally and spatially smooth. For this reason, neighbouring spectra gen-

erally correspond to similar materials and thus, they can be grouped to characterize

materials. This process can be done by classification techniques. In the hyperspec-

tral imagery domain, classification tries to discriminate different materials assigning

an unique label to each pixel vector. Therefore, the spatial resolution is a quite

important feature for classification techniques, as their main assumption is that the

spatial resolution of the data is high enough to assume that pixels are mostly rep-

resented by a single predominant spectral signature. In the opposite scenario, in

which data mostly contain mixed pixels, it is preferable to use spectral unmixing

techniques to perform the analysis [55].

Supervised classification has been more widely used in the literature, and in partic-

ular, the Support Vector Machine (SVM) algorithm [80] has been the most popular

adopted solution among those offered by the state-of-the-art. However, the super-

vised techniques faces several challenges related with the high dimensionality of the

data and the limited availability of training samples. A great deal of research has

aimed to find more efficient ways to overcome this problem. Recent research method-

ologies to solve these issues are feature mining [74], subspace-based approaches [81]

and semi-supervised learning techniques [82]. Additionally, it also exists the unsu-

pervised learning, also named clustering, that generates clusters based on similar

14 Chapter 1. Introduction

spectral characteristics inherent in the image. Then, the data is classified in each

cluster without providing training samples of its own.

6. Change detection:

With the numerous hyperspectral missions to be launched in the near future, the

number of multitemporal HSIs taken over the same geographic scene will signifi-

cantly increase. The use of remote sensing data acquired at different times permits

to detect changes in land cover, which has proven to be a valuable tool for mon-

itoring, inspection and security. Change detection techniques employ the intrinsic

spectral signatures of materials to identify and discriminate changes among them as-

sociated with significant spectral variations in the spectrum of the data captured at

different periods of time. To do this, multitemporal analysis employs each single time

image and the correlation between HSI pairs to detect potential temporal changes.

Multitemporal strategies can be classified in three main types: image-comparison

operators, image-stacking approaches and independent image analysis. Neverthe-

less, change detection applications nowadays still pose many open issues, such as

handling of the high dimensionality and redundancy of the hyperspectral data, the

implementation of accurate preprocessing techniques, the development of highly rep-

resentative change features from the high-dimensionality spectral channels, and the

effective design of unsupervised and automatic change detection algorithms [83].

1.2.4 Acceleration through parallel computing platforms.

FPGAs and GPUs are extensively used in a wide range of hyperspectral imaging appli-

cations as parallel computing devices in charge of the execution and acceleration of the

targeted analysis techniques to be onboard carried out. In the space domain, FPGAs

have consolidated as the standard choice for onboard remote sensing processing due to

their smaller size, weight and power consumption, as well as for the existence of radiation-

hardened and radiation-tolerant FPGAs [38, 84]. However, these devices are more expen-

sive, physically larger and are often technology generations behind in both performance

and functionality than their commercial counterparts [38, 39]. Due to this reason, the

nowadays trend for small satellites is to use Commercial Off-The-Shelf (COTS) onboard

electronic devices. Moreover, commercial FPGAs based on Static Random Access Mem-

ory (SRAM) are attracting attention because of its reconfigurable capabilities and low

cost compared to Application Specific Integrated Circuits (ASICs) [85]. Nonetheless, the

Chapter 1. Introduction 15

use of COTS devices implies the necessity of applying mitigation techniques in order to

increase the robustness of the application performance in environments exposed to radia-

tion. In this sense, different Radiation Hardened By Design (RHBD) strategies have been

developed over the years to protect the FPGA-based designs against radiation [86–88],

such as Dual Modular Redundancy (DMR) schemes thought to detect errors and Triple

Modular Redundancy (TMR) designs for error masking.

Regarding GPUs, they have evolved into a highly parallel, multithreaded, many-core pro-

cessors with tremendous computational speed and very high memory bandwidth [55].

However, they exhibit very high power dissipation figures and are not radiance-tolerant,

which has prevented their full incorporation to spaceborne Earth observation missions [55].

Fortunately, the emergence of computing boards that embed low energy consumption

GPUs has made more attractive their use in power-constrained environments, especially

in onboard applications carried out by UAVs [89–91]. In addition, the adoption of GPUs

in space is also emerging rapidly due to the existing necessity of handling massive data

in-orbit or in deep space [92]. Indeed, the National Aeronautics and Space Administra-

tion (NASA) and the European Space Agency (ESA) have conducted several studies for

the investigation of heterogeneous systems based on embedded GPUs from a radiation

perspective [39, 93–95]. As an example of a CubeSat with heterogeneous architecture is

the NASA Hyperspectral Thermal Imaging (HYT) mission being integrated by University

of Hawaii [93]. Nonetheless, the main drawback of these new emergent low-power GPUs

(LPGPUs) is that they are not as high performing as their desktop counterpart, although

many advances have been done in the last years in order to bring to market low-power

embedded modules that deliver the capability of a desktop GPU workstation.

When implementing numerical algorithms on either of these computing platforms, we can

choose to represent operands with different levels of accuracy. A trade-off exists between

the numerical accuracy of arithmetic operators and the resources needed to implement

them [96]. In modern computing, there are two major approaches to store and manipulate

numeric representations of data, these are fixed-point notation and floating-point notation.

In fixed-point representation, there are a fixed number of bits for representing the integer

and fractional parts of the digital numbers. On the contrary, floating-point representation

does not reserve a specific number of bits for any of the parts. Instead, the placement

of the decimal point can float relative to the significant digits of the number through the

definition of a certain number of bits for the number itself and a certain number of bits to

stablish where the decimal place is within that number. As a consequence, floating-point

assures a much larger dynamic range than fixed point, and hence, it normally yields much

16 Chapter 1. Introduction

greater precision [97]. Nevertheless, with fixed-point notation, the gaps between adjacent

number are always equal and known before-hand whereas in floating-point notation, gaps

are not uniformly spaced in such a way that smaller numbers have smaller gaps between

them and vice-versa.

In this context, FPGAs are thought to perform concurrent fixed-point operations with a

close-to-hardware programming approach, while GPUs are optimised for parallel process-

ing of floating-point operations using thousands of small cores [98]. Indeed, it is widely

accepted that floating-point designs lead to higher power usage compared to lower pre-

cisions [99, 100]. This remains true for FPGAs where floating-point implementations

require larger amounts of FPGA resources than an equivalent fixed-point solution. More-

over, higher resource usage inherently leads to higher power consumption and ultimately

increases overall cost of a design implementation [101]. On this basis, developed algorithms

for imaging processing must take into consideration this hardware-design characteristics

in order to be efficiently implemented in the platforms that better fulfils the requirements

imposed by the targeted applications.

1.3 Motivations, research goals and contributions of

this Thesis

1.3.1 Motivations of this Thesis

As it was already mentioned, HSIs are composed of a stack of 2D images where each

one collects the reflectance of all image pixels for a narrow bandwidth of wavelengths.

On this basis, the resulting data volume typically comprises several Gigabytes of data

that have to be stored and processed, which consequently limits the performance of the

hyperspectral imaging applications under real-time or near real-time constraints. In this

context, several efforts have been directed in the last decades towards the acceleration of

hyperspectral imaging calculations using high-performance computing infrastructures and

parallel techniques. The latest advances in parallel programmable devices, such as FPGAs

and GPUs, have bridged the gap towards the onboard analysis of the hyperspectral data

[36]. However, although the computational capabilities of the next-generation commercial

computing devices is expected to continue growing, hyperspectral sensors will also continue

Chapter 1. Introduction 17

increasing in spatial, spectral and temporal resolutions, which presents new emerging

challenges in several applications with real-time processing requirements.

Additionally, the majority of algorithms for image processing in hyperspectral remote

sensing has been traditionally addressed as independent entities being developed with the

purpose of producing the best results, with independence of their mathematical complexity

and how they could be later implemented into parallel computing platforms for providing

real-time results. In this context, no matter how parallel computing devices increase their

computational resources if there is a little room for speeding up the proposed algorithms

employing parallel techniques due to the intensive computing of the involved operations

and the so many data dependencies. For these reasons, several efforts have been directed

in the last decades towards the hyperspectral imaging calculations using high-performance

computing infrastructures. Nevertheless, this situation becomes even more stringent when

multiple time-sensitive image processing techniques have to be executed. In this case, the

simplest and most commonly used solution is to select a different mathematical algorithm

for each particular case from the wide assortment of algorithmic solutions encountered in

the literature and to be accelerated using parallel hardware devices. The problem arises

in that they have to be sequentially processed onto the same computing device due to

restrictions of power, weight and size.

All of the aforementioned issues, together with the huge amount of data contained in these

images, limits the use of the hyperspectral technology in systems with limited available

computational resources where multiple applications must be performed under tight la-

tency/power/memory constraints. Under this scenario, the main motivation of this Thesis

is to contribute to the field of onboard hyperspectral imaging processing when different

time-sensitive applications coexist onto the same computing hardware device. In particu-

lar, it has been proposed a set of common core operations that extracts information from

the HSIs useful for many applications. Thereby, this provides several benefits in the issue

of the onboard processing. On the one hand, it means less cost, time and effort during the

implementation phase of the independent hardware solutions since algorithms are based

on the same mathematical method. Hence, designed blocks of logic or data (intellectual

property (IP) core) in making FPGA-based solutions or routines compiled for GPUs (ker-

nels) can be shared among all proposed algorithms. On the other hand, the proposed

methodology permits the execution of many different tasks at the same time with the

advantage of sharing the most computationally costly core operations, thus reducing the

overall computational cost and the required hardware resources. All of this makes this

18 Chapter 1. Introduction

proposal an excellent solution for being implemented in low-power-consumption devices

such as FPGAs and low-power graphic processing units (LPGPUs).

Additionally, the proposed set of core operations can be efficiently and independently

applied to blocks of image pixels without requiring any specific spatial alignment. The vast

majority of the state-of-the-art solutions need to work with the entire hyperspectral image

cube. Unfortunately, this represents an important limitation for real-time applications,

specially when using hyperspectral sensors based on pushbroom/whiskbroom scanners

since lines of image pixels, also named hyperspectral frames, can be processed as soon

as they are sensed. Therefore, it is mandatory to use causal algorithms where only the

data samples up to the pixel being processed is used for the analysis while future data

are not involved. Apart from this, the possibility of independently processing blocks of

pixels as soon as they are sensed avoids storing and processing large amount of data,

thereby reducing the amount of required hardware resources and also speeding-up the

entire process.

1.3.2 Research goals of this Thesis

The main objective of this Thesis is to provide the research community with a set of com-

mon core operations that extract useful information from the HSIs for many applications.

This objective includes developing new parallel hardware-friendly algorithmic solutions

for hyperspectral imaging analysis under real-time constraints. The fact of being based

on the same mathematical method is especially favourable and beneficial for their ac-

celeration in different parallel devices. On the one hand, it saves cost, time and effort

during the implementation phase of the different hardware solutions. On the other hand,

it permits the execution of many different tasks at the same time with the advantage

of sharing the most costly core operations, thus reducing the overall computational cost

and the required hardware resources. Additionally, the proposed methodology shows low

computational costs and it has been thought for being efficiently implemented in different

highly parallel computing devices. In term, this objective is divided in six main goals

which are detailed next.

1. Developing a new hardware-friendly set of core operations. These developed oper-

ations must be able to extract features from HSIs useful for many hyperspectral

analysis techniques. In addition, they have to be efficiently implemented into paral-

lel computing devices for applications under real or near real-time constraints using

Chapter 1. Introduction 19

both integer and floating-point arithmetic in order to be adapted better and faster

to the end-user application. Furthermore, the proposed set of core operations must

be able to process blocks of image pixels as they are sensed without requiring any

specific spatial alignment with the purpose of obtaining a real-time performance in

pushbroom/whiskbroom-based applications.

2. Demonstrating the feasibility of the concurrent execution of multiple hyperspectral

analysis techniques based on the same mathematical method. It must be proved

that multiple hyperspectral analysis can be simultaneously executed in the same

hardware device reusing the outputs of the aforementioned set of core operations.

Additionally, it must be also shown that the overall computational cost, the re-

quired hardware resources, as well as the invested human endeavours for the hard-

ware implementations of the proposed algorithmic solutions are significantly reduced

employing this methodology.

3. Developing a new hardware-friendly algorithm for anomaly detection based on the

aforementioned set of core operations. The development algorithm must be able to

find pixels that significantly differ from the background distribution fulfilling the

requirements imposed by nowadays remote sensing applications and the causality

required by applications based on pushbroom scanners.

4. Developing a new hardware-friendly transform-based algorithm for the lossy com-

pression of HSIs based on the aforementioned set of core operations. The developed

algorithm must be able to perform the spectral decorrelation and reduction stage of

the compression process. Furthermore, a low complexity and a high degree of paral-

lelism and scalability is desired in order to be suitable for the onboard applications

based on pushbroom/ whiskbroom scanners.

5. Verifying the suitability of the developed algorithms for real-time applications by

implementing them into different parallel devices, namely GPUs and FPGAs. Fur-

thermore, it is desired to evaluate the efficiency of the different parallel devices

according to the characteristics of the targeted applications and images. It is also

desired to evaluate the accuracy of the obtained results using fixed-point notation

in FPGAs and floating-point notation in GPUs.

6. Analysing the suitability of the aforementioned set of core operations for extending

this methodology to other fields, such as target detection, band selection, classifica-

tion and unmixing.

20 Chapter 1. Introduction

1.3.3 Contributions of this Thesis

The main contributions of this Thesis in the field of remote sensing for accomplishing the

aforementioned objectives are detailed next:

1. A set of core operations, based on the well-known Gram-Schmidt orthogonaliza-

tion method, has been proposed. This set of core operations is able to extract

hyperspectral features useful for many hyperspectral analysis techniques, such as,

anomaly detection, target detection, lossy compression, classification and unmix-

ing. Hence, it permits the simultaneous execution of many different tasks at the

same time with the advantage of sharing the most computationally intensive oper-

ations. Additionally, these operations feature low computational complexity since

non-complex matrix calculations are involved and previously computed informa-

tion is reused. As a novelty, the proposed set of core operations can be efficiently

and independently applied on blocks of image pixels without requiring any specific

spatial alignment, which makes our proposal a promising solution for real or near

real-time applications specially when using hyperspectral sensors based on push-

broom/whiskbroom scanners. In addition, this characteristic avoids storing and

processing large amount of data, thereby reducing the amount of required hardware

resources and also speeding-up the entire process. Finally, this set of core operations

can be efficiently implemented in parallel hardware devices using both fixed-point

and floating-point notation.

2. One algorithm, named A Line-by-Line Fast Anomaly Detector for Hyperspectral Im-

agery (LbL-FAD), has been developed. This algorithm is a subspace-based anomaly

detector able to estimate the background distribution and the orthogonal subspace

spanned by it where anomalous pixels are better detectable. This algorithm is based

on the aforementioned set of core operations and can be applied in a line-by-line

fashion.

3. The state-of-the-art Lossy Compression Algorithm for Hyperspectral image systems

(HyperLCA), firstly defined in [2], has been optimized employing the set of core op-

erations as it has been described in this Thesis, so that it can be more efficiently ex-

ecuted in parallel computing devices and using integer arithmetic. In general terms,

the HyperLCA provides an efficient solution for performing the spectral decorrela-

tion and reduction of hyperspectral and ultraspectral images for their compression.

It is specially designed for independently processing small blocks of image pixels,

Chapter 1. Introduction 21

being a very suitable option for compressing HSIs when the execution times and

hardware resources are limited.

4. The suitability of the proposed set of core operations for the concurrent execution

of multiple hyperspectral imaging applications has been evaluated. In particular,

we have focused on the lossy compression of HSIs and the detection of anomalous

spectra. On the basis that the LbL-FAD and the HyperLCA are based on the same

set of core operations, the outputs of the aforementioned operations can be computed

just once and being reused for carrying out both processes. It results in many

benefits in view of hardware acceleration for real-time or near real-time performance

in terms of a reduction in the execution times, hardware resources and above all, in

human endeavours. Concerning this latter, it implies the studio and analysis of only

a single mathematical approach, which consequently permits to focus the efforts

from a methodological and productivity points of view, resulting in a reduction

in the time to market. To this end, we analyse different methodological strategies

ranging from the independent execution of the targeted applications to the definition

of two highly optimized versions for the joint implementation of both processes

using a single configuration of the hardware utilisation, referred to as ADeLoC

and HADeLoC respectively. Additionally, this methodology could be potentially

extended to include other processes without a relevant increment of the required

computational resources.

5. The LbL-FAD, the HyperLCA and the HADeLoC proposals have been implemented

in different parallel hardware devices, namely GPUs and FPGAs. The accomplished

implementations prove that real-time or near real-time results can be obtained by

using algorithms thought from their conception to be implemented into parallel

hardware. As a further research goal, the benefits of developing algorithmic solutions

based on the same mathematical method in terms of reducing the execution-time,

the hardware resources and the human effort have been also confirmed.

Further contributions achieved as part of the progress done during this work have been

done. These contributions are detailed next.

1. The proposed set of core operations has been also evaluated in order to extend this

methodology to other fields, such as target detection, unmixing, band selection and

classification.

22 Chapter 1. Introduction

2. The developed algorithms have been assessed and compared against other state-

of-the-art algorithms for the same tasks, with the purpose of evaluating not only

their efficiency, in terms of speed and computational burden, but also the accuracy

of the results. Several experiments have been carried out using many HSIs col-

lected by different sensors as well as different evaluation metrics and state-of-the art

algorithms.

3. The LbL-FAD, the HyperLCA and the HADeLoC algorithms have been imple-

mented into different kinds of parallel hardware devices. This allows not only to

verify the suitability of the algorithms for applications under real-time or near real-

time constrains, but also to make interesting comparisons between the devices, their

benefits and weaknesses according to the characteristics of the targeted applications.

The results that will be shown in the following chapters of this Thesis demonstrate the

goodness of all these contributions for actual and future hyperspectral imaging applica-

tions under real-time or near real-time constrains.

1.4 Organization of this document

The present document is structured in seven chapters, including this introductory one

dedicated to present the main motivations and goals of this Thesis work, and one appendix.

A short outline about the subsequent chapters that make up this document is described

next.

1.4.1 Chapter 2: Set of Core Operations

The onboard processing of remotely sensed images for on-the-fly making-decision appli-

cations has gained relevance in the last years. Nevertheless, the adoption of this onboard

processing strategy brings further challenges for the remote sensing research community

mainly related to the high data rate of the new-generation sensors and the onboard lim-

itations in term of power budget and computational capacity. Consequently, there is

an emerging trend towards the development of more hardware-friendly algorithms to

cope with these exiting constraints. In this regard, this Chapter presents the set of

core operations developed in this Thesis for the extraction of spectral features that are

Chapter 1. Introduction 23

useful for many hyperspectral analysis techniques, such as unmixing, compression and

target/anomaly detection. Accordingly, it permits the concurrent execution of such tech-

niques reusing operations and thereby, requiring much less computational resources than if

they were separately executed. The basics about the mathematical methods behind these

operations are analysed in detail in this Chapter. In addition, the computational com-

plexity of this proposal is evaluated in terms of the number of basic operations involved

in each algorithm step. Finally, the suitability of the proposed set of core operations for

being executed using both integer and floating-point arithmetic is also verified through

the definition of four different versions of them according to the data type and precision

of the variables involved in the process.

1.4.2 Chapter 3: Hyperspectral Anomaly Detection

In this Chapter, the Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery (LbL-

FAD) proposed in this Thesis work is fully described and documented. The LbL-FAD

algorithm is a subspace-based anomaly detector that employs an orthogonal projection

strategy, in particular the set of core operations extensively analysed in previous Chapter

2, for estimating the orthogonal subspace spanned by the background distribution where

anomalous entities are better detectable. The goodness of the LbL-FAD algorithm for

the detection of anomalous spectra has been evaluated in this Chapter using real hyper-

spectral images collected by different sensors. Additionally, the LbL-FAD method has

been compared with other algorithms that conform the state-of-the-art for the anomaly

detection problem. The obtained results clearly support the benefits of the proposed

methodology, in terms of both the accuracy of the detection performance and the inher-

ent computational complexity.

1.4.3 Chapter 4: Hyperspectral Lossy Compression

In this Chapter, a performance-enhancing version of the state-of-the-art Lossy Compres-

sion Algorithm for Hyperspectral Image Systems (HyperLCA) is proposed for the spectral

decorrelation and compression of hyperspectral images. In this regard, the original ver-

sion of the HyperLCA algorithm is modified in order to employ the set of core operations

proposed in this Thesis work for the data transformation. Additionally, it also widens the

definition of the operations performed by the HyperLCA Transform with the purpose of

24 Chapter 1. Introduction

analysing their suitability for being executed using integer arithmetic. The goodness of the

HyperLCA algorithm for the lossy compression of hyperspectral images is evaluated using

different quality metrics, such as the SNR, the MAD and the RMSE, among others, for

different settings of the algorithm input parameters. Finally, it is demonstrated that the

HyperLCA algorithm is able to preserve the most different pixels after the compression-

decompression process, which is crucial for many hyperspectral imaging applications such

as anomaly detection.

1.4.4 Chapter 5: Concurrent Execution of Multiple Hyperspec-

tral Imaging Applications

The onboard processing of remotely sensed hyperspectral images for on-the-fly making-

decision applications has gained momentum in recent years. Nonetheless, the adoption of

this operation mode brings with it many huge challenges to be faced in the near future,

mainly related with the increase of the sensor data rates and the limited amount of avail-

able onboard computational resources. Indeed, this situation becomes even more complex

and cumbersome when different time-sensitive applications coexist, since different tasks

must be sequentially processed onto the same computing device. As a contribution to this

field of interest, we come up with a strategy based on the reuse of the set of core opera-

tions proposed in this Thesis work for the execution of several processing techniques. In

particular, we analyse the potential of the suggested methodology towards the concurrent

execution of multiple hyperspectral analysis processes, whilst optimizing the computa-

tional resources and the human endeavours invested during the implementation stage. In

concrete, we focus on the issue behind the proposed HW-LbL-FAD algorithm and the

HyperLCA method for the simultaneous detection of anomalous spectra and the lossy

compression of hyperspectral images.

1.4.5 Chapter 6: Hyperspectral imaging acceleration through

the utilization of embedded systems

Different algorithms for the processing of hyperspectral imagery have been proposed along

the previous Chapters of this Thesis. All these algorithmic solutions share a set of common

core operations based on projection techniques and more specifically, in the well-known

Gram-Schmidt orthogonalization method. This Chapter verifies the benefits of developing

Chapter 1. Introduction 25

algorithmic approaches based on the same mathematical method in terms of reducing the

execution-times, the hardware resources and the human endeavours. For doing this, the

HW-LbL-FAD, the HyperLCA and the HADeLoC algorithms have been implemented into

different kinds of parallel hardware devices, namely graphical processing units (GPUs) and

field-programmable gate array (FPGAs). In this sense, the HW-LbL-FAD, the HyperLCA

and the HADeLoC methods have been implemented on a Xilinx System on Chip (SoC)

FPGA device, while the HyperLCA has been also accelerated in embedded computing

boards from NVIDIA.

The proposed set of core operations takes into consideration the hardware-design char-

acteristics of the most commonly used computing platforms. Accordingly, it is evaluated

in this Chapter their adaptability to the requirements imposed by the targeted devices.

Therefore, the aforementioned algorithms have been implemented in FPGA devices using

integer arithmetic and the concept of fixed-point notation, while floating-point notation

is exploited for GPUs-based systems.

1.4.6 Chapter 7: Conclusions and further research lines

This Chapter summarizes the main contributions of this Thesis and proposes further

research topics, which are expected to complement and enhance the future development

of this work.

1.4.7 Appendix A: Application of the proposed methodology to

other hyperspectral image processing research fields

Future research lines are focused on extending the use of the set of core operations pro-

posed in this Thesis work to other fields such as, band selection, target detection, unmixing

and classification. In this Appendix, we briefly illustrate the first approximations towards

the performance of these hyperspectral image analysis techniques.

Chapter 2

Set of Core Operations

The onboard processing of remotely sensed images for on-the-fly making-decision appli-

cations has gained relevance in the last years. Nevertheless, the adoption of this onboard

processing strategy brings further challenges for the remote sensing research community

mainly related to the high data rate of the new-generation sensors and the onboard lim-

itations in term of power budget and computational capacity. Consequently, there is

an emerging trend towards the development of more hardware-friendly algorithms to

cope with these exiting constraints. In this regard, this Chapter presents the set of

core operations developed in this Thesis for the extraction of spectral features that are

useful for many hyperspectral analysis techniques, such as unmixing, compression and

target/anomaly detection. Accordingly, it permits the concurrent execution of such tech-

niques reusing operations and thereby, requiring much less computational resources than if

they were separately executed. The basics about the mathematical methods behind these

operations are analysed in detail in this Chapter. In addition, the computational com-

plexity of this proposal is evaluated in terms of the number of basic operations involved

in each algorithm step. Finally, the suitability of the proposed set of core operations for

being executed using both integer and floating-point arithmetic is also verified through

the definition of four different versions of them according to the data type and precision

of the variables involved in the process.

27

28 Chapter 2. Set of core operations

2.1 Rationale

Although the hyperspectral technology has been around for quite some time, it has re-

ceived increasing attention in the last years, becoming one of the most powerful tools

for the Earth observation. Its expansion and growing recognition have been largely pro-

pelled by the richness of spectral information collected by this kind of sensors along the

electromagnetic spectrum. This feature has positioned the hyperspectral analysis as the

mainstream solution for the study of land areas and the identification and discrimination

of visually similar surface materials.

Nonetheless, hyperspectral image processing still poses several challenges due mainly to

the management of large amounts of data. This affects, on the one hand, the real-time

performance of this kind of applications and, on the other hand, the requirements in terms

of onboard storage resources. The issue is further complicated by the incorporation to the

market of the latest-generation hyperspectral sensors that are characterized by, on one

side, higher spectral and spatial resolutions and, on the other side, greater frame rates

that can produce continual or nearly continual streams of higher dimensional data [102].

All of this makes the efficient data handling, from an onboard processing, communication,

and storage points of view, even more challenging [102, 103].

Consequently, on-Earth processing has been the mainstream solution for remote sensing

applications that sense hyperspectral images (HSIs). In this regard, images sensed by

Earth observation (EO) platforms aboard satellites or manned/unmanned aerial vehi-

cles are traditionally downloaded to the ground segment for being off-line processed on

supercomputing systems. However, this operating mode could jeopardize the real-time re-

sponse of time-sensitive applications due to the ever-growing acquisition data rates of the

latest-generation sensors and the bottleneck represented by the limited communication

bandwidth of the downlink system. Accordingly, the onboard processing has established

as a potential solution for such restrictive scenarios.

Against this backdrop, there is a need in the literature for new algorithmic solutions

that take into consideration the above mentioned currently existing constrains imposed

by nowadays remote sensing applications from the earliest stage of development. Addi-

tionally, the causality inherent to real-time frameworks based on pushbroom/whiskbroom

scanners must be also met through the definition of non-global algorithms capable of in-

dependently processing blocks of image pixels. In turn, this prevents the storing and man-

agement of large data volumes, thereby reducing the computing resources and speeding

Chapter 2. Set of core operations 29

up the execution process. Regrettably, the algorithms traditionally proposed for hyper-

spectral analysis have been normally addressed as independent global entities that pay

more attention to the mathematical method that better maximizes the results than to the

viability of being executed in power-constrained environments. Moreover, the onboard

execution of imaging processing is not fully viable nowadays, specially under real-time

constraints when different time-sensitive applications coexist onto the same computing

device. This is because the simplest and most commonly used solution is to select a dif-

ferent mathematical algorithm from the wide assortment of proposals encountered in the

literature for each hyperspectral data analysis technique to be performed and then, to

accelerate them using parallel computing devices. Hence, the problem arises when they

have to be sequentially processed onto the same computing device due to restrictions in

terms of power, weight and size.

In this context, a new algorithmic solution is proposed in this Thesis to meet the aforemen-

tioned requirements, paving the way for the real-time performance of the hyperspectral

image processing. With this in mind, we put forward a set of core operations that extract

features from the HSIs useful for many applications. Consequently, it permits the concur-

rent execution of many different tasks at the same time with the advantage of sharing the

most computationally intensive operations. To do this, the proposed set of core operations

is based on orthogonal projection techniques, specially on the well-known Gram-Schmidt

orthogonalization method [104, 105]. This methodology also features low computational

complexity since non-complex matrix calculations are involved and previously computed

information is reused. The basics about the mathematical method behind this set of

core operations are analysed in detail in this Chapter. Its extension to other fields, such

as target/anomaly detection, hyperspectral lossy compression, classification and spectral

unmixing, are addressed in the following Chapters of this document.

2.2 Background Notions

Hyperspectral imaging gathers a huge amount of spectral information for hundreds of

continuous and narrow wavelengths along the electromagnetic spectrum. However, HSIs

are spectrally and spatially smooth that means that nearby spectra and wavelengths are

highly correlated [55]. For this reason, pixels within an HSI may be grouped according

to their spectral similarities and represented as a combination of relatively few spectral

signatures that are representative of each cluster. Consequently, features of HSIs normally

30 Chapter 2. Set of core operations

lie in a lower-dimensional subspace than the original number of spectral bands. The

accurate identification of this subspace enables the representation of hyperspectral pixels

in a much smaller dimension, which offers many benefits in terms of execution times and

complexity as well as in data storage [81].

In this context, hyperspectral unmixing is nowadays an essential tool for analysing re-

motely sensed HSIs. It refers to any process that separates the pixel spectra from an

HSI into a collection of constituent spectra, also called endmembers, and a set of frac-

tional abundances, one set per pixel. The endmembers are generally assumed to represent

the pure materials present in the image and the abundances at each pixel to represent

the percentage of each endmember that is present in the pixel [2]. On this basis, the

linear mixing model (LMM) is based on the idea that each captured pixel in a HSI,

HI = {rj, j = 1, ...np}, which is composed by np pixels, rj, and nb spectral bands, can

be represented as a linear combination of a set of p reference spectral signatures, en.

This linear mixture model assumes that secondary reflections and scattering effects can

be neglected from the data collection procedure, and hence, the measured spectra can be

expressed as a linear combination of the spectral signatures of materials present in the

mixed pixels. The LMM is described as shown in Equation 2.1, where aj,n is the fractional

area covered by each en in rj, commonly named abundance, and nj represents the noise

contained in each image pixel, rj.

rj =

p∑
n=1

en · aj,n + nj (2.1)

Therefore, it can be concluded that a HSI can be represented as a function of

some image pixels, E = {en, n = 1, ...p} and their corresponding abundances, A =

{aj,n, j = 1, ...np, n = 1, ...p}, which can be derived from the projection of each image

pixel onto each endmember [105]. For this reason, the linear hyperspectral unmixing

process could be a preliminary step for many other hyperspectral processes, such as com-

pression, classification, anomaly detection, target detection, etc., since it allows a better

understanding of the scene under analysis [2]. In the following lines, a few broad fea-

tures of the aforementioned hyperspectral processing techniques and their relation with

the LMM are introduced:

� In the field of lossy compression for hyperspectral imagery, many of the recent pro-

posed techniques are based on decorrelating transforms in order to exploit spatial

Chapter 2. Set of core operations 31

and interband redundancies present in HSIs [106]. A popular approach involves the

combination of a two-dimensional (2D) transform in the spectral domain, such as

the Karhunen–Loève transform (KLT), the discrete wavelet transform (DWT), or

the discrete cosine transform (DCT), followed by a spatial correlator as the Joint

Photographic Experts Group (JPEG) 2000 standard. In this context, the extrac-

tion of the most representative pixels of materials present in a scene also permits

performing dimensionality reduction and thus, to compress the HSIs. Just to set an

example, considering a HSI composed of np pixels with nb spectral bands, if these

np pixels are projected onto a subset of the p most different pixels within the scene,

the original np pixels can be represented as a linear combination of their projections

onto those p pixels. Therefore, the original hyperspectral cube can be represented

on a new subspace of dimension p, being p << nb, and hence, to be compressed.

Additionally, the number of p selected pixels directly determines the compression

ratio achieved in the compression process [107].

� For the detection of desired targets of interest, the LMM can be used to character-

ize the targets and the interfering background. In this context, a subpixel target

is mixed with the background spectra resulting in an image pixel with a combined

spectral signature. Therefore, subpixel target detection issue could involve some

kind of linear separation of pixel constituent elements [108]. Unlike the spectral sig-

nature of interest that is known in advance, the background subspace is estimated

from the HSI using statistical or geometrical techniques. A good statistical approx-

imation of the background can be done using the eigenvectors of the hyperspectral

cube correlation matrix. On the contrary, the extraction of the p most representa-

tive pixels of the background, also commonly referred to as undesired signatures,

could arise as an accurate geometrical description of the background distribution

that will be used later to annihilate the spectral information that does not belong

to the desired target. In addition, orthogonal projection techniques may be also

used to select the spectral bands that best differentiate the desired target and the

background signatures in order to maximize the spectral differences between both

classes.

� Classification of a HSI entails the identification of which pixels contain various spec-

trally distinct materials that have been specified by the user. As it can be noticed,

the classification problem can be treated as the target detection issue where un-

desired target signature matrix is formed by the other target signatures that are

32 Chapter 2. Set of core operations

known but not wanted in the image analysis. Indeed, orthogonal-subspace projec-

tion techniques were the first approaches proposed to separate the desired target

signatures in a signal detection model where the undesired targets were eliminated

prior to the detection of the desired ones so as to improve the signal detectability

[109, 110].

� Similarly, anomaly detection represents an unsupervised application of the target

detection issue where the desired target signature to be found is a-priori unknown.

In general terms, anomalies are groups of rare and scarce pixels whose spectral sig-

natures significantly differ from their surroundings, that is, those pixels that do not

match the background pattern and whose existence may be indicative of abnormal or

suspicious behaviour. On this basis, anomalous pixels cannot be well represented by

the background distribution and hence, their projections in the orthogonal subspace

spanned by the background distribution is notoriously higher. In this scenario, the

solution for the anomaly detection issue lies in modeling the whole background and

subtracting it from every image pixel by means of orthogonal subspace projections.

In this sense, the p most characteristic pixels within a HSI can be used to repre-

sent the background distribution. In addition, the projection separation statistic

for an image pixel, rj, can be calculated using the orthogonal projection matrix,

P = I−W(WTW)−1WT , where W = [wn, n = 1, ..., p] is a matrix whose columns

are the p projection basis obtained from the background samples [58]. Therefore,

orthogonal projection strategies may be used to extract the p pixels most represen-

tative of the background and thereby, to also compute the orthogonal subspace to

that spanned by the selected background samples where anomalous pixels are better

detectable.

� Finally, change detection consists of detecting spectral variations in materials present

in bi-temporal hyperspectral remote sensing images. Due to the reduced spatial

resolution inherent to the hyperspectral sensors, pixels in HSIs are generally mixed

by a set of materials present in the scene, which turns the detection of potential

spectral variations into a challenging task. To solve this problem, multitemporal

spectral unmixing has the potential to add subpixel information to the detection

procedure. In this context, hyperspectral unmixing decomposes each pixel spectrum

into a collection of abundances of the purest materials or endmembers present in

a scene. As a consequence, variations in the abundance maps for each underlying

material is an indication of changes in the material spectra with time. Additionally,

change detection by unmixing also may provide the nature of the change since it can

Chapter 2. Set of core operations 33

be caused by an alteration in the abundances of pure materials in the pixel, by the

emergence of a new endmember or by their disappearance. Several hyperspectral

change detection approaches using unmixing algorithms have been proposed in the

literature, such as [111–115].

The main conclusion to be drawn from the above is that many hyperspectral imagery

processing techniques may be performed using the same mathematical methods. For this

reason, in this Thesis we have proposed an unmixing-based strategy based on orthogonal

projections as a competitive strategy to fulfil the particular requirements imposed by the

different image analysis tools in hyperspectral remote sensing. On this regard, we have

defined a set of core operations based on the well-known Gram–Schmidt orthogonalization

process that allows the extraction of useful information for many different hyperspectral

imaging applications, while at the same time, ensures a low computational complexity

and a high level of parallelism.

2.3 The Set of Core Operations

In this Thesis, we have dealt with the issue around the concurrent execution of multiple

hyperspectral analysis techniques in restrictive environments such as onboard scenar-

ios. On this basis, we have defined a set of common core operations that permits to

extract features from the HSIs useful for many applications. As a novelty, it enables

the execution of many different tasks at the same time with the advantage of sharing

the most computationally intensive operations. To do this, our proposal is based on or-

thogonal projection techniques as many state-of-the-art approaches for analysing HSIs

[74, 109, 116–121]. Concretely, the proposed methodology employs a modified version of

the well-known Gram-Schmidt orthogonalization method [104, 105]. This methodology

features low computational complexity since non-complex matrix calculation is involved

and previously computed information is reused.

Additionally, the proposed set of core operations can be efficiently and independently

applied on blocks of image pixels without requiring any specific spatial alignment. This

feature makes our proposal a promising solution for real-time applications, especially

when using hyperspectral sensors based on pushbroom/whiskbroom scanners, since lines

of image pixels, also named hyperspectral frames, can be processed as soon as they are

sensed. In addition, this possibility avoids storing and processing large amount of data,

34 Chapter 2. Set of core operations

thereby reducing the amount of required hardware resources and also speeding up the

entire process.

2.3.1 The Gram-Schmidt Orthogonalisation Method

The Gram–Schmidt method calculates the orthogonal projection of a vector, ei, to a

set of vectors E = [e1, e2, ..., ej], with j < i, by subtracting the portion of the vector

ei contained in the directions spanned by the vectors E = [e1, e2, ..., ej]. Consequently,

the Gram–Schmidt method performs the orthogonalization of a set of independent vectors

E = [e1, e2, ..., ep] and brings as a result a set of orthogonal vectors Q = [q1,q2, ...,qp]

and their normalized vectors U = [u1,u2, ...,up]. Figure 2.1 displays the orthogonalization

process performed by the Gram-Schmidt method for two vectors, e1 and e2.

Figure 2.1: Example of the Gram-Schmidt orthogonalization for vector e2 with respect
to vector e1; q2 represents the amount of information in e2 which is not contained in e1;
u1 and u2 are unitary vectors with the directions spanned by q1 and q2, respectively.

In this work, we employed a modified version of the Gram–Schmidt method [122] where

vectors up are normalized dividing by the squared of its l2-norm. In this regard, suppose

two vectors, e1 and e2, the orthogonal component of e2 with respect to e1 is performed

as shown Equation 2.2, where ‖.‖ represents the l2-norm and u∗ is a unit vector. This

equation is equivalent as that shown in Equation 2.3, where vector u is not now a unit

Chapter 2. Set of core operations 35

vector but is equivalent to u∗. This modified version of the Gram–Schmidt method fea-

tures low computational complexity since simple matrix operations are involved and also

allows the reuse of previously computed information, which is reflected in speeding up the

overall process.

e2 −
q

‖q‖
· q′

‖q‖
· e2 = e2 − u∗ · u∗′ · e2, q = e1, u∗ =

q

‖q‖
(2.2)

e2 −
q

‖q‖
· q′

‖q‖
· e2 = e2 −

q · q′ · e2

‖q‖2
= e2 − q · u′ · e2, q = e1, u =

q

‖q‖2
(2.3)

The pseudocode of the modified version of the Gram–Schmidt method is shown in Al-

gorithm 1, where “ ′ ” represents the transpose of a vector. As it can be seen, the first

orthogonal vector within Q is e1. In the second iteration, n = 2, e2 is projected on the

direction spanned by q1 = e1, giving the projection vector v1 in Line 4. Then, it is sub-

tracted from q2 = e2 in Line 5. As a result, q2 contains the spectral information spanned

by e2 that cannot be represented by e1, i.e., orthogonal to e1. The process is repeated

until the p vectors are orthogonal to each other.

Algorithm 1 Modified version of the Gram–Schmidt Orthogonalization

Inputs:

E = [e1, e2, ..., ep]

Outputs:

Q = [q1,q2, ...,qp] {Orthogonalized vector}; U = [u1,u2, ...,up] {Orthonormalized

vector};
Algorithm:

1: for n = 1 to p do

2: qn = en

3: for j = 1 to n− 1 do

4: vj = u′j · en;

5: qn = qn − qn · vj;
6: end for

7: un = qn/(q
′
n · qn);

8: end for

36 Chapter 2. Set of core operations

2.3.2 General Notations

In order to ease the understanding of the concepts introduced in the following Sections, it

is needed to previously define some variables fully employed along the remainder of this

Chapter 2. In the following, HI = {Fi, i = 1, ..., nr} is a sequence of nr hyperspectral

frames or lines of pixels, Fi, comprised by nc pixels with nb spectral bands. Pixels within

HI are grouped in blocks of BS pixels, Mk = {rj, j = 1, ..., BS}, being normally BS equal

to nc, or multiple of it, and k spans from 1 to nr·nc
BS

. µ̂ is the average pixel or centroid pixel

of each Mk block. C = {cj, j = 1, ..., BS} represents the centralized version of the input

image block, Mk. E = {en, n = 1, ..., p} saves the p most different hyperspectral pixels

extracted from each Mk block. V = {vn, n = 1, ..., p} comprises p vectors of BS elements

where each vn vector corresponds to the projection of the BS pixels within Mk onto the

corresponding n extracted pixel, en. Q = {qn, n = 1, ..., p} and U = {un, n = 1, ..., p}
save p pixels of nb bands that are orthogonal among them.

2.3.3 Description of the proposed Set of Core Operations

The proposed set of core operations is based on the aforementioned Gram-Schmidt method

for extracting the p most representative hyperspectral pixels in a scene and also identifying

the amount of spectral information that can be represented by them. It is worth stressing

that these operations may be precisely performed by using the entire image or blocks of

not spatially-connected image pixels since only the spectral information is analysed.

The first characteristic pixel, e1, to be extracted is the image pixel with the highest

deviation from the average pixel, µ̂. Afterwards, the orthogonal projection of each image

pixel with respect to e1 is performed using the aforementioned Gram-Schmidt method.

At this point, image pixels just retain the information that is not contained by e1 and

thus, that is orthogonal to it. Once the first representative pixel has been selected, the

proposed set of core operations sequentially extracts new characteristic pixels by selecting

the pixels with the largest orthogonal projections to the pixels already extracted. With

it, we achieve to select the most different pixels in each iteration, understanding as it,

those pixels that cannot be well represented by previously selected pixels.

The proposed set of core operations is displayed in Algorithm 2 for an image block, Mk.

Operations from Lines 3 to 13 are repeated p times to extract the p most different pixels.

First of all, the HSI block, Mk, is centered in Line 2, obtaining C matrix by subtracting

Chapter 2. Set of core operations 37

the average pixel, µ̂, to all pixels within Mk. Secondly, pixels are sequentially extracted

from Lines 3 to 13. In this process, the dot product of each frame pixel with itself is

first calculated from Lines 4 to 6. In the remainder of this document, it is referred to as

brightness of a pixel. Thirdly, the extracted pixels, en, are selected as those pixels from

Mk that correspond to the highest brightness in matrix C, as shown in Line 8. Then, the

orthogonal projection vectors, qn and un, are accordingly obtained as shown in Lines 9

and 10, respectively. After that, the information that can be spanned by the defined qn

and un orthogonal vectors is stored in the projected image vector vn and subtracted to

C in Lines 11 and 12. As it can be seen, Lines 2 and 7 of Algorithm 1 corresponds to

Lines 9 and 10 of Algorithm 2, respectively. Similarly, operations shown in Lines 4 and 5

of Algorithm 1 corresponds to Lines 11 and 12 of Algorithm 2.

Algorithm 2 Set of core operations

Inputs:

Mk = [r1, r2, ..., rBS]

Outputs:

µ̂ {Average Pixel}; E = [e1, e2, ..., ep] {Characteristic pixels}; Q = [q1,q2, ...,qp]

{Orthogonalized vectors}; U = [u1,u2, ...,up] {Orthonormalized vectors}; V =

[v1,v2, ...,vp] {Projection vectors}
Algorithm:

1: Average pixel: µ̂;

2: Centralization: C = Mk − µ̂;

3: for n = 1 to p do

4: for j = 1 to BS do

5: Brightness Calculation: bj = c′j · cj;
6: end for

7: Maximum Brightness: jmax = argmax(bj);

8: Extracted pixels: en = rjmax ;

9: qn = cjmax ;

10: un = qn/bjmax ;

11: Projection: vn = u′n ·C;

12: Subtraction: C = C− qn · vn;

13: end for

In short, the proposed set of core operations are listed below:

1. Average pixel calculation, µ̂:

38 Chapter 2. Set of core operations

Firstly, the average pixel, µ̂, of the input image block, Mk, is calculated (Line 1 of

Algorithm 2).

2. Centralization:

Then, Mk is centralized subtracting µ̂ from each image pixel, obtaining the central-

ized version of the input image, C (Line 2 of Algorithm 2).

3. Brightness calculation, bj:

The selected pixels are those with the highest dot product with itself in each it-

eration, also referred to as brightness of a pixel (Lines 4 to 6 of Algorithm 2). In

this sense, en represents the selected pixel within the original image, Mk (Line 8

of Algorithm 2), qn is its counterpart in C (Line 9 of Algorithm 2) and un is the

normalized version of qn (Line 10 of Algorithm 2).

4. Projection vector calculation, vn:

Then, all vectors within C are projected onto un, obtaining the projection vector,

vn (Line 11 of Algorithm 2).

5. Subtraction:

To finish, the spectral information within C that cannot be represented by the

selected pixel in the actual iteration, n, and that in consequence is orthogonal to

it, is retained in C for the next iteration (Line 12 of Algorithm 2). For this reason,

pixels within Q and U are orthogonal to each other.

2.4 Computational Complexity of the Set of Core

Operations

In this section, the computational complexity of the proposed set of core operations is

evaluated in terms of the number of operations (OPs) involved in each step of Algorithm 2.

For clarity, OPs are simple calculations such as additions, subtractions, multiplications,

and divisions. Additionally, Table 2.1 collects in summary the overall number of OPs

required to process one block of image pixels, Mk, composed of BS pixels.

In general terms, the proposed set of core operations encompasses 5 steps:

Chapter 2. Set of core operations 39

1. Average pixel calculation, µ̂, (Line 1 of Algorithm 2):

The calculation of the average pixel, µ̂, involves the sum of each pixel element, rji,

for each particular spectral band, i, and then the division of each individual result

by the total number of pixels, BS. This gives a set of nb · (BS + 1) OPs.

2. Centralization (Line 2 of Algorithm 2):

In this step, the spectral information enclosed in the average pixel, µ̂, is removed

from each pixel within Mk, which results in a total of BS · nb subtractions.

3. Brightness calculation, bj, (Lines 4 to 6 of Algorithm 2):

The calculation of the brightness of one pixel corresponds to the inner product

between two vectors of nb components. It is the most troublesome operation since

it involves nb products and nb additions. This applied to all BS pixels of an image

block, Mk, leads to a total of 2 ·BS · nb OPs.

4. Normalized vector calculation, un (Line 10 of Algorithm 2):

The computation of each un vector requires to divide each nb component of the

vector qn by its brightness, which results in nb OPs.

5. Projection vector calculation, vn, (Line 11 of Algorithm 2):

The calculation of each projection vector, vn, also corresponds to the inner product

between two vectors of nb components, which implies 2 · nb OPs. This applied to

the BS pixels within an image block, Mk, produces a total of 2 ·BS · nb OPs.

6. Subtraction (Line 12 of Algorithm 2):

The update of matrix C consists of firstly multiplying the projection vector, vn, of

BS components with vector qn of nb components, obtaining a matrix of nb × BS
components, and secondly subtracting it to the remaining C matrix. Both steps

require a total of 2 ·BS · nb OPs.

Additionally, the set of operations involved from 3 to 6 are repeated p times, one for

each reference pixel extracted per image block, Mk, reaching a total of p · (6 · BS · nb +

nb) + 2 · nb · BS + nb OPs. However, the main advantage of the proposed set of core

operations is the use of simple mathematical operations that eases the posterior hardware

implementation. In this context, this methodology performs exactly the same operations

on each image pixel in each iteration, without needing any spatial or spectral information

40 Chapter 2. Set of core operations

from neighbouring pixels, thus avoiding creating data dependencies. Besides that, blocks

of image pixels can be independently processed, thus reducing the amount of data to be

processed and transferred and the computing hardware resources as well, such as memory,

power and computational capabilities.

Steps Number of OPs Complexity

Average Pixel, µ̂ nb · (BS + 1) O(nb ·BS)

Centralization nb ·BS O(nb ·BS)

Brightness, bj 2 · p ·BS · nb O(p ·BS · nb)

Normalized vector, un p · nb O(p · nb)

Projection vector, vn 2 · p ·BS · nb O(p ·BS · nb)

Orthogonal information subtraction 2 · p ·BS · nb O(p ·BS · nb)

Total number of OPs p · (6 ·BS · nb + nb) + 2 · nb ·BS + nb O(p ·BS · nb)

Table 2.1: Number of OPs and computational complexity of the proposed set of core
operations defined in Algorithm 2.

2.5 Data types and precision evaluation

One of the major benefits of the introduced core operations lies in the definition of a

set of variables whose values are always within numeric ranges known before-hand. Con-

sequently, it allows to fix in advance the maximum and minimum values of the results

obtained in each operation. This feature makes possible to use the fixed-point concept

in a custom way using integer arithmetic and bit shifting for representing the integer

and decimal parts of the numbers. Therefore, the proposed set of core operations can be

easily adapted for being more suitable for those hardware devices that are more efficient

executing integer operations than floating point operations, such as FPGA devices.

In this section, we analyse the range of possible values to be reached by the variables

involved in each operation in order to determine the required number of bits to be used

for representing them with fixed-point notation. In summary, such variables are listed

in Table 2.2. In addition, four versions of the set of core operations are also considered

according to the data type and precision for representing image values stored in the

centralized version of the input image block, C. Efforts have been focused on this variable

since it implies the major hardware resources consumption for its representation, more

specially, nr · nc · nb · bd bits, being bd the number of bits used for storing each element

Chapter 2. Set of core operations 41

within C. The proposed algorithm versions are referred to as Float32, Int32, Int16 and

Int16-rd, respectively. The Float32, Int32 and Int16 versions are developed for working

with HSIs whose element values could be represented with up to 16 bits per pixel per

band and 256 spectral bands as maximum. In particular, the Float32 version employs

single precision floating point arithmetic (bd = 32 bits) for storing C. On the contrary, the

Int32 and Int16 versions use customized fixed-point notation for representing fractional

values within C with bd = 32 and 16 bits, respectively. Although the Int16 version turns

into a very interesting option for applications with limited available hardware resources,

above all in terms of RAM memory, some precision losses are introduced in the operations,

which affects the quality of the results. For this reason, we have made some performance-

enhancing improvements to the Int16 version, introducing the Int16-rd model. In this

context, we have assumed that the available capturing sensor measures the incoming

radiation using a resolution up to 12 bits per pixel per band (bpppb), though each image

value is stored using bd = 16 bpppb, padding four zeros at the beginning of each sample.

It is a common scenario in remote sensing applications [123, 124], besides, most of the

hyperspectral data used as test-bench in subsequent Chapters of this document are packed

in the same way as above mentioned.

In order to determine the number of bits to be used for representing the integer and

decimal parts of the variables involved in the Int32, Int16 and Int16-rd versions of the

set of core operations, the range of their possible outcomes are analysed in detail in the

following lines.

1. Average Pixel, µ:

First of all, the set of core operations estimates the average spectrum, µ, of pixels

within the input image block, Mk, whose elements are saved using 12 or 16 bits

depending on the resolution of the sensor that acquired the data. Hence, elements

of µ are in the same range that input image values, and so, it could be represented

using the same number of bits, considering no decimal part.

2. Centralized image block, C:

Centralized image block, C, represents an auxiliary copy of the input image block,

Mk, where the average spectral information has been removed. Accordingly, initial

values stored in C are also in the same range that elements within Mk and µ.

However, the set of core operations extracts pixels and the information that they

are able to represent in every iteration, n, and hence, values of C elements tend to

42 Chapter 2. Set of core operations

decrease with the exception of certain unlikely situations in which they may increase.

In order to set an example, consider two vectors a = [0, 0.80, 0.80, 0.80, -0.80, -0.80,

-0.80] and b = [0, 0.25, -0.25, 0.25, -0.25, 0.25 , -0.25], in which a is projected onto

b and (-1,1] are the maximum and minimum values that can be represented with the

available dynamic range. After the projection process, the orthogonal component of

a with respect to b results in c = [0, 0.53, 1.06, 0.53, -0.53, -1.06, -0.53]. As it can

be seen, overflow occurs since some elements exceed the limit values. For clarity,

Figure 2.2 visually displays the example described above.

Figure 2.2: Example of unlikely situations where some vector elements increase their
value after the orthogonal projection process. Vector a = [0, 0.80, 0.80, 0.80, -0.80,
-0.80, -0.80] is projected onto vector b = [0, 0.25, -0.25, 0.25, -0.25, 0.25 , -0.25] and
the maximum and minimum values to be represented with the available dynamic range
is (-1, 1]. The result is vector c = [0, 0.53, 1.06, 0.53, -0.53, -1.06, -0.53], where some

elements exceed the limit values

Due to this reason and in order to guarantee that the range of C values can be

represented, 20 bits are used for representing the integer part of matrix C in the

Int32 version, which means that there would be a margin of 4 bits for those unlikely

cases. Additionally, in order to be able to work with decimal numbers and increase

the precision of the results, 12 bits are used for the decimal part, thus providing

Chapter 2. Set of core operations 43

a resolution of 2−12. Accordingly, a total of 32 bits are used for representing the

values of C in the Int32 version.

In the Int16 version, initial values of C are divided by 2 in order to avoid overflow-

ing, what directly decreases the precision in one bit. On the contrary, this fact is

discarded in the Int16-rd version since 2 extra bits are featured for these improbable

situations. As it can noticed from Table 2.2, C image is stored employing 16 bits

in the Int16-rd version as well as in the Int16 version. However, it is assumed that

image values are coded employing 12 bits as maximum instead of 16 bits. It permits

to have 2 extra bits for representing the integer part of the fixed-point values of C

elements. As a consequence, image precision is not altered as in previous Int16 ver-

sion for dealing with possible overflowing scenarios. Additionally, this new version

also allows to have 2 bits for representing the decimal part of the fixed-point values

of matrix C, which is not possible in the Int16 version.

3. Brightness, bj:

The calculation of the brightness is the most troublesome operation, since it involves

nb products and nb − 1 addition operations. In order to be able to accomplish this

operation without overflowing, the brightness of each pixel, bj, is represented using

64 bits, 48 of them for the integer part and 16 for the decimal part, in the tree

fixed-point versions.

4. qn vector:

Vectors qn are directly selected as one pixel of C. Hence, its values can be repre-

sented using the same number of bits as C in the Int32 version, 20 for the integer

part and 12 for the decimal part. Additionally, this configuration is also followed

by both the Int16 and Int16-rd versions in order to not lose precision and avoid

overflowing in those operations that involve qn, such as those defined in Lines 10

and 12 of Algorithm 2.

5. Normalized vector, un vector:

Vectors un are obtained by dividing the corresponding vector qn by the maximum

brightness value, bjmax in each algorithm iteration, n, as it can be seen in Line 10

of Algorithm 2. Hence, its values are in the range (-1, 1] and therefore, elements of

this vector may be represented using 32 bits, 2 bits for the integer part and 30 for

the decimal part, obtaining a resolution of 2−30 for the three proposed fixed-point

versions of the core operations.

44 Chapter 2. Set of core operations

6. Projection vector, vn:

Vectors vn contain the projection of the image pixels into the space spanned by the

different orthogonal projection vector un in each iteration. Hence, their values are

in the range (-1, 1] as un vectors. Therefore, its elements may be also represented

using 32 bits, 2 bits for the integer part and 30 for the decimal part, for the proposed

algorithm versions.

It is also worth to mention that the analysis and methodology presented in this work

for generating the Int32, Int16 and Int16-rd versions can be applied for generating any

other integer version of the set of core operations, using between 16 and 32 bits, in order

to achieve an optimal solution according to the specific characteristics of the sensor and

the hardware device available for the image processing. Additionally, a higher number of

bits can be also used if it is necessary to deal with images with a larger number of bands

and/or with a higher bit depth.

Variable Integer part Decimal part Total

Int32 Int16 Int16-rd Int32 Int16 Int16-rd Int32 Int16 Int16-rd Float32

C 20 16 14 12 00 02 32 16 16 32

µ 16 16 12 00 00 00 16 16 12 32

b 48 48 48 16 16 16 64 64 64 64

q 20 16 14 12 00 02 32 16 16 32

u 02 02 02 30 30 30 32 32 32 32

v 02 02 02 30 30 30 32 32 32 32

Table 2.2: Number of bits used for representing the integer and decimal parts of the
variables involved in the proposed set of core operations.

2.6 Conclusions

In this chapter, the issue around the real-time processing of HSIs has been approached

from a new algorithmic perspective. Concretely, a set of core operations that extracts in-

formation from HSIs useful for many hyperspectral analysis techniques has been proposed.

This methodology employs an orthogonal projection strategy and in particular, it is based

on a modified version of the well-known Gram-Schmidt orthogonalization method. The

Chapter 2. Set of core operations 45

proposed method allows performing the simultaneous extraction of the p most represen-

tative hyperspectral pixels in a scene and identifying the amount of the image spectral

information that can be represented by them. As it will be further analysed in next

Chapters, the estimation of these data encourages the performance of many other hyper-

spectral processes, such as unmixing, compression, classification, anomaly detection and

target detection.

In general, the methodology proposed in this Thesis entails the following advantages and

benefits, above all in the field of onboard hyperspectral imaging processing:

� Line-by-Line performance.

The proposed set of core operations is able to efficiently and independently process

blocks of image pixels without requiring any specific spatial alignment. This feature

makes this proposal a promising solution for real-time applications, especially those

based on pushbroom/whiskbroom scanners since hyperspectral frames can be pro-

cessed as soon as they are sensed. Additionally, it also reduces the amount of data

to be stored and processed, thereby minimizing the required hardware resources and

also speeding up the process of data analysis.

� Low computational complexity and high level of parallelism of involved operations.

The proposed methodology does not perform complex matrix operations, such as

inverse matrix calculation or the extraction of eigenvalues and eigenvectors, which

makes easier its ulterior hardware implementation and reduces the amount of re-

quired hardware resources. In addition, this methodology allows the reutilization of

information and avoids data dependences since spatial information is not involved.

All of this contributes to reduce the time and effort during the stage of hardware

acceleration.

� Reduction in the computing hardware resources.

Since several hyperspectral image processing techniques may be performed using the

proposed set of core operations, it enables the coexistence of multiple applications

at the same time with the advantage of sharing the most computationally costly

operations. Consequently, the overall computational cost and the amount of required

hardware resources needed for their execution are considerably less than if different

state-of-the-art algorithms were independently implemented.

46 Chapter 2. Set of core operations

� Fixed-point and Floating-point notation.

The proposed set of core operations takes into consideration the hardware-design

characteristics of the most typically used computing platforms, such as FPGAs and

GPUs. Accordingly, they can be easily adapted to the requirements imposed by the

targeted devices and thereby, be seamlessly implemented using both fixed-point and

floating-point notation. In this context, FPGA devices are in general more efficient

dealing with integer operations with a close-to-hardware programming approach,

while GPUs are optimised for parallel processing of floating-point operations using

thousands of small cores.

Chapter 3

Hyperspectral Anomaly Detection

In this Chapter, the Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery (LbL-

FAD) proposed in this Thesis work is fully described and documented. The LbL-FAD

algorithm is a subspace-based anomaly detector that employs an orthogonal projection

strategy, in particular the set of core operations extensively analysed in previous Chapter

2, for estimating the orthogonal subspace spanned by the background distribution where

anomalous entities are better detectable. The goodness of the LbL-FAD algorithm for

the detection of anomalous spectra has been evaluated in this Chapter using real hyper-

spectral images collected by different sensors. Additionally, the LbL-FAD method has

been compared with other algorithms that conform the state-of-the-art for the anomaly

detection problem. The obtained results clearly support the benefits of the proposed

methodology, in terms of both the accuracy of the detection performance and the inher-

ent computational complexity.

47

48 Chapter 3. Hyperspectral Anomaly Detection

3.1 Rationale

In the recent years, anomaly detection has experienced a steady surge in popularity in

hyperspectral data analysis. Generally speaking, anomalies are considered as groups of

rare and not abundant pixels whose spectral signature significantly differs from their

surroundings. Thereby, anomaly detection is a generalization of target detection where

there is no prior information about the desired target signature [58], [59], [125], [126].

Concretely, the anomaly detection issue could be seen as a binary classification problem

where the background class is predominant and the existence of anomalous patterns may

be indicative of abnormal or suspicious behaviour. This feature of uncertainty turns the

anomaly detection into an essential matter in military and civilian applications, such as

defense and surveillance, ecosystem disturbances, rare mineral discovery, among others.

In the recent decades, several anomaly detection algorithms have been proposed. Gener-

ally speaking, anomaly detection methods model the background distribution and classify

those pixels with significantly different spectral signatures from the pattern as suspicious

entities. To do so, anomaly detectors mark every image pixel with a certain score and

point out those with the highest values as rare pixels. Therefore, anomalies could be seen

as outliers in a distribution [127]. The most widely studied methods on hyperspectral

anomaly detection are based on statistical approaches under the assumption of Gaussian

multivariate distribution. Alternatively, sparsity and compressed sensing models have

been recently emerged in the field of hyperspectral image processing. They do not as-

sume a normal probability function or estimating a covariance matrix. Other anomaly

detection methods are based on dimension reduction and feature extraction in order to

remove inter-band correlations among spectral bands. Recently, with the development of

deep learning methods, hyperspectral image processing and deep feature extraction have

also made great progress [128].

Among this wide range of approaches found in the literature, the linear mixing model

(LMM) appears as an interesting alternative to deal with the anomaly detection problem.

As it was introduced in Chapter 2, the LMM is an extensively used tool in hiperspectral im-

agery analysis. It is based on the idea that a generic pixel spectrum, rj, can be represented

as a linear combination of a set of reference spectral signatures, E = {en, n = 1, ..., p}, and

the fractional parts covered by each en in rj, aj,n. Built on the premise that the anomalous

target and the background signals lie into a different lower dimensional subspace in the

field of subspace-based anomaly detection, the LMM can be rewritten as:

Chapter 3. Hyperspectral Anomaly Detection 49

rj =

p∑
n=1

bn · aj,n + s · asj + nj (3.1)

where bn represents the n background signal, s is the desired target signature, as is the

abundance factor of s in the pixel rj and nj represents the noise contained in the image

pixel rj.

A distinguishing feature of the anomaly detection problem is that the desired target sig-

nature, s, to be detected is unknown beforehand but those image pixels spanned by s

direction cannot be well represented by the background spectra. Therefore, the LMM

may be effectively used to perform anomaly detection through the modelling of the back-

ground distribution and its subtraction from every image pixel by means of orthogonal

subspace projections (OSPs). For this reason, subspace-based anomaly detection consists

in projecting image pixels onto the subspace that is orthogonal to the one spanned by the

background samples. In this context, the projection separation index for an image pixel

rj is calculated as [58]:

d = (rj − µ̂b)
′ ·P · (rj − µ̂b) (3.2)

where µ̂b is the estimated average pixel of the background samples and P is the matrix

that projects the data onto the orthogonal subspace to one spanned by the background

samples. In this case, P is defined by:

P = I−W(W′W)−1W′ (3.3)

where I is the identity matrix and W = {wn, n = 1, ...p} is a matrix whose columns are

the p projection basis obtained from the background samples. An anomalous pixel is

detected if its projection onto this orthogonal subspace is greater than a threshold.

The most common methods in the state-of-the-art to identify the background basis are

based on linear transformations such as Singular Value Decomposition (SVD), Principal

Component Analysis (PCA) or Independent Component Analysis (ICA) where the first

eigenvectors of the background covariance matrix are representative of the background

subspace. Another approaches are based on unmixing techniques to extract the back-

ground endmembers in an unsupervised manner [58], as it is proposed in this Thesis work

50 Chapter 3. Hyperspectral Anomaly Detection

with the use of the proposed set of core operations introduced in Chapter 2. To this end,

a new algorithm has been developed in this Thesis, named A Line-by-Line Fast Anomaly

Detector for Hyperspectral Imagery (LbL-FAD) [129].

3.2 State-of-the-art in hyperspectral anomaly detec-

tion

Hyperspectral anomaly detection has been brought to the scientific community attention

in the last years. Accordingly, several algorithmic solutions have been proposed in the

literature. The well-known Reed-Xiaoli (RX) [60] is regarded as the benchmark in this

field to which other newest algorithms are compared. The RX anomaly detector is based

on the assumption that the background pattern follows a normal Gaussian distribution.

Consequently, it employs the Mahalanobis distance to detect the anomalies by means of

the computation of the background sample covariance matrix. Several variants of the RX

detector have been investigated to improve its detection performance. For instance, the

Local RX (LRX) locally estimates the background statistics by the definition of a dual

concentric sliding window around each image pixel [130]. The Uniform Target Detector

(UTD) and the RX work exactly the same, but the former uses the unit vector instead of

a sample vector as the matched signature [44]. The impact of a regularization term added

to the covariance matrix computation is analysed in [61] in pursuit of more stable back-

ground models. The Weighted-RXD and the Linear Filter-Based RXD [131] improve the

estimation of the background statistics by removing some anomalous signatures and the

noise when the background mean and the covariance matrix are computed. Additionally,

kernel-based methods [132] have been also proposed in order to exploit the non-linear char-

acteristic of the hyperspectral images (HSIs) and the highest-order correlation between

the spectral bands.

One aspect to bear in mind is that the methodology followed by the RX-like solutions

could be seen as an inverse operation of the Principal Component Analysis (PCA) [44].

As a matter of fact, the background distribution can be accurately modelled by the first

PCA/SVD (Singular Value Decomposition) components defined by the eigenvalue decom-

position of the background covariance matrix. On this basis, the subspace-based anomaly

detectors emerge [58]. For instance, the Subspace RX (SSRX) [133] discards the first

PCA/SVD bands and then globally applies the RX to the remaining subspace. On the

Chapter 3. Hyperspectral Anomaly Detection 51

contrary, Orthogonal Subspace after RX (OSPRX) [134] projects the data onto the or-

thogonal subspace spanned by them before applying the RX.

Nonetheless, the background pattern could be, broadly speaking, very heterogeneous and

thus, it is complicated to be represented assuming a normal probability function in some

scenarios. Alternatively, different non-RX-based methods have been successfully applied

to hyperspectral anomaly detection. Concretely, the unsupervised nearest regularized

subspace (UNRS) [135], the collaborative-representation-based detector (CRD) [64], the

low-rank representation models and the sparse-representation-based methods [62, 63] have

been extensively researched in the field of hyperspectral anomaly detection. Due to the

strong interband and spatial correlations of the observed data, these methods are based

on the assumption that the background samples can be approximately represented by

the spatial surrounding neighbourhood pixels or as combination of few reference vectors.

For instance, the Low Rank and Sparse Representation anomaly detector (LRASR) [136]

infers, on the one hand, that the background class could be modelled as the lowest rank

representation of the HSI and, on the other hand, the anomalies can be potentially dis-

tinguished by the remaining information, which will be sparse since a tiny part of image

pixels belongs to the anomalous class. On this basis, a background dictionary composed

of representative spectral signatures extracted by a previously applied clustering method

is built. Similarly, the LRASR-based Mahalanobis detector (LSMAD) [63] constructs a

Mahalanobis-distance-based anomaly detection algorithm after recovering both the low-

rank background matrix and the sparse matrix with the anomalous entities. With it,

LSMAD algorithm tries to alleviate the anomaly contamination problem when the back-

ground mean and the covariance matrix are estimated. On the contrary, the CRD [137]

exploits the concept that each background pixel can be approximately represented by its

spatial neighborhoods whereas anomalies cannot be. To do this, a weight vector that

collects the collaboration of these neighbourhood pixels is defined by the reinforce of its

l2-norm minimization, in which a Euclidean distance-weighted regularization matrix is

included to adjust the contribution of each surrounding pixel.

Other state-of-the-art anomaly detection methods are based on projection techniques

in order to carry out a dimensionality reduction for feature extraction, being the PCA

and the Independent Component Analysis (ICA) the most commonly applied methods

for this purpose. Global Iterative Principal Component Analysis Reconstruction-Error-

based anomaly detector (GIPREBAD) [138] employs the PCA projections to examine

anomalies by computing residual errors. As a matter of fact, it starts from the idea that the

anomalies can be poorly reconstructed by the first principal components representative of

52 Chapter 3. Hyperspectral Anomaly Detection

the predominant class in the image, the background, but dominate the trailing components

with low variance. Autonomous Global Anomaly detector (AutoGAD) [139] follows an

unmixing-like strategy to separate the independent mixed sources present in the image.

In this sense, the data are projected onto a new set of independent axes given by the

ICA and then, the abundance maps that possibly contain anomalous pixels are selected

computing two measures of target characteristics.

In the last years, deep learning and tensor theory have drawn increasing attention for hy-

perspectral image processing, above all in the field of supervised classification [140–143]

and to a minor extent for anomaly detection. As far as we know, the work presented

in [144] was the first approach that applied deep convolutional neural network (CNN)

for supervised hyperspectral anomaly detection. In this proposal, a reference data set

with labelled samples is employed to train the CNN. Then, for each testing pixel, differ-

ences between pixel pairs constructed using its neighbouring pixels are classified by the

trained CNN with the results of similarity measurement. However, supervised anomaly

methods are not as applicable as unsupervised or semisupervised alternatives due to the

lack of available labelled training data sets. In the field of unsupervised hyperspectral

anomaly detection, the strategy of adaptive weighted coding for decreasing the effect

of local anomalous pixels contamination using Deep Belief Network (DBN) model with

auto-encoder structure is proposed in [145]. Additionally, a spectral adversarial feature

learning (SAFL) model is presented in [146] to extract distinctive features in deep latent

space whose quality is evaluated by means of reconstruction errors. Nonetheless, unsuper-

vised techniques are very sensitive to noise and data corruption and thereby, the detection

performance is diminished. In this scenario, semisupervised methods are adopted in this

field. A generative adversarial network (GAN)-based model is proposed in [147] to esti-

mate the background distribution in the spectral domain and also adopts a morphological

attribute filter to generate an initial feature in the spatial domain. Alternatively, algo-

rithmic solutions that fuse different computing strategies have also been emerging, for

instance, [148] introduces a novel anomaly detection algorithm based on CNN, low-rank

representation (LRR) and unsupervised clustering.

Nevertheless, most of the aforementioned proposals improve their detection accuracy by

raising the intensity of the computation complexity, which is usually reflected in intensive

memory requirements, high implementation costs and non-scalability. Just to list some

of the most commonly used operations, they include covariance matrix, inverse matrix

computation and eigenvalue decomposition. All of this poses some important limitations

Chapter 3. Hyperspectral Anomaly Detection 53

that prevent the use of these methodologies for the onboard real-time processing of hyper-

spectral anomaly detection. In contrast, lowering the heavy computational costs is indeed

taken into account by certain researchers through the use of alternative mathematical

methods, such as QR and Cholesky decomposition [44–47], or through parallel computing

via high-performance architectures. However, the latter is a very time-consuming task

due to the low parallelizable nature of the involved operations.

In addition to the above issues, most of the mentioned methods must be fed by the

entire HSIs to perform the anomaly detection process. This feature becomes them not

competitive solutions for most applications based on pushbroom/whiskbroom scanners, in

which the image is sensed in a line-by-line fashion, perpendicular to the flight direction of

the capturing platform. Therefore, for paving the way for real-time detection performance,

it is expected the search for anomalies as soon as new hyperspectral frames are sensed.

This scenario imposes two necessities. On one side, it is mandatory to use causal anomaly

detection algorithms, where only the data samples up to the pixel being processed is

used for the analysis while future data are not involved [44]. On the other side, the

proposed algorithmic solutions must be hardware-friendly in order to be easily executed

in parallel computing devices. In this regard, the Line-by-Line Fast Anomaly Detector

for Hyperspectral Imagery (LbL-FAD) is proposed in this Thesis work with the goal

of fulfilling the aforementioned constraints in terms of real-time performance and the

causality required by applications based on pushbroom scanners.

3.3 Proposed anomaly detection algorithm: A Line-

by-Line Fast Anomaly Detector for Hyperspec-

tral Imagery (LbL-FAD)

The LbL-FAD algorithm is a subspace-based anomaly detection algorithm designed to

fulfil the constraints imposed by nowadays remote sensing applications based on push-

broom/whiskbroom scanners. In this regard, the LbL-FAD algorithm is able to inde-

pendently process blocks of hyperspectral pixels with not taking into consideration any

spatial alignment requirement. As a result, the methodology followed by the LbL-FAD

algorithm is well aligned with the needs imposed by the aforementioned applications since

the detection of anomalous pixels could be conducted in a line-by-line fashion.

54 Chapter 3. Hyperspectral Anomaly Detection

The LbL-FAD algorithm is based on the concept of orthogonal subspace projections. As

it was introduced in Section 3.1, anomalous spectral signatures significantly differ from

the background pattern. Accordingly, they cannot be accurately represented by the sub-

space conformed by the background samples. On this basis, the methodology followed

by the LbL-FAD algorithm focuses on the calculation of an orthogonal subspace to the

one spanned by the background distribution in which the anomalous spectra are better

distinguishable. To do so, the LbL-FAD algorithm firstly estimates a set of orthogonal

vectors representative of the background model following an orthogonal projection strat-

egy and, more specifically, by means of the set of core operations introduced in this Thesis

work. Secondly, the LbL-FAD algorithm computes the orthogonal subspace matrix, P,

defined by Equation 3.3, that projects image pixels onto the orthogonal subspace to the

one spanned by the background pattern. In this regard, two low computational complex-

ity strategies are proposed, thereby avoiding the use of traditional linear transformation

methods, such as the PCA or the SVD that are high computational complex in nature,

nor the inverse of big data matrices.

Moreover, yet another contribution of this algorithm is the computation of an automatic

thresholding that enables the real-time discrimination of anomalous pixels as soon as

each hyperspectral frame is processed. In general, other causal state-of-the-art algorithms

[44–47, 149], provide gray-scale maps as output where the anomalous target detection is

usually carried out by visual inspection or thresholding after the whole image is processed.

Unlike them, the LbL-FAD algorithm outputs a line-by-line binary map where anomalous

pixels are segmented from the background, avoiding the subjective human factor.

To illustrate the workflow followed by the LbL-FAD algorithm, Figure 3.1 shows a graphic

representation of the involved computing stages, which will be explained in detail in next

sections.

3.3.1 Line-by-Line extraction of the background reference spec-

tra

The first stage of the LbL-FAD algorithm, named Stage 1 in Figure 3.1, consists in the

feature selection of a set of reference spectra representative of the background distribution.

To do so, the LbL-FAD detector employs the set of core operations described in Chapter

2, and more concretely in Algorithm 2, for the first nf hyperspectral frames captured

by the hyperspectral scanner. It is done under the assumption that these image blocks

Chapter 3. Hyperspectral Anomaly Detection 55

Figure 3.1: Diagram of the LbL-FAD stages. Stage 1: Line-by-line background spectra
extraction. Stage 2: Overall background subspace estimation. Stage 3: Orthogonal

subspace calculation. Stage 4: Detection of anomalies.

are fully representative of the background distribution and therefore, free of anomalous

signatures. Therefore, the final goal of this algorithm stage is to select the most different

pixels within each hyperspectral frame from the time they are captured.

Nevertheless, the key point of this stage is to accurately select the number of p pixels to be

extracted from each hyperspectral frame. As it was explained in Chapter 2, each time that

a pixel en is selected, the spectral information that could not be represented by the already

extracted pixels remains in image matrix C. It means that if the image is represented using

the selected en pixels, according to the LMM, a small part of the spectral information

is lost when the image is reconstructed using the p selected en pixels and besides, equal

to the remaining information contained in C. In this sense, the maximum brightness,

bjmax , after the ep vectors have been selected may be representative of the spectral losses

introduced by the unmixing process and consequently, it could be used to set p. To this

end, it is defined and extra input parameter, α, that represents the percentage of the

spectral information that will be considered as noise. In this context, the pixel extraction

process finishes when the loss, in percentage terms, is less than α, as it can be seen in

Equation 3.4 where (rjmax − µ̂) represents the initial value of rjmax in C. In general,

experience has shown that a stop factor, α, fixed to 1% is sufficient since smaller values

would mean that a greater number of characteristic pixels are unnecessarily extracted,

and as a consequence, large computation times are promoted.

56 Chapter 3. Hyperspectral Anomaly Detection

Finally, it is important to mention that enough nf hyperspectral frames must be taken to

ensure that all spectral variability is covered and thus, to generate a truthful background

model. In addition, background samples obtained in previous flights may be used instead

of obtaining them from the first nf frames.

bjmax

(rjmax − µ̂)′ · (rjmax − µ̂)
· 100 < α→ Stop selecting p en pixels (3.4)

3.3.2 Overall background subspace estimation

One of the main novelties of the methodology followed by the proposed set of core opera-

tions and thus, by the LbL-FAD algorithm, is that image blocks, Mk, are independently

processed ruling out any spatial alignment restriction. For this reason, many pixels ex-

tracted from previous nf hyperspectral frames actually represent the same entities. There-

fore, it is required to obtain a subset of the most purest reference vectors that better define

the background distribution. To this end, the set of core operations is applied once again,

though input matrix, Mk, is now replaced by a matrix B* = {Ek, k = 1, ..., nf} whose

columns collect the background reference vectors extracted from each first nf frames.

Consequently, a subset of the p most representative background pixels Bg =

{en, n = 1, ...p} is obtained, as well as the orthogonal vector matrices Q = {qn, n = 1, ...p}
and U = {un, n = 1, ...p}. Deriving from this, some background information is lost at the

end of this step since Bg is actually a subspace of B*. As it was analysed in Section 3.3.1,

the remaining maximum brightness, bjmax , in C could be an indicator of the amount of

background information that is not well represented by the reference vectors within Bg.

Therefore, bjmax obtained at the end of this stage could be potentially used as a benchmark

to identify anomalous pixels. In later Sections, this parameter will be referred to as τ .

For the sake of clarity, this stage corresponds to Stage 2 in Figure 3.1.

3.3.3 Orthogonal Subspace to the one spanned by the back-

ground samples

One of the fundamental issues posed by the anomaly detection process is the identification

of desired spectral targets that are unknown in advance. Nevertheless, anomaly detection

Chapter 3. Hyperspectral Anomaly Detection 57

is based on the premise that these rare signatures are notoriously different from the back-

ground pattern. For this reason, it is assumed that anomalous pixels should have a higher

projection onto the subspace orthogonal to the background distribution. Consequently,

the third stage of the LbL-FAD algorithm, named as Stage 3 in Figure 3.1, focuses on

the computation of the orthogonal subspace matrix, P, defined by Equation 3.3. How-

ever, this calculation is computationally expensive since it implies matrix inverse whose

dimension directly depends on the number of background samples p. On this basis, we

propose two lower computational burden alternatives to address P computation. Both of

them employ the orthogonal vectors Q and U estimated in Stage 2 of the algorithm. In

particular, in this Section we discuss the first approximation while the second proposal

will be later analysed in Section 3.4.

In this sense, when the Gram-Schmidt method is applied to a set of vectors, here

Bg = {en, n = 1, ...p}, the orthogonalization process is performed by subtracting from

each vector the spectral information that is not contained in the vectors already orthogo-

nalized. For instance, q3 and u3 retain the spectral information present in e3 that is not

part of e1 and e2. Nonetheless, q2 and u2 is also spanned by the direction of e3 but not

by e1. As a result, qp and up vectors only hold the spectral information of ep that is not

included in previously selected background reference vectors Bg = {en, n = 1, ...p− 1}.
On this basis, Q is equivalent to W in Equation 3.3 and U to W(WTW)−1. Hence, the

first approximation for computing the orthogonal projection matrix, P, can be defined as:

P = I−QU′ (3.5)

3.3.4 Detection of anomalies

As a matter of fact, the detection of anomalous pixels is carried out in the fourth and the

last stage of the LbL-FAD algorithm, labelled as Stage 4 in Figure 3.1. To do so, pixels,

rj, within new captured frames, Mk, k > nf , are projected onto the orthogonal subspace

spanned by the background model, represented by the orthogonal projection matrix, P,

and their projection, d, is measured as it is depicted in Equation 3.2.

On the basis that an anomaly represents a spectrally different material from those com-

prised by the background distribution, anomalous pixels should have a large projection

onto the subspace spanned by Equation 3.2. In order to quantify how big must be this

58 Chapter 3. Hyperspectral Anomaly Detection

projection, scalar τ obtained in Section 3.3.2 is used. As mentioned above, τ stands for

the error committed by pixels within Bg to represent the background. Accordingly, τ is

also the maximum brightness of the remaining spectral information within C, so that,

its value is already scaled in the orthogonal subspace spanned by Q and U vectors and

therefore, by P. As a result, an anomalous entity should have a larger projection, d, than

τ .

As it was already mentioned in Section 3.1, an anomaly could be seen as an outlier in

a distribution. An outlier is an observation whose value lies far away from the rest of

the data. In a sense, its definition is fully connected to what is considered an abnormal

distance from the overall pattern of a distribution. In this context, box plot diagrams,

also termed as whiskers′ plots, are widely used in the literature to identify outliers. They

display the behaviour of the data in the middle and extreme boundaries of the distribution.

For doing so, they use the lower and upper quartiles and the interquartile range (IQ)

for identifying extreme values, or fences, in the tails of the distribution beyond which

abnormal values are considered. In this regard, a point beyond 1.5·IQ on either side,

termed as inner fence, is considered a mild outlier while a point beyond 3·IQ on either

side, termed as outer fence, is considered an extreme outlier. Following an analogous

methodology in our particular application, an anomalous pixel could be defined as a mild

outlier whose projection d is bigger than 1.5·τ . This way, we are able to also propose an

automatic thresholding method based on the background data distribution that allows to

segment the anomalous targets just after a hyperspectral frame is processed.

The overall description of the LbL-FAD algorithm is summarized in Algorithm 3. The

three-dimensional (3D) input hyperspectral cube, HI = {Fi, i = 1, ..., nr}, is a sequence

of nr hyperspectral frames or lines of pixels, Fi, comprised by nc pixels with nb spectral

bands. Pixels within HI are grouped in blocks of BS pixels, Mk = {rj, j = 1, ..., BS},
being normally BS equal to nc, or multiple of it, and k spans from 1 to nr·nc

BS
. The output

is a binary map X =
{
xkj, k = 1, ..., nr·nc

BS
, j = 1, ..., BS

}
where anomalies are marked as

class 1 and the background pixels as class 0. Since each frame is processed in real-time

and in a line-by-line fashion, each row of the binary map, X, is also provided in real-time

without requiring to receive the whole image to apply the thresholding.

Additionally, Algorithm 4 shows the modifications made to the proposed set of core op-

erations displayed in Algorithm 2. For the sake of clarity, they have been highlighted in

blue. As it can be seen, α is also set as an input parameter and it is used in Line 9 to

Chapter 3. Hyperspectral Anomaly Detection 59

Algorithm 3 The LbL-FAD algorithm.

Inputs:

HI = [M1,M2, ...,Mk], nf , α

Outputs:

X = [x11,x12, ...,xkj]

Algorithm:

Stage 1:

1: for k = 1 to nf do

2: Ek = Set of core operations(Mk, α);

3: B* = [B*,Ek];

4: end for

Stage 2:

5: [µ̂b,Bg,Q,U, τ] = Set of core operations(B*, α);

Stage 3:

6: P = I−QU′;

Stage 4:

7: for k = nf + 1 to nr·nc
BS

do

8: for j = 1 to BS do

9: dj = (rkj − µ̂b)
′ ·P · (rkj − µ̂b);

10: if dj ≤ 1.5 · τ then

11: xkj = 0;

12: else

13: xkj = 1;

14: end if

15: end for

16: end for

establish a stopping condition during the p vector selection process. Moreover, τ scalar is

also added to the list of algorithm outputs.

3.4 Hardware-Friendly LbL-FAD (HW-LbL-FAD)

The first and second stages of the LbL-FAD method, in which the background subspace

is modelled, are the less computationally demanding parts of the algorithm. On the one

hand, they are implemented in a small group of hyperspectral frames. On the other

60 Chapter 3. Hyperspectral Anomaly Detection

Algorithm 4 LbL-FAD. Set of core operations

Inputs:

Mk = [r1, r2, ..., rBS], α

Outputs:

µ̂ {Average Pixel}; E = [e1, e2, ..., ep] {Characteristic pixels}; Q = [q1,q2, ...,qp]

{Orthogonalized vectors};U = [u1,u2, ...,up] {Orthonormalized vectors}; V =

[v1,v2, ...,vp] {Projection vectors}; τ {Threshold}
Algorithm:

1: Average pixel: µ̂;

2: Centralization: C = Mk − µ̂;

3: exit = 0

4: while exit = 0 do

5: for j = 1 to BS do

6: Brightness Calculation: bj = c′j · cj;
7: end for

8: Maximum Brightness: jmax = argmax(bj);

9: if
bjmax

(rjmax−µ̂)′·(rjmax−µ̂)
· 100 < α then

10: Stop condition: exit = 1

11: else

12: Extracted pixels: en = rjmax ;

13: qn = cjmax ;

14: un = qn/bjmax ;

15: Projection: vn = u′n ·C;

16: Subtraction: C = C− qn · vn;

17: τ = bjmax

18: end if

19: end while

hand, they could be potentially performed off-line using hyperspectral data from previous

flights over the same terrain area. Nonetheless, the last two LbL-FAD stages, in which

the projection matrix, P, is computed and the potential anomalous pixels are detected,

bear most of the complexity and computational burden of the entire anomaly detection

process and indeed, must be carried out aboard in order to provide a real-time monitor-

ing. Consequently, a great of effort has been invested to optimize them for being later

accelerated in a more efficient way.

Chapter 3. Hyperspectral Anomaly Detection 61

In this sense, the Hardware-Friendly LbL-FAD (HW-LbL-FAD) [150] emerges as an al-

ternative algorithmic solution that employs mathematically equivalent operations but at

a lower computational burden. The major difference is that the orthogonal projection

matrix, P, is not explicitly calculated. In this regard, the projection separation index,

d, as it is defined in Equation 3.2, in overall calculates the brightness, or the squared l2-

norm, of the orthogonal component of each image pixel, rj, to the subspace spanned by

the background distribution. Accordingly, the modified Gram-Schmidt orthogonalization

process, described in detail in Section 2.3.1, may be used for calculating the orthogonal

projection, d, of each hyperspectral pixels, rj. It also facilitates the algorithm execution

using customized integer arithmetic at different levels of precision that can be adapted

for achieving the best relation between detection accuracy and computational burden.

The sequence of operations involved in this alternative solution of the LbL-FAD algorithm

is collected in the pseudocode displayed in Algorithm 5. As it can be seen, the background

average pixel, µ̂b, which is obtained in Stage 2 of the algorithm, is firstly subtracted from

each image pixel, rj in Line 2. Afterwards, the spectral information of rj that can be

spanned by the background samples is removed using Q and U vectors also outputted

in Stage 2, as it is shown in Lines 3 to 6. Finally, the remaining spectral information of

each image pixel, rj, which is in fact orthogonal to the space spanned by the background

samples, is measured in line 7. If this value is higher than the specified threshold (1.5 ·τ),

the pixel is labelled as an anomaly (Lines 8 to 12 of Algorithm 5).

The HW-LbL-FAD algorithm provides several advantages in relation to the process fol-

lowed by the original LbL-FAD:

� Less memory requirements :

With this new proposal, it is not needed to keep matrix P in memory, whose size

is nb · nb. Instead, the set of p spectral vectors within Q and U vectors are just

needed. Normally, p is much lower than nb.

� Less number of computing operations and complexity.

On one side, once that the Q and U vectors have been extracted in the second stage

of the algorithm (see Section 3.3.2), it is not needed to compute the calculation

of the orthogonal matrix, P. Furthermore, the process followed by the HW-LbL-

FAD algorithm for scanning the hyperspectral frames looking for possible anomalies,

based on the Q and U vectors, requires much less number of operations (OPs) than

62 Chapter 3. Hyperspectral Anomaly Detection

Algorithm 5 Stage 3 and Stage 4 performed by the HW-LbL-FAD for each image block,
Mk

Inputs:

Mk = [r1, r2, ..., rBS],Q,U, µ̂b, τ

Outputs:

X = [x1,x2, ...,xBS]

Algorithm:

1: for j = 1 to BS do

2: Centralization: rj = ri − µ̂b;
3: for k = 1 to p do

4: Projection. vn = U′k · rj;
5: Subtraction: rj = rj −Qk · v;

6: end for

7: Brightness Calculation: dj = r′j · rj;
8: if dj ≤ 1.5 · τ then

9: xj = 0;

10: else

11: xj = 1;

12: end if

13: end for

the process followed by the LbL-FAD using matrix P. Indeed, the number of OPs

involved by both the LbL-FAD and the HW-LbL-FAD methods for computing the

projection separation index, d, for the BS pixels within a HSI block, Mk, is shown

in Table 3.1.

� Data types optimization. Unlike the P computation carried out by the original LbL-

FAD algorithm, the range of values that can be obtained by the operations involved

by the modified Gram-Schmidt orthogonalization process described in Algorithm 5

can be known in advance. This makes possible the use of fixed-point arithmetic in-

stead of floating-point notation, making the HW-LbL-FAD algorithm more suitable

for being executed in some hardware devices such as space-graded FPGAs [151].

Chapter 3. Hyperspectral Anomaly Detection 63

Algorithm FLOPs Complexity

LbL-FAD BS · (2 ·N2
b + 2 ·Nb) O(BS ·N2

b)

HW-LbL-FAD BS · [p · 4 ·Nb + 2 ·Nb] O(BS · p ·Nb)

Table 3.1: Number of OPs performed by the LbL-FAD algorithm and the HW-LbL-
FAD method for computing the projection separation index, d, for the BS pixels within

a HSI block, Mk.

3.5 Experimental Results

This section discloses the most significant results obtained by the LbL-FAD algorithm

when it is utilized to perform the anomaly detection process. In order to evaluate the

performance of the proposed algorithm in real scenarios, eight different hyperspectral

data sets have been used as inputs to the algorithm. Some of them were collected by

traditional remote sensing observation platforms, such as the Wildfire Airborne Sensor

Program (WASP) Imaging System and the NASA JetPropulsion Laboratorys Airborne

Visible Infra-Red Imaging Spectrometer (AVIRIS), while others were sensed by a new un-

manned aerial vehicle (UAV) - based acquisition system. This test bench has been anal-

ysed using both floating-point and fixed-point notations with different levels of precision.

Additionally, the performance of the LbL-FAD algorithm has been compared with some

of the most relevant algorithms of the state-of-the-art, namely the Orthogonal Subspace

after RX (OSPRX), the Low-rank and Sparse matrix decomposition-based Mahalanobis

distance method (LSMAD) and the Progressive Line Processing of a Kernel version of the

RX algorithm (PLP-KRXD).

3.5.1 Reference Hyperspectral Data

In this section, the hyperspectral data used for evaluating the performance of the LbL-FAD

algorithm are introduced. This test bench is composed of two conventional data widely

used in the literature to evaluate the performance of hyperspectral anomaly detectors, a

computer-generated synthetic image and a new bunch of real hyperspectral data collected

by one UAV available in our institutional facilities.

The synthetic data has a size of 150x150 hyperspectral pixels and 429 spectral bands. It

was generated using a spectral library collected from the United States Geological Survey

64 Chapter 3. Hyperspectral Anomaly Detection

(USGS) [152]. The background was simulated using four different spectral signatures

whose abundances were generated using a Gaussian spherical distribution [153]. Twenty

panels of various sizes arranged in a 5x4 matrix were introduced as anomalies. There

are five 4x4 pure-pixel panels lined up in five rows in the first column, five 2x2 mixed-

pixel panels in the second column, five subpixel panels combined with the background

in a proportion of 50% in the third column and five subpixel panels blended with the

background at 75%. Therefore, the simulated image has 110 anomaly pixels, a 0.49% of

the image. A false color representation of this synthetic image is shown in Figure 3.2a

while its ground-truth is shown in Figure 3.2d.

Between the couple of commonly used hyperspectral imagery, the first data set was taken

over the Rochester Institute of Technology (RIT) by the WASP Imaging System [154]. A

portion of the overall image taken over a parking lot with a size of 180x180 pixels and

120 bands has been used in this study, as it can be seen in Figure 3.2b where anomalies

are fabric targets that are composed of 72 pixels and account for 0.22% of the image. Its

corresponding ground-truth is shown in Figure 3.2e.

The second real data set was collected by the NASA Jet Propulsion AVIRIS over the

World Trade Centre (WTC) area in New York City on September 16, 2001 [155]. The

original data set has a size of 614x512 pixels and 224 spectral bands from 0.4 to 2.5 µm

although a smaller region with size of 200x200 pixels was selected as data set. Anomalies

are thermal hot spots that consist of 83 pixels and account for 0.21% of the image scene.

Figure 3.2c shows a representation of this image while its corresponding ground-truth is

shown in Figure 3.2f.

The six remaining HSIs used in the experiments were sensed by the aerial platform ex-

tensively analyzed in [89]. This acquisition system carries a Specim FX10 pushbroom

hyperspectral camera mounted on a DJI Matrice 600 drone. The hyperspectral sensor

covers the visible near infrared (VNIR) of the electromagnetic spectrum, from 400 to

1000 nm, using 224 spectral bands with a spectral full width at half maximum (FWHM)

of 5.5 nm and, 1024 spatial pixels per scanned cross-track line. In this work, the first

20 and the last 45 spectral bands are discarded due to the low spectral response of the

hyperspectral sensor at those wavelengths, what results in just 160 spectral bands be-

ing retained. The data used for the experiments were collected by the aforementioned

acquisition platform over different farming areas on the island of Gran Canaria (Spain),

displayed in the Google Map picture shown in Figure 3.3a, during three different flight

campaigns.

Chapter 3. Hyperspectral Anomaly Detection 65

(a) (b) (c)

(d) (e) (f)

Figure 3.2: RGB representation of the HSIs used in the experiments. (a) Synthetic
Image. (b) WASP RIT scene. (c) AVIRIS WTC scene. (d) ground-truth Synthetic

Image. (e) ground-truth WASP RIT scene. (f) ground-truth AVIRIS WTC scene.

The first flight campaign, highlighted in blue color in Figure 3.3b, was carried out over

a plantation of bananas in the south-west of the island, concretely in a village called

Veneguera (27°52’17.4”N 15°45’44.2”W). The flight was performed at a height of 72 m

over the ground at a speed of 6 m/s with the hyperspectral camera capturing frames at 125

frames per second (FPS), resulting in a ground sampling distance in line and across line

of approximately 5 cm. This mission consisted of 6 waypoints that provided 3 swathes.

The area covered by these swathes is highlighted in the Google Maps picture displayed

in Figure 3.3b. Concretely, three portions of 825 hyperspectral frames, with their 1024

hyperspectral pixels, were cut out from these swathes and used for the experiments.

A RGB representation of these HSI portions are displayed in Figures 3.5a-c, and their

locations within the corresponding swath are displayed in Figures 3.4a-c, respectively.

The second and third flight campaigns were carried over some vineyard areas in a village

called Tejeda located in the center of the island. Their exact coordinates are 27°59’35.6”N

66 Chapter 3. Hyperspectral Anomaly Detection

N

(a)

N

(b)

N
(c)

N

(d)

Figure 3.3: Google Maps pictures of the farming areas corresponding to the HSIs
used in this work. (a) Location of the terrains on the island of Gran Canaria (Spain).
(b) Area covered by the first flight campaign over a banana plantation. (c, d) Area

covered by the second and third flight campaigns over different vineyards.

15°36’25.6”W and 27°59’15.2”N 15°35’51.9”W respectively and, they have been high-

lighted in color green and red in Figures 3.3c and 3.3d. In particular, the second flight

campaign was performed at a height of 45 m over the ground and at a speed of 4.5 m/s with

the hyperspectral camera capturing frames at 150 FPS. This results in a ground sampling

distance in line and across line of approximately 3 cm. This flight mission consisted of

12 waypoints that provided 6 swathes, but just one of them was used in the experiments

carried out in this work. The ground area covered by this swath is highlighted in the

Google Maps picture displayed in Figure 3.3b. One smaller portion of 825 hyperspectral

Chapter 3. Hyperspectral Anomaly Detection 67

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.4: RGB representation of the hyperspectral data acquired in each mission
campaign swath that was used in this work. Color squares highlight the regions selected

for the experiments.

frames with all their 1024 hyperspectral pixels was cut out from the entire swath image

for the simulations. Figure 3.5d displays its RGB representation while its location within

the entire frame is shown in Figure 3.4d.

In the third flight campaign, the terrain was scanned at a flight height of 45 m over the

ground and at a speed of 6 m/s with the hyperspectral camera capturing at 200 FPS.

The resulting ground sampling distance in line and across line was approximately 3 cm.

68 Chapter 3. Hyperspectral Anomaly Detection

The entire flight mission consisted of 5 swathes, but just 2 of them were used for the

experiments in this work. The ground area covered by these swathes is highlighted in

the Google Maps picture displayed in Figure 3.3d. From them, two smaller portions of

825 hyperspectral frames with all their 1024 hyperspectral pixels were cut out for the

simulations. Figures 3.5e-f display their RGB representations, while Figures 3.4e-f show

their locations within the entire swathes.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: RGB representation of the employed test bench. Pixels enclosed in blue
circles represent the anomalous entities to be detected. (a) Drone Image 1. (b) Drone
Image 2. (c) Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f) Drone Image

6.

The aforementioned images were calibrated using a white and dark calibration to obtain

reflectance values. Some examples of calibrated signatures corresponding to different

pixels are displayed in Figure 3.6. Nevertheless, either orthorectification or georeferencing

processes have not been carried out for the acquired raw data. In this sense, the HSIs

have been built up just by placing the subsequent captured hyperspectral frames one next

to the other [156]. This does not degrade the quality of the experiments carried out in

this work since the LbL-FAD algorithm does not use any kind of spatial information.

To evaluate the detection performance of the proposed method, the selected data set

contains some artifacts that are considered to be anomalous pixels. Their locations within

the test bench have been highlighted in Figure 3.5 using blue circles. These artifacts are

people walking among the crop fields in Figures 3.5a-c, e. In Figure 3.5d, the anomalous

Chapter 3. Hyperspectral Anomaly Detection 69

entities are two people standing next to the road. Finally, Figure 3.5f contains a person

walking through the vineyard area and a concrete construction.

(a) (b)

Figure 3.6: Example of spectral signatures corresponding to some real pixels within
Drone Image 1 (Figure 3.5 a). (a) Pixel locations. (b) Pixel spectral signatures.

3.5.2 Reference Algorithms

The performance of the LbL-FAD algorithm has been compared with three state-of-the-

art anomaly detectors. Two of them are global detectors, which work with the entire

image, while the third one is a line-by-line approach meant to work with hyperspectral

imaging pushbroom sensors as our proposal does.

The first global detector is the OSPRX algorithm [58, 134]. It uses the first PCA/SVD

components to define the background subspace and then projects the data onto the or-

thogonal subspace before applying the RX detector. In this case, the OSPRX algorithm

employs the SVD method to estimate the first eigenvectors of the global covariance ma-

trix. Then, it projects the data onto the orthogonal subspace to the one spanned by the

resulted background eigenvectors in the same way as it is defined by Equations 3.2 and

3.3, being W an orthonormal matrix. This method just requires the number of SVD

components to define the background subspace (dOSP) as input parameter. As it can be

seen, the employed methodology is similar to the one followed by our proposal. For this

reason, the OSPRX algorithm has been selected among the other methods found in the

literature to evaluate and compare the detection performance of the proposed LbL-FAD.

70 Chapter 3. Hyperspectral Anomaly Detection

The second global detector is the LSMAD [63]. It is based on low-rank and sparse matrix

decomposition techniques to decompose the HSI as the sum of three elements: a low-rank

matrix, which captures the global background information, a sparse matrix representative

of the sparse property of the anomalies and a noise matrix. Then, the LSMAD algorithm

constructs a Mahalanobis-distance based anomaly detector utilizing the low-rank matrix.

The problem of the inverse covariance matrix is overcome using the first largest eigenvalues

and eigenvectors of the covariance matrix as it is further explained in [63]. This algorithm

requires as input parameters the maximal rank of the background matrix, r, the cardinality

of the sparse matrix, k, which is related to the ratio of anomalies in the image scene, and

finally, a random matrix A1 ∈ Nb × r. Depending on matrix A1, the results are different

every time and due to this, the detection results shown in Section 3.5.5 reflect the average

of 10 simulations for each test image.

Finally, the last state-of-the-art algorithm is an approach to the progressive line processing

of a kernel version of the RX (PLP-KRXD) [149]. It employs a parallel causal sliding

window to ensure the causality of the detection system [149]. The PLP-KRXD algorithm

is updated recursively, which avoids having to recalculate the previously processed data

frames. This algorithm requires as input parameters the polynomial kernel parameter, d,

and the causal window size, [a, b].

3.5.3 Assessment Metrics

The LbL-FAD algorithm results in a binary map where anomalous pixels are segmented

from the background. For this reason, the True Positive Rate (TPR) and the False Positive

Rate (FPR) will be used as assessment metrics to evaluate the detection performance

of the proposed methodology. In this context, a true positive (TP) happens when an

anomalous pixel is properly classified. Hence, the TPR is defined by the proportion

of anomalous pixels correctly sorted among all anomalous pixels in the image, namely

positive entities (P). On the contrary, a false positive (FP) occurs when a background

pixel is declared as an anomaly. Therefore, the FPR is computed as the proportion

of misclassified background pixels among all background image pixels, namely negative

entities (N). These two metrics are displayed in Equations 3.6 and 3.7, respectively. It

has been considered that anomalies are marked as 1 and the background pixels as 0 in

the resulting binary map, X, and in the ground-truth, GT.

Chapter 3. Hyperspectral Anomaly Detection 71

Nonetheless, the state-of-the-art anomaly detection solutions selected for benchmarking

result in gray-scale maps where the detection of anomalous entities is made regarding

the pixel intensity. Therefore, a thresholding is required for discriminating the anomalous

pixels. In order to set this threshold and, at the same time, make a fair comparison in terms

of detection performance between these reference anomaly detector and our proposal, it

is measured for each data set the FPR reached by each reference detectors when the

resulting detection maps are binarized using a threshold that generates the same TPR as

the LbL-FAD algorithm. Similarly, it is also made for estimating the TPR but using a

threshold that spawns the same FPR as the LbL-FAD algorithm. In the remainder of this

Chapter 3, these assessment metrics are referred to as C-FPR and C-TPR, respectively.

TPR =

nr×nc∑
j=1

Xj = 1 ∩GTj = 1

nr×nc∑
j=1

GTj = 1

=
TPs

P
(3.6)

FPR =

nr×nc∑
j=1

Xj = 1 ∩GTj = 0

nr×nc∑
j=1

GTj = 0

=
FPs

N
(3.7)

In any case, the aforementioned performance evaluation metrics required the availability

of reliable ground-truths, in which the spatial resolution of anomalous objects is high

enough to obtain accurate pixel-level ground-truths. For the hyperspectral test bench

used for the experiments, we have only tested ground-truths for the Synthetic Image, the

WASP RIT scene and the AVIRIS WTC scene, which are displayed in Figure 3.2. Hence,

the aforementioned metrics will be only used to evaluate the algorithm performance for

these particular images. In the case of the HSIs sensed by the UAV-based acquisition

system (see Figure 3.5), the evaluation of the detection performance is visually made

at object-level through the description of the resulting binary maps where anomalies and

background elements are segmented. This is because the acquired images have been sensed

at high altitudes and the exact position of the anomalies in the field was not measured. As

a consequence, on the one hand, anomalous entities cover a very small number of image

pixels and, on the other hand, pixels at object borders are mixed with the background.

For this reason, it is very difficult to establish precise boundaries and thus, to generate

accurate pixel-level ground-truths.

72 Chapter 3. Hyperspectral Anomaly Detection

3.5.4 Detection performance of the LbL-FAD algorithm

In this section, the detection performance of the LbL-FAD algorithm is evaluated in

terms of the quality of the detection results and the separability between anomalous and

background classes. To ensure accurate detection results, it is recommendable that both

anomaly and background classes are separated as much as possible in order to prevent

misclassification during the thresholding process, which results in binary maps where

anomalous entities are segmented. To this end, the anomalous pixels must be labelled

with notable high scores as opposite to the background pixels. With it, the robustness

of an algorithm to changes in the decision threshold is ensured and consequently, the

probability of misclassification significantly decreases.

In order to assess the separability performance of the LbL-FAD algorithm, the 3D repre-

sentations of the 2D binary maps given as output by the LbL-FAD detector are displayed

in Figure 3.7 for the nine hyperspectral data sets. The third dimension represents the

scores given by the LbL-FAD algorithm to each image pixel. For drawing these 3D repre-

sentations, the internal thresholding done by the LbL-FAD method using the estimated

threshold, τ , is discarded. Simulations have been carried out for blocks of nc pixels, that

is, BS corresponds to the number of image columns, nc. With respect to the number

of hyperspectral frames employed to estimate the background pattern, nf , it has been

specified at the bottom of each Figure. Analysing these 3D plots, we can conclude that

the LbL-FAD detector assures a high separability between both anomaly and background

classes. Anomalous pixels are characterized by steep peaks in contract to background

pixels that are rated with smaller scores. The worst results in terms of the separability

feature is for the HSIs sensed by the UAV-based acquisition system and more specifically,

for Drone Image 4 and Drone Image 6 (see Figures 3.7g and 3.7i). The main reason is

that these images have not been preprocessed in order to reduce the distortions stemmed

by the drone movement or to eliminate the presence of potential unwanted glosses.

Apart from the 3D plots displayed in Figure 3.7, Figures 3.8 and 3.9 show the 2D binary

maps obtained by the proposed LbL-FAD algorithm as output. For the sake of clarity, they

are superimposed on a panchromatic representation of the scenes to be analysed in order

to make easier the result interpretation. In these displays, lines in blue color indicate

the nf frames employed to estimate the background pattern. Since ground-truths are

available for images shown in Figure 3.2 and the assessment metrics described in Section

3.5.3 will be used to evaluate the performance of the LbL-FAD algorithm on these images,

we have considered convenient to illustrate the anomalous pixels detected by our proposal

Chapter 3. Hyperspectral Anomaly Detection 73

(a) nf = 20 (b) nf = 60 (c) nf = 30

(d) nf = 100 (e) nf = 100

(f) nf = 100 (g) nf = 100

(h) nf = 100 (i) nf = 100

Figure 3.7: 3D plots of the detection results obtained by the LbL-FAD algorithm for
the nine data sets. (a) Synthetic Image. (b) WASP RIT scene. (c) AVIRIS WTC scene.
(d) Drone Image 1. (e) Drone Image 2. (f) Drone Image 3. (g) Drone Image 4. (h)

Drone Image 5. (i) Drone Image 6.

74 Chapter 3. Hyperspectral Anomaly Detection

at pixel-level. Therefore, those pixels identified as anomalous have been highlighted in

red color in Figure 3.8. Unlike it, anomalous entities present in HSIs collected in Figure

3.5 take up few image pixels and hence, spatial lines corrupted by anomalous signatures

have been highlighted in red color instead. In addition, those anomalous pixels detected

by the LbL-FAD algorithm have been also locked up in red circles.

S
y
n
th

e
ti
c
Im

a
g
e

W
A
S
P

R
IT

A
V
IR

IS
W

T
C

G
ro

u
n
d

T
ru

th
s

(a) (b) (c)

Figure 3.8: Anomaly detection results obtained by the LbL-FAD algorithm for the
Synthetic Image, the WASP RIT scene and the AVIRIS WTC scene. Lines in blue
color represent the nf frames employed to estimate the background distribution. Pixels
marked in red corresponds to the anomalous pixels detected by the LbL-FAD algorithm.

(a) Synthetic Image. (b) WASP RIT scene. (c) AVIRIS WTC scene.

Table 3.2 collects the TPR and the FPR reached by the LbL-FAD detector for the anomaly

maps displayed in Figure 3.8. On account of these results, we can conclude that the LbL-

FAD method features a high detection capability. Regarding the Synthetic Image, the

LbL-FAD method detects all anomalous pixels without misclassifying any pixel. For the

WASP RIT scene, more than 93% of the anomalous pixels are detected while the FPR

just ascends to 0.0958 % of the overall number of background pixels. As it can be seen

from Figure 3.8b, just few mixed pixels located above all in the edges of the anomalous

objects are not detected. In the case of the AVIRIS WTC scene, it is a very challenging

image since rare targets are thermal hot spots that are also sub-pixel in size. As a matter

of fact, the spatial resolution of a single pixel is 1.7 square meters. Although the TPR

descends to 43.37% for this test case, at least some pixels of all targets have been detected

with a very low FPR (just 0.01753 % of all background pixels).

Chapter 3. Hyperspectral Anomaly Detection 75

D
ro

n
e
Im

a
g
e
1

D
ro

n
e
Im

a
g
e
2

D
ro

n
e
Im

a
g
e
3

G
ro

u
n
d

T
ru

th
s

(a) (b) (c)

D
ro

n
e
Im

a
g
e
4

D
ro

n
e
Im

a
g
e
5

D
ro

n
e
Im

a
g
e
6

G
ro

u
n
d

T
ru

th
s

(d) (e) (f)

Figure 3.9: Anomaly detection results obtained by the LbL-FAD algorithm for the
HSIs sensed by the UAV-sensed acquisition system. Lines in blue color represent the
nf frames employed to estimate the background distribution. Green lines represent the
hyperspectral frames free of anomalies. Red lines highlight those frames identified by
the LbL-FAD algorithm to be corrupted by anomalous pixels. Pixels enclosed in red
circles represent the exact locations of detected anomalous pixels. (a) Drone Image 1.
(b) Drone Image 2. (c) Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f)

Drone Image 6.

Finally, regarding the HSIs sensed by the drone-based system, the detection results ob-

tained by the LbL-FAD algorithm are quite satisfactory as well. Compared to the RGB

76 Chapter 3. Hyperspectral Anomaly Detection

representations displayed in Figure 3.5, anomalous objects detected in Figures 3.9a, 3.9g-

3.9i perfectly match those anomalous entities highlighted in Drone Image 1 and Drone

Images 4-6. Regarding Drone Image 2 and Drone Image 3, the anomalous bodies to

be detected have been successfully identified but also other sparse brightness present in

the scenes, as it can be seen in Figures 3.9b and 3.9c. In short, the anomaly detection

results are in general quite accurate for these data sets although the spatial resolution

covered by the anomalous entities is quite low and hence, they are composed of mixed

spectral signatures.

Data Set
LbL-FAD OSPRX LSMAD PLP-KRXD

TPR FPR nf C-FPR C-TPR dOSP C-FPR C-TPR r k C-FPR C-TPR a b d

Synthetic Image 1.00 0,00 20 0,00 1,00 5 0,00 1,00 3 0,005 1,00 0,00 15 5 1

WASP RIT scene 0,93 9,59E-04 60 3,40E-03 0,83 4 4,34E-02 0,64 3 0,003 6,22E-01 0,00 15 5 5

AVIRIS WTC scene 0,43 1,75E-04 30 1,80E-03 0,29 4 4,06E-02 0,088 3 0,002 5,07E-01 0.00 15 7 2

Table 3.2: Assessment metric summary about the quality of the anomaly detection
results obtained by the LbL-FAD, the OSPRX, the LSMAD and the PLP-KRXD algo-

rithms for the data set displayed in Figure 3.2.

3.5.5 Benchmarking against other state-of-the-art anomaly de-

tectors

In this Section, the detection performance of the LbL-FAD method is compared with the

three state-of-the-art algorithms briefly described in Section 3.5.2, which are: the OSPRX,

the LSMAD and the PLP-KRXD methods. This analysis is made in a comparative

framework using the C-TPR and the C-FPR assessment metrics for the Synthetic Image,

the WASP RIT scene and the AVIRIS WTC scene. As a reminder, the C-TPR is the TPR

reached by the reference detectors for the same FPR obtained by the LbL-FAD detector.

On the contrary, the C-FPR is the FPR reached by the reference detectors for the same

TPR achieved by the LbL-FAD method. Table 3.2 collects all these assessment metrics

for the aforementioned detectors and data sets. To facilitate the understanding, since the

C-FPR is related with the TPR obtained by the LbL-FAD algorithm, columns of Table 3.2

that collect this information are highlighted in dark gray. Similarly, columns that gather

results of the C-TPR and the FPR reached by the LbL-FAD algorithm are highlighted in

light dark. On this basis, the best algorithm in terms of detection performance is the one

that gets the highest TPR, which means values of TPR close to 1, and the lowest FPR,

Chapter 3. Hyperspectral Anomaly Detection 77

that is close to 0. Accordingly, the best results are also highlighted in bold in Table 3.2.

In addition, Table 3.2 also summarizes the input parameters required by these methods to

perform the anomaly detection process, whose descriptions were treated in Section 3.5.2.

Compared to the two global methods, the OSPRX and the LSMAD, the LbL-FAD algo-

rithm gives very similar results, or even better in some cases, although it processes each

hyperspectral frame entirely independently without requiring any spatial alignment. This

fact is very noteworthy since the OSPRX and the LSMAD methods work with the whole

HSI and thus, exploit both the spatial and the spectral features of it. With respect to the

Synthetic Image, the three methods arise the same detection results, none of them mis-

classify any background or anomaly pixel. Nevertheless, the LbL-FAD algorithm notably

outperforms the others global methods in terms of both TPR and FPR for the WASP RIT

scene and the AVIRIS WTC scene. The greatest differences are found in the challenging

AVIRIS WTC scene in terms of the TPR. In this particular case, the LbL-FAD algorithm

detects the 43.37% of the thermal hot spots while this descends to 28.92% and 8.79%

for the OSPRX and the LSMAD algorithms, respectively. Regarding other line-by-line

methods, such as the PLP-KRXD method, the LbL-FAD algorithm clearly outperforms

it. In this regard, the PLP-KRXD method is incapable of detecting any anomalous pixels

for the same FPR obtained by the LbL-FAD algorithm for all data sets. In terms of the

FPR, the PLP-KRXD algorithm obtains more than 1E+03 times the FPR reached by the

LbL-FAD algorithm. In particular, the PLP-KRXD algorithm misclassifies the 100% of

the background pixels for detecting all the anomalous entities for the Synthetic Image.

Besides the analysis made above, the 2D binary maps obtained by the aforementioned

methods for the HSIs acquired by the UAV-based aerial platform have been qualitatively

compared as well in the following lines. Similarly to the description made in Section 3.5.4,

these detection maps are superimposed on a a panchromatic representation of the scenes

to be analysed. In these displays, lines in red color indicate spatial hyperspectral frames

corrupted by anomalous signatures. Within them, anomalous pixels are also highlighted

enclosing them in red circles. Furthermore, since outputs of the three selected state-of-

the-art detectors denote the likelihood of belonging to the anomaly class for each image

pixel, the resulting anomaly maps have been transformed into binary maps after a detailed

study of the data distribution. Figure 3.10 displays these color detection maps for the

four compared algorithms. It has to be mentioned that the PLP-KRXD detection maps

have been discarded except, for the Drone Image 5, since it has not been able to detect

any of the anomalous entities regardless of the input parameter settings.

78 Chapter 3. Hyperspectral Anomaly Detection

D
ro
n
e
Im

a
g
e
1

(LbL-FAD) nf=100 (OSPRX) dOSP=4 (LSMAD) r=3, k=9E-04

D
ro
n
e
Im

a
g
e
2

(LbL-FAD) nf = 100 (OSPRX) dOSP = 4 (LSMAD) r=3, k=9E-04

D
ro
n
e
Im

a
g
e
3

(LbL-FAD) nf = 100 (OSPRX) dOSP = 4 (LSMAD) r=3, k=9E-04

D
ro
n
e
Im

a
g
e
4

(LbL-FAD) nf = 100 (OSPRX) dOSP = 4 (LSMAD) r=3, k=9E-04

D
ro
n
e
Im

a
g
e
5

(LbL-FAD) nf = 100 (OSPRX) dOSP = 4 (LSMAD) r=3, k=9E-04 (PLP-KRXD) a=7, b=7, d=1

D
ro
n
e
Im

a
g
e
6

(LbL-FAD) nf = 100 (OSPRX) dOSP = 4 (LSMAD) r=3, k=9E-04

Figure 3.10: Anomaly detection results for the HSIs displayed in Figure 3.5 obtained
by the LbL-FAD, the OSPRX, the LSMAD and the PLP-KRXD. Red lines highlight
those frames identified by the different algorithms to be corrupted by anomalous pixels.

Pixels enclosed in red circles represent the detected anomalous pixels.

Chapter 3. Hyperspectral Anomaly Detection 79

As it can be seen, the detection performance of the LbL-FAD algorithm is in general

very close to the OSPRX method. For Drone Image 1, the OSPRX method identifies

the targeted anomalous entity, besides other sparse reflections present in the scene as the

LSMAD method does. For the Drone Image 2, the anomalous targets have high response

values for both the LbL-FAD and the OSPRX methods and some rare reflections in the

right corner of the image are also detected by both methods. In the particular case of

the LSMAD algorithm, much more sparse pixels are misclassified as abnormal targets.

Something similar can be noticed with Drone Image 3. For the sake of clarity, it has

been only pointed out the true anomalous object in these two particular cases for the

LSMAD algorithm. Regarding Drone Image 3, the OSPRX algorithm is able to accurately

discriminate some foreign objects in the right corner of the scene in contrast to the LbL-

FAD algorithm. For the Drone Image 4, the LSMAD algorithm cannot suppress the

background effectively and thus, it identifies as anomalous entities the white lines on both

sides of the paved road. Drone Image 5 is the only data set for which all mentioned

methods have accurately discriminated the anomalous target. In the particular case of

the PLP-KRXD method, it needs a local dual window to slide over the image, which

badly influences the target detection and causes the loss of some anomalous pixels, as

it happens for the other HSIs. Lastly, for Drone Image 6, all targets are detected by

both the LbL-FAD and the LSMAD methods, although the former suppresses better the

background. For this particular case, the OSPRX algorithm is not able to register the

concrete construction.

After the above analysis, we can conclude that, in general terms, the LbL-FAD algorithm

ensures good detection results working in a line-by-line fashion. In response, it is a suitable

method to perform the anomaly detection process for applications that employ pushbroom

scanners. In addition, it may be well asserted that the automatic thresholding method

outlined in Section 3.3.4 is accurate enough for the targeted application, as well as the

introduced methodology for extracting the background statistics.

Nonetheless, we would like to highlight the existing trade-off between the causality in

line-by-line approaches and how to model the background distribution, which is the most

important part in any adopted solution for anomaly detection. Actually, very few pub-

lications are made in this field where the anomaly detection problem is addressed in a

line-by-line fashion [44, 129, 149, 157]. In the solution proposed in this Thesis work, the

background distribution is estimated from several HSI blocks, nf , under the assumption

that they are free of anomalous signatures and hence, fully representative of the back-

ground distribution. On this basis, enough nf hyperspectral frames must be taken to

80 Chapter 3. Hyperspectral Anomaly Detection

ensure that all the spectral variability is covered and thus, to generate a trustworthy

background model. However, this methodology could be not a feasible solution in very

heterogeneous scenarios, which may be one limitation of the LbL-FAD detector.

3.5.6 Benchmarking performance among data types and preci-

sion: LbL-FAD vs HW-LbL-FAD

As it was comprehensively analysed in Chapter 2, the operations carried out by the

modified Gram-Schmidt orthogonalization process and thus, by the proposed set of core

operations, can be efficiently performed using both floating-point and integer arithmetic.

Having studied the process followed by the HW-LbL-FAD algorithm, it can be concluded

that the involved operations within the different stages of the algorithm correspond to the

set of core operations or a subset of it. Accordingly, the HW-LbL-FAD algorithm can be

implemented using the four algorithmic versions described in Section 2.5, namely Float32,

Int32, Int16 and Int16-rd. The first one uses floating-point arithmetic, as done in the

original LbL-FAD algorithm, while the other two employ customized integer arithmetic

by means of fixed-point notation with different levels of precision. As a reminder, these

versions results according to the data type and precision for representing image values

stored in the centralized version of the input image block, C. The Float32, Int32 and Int16

versions are developed for working with HSIs whose element values could be represented

with up to 16 bits per pixel per band and 256 spectral bands as maximum. In particular,

the Float32 version employs single precision floating point arithmetic (32 bits) for storing

each element of C. On the contrary, the Int32 and Int16 versions use customized fixed-

point notation for representing fractional values within C with 32 and 16 bits, respectively.

Although the Int16 version turns into a very interesting option for applications with

limited available hardware resources, above all in terms of RAM memory, some precision

losses are introduced in the operations, which affects the quality of the results. For this

reason, the Int16-rd model emerged as a performance-enhancing version derived from the

original Int16. In this context, image values are saved with a resolution up to 12 bits per

pixel per band (bpppb), though they are really stored using 16 bits per pixel per band

(bpppb), padding four zeros at the beginning of each sample.

Table 3.3 gives an overview of the data precision, in number of bits, used for representing

each algorithm variable for the four aforementioned versions of the HW-LbL-FAD algo-

rithm. The main difference with respect to Table 2.2 introduced in Chapter 2 is that the

Chapter 3. Hyperspectral Anomaly Detection 81

integer part of v is increased from 2 to 4 bits. This is because the brightness of image

pixels from one hyperspectral frame to the other may be affected by the illumination

conditions during the flight campaign. In this regard, Q and U vectors are extracted

from the first nf hyperspectral frames in the Stage 2 of the algorithm. Under normal

operating conditions, elements within the projection vectors, vn, are always in the range

(-1,1]. Nonetheless, light conditions could fluctuate between new sensed frames during the

flight mission. Therefore, it could derive in higher values of vn elements when illumination

conditions change during the acquisition of new hyperspectral frames whilst keeping Q

and U vectors, which were estimated from previous frames obtained under other environ-

mental conditions. Consequently, an increase of 2 bits for representing the integer part of

v prevents overflowing even with an increment of the pixel brightness up to a factor of 4.

Variable
Integer part Decimal part Total

Int32 Int16 Int16-rd Int32 Int16 Int16-rd Int32 Int16 Int16-rd Float32

C 20 16 14 12 00 02 32 16 16 32

µ 16 16 12 00 00 00 16 16 12 32

b 48 48 48 16 16 16 64 64 64 64

q 20 16 14 12 00 02 32 16 16 32

u 02 02 02 30 30 30 32 32 32 32

v 04 04 04 28 28 28 32 32 32 32

Table 3.3: Number of bits used for representing the integer and decimal parts of the
variables involved by the HW-LbL-FAD algorithm.

The detection performance of the proposed HW-LbL-FAD algorithm in its Float32, Int32,

Int16 and Int16-rd versions is evaluated in this Section. Additionally, the HW-LbL-FAD

algorithm is also compared with the original LbL-FAD detector. Table 3.4 shows the

obtained results in terms of TPR and FPR for the Synthetic Image (see Figure 3.2a),

the WASP RIT scene (see Figure 3.2b) and the AVIRIS WTC scene (see Figure 3.2c).

Although these images span the full dynamic range derived from 16 bit-depth, they have

been scaled to reduce it to 12 bit-depth in order to be able to evaluate the Int16-rd version

as well. Additionally, the input parameter nf is also included in Table 3.4 since derived

results depend on it.

Different conclusions can be drawn from the detection results displayed in Table 3.4. First

of all, it can be observed that the HW-LbL-FAD algorithm executed using floating-point

82 Chapter 3. Hyperspectral Anomaly Detection

arithmetic (Float32) results in the same outcomes than the original LbL-FAD algorithm

(also using floating-point arithmetic). This verifies the fact that the operations performed

by the HW-LbL-FAD algorithm are mathematically equivalent to the original LbL-FAD

algorithm. Additionally, it is also confirmed that the Int32 version of the HW-LbL-FAD

algorithm is able to achieve the same performance than its Float32 one, but being more

suitable for those hardware devices that are more efficient using integer arithmetic. On

the other hand, the Int16 version of the HW-LbL-FAD algorithm generates slightly dif-

ferent results, but still achieving an accurate detection performance in relation to other

state-of-the-art detectors, as those evaluated in Section 3.5.5, with the advantage of be-

ing a less computational demanding approach. By contrast, it is corroborated that the

Int16-rd version offers significantly better quality compression results than previous Int16

version, employing the same hardware resources. Additionally, deviations in the assess-

ment metrics between the Int32 and the Int16-rd versions are almost negligible, with the

advantage of halving the memory space required for storing C.

Image
Inputs LbL-FAD

HW-LbL-FAD

Float32 Int32 Int16 Int16-rd

nf TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Synthetic Image 20 100 0,00 100 0 100 0 100 2,79 100 0

WASP RIT 60 93,06 0,09 93,06 0,09 93,06 0,09 79,17 0,06 93,06 0,09

AVIRIS WTC 30 43,37 0,02 43,37 0,02 43,37 0,02 44,58 0,02 43,37 0,02

Table 3.4: Detection performance of the original LbL-FAD algorithm and the four
different versions proposed for the HW-LbL-FAD method. The TPR and the FPR are

in percentage.

3.5.7 Computational complexity analysis

A comprehensive analysis about the computational complexity of the proposed set of core

operations was made in Chapter 2. In this Section, it is extended for the particular case

of the LbL-FAD algorithm, concretely the HW-LbL-FAD version, in order to evaluate the

number of operations (OPs) required by each of its computing stages. Additionally, since

the methodology followed by the OSPRX method and its detection performance are very

similar to the HW-LbL-FAD algorithm, the overall number of OPs executed by these two

anomaly detectors for processing the employed test bench has been also compared.

Chapter 3. Hyperspectral Anomaly Detection 83

As it was explained in Section 3.3, the HW-LbL-FAD algorithm involves four main stages

that can be actually grouped in two differentiated processes. The former can be seen as

a Training Stage that covers the background modelling through the selection of the most

representative pixels within this class and the computation of the orthogonal subspace

to the one spanned by the background pattern (Stage 1 and 2 of the HW-LbL-FAD

method). The latter can be seen as a Detection Stage where potential anomalous pixels

are identified (Stage 3 and 4 of the HW-LbL-FAD method). Table 3.5 collects the number

of OPs required by these two processes for the conventional images displayed in Figure

3.2 and for one of the images sensed by the UAV-based acquisition system, in particular

the Drone Image 1 shown in Figure 3.5a. It is worth stressing that the selection of the

background representative vectors carried out under the Training Stage could be done

off-line using the data from previous flights. Regarding this, the computational cost of

the proposed HW-LbL-FAD algorithm drastically decreases since just the Detection Stage

would be executed.

In order to compare the computational complexity of the HW-LbL-FAD method against

the OSPRX detector, a brief description of the OSPRX method in terms of OPs is re-

quired. In general terms, overall operations performed by the OSPRX method could be

divided into four main stages. Firstly, the covariance matrix of the entire HSI is computed.

Considering that the image to be tested has nr rows, nc columns and nb bands, the overall

number OPs required to compute the covariance matrix is (2 · nr · nc + 1) · (nb + nb2).

Secondly, the SVD problem is solved in order to decompose the covariance matrix into

its eigenvectors and eigenvalues. The computation of the SVD has a long history and

many improvements and techniques have been used to address it over the years. In this

work, we have analysed the Divide and Conquer (D&C) process [158], which is one of the

most widely used and fastest methods to settle the SVD for large matrices. According to

[159], the overall number of FLOPS required by the D&C process to compute the SVD,

including an initial QR decomposition, is (6 · m · n2 + 8 · n3) for a m × n matrix. For

the particular case of the nb × nb covariance matrix, it ascends to 14 · nb3. The third

stage consists in the computation of the orthogonal subspace to the one spanned by the

eigenvectors of the covariance matrix. On the basis that the SVD gives orthonormal vec-

tors as output, this stage is equivalent to Stage 3 of the HW-LbL-FAD algorithm and

the number of involved OPs ascends to 2 · dOSP · nb2, being dOSP the number of targeted

first principal components. Finally, the fourth stage also matches with the Stage 4 of the

HW-LbL-FAD algorithm whose overall number of computed OPs is nr ·nc · (2 ·nb2 +nb).

84 Chapter 3. Hyperspectral Anomaly Detection

Table 3.5 also collects the overall number of OPs undertaken by the HW-LbL-FAD algo-

rithm and the OSPRX detector for the aforementioned data sets. For the particular case

of the HW-LbL-FAD method, the number of extracted background reference vectors, p,

is needed in order to evaluate its computational complexity. For the Synthetic Image, p

ascends to 3; for the WASP RIT scene to 8 and for the AVIRIS WTC scene and the Drone

Image 1 to 5. The last column of Table 3.5 shows the proportion of extra OPs required by

the OSPRX algorithm compared with those required by the LbL-FAD algorithm, which

is almost 370 times higher for the worst case and 15 times bigger at the best. As it can

be seen, the differences are higher for images with larger number of nb.

Data Set
HW-LbL-FAD

OSPRX
OSPRX

LbL− FADTraining Stage Detection Stage Total

Synthetic Image 2,63E+07 1,17E+08 1,43E+08 1,77E+10 123,42

WASP RIT 6,77E+07 8,81E+07 1,56E+08 1,90E+09 12,20

AVIRIS WTC 4,84E+07 2,06+E08 2,54E+08 9,90E+09 38,93

Drone Image 1 5,27E+08 2,61E+09 3,14E+09 8,70E+10 27,70

Table 3.5: Number of OPs required by the OSPRX and the HW-LbL-FAD methods
for the Synthetic Image, the WASP RIT scene, the AVIRIS WTC scene and the Drone

Image1.

3.6 Conclusions

A new real-time anomaly detector, named LbL-FAD, has been introduced in this Chapter

for the purpose to fulfil the requirements imposed by nowadays remote sensing applications

based on pushbroom/whiskbroom scanners. In this regard, sensed hyperspectral frames

are processed absolutely independently since no spatial connection between them has to

be taken into consideration. The LbL-FAD algorithm works under the assumption that

anomalous pixels cannot be well represented by the background distribution. Employing

the set of core operations extensively analysed in this Thesis work, the LbL-FAD method

focuses on the estimation of an orthogonal subspace to the one spanned by the background

samples in which anomalous entities could be better distinguishable. For doing so, the

LbL-FAD algorithm uses the aforementioned orthogonal projection strategy for extracting

a set of reference background pixels from the first sensed hyperspectral frames, which are

noted to be free of anomalous spectra. Afterwards, the LbL-FAD method exploits the

computational advantages derived from the orthogonality to propose a low-complexity

Chapter 3. Hyperspectral Anomaly Detection 85

alternative to compute the orthogonal subspace projection matrix, P. Lastly, unlike other

state-of-the-art anomaly detectors, the LbL-FAD algorithm also comes up with an auto-

matic thresholding method that permits to detect the anomalous pixels in a line-by-line

fashion as soon as each hyperspectral frame is processed. Consequently, it results in a

binary map where anomalous targets are segmented from the background in real-time.

Furthermore, an alternative version of the LbL-FAD algorithm is also proposed in this

Chapter, referred to as HW-LbL-FAD. This second approach makes a more efficient use of

the introduced set of core operations, resulting in a mathematically equivalent algorithm

to the LbL-FAD method, but resulting in a lower computational burden in terms of

both OPs and memory requirements. Additionally, the HW-LbL-FAD algorithm can

be executed using customized integer arithmetic at different precision levels that can be

adapted for achieving the best relation between detection accuracy and computational

burden. Concretely, four versions of the HW-LbL-FAD algorithm are proposed in this

work. The first one (Float32) uses floating point arithmetic as the original LbL-FAD

does, while the other three (Int32, Int16 and Int16-rd) employ integer arithmetic and the

fixed-point notation. From experiments made, it has been confirmed that the Int32 and

the Int16-rd versions lead to very similar results to the Float32 version, but being more

suitable for those hardware devices that are more suitable for working with integers. In

the particular cases of the Int16-rd and the Int16 versions, they also halves the memory

space required for storing the input data.

Several simulations have been carried out using both synthetic and real hyperspectral data

to verify the well detection performance and the low computational complexity of the LbL-

FAD detector. To this end, the detection performance of the LbL-FAD algorithm has been

compared with other state-of-the-art reference methods using statistical measures, such

as the TPR and the FPR, and also under the detailed description of the resulting binary

maps. Regarding the computational burden, it has also been evaluated in terms of the

number of operations to be executed. The experimental results assert the superiority

of the LbL-FAD detector in terms of both separability between classes and accuracy in

the detection performance using a considerable less number of OPs and much simpler

operations that can be easily parallelized. As a matter of fact, the LbL-FAD algorithm

is able to implement between 12% and 100% less number of OPs than the well-known

OSPRX algorithm, being ever higher as the number of spectral bands increases.

To sump up, the LbL-FAD algorithm shows the following advantages with respect to other

state-of-the-art solutions for anomaly detection in hyperspectral imagery:

86 Chapter 3. Hyperspectral Anomaly Detection

1. The LbL-FAD detector is conceived to perform anomaly detection in each hyperspec-

tral frame acquired by a pushbroom sensor as soon as they are sensed. Therefore,

each line of hyperspectral pixels can be independently processed without requiring

any spatial alignment between pixels. In addition, the LbL-FAD algorithm shows

low computational complexity and high level of parallelism. In this regard, the in-

volved operations can be easily accelerated in parallel computing platforms ensuring

a real-time performance, as it has been previously analysed in [33, 122, 160].

2. The LbL-FAD algorithm presents a hardware-friendly alternative to perform the

orthogonal subspace projection matrix, P, which discards any matrix inverse calcu-

lation by providing a set of orthogonal vectors. Alternatively, a second version of the

algorithm, named HW-LbL-FAD, has been also introduced as a potential solution

for those hardware devices that are more efficient dealing with integer operations.

Consequently, this new equivalent approach is described using fixed-point number

representation at different precision levels.

3. Unlike other state-of-the-art algorithms [138, 139, 161–163], the LbL-FAD algorithm

does not use traditional linear transformation methods such as PCA, SVD or ICA

to obtain the components that contain the most of the background information.

These methods show important disadvantages that prevent their use in real-time

applications due to the high computational cost, intensive memory requirements,

high implementation costs and a non-scalable nature of the involved operations,

such as eigenvalue decomposition, covariance matrix computation and matrix inverse

computation [159, 164–168].

4. Several state-of-the-art anomaly detectors are based on the traditional RX detec-

tor whose main bottleneck is the performance of the inverse covariance/correlation

matrix due to the dimensions of the matrices involved in the multiplications. For

this reason, great efforts have been made to reduce the heavy computational load

that requires its computation [44–47, 149]. The LbL-FAD method goes one step

further, moving away from this problematic extensively discussed in the literature

and, brings a hardware-friendly alternative. In this regard, elements involved in the

multiplications to compute the orthogonal subspace projection matrix, P, with the

same dimension as the covariance matrix, is much smaller.

5. In general, the state-of-the-art algorithms result in gray-scale maps of probabilities

where the anomalous target discrimination is usually carried out by visual inspec-

tion or thresholding after the whole image is processed. In contrast, the LbL-FAD

Chapter 3. Hyperspectral Anomaly Detection 87

algorithm proposes an automatic thresholding method in which the threshold is ob-

tained from the background data distribution. It enables the discrimination of the

anomalous pixels in a line-by-line fashion as soon as each hyperspectral frame is re-

ceived. Therefore, the LbL-FAD algorithm provides a binary map as output where

anomalous entities are segmented from the background, avoiding the subjective hu-

man factor. In addition, an unitary map where all pixels are marked as background

is given if no anomalous pixel are present.

Chapter 4

Hyperspectral Lossy Compression

In this Chapter, a performance-enhancing version of the state-of-the-art Lossy Compres-

sion Algorithm for Hyperspectral Image Systems (HyperLCA) is proposed for the spectral

decorrelation and compression of hyperspectral images. In this regard, the original ver-

sion of the HyperLCA algorithm is modified in order to employ the set of core operations

proposed in this Thesis work for the data transformation. Additionally, it also widens the

definition of the operations performed by the HyperLCA Transform with the purpose of

analysing their suitability for being executed using integer arithmetic. The goodness of the

HyperLCA algorithm for the lossy compression of hyperspectral images is evaluated using

different quality metrics, such as the SNR, the MAD and the RMSE, among others, for

different settings of the algorithm input parameters. Finally, it is demonstrated that the

HyperLCA algorithm is able to preserve the most different pixels after the compression-

decompression process, which is crucial for many hyperspectral imaging applications such

as anomaly detection.

89

90 Chapter 4. Hyperspectral Lossy Compression

4.1 Rationale

Hyperspectral technology has gained relevance in the last years, mainly due to the emer-

gence of compact-size aerial platforms, such as unmanned aerial vehicles (UAVs) and

new space-borne missions. Its expansion and growing recognition have been largely pro-

pelled by the great richness of spectral information collected by this type of sensors. In

exchange, one of the main challenges faced by this technology is the efficient handling

of large amount of data that, on the one hand, jeopardizes the real time performance

of making-decision applications and, on the other hand, demands large on-board stor-

age resources. In addition, the latest technological advances are promoting to put into

the market hyperspectral cameras with higher spectral and spatial resolutions, making it

harder the efficient data management from an on-board processing, communication, and

storage points of view [102, 103]. For all these reasons, an efficient on-board compression

of hyperspectral images (HSIs) is mandatory, due to the huge amount of sensed data in

order to save bandwidth and storage space. To face this issue, two main strategies may be

followed: (1) proposing new hardware-friendly algorithms and (2) presenting the technolo-

gies and strategies to execute the compression in the available onboard hardware devices,

minimizing the complexity and consequently, the resources usage and power consumption

[107].

Traditionally, hyperspectral imagery sensed by spaceborne Earth-observation platforms

are not onboard processed. As a matter of fact, they are onboard stored until their

transmission to the ground segment where they are off-line processed by the end-users on

supercomputing systems based on Central Processing Units (CPUs), Graphics Processing

Units (GPUs), Field-Programmable Gate Arrays (FPGAs), or heterogeneous architectures

[33]. The main rationale behind this is the restrictions in the onboard power capacity

and storage space, which promotes the use of low-power computing devices normally

technology generations behind their commercial counterparts [34, 35, 38, 39, 70, 169].

Regarding airborne platforms, sensed data are normally onboard stored and thus, they

cannot be accessed until the flight mission is over [170]. UAVs have also experienced a

growing popularity, becoming one of the most powerful tools for the Earth observation due

to their lower-cost and their more flexible revisit time than above mentioned acquisition

systems. In this field, data handling is addressed similarly to airborne platforms, even

though considerable efforts are being made to transmit them in real-time to the ground

segment [171, 172].

Chapter 4. Hyperspectral Lossy Compression 91

Regrettably, the data transmission introduces important delays mainly related to the

large data volume to be transferred, amounted to thousands of Giga-bytes (GBs), and the

limited communication bandwidth of the data link, which in fact has been kept relatively

stable over the years [38, 55, 173]. All of this, jointly with the steadily growing data-

rate of the latest-generation sensors, make it compulsory to develop new low-complexity

approaches for hyperspectral image compression that see high compression ratios with

satisfactory rate-distortion performance. It prevents the unnecessary accumulation of high

amount of uncompressed data and facilitates the efficient data handling and transfers.

Under this restricted scenario, it is becoming necessary to move from traditionally pre-

ferred lossless or near-lossless compression approaches to lossy compression techniques.

Despite most of the former solutions bring a quite satisfactory rate-distortion perfor-

mance, they provide very moderate compression ratios of about 2∼3:1 [65, 66] that nowa-

days are insufficient to deal with the high data-rate of the newest-generation sensors.

Consequently, all of this has motivated the appearance of research works targeting lossy

compression [106, 174–177].

In general terms, hyperspectral image compression algorithms exploit the redundancies

in the spatial and/or spectral domains for reducing the amount of data with or without

loosing information. The traditional scheme for performing the hyperspectral imagery

compression consists of a spatial and/or spectral decorrelator, a quantization stage and

an entropy coder. In this regard, the decorrelator can be transform-based or prediction-

based. Transform-based approaches [106], such as Discrete Wavelet Transform (DWT)

[174, 178] or the Karhunen-Loève Transform (KLT) [175, 176], are generally preferred to

spatially/spectrally decorrelate images in lossy compression. By contrast, lossless com-

pression is more efficiently performed by prediction-based methods [177], which must

retain nearby or neighbouring sample spectra for estimating the prediction errors of the

pixel under test. Consequently, it requires at least maintaining saved in memory the

spectral information of a few spatial lines of hyperspectral pixels.

Although most of the state-of-the-art lossy compressors achieve very satisfactory perfor-

mance in terms of rate-distortion, they are characterized by extremely high computational

costs, intensive memory requirements and a non-scalable nature. It is because many so-

lutions found in the literature are generalizations of existing two-dimensional (2D) image

or video compression algorithms [179]. Due to all these reasons, current solutions are not

appropriate for power-constrained applications with limited hardware resources, such as

onboard compression [180, 181]. Against this background, low-complexity compression

92 Chapter 4. Hyperspectral Lossy Compression

schemes stand as the most practical solution for such restricted environments [177, 182–

184].

In this context, the Lossy Compression Algorithm for Hyperspectral Image Systems (Hy-

perLCA) [107] arose in response of the aforementioned existing limitations. The Hy-

perLCA algorithm is a low-computational complexity transform-based alternative that

provides high compression ratios with a good compression performance at a reasonable

computational burden. As a further advantage, the HyperLCA algorithm permits com-

pressing blocks of image pixels independently. This feature promotes, on the one hand,

the reduction of the data to be managed at once besides the hardware resources to be

allocated. On the other hand, the HyperLCA algorithm becomes a very competitive so-

lution for most applications based on pushbroom/whiskbroom scanners, paving the way

for real-time compression performance. This algorithm was first introduced in [2] but this

previous work has been widened in this Thesis in order to use the proposed set of core

operations for decorrelating the spectral information. In addition, the performance of the

HyperLCA algorithm using integer arithmetic is also analysed in detail with the purpose

of adapting it for those devices that are more efficient dealing with integer operations,

such as FPGAs.

4.2 State-of-the-art in hyperspectral data compres-

sion

Currently, a broad range of solutions for the compression of HSIs can be found in the

specialized literature. The hyperspectral compression techniques base their operating

model on exploding the redundancies in the image samples in both the spatial and spectral

domains. The ultimate objective is to find the relations that permit to represent the sensed

information in another way using less amount of data. For doing so, two working tools

exist: 2D coding, which only looks for redundancies in the spatial or the spectral domain,

and three-dimensional (3D) coding, which analyses the hyperspectral cubes as a whole.

Additionally, loss of information could be introduced during the compression process.

This gives rise to two types of algorithms: lossless and lossy methods. Lossless algorithms

are normally preferred since data are completely preserved for later scientific purposes.

Nonetheless, these strategies are able to reach very limited compression ratios that are

Chapter 4. Hyperspectral Lossy Compression 93

insufficient to cope with the higher data rates of the latest generation sensors. Conse-

quently, the necessity of obtaining higher compression ratios will be critical in the near

future. In this sense, lossy or near-lossless compression techniques could be a potential

solution. However, whenever lossy or near-lossless methods are employed, it is necessary

to evaluate the impact of the losses in the reconstructed data. In this sense, it has been

observed that low average distortions after the compression process are not indicative of

high quality reconstructed images when they are used in ulterior applications, such as

classification, unmixing or anomaly detection [69, 185–188]. It is because lossy compres-

sors normally behave as low-pass filters that, on the one hand, reduce the intrinsic image

noise but, on the other hand, may remove some atypical elements of the image, negatively

affecting the performance of the aforementioned hyperspectral analysis techniques.

Different techniques for hyperspectral imagery compression exist based on vector quanti-

zation [189–192], or more recently compressive sensing and learning-based methods [193–

198], but prediction-based and transform-based methods prevail in the literature. Predic-

tive coding consists of predicting the value of each element within a hyperspectral pixel

from past data, generally neighbouring pixels in the spatial (intra-band) and/or spectral

(inter-band) domains, quantizing the prediction error and entropy coding it. This com-

pression type is mostly preferred for lossless compression although near-lossless or lossy

compression may be also addressed by means of an appropriate quantization method [3].

Several methods based on prediction can be found in the literature but the Consultative

Committee for Space Data Systems (CCSDS) has standardized the CCSDS 123-B-1 rec-

ommendation for the onboard lossless compression for multispectral and hyperspectral

compression [199]. It is based on the Fast Lossless (FL) algorithm [200], which is a low-

complexity adaptive filtering for predictive compression of HSIs based on a variant of the

Least Mean Square (LMS) method [201]. Recently, this algorithm has been extended to

perform near-lossless, denoting the new solution as Fast Lossless EXtended (FLEX) [202]

that is the basis of the new CCSDS 123-B-2 standard for hyperspectral image compression

[203].

In the field of lossy compression, transform-based decorrelators, such as the Discrete

Wavelet Transform (DWT), the Discrete Cosine Transform (DCT), the Karhunen-Loève

Transform (KLT) or the Principal Component Analysis (PCA), are generally preferred

to spatially/spectrally decorrelate the HSIs. This transformation stage is followed by the

quantization and encoding of the resulting coefficients. Nevertheless, transform-based

hyperspectral imagery algorithms are usually extensions of 2D compression techniques.

3D alternatives involve concatenating a spatial transform with a transform in the spectral

94 Chapter 4. Hyperspectral Lossy Compression

domain. A popular approach is to apply a one-dimensional spectral decorrelator, such as

KLT [175, 176] or the DWT [178], followed by the JPEG2000 standard for decorrelating

the spatial information and performing the quantization and the entropy coding [204].

Among the existing transforms, the DCT is a decorrelator widely used in image and video

compression standards, such as the JPEG and the H.264 respectively. This transform

is advantageous as it is applied to an image in a block-by-block basis, similarly to the

HyperLCA compressor proposed in this Thesis work. However, it also makes that the

correlation across the block boundaries cannot be eliminated. Consequently, this results

in apparent to the unaided eye blocking artifacts, particularly at low bit rates [205].

Alternatively, the DWT has become a benchmark in image compression. This decorrelator

normally provides higher data reduction and better quality results. Unlike the above

transforms, the DWT is applied to the whole image although it is computationally more

complex from an implementation point of view [206].

Nevertheless, the transform-based lossy compression approaches based on the KLT [207],

including the PCA transform, have been proven to yield the best results in terms of rate-

distortion as well as in preserving the relevant information for the ulterior hyperspectral

analysis [43, 67, 106, 208]. Despite the suitable results presented by the KLT approaches,

they also show some deficiencies that prevent their use in restricted environment such as

onboard scenarios. These drawbacks include high implementation costs, intensive mem-

ory requirements and a non-scalable nature. The PCA behaves similarly to the KLT

but preserves better the data integrity after the compression process [67, 67, 106, 208].

Nonetheless, the PCA exposes the same disadvantages in terms of computational com-

plexity than the KLT due to mainly the eigenvalue and eigenvector calculation process,

whose complexity increases with the number of bands in the hyperspectral image. Among

other methodologies derived from the KLT, the Pairwise Orthogonal Transform (POT)

provides the best trade-off between coding performance and complexity [209].

The CCSDS has also defined the CCSDS 122.1-B-1 spectral preprocessing transform for

3D image compression standard [210]. This approach is able to work in both lossless

and lossy operation modes, though its behaviour is far better for the latter operating

mode. In this regard, the standard defines four different spectral transforms: the identity

transform, the Integer Wavelet Transform (IWT), the POT and the Arbitrary Affine

Transform (AAT). Then, the resulting image is compressed by multiple instances of a 2D

DWT-based encoder, one per transformed band.

Chapter 4. Hyperspectral Lossy Compression 95

4.3 Lossy hyperspectral image compression with the

HyperLCA algorithm

The HyperLCA algorithm is a lossy transform-based compressor for HSIs originally planed

for satisfying the requirements imposed by current remote sensing hyperspectral imaging

applications. Among its most important characteristics, it is emphasized the compression

of image pixel blocks individually with no spatial strings attached. Consequently, this

feature allows for the streaming of the compression process performed on the single hy-

perspectral frames collected by applications based on pushbroom or whiskbroom sensors.

Additionally, this strategy also eliminates the need of large data volume storage required

by other non causal state-of-the-art solutions, besides other advantages, such as the re-

duction in the hardware resources and the high speed-up promoted by the low-complexity

involved operations. Apart from that, the HyperLCA compressor also guarantees a min-

imum user-defined compression ratio, which allows for knowing in advance the maximum

data rate that will be attained after the acquisition and compression processes in order to

efficiently manage the data transfers and/or storage. Additionally, the HyperLCA com-

pressor provides quite satisfactory rate-distortion results for higher compression ratios

than those achievable by lossless compression approaches.

Regarding the compression process, the HyperLCA compressor follows an unmixing-like

strategy for selecting the most different pixels from the data to be compressed. These

pixels are later pre-processed and lossless codified, so they are fully preserved after the

compression-decompression process. This is a distinguishing characteristic of the Hyper-

LCA method since rare anomalous spectra are highly preserved in comparison with other

state-of-the-art lossy compression solutions that typically behave as low-pass filters. As

a matter of fact, this feature leads to a correct operation of ulterior applications such

as anomaly/target detection, classification, change detection, spectral unmixing, among

others.

The compression process carried out by the HyperLCA compressor mainly involves two

distinct parts: a spectral transform and a lossless codification stage. The HyperLCA

Transform is the most computationally demanding part, but on the other hand, the

highest compression ratios are reached in this stage at a low computational burden and a

high level of parallelism. For doing so, the HyperLCA Transform employs the set of core

operations proposed in this Thesis work for the extraction of the most characteristic pixels,

E, and their corresponding projection vectors V, which results in a spectral uncorrelated

96 Chapter 4. Hyperspectral Lossy Compression

version of the original hyperspectral data. The number of selected vectors, p, is previously

estimated in an initial stage according to the user-defined minimum desirable compression

ratio. The codification stage is in charge of entropy encoding each vector selected by the

HyperLCA Transform after being preprocessed beforehand. This stage slightly increases

the compression ratio achieved by the HyperLCA Transform at a very low computational

cost and without introducing additional losses of information. Figure 4.1 shows a graphic

representation of the main computing stages involved by the HyperLCA compressor, which

will be further analysed in Section 4.3.2.

Preprocessing

Initialization

CR, Nbits, BS

û

HyperLCA Transform

Scaling V Vectors

Error mapping

Entropy Coding

p

VE

Scaled V

Mapped , E, V û

Figure 4.1: Data flow among the different computing stages of the HyperLCA com-
pressor.

The HyperLCA algorithm was for the first time introduced in [2]. This previous work

established the starting point towards the use of orthogonal projection techniques and,

in particular the Gram-Schmidt method, for the spectral decorrelation and reduction of

the hyperspectral data. In this sense, this first approximation focused more specifically

on the HyperLCA Transform stage. As a novelty, the methodology described in [2] has

been widened in this Thesis work in order to be adapted and, thereby, fallen within

the proposed set of core operations. Moreover, the Preprocessing and Entropy Coding

stages displayed in Figure 4.1 have been also included in order to obtain an efficient

and comprehensive compression system. Finally, it has also analysed the feasibility of

extending the initial definition of the HyperLCA Transform to be executed using integer

arithmetic, in the interest of adapting it for those devices that are more efficient dealing

with integer operations, such as FPGAs. For the sake of clarifying the novelties introduced

Chapter 4. Hyperspectral Lossy Compression 97

in this current work, a short overview about the contributions made by [2] is given in

Section 4.3.1.

4.3.1 Background notions about the HyperLCA Transform

As it was already mentioned, the HyperLCA algorithm was first raised in [2]. This pre-

liminary work analysed in detail the HyperLCA Transform in the interest of searching a

competitive solution that would provide similar results to those obtained by the widely

known PCA transform but, following a lower-complexity mathematical method. In this

sense, its main purpose was to estimate a set of orthonormal vectors, U*, in which to

project the original HSI, Mk, in order to obtained a spectrally decorrelated and reduced

data set, Mrk. As it can be inferred, this set of orthonormal vectors, U*, would act as

the eigenvectors derived from the PCA analysis.

For doing this, the spectral transform defined by [2] was also based on the Gram-Schmidt

method and indeed, follows the same sequence of the set of core operations proposed in

this Thesis work. Nonetheless, unlike this previous work, the involved operations have

been defined in this Thesis as a methodological point of view in the pursuit of contributing

to the scientific community with a set of core operations that could be efficiently applied

in other hyperspectral analysis fields as well, as those analysed along this document.

For the sequential extraction of the projection vectors, u*n, the hyperspectral data, Mk, is

firstly centered subtracting from all image pixels the average pixel, µ̂, and thus obtaining

matrix C. Then, the p orthonormal vectors, u*n, are sequentially extracted as those

with the highest brightness in each iteration. Nonetheless, the u*n vector calculation is

addressed as shows Equation 2.2 of Chapter 1, that is, dividing the selected pixel by its

l2-norm. In contrast, this fact has been modified in this current work for adapting it to

the proposed set of core operations. Accordingly, un is not a unit vector in the proposed

version of the HyperLCA compressor described in next Section 4.3.2 but, it is equivalent

to u∗ in the way as it was explained in Equation 2.3 of Chapter 1. In addition, this

modification features a lower computational complexity. After that, the information that

can be spanned by the selected u*n vectors is subtracted from C as it is done by the

Gram-Schmidt method.

Once that all projection vectors, U*, have been calculated, the spectrally decorrelated

and reduced data set, Mrk, is finally obtained as the projection of the real hyperspectral

98 Chapter 4. Hyperspectral Lossy Compression

image, Mk, onto the subspace spanned by the set of estimated projection vectors as

Mrk = U*′ ·Mk. Therefore, the resulting image Mrk is a compressed version of the

original data since it retains the spectral information in p spectral bands, that is, the

number of vectors in U*, instead of using the initial nb wavelengths, being nb >> p.

Finally, each pixel within Mrk and U* is independently entropy coded using the standard

CCSDS 121 lossless coder [211]. It is another differentiating point introduced by the

performance-enhancing HyperLCA Transform version present in this Thesis work, as it is

further analysed in the following Section 4.3.2.

4.3.2 Description of the extended version of the HyperLCA al-

gorithm

In this Section, the different computing stages of the extended version of the HyperLCA

algorithm proposed in this Thesis work are analysed in more detail. As mentioned above,

these algorithm stages are displayed in Figure 4.1, in which the variables involved in the

whole compression process are also represented.

4.3.2.1 HyperLCA Initialization

The number of the p most different pixels, E, and projection vectors, V, extracted from

each image block, Mk, directly depends on the compression ratio achieved by the Hyper-

LCA algorithm. Additionally, this parameter is linearly dependant on some user-defined

input parameters, as it can be seen from Equation 4.1. CR represents the minimum com-

pression ratio to be reached for the targeted application, DR refers to the number of bits

employed to represent each element of Mk and E, and Nbits determines the number of

bits used for representing the values of V. As can it be deduced from Equation 4.1, the

number of selected pixels, p, directly determines the maximum compression ratio to be

reached with the selected algorithm configuration. Furthermore, bigger p results in better

reconstructed images but lower compression ratios.

p ≤ DR · nb · (BS − CR)

CR · (DR · nb+Nbits ·BS)
(4.1)

Chapter 4. Hyperspectral Lossy Compression 99

4.3.2.2 HyperLCA Transform

As mentioned before, the HyperLCA Transform employs the set of core operations de-

scribed in Chapter 2, and more concretely in Algorithm 2, to obtain a compressed and

uncorrelated image. As a reminder, the linear mixing model (LMM) is based on the idea

that each pixel in a hyperspectral image, rj, can be represented as a linear combination

of a set of p reference spectral signatures, en, as shown in Equation 4.2, where aj,n is the

fractional area covered by each en in rj, and nj represents the noise contained in each

image pixel, rj.

rj =

p∑
n=1

en · aj,n + nj (4.2)

On this basis, the p most different hyperspectral pixels, E, and their corresponding pro-

jection vectors, V, set as outputs of the set of core operations proposed in this Thesis, can

be used to resolve to LMM issue. In this regard, a block of BS hyperspectral pixels, Mk,

may be also represented by p · (nb+np) elements, being p << nb. Consequently, we get a

compressed image whose compression ratio proportionally depends on the number of se-

lected pixels, p. Therefore, the smaller p extracted vectors, the higher compression ratios

but, on the other hand, the bigger missing spectral information after the compression-

decompression process. It is because C matrix, defined in Algorithm 2 of Chapter 2 where

the set of core operations is displayed, retains the image spectral information that cannot

be represented by the already selected p characteristic pixels. Indeed, this feature enables

the possibility of easily providing a stopping condition according to different quality mea-

sures, such as the Signal-to-Noise Ratio (SNR) or the Maximum Single Error (MaxSE).

In this scenario, the iteration process finishes either when the p E and V vectors are

selected, or if this additional stopping condition is sooner accomplished.

In summary, the proposed set of core operations acts like a spectral transform where

image pixels are projected onto a new subspace spanned by the p selected pixels, E, and

thus, it can be used to perform the lossy compression of hyperspectral perform. For the

sake of clarity, Algorithm 6 displays the inverse HyperLCA Transform for reconstructing

the compressed image blocks to obtain the decompressed hyperspectral image, Mc. For

this purpose, Mc is firstly initialized as the centroid pixel, µ̂. This is because, the first

step of the proposed set of core operations is the subtraction of µ̂ from all pixels within

Mk and hence, the projection vectors, V, are also centered (see Line 1 of Algorithm 6).

100 Chapter 4. Hyperspectral Lossy Compression

For the same reason, E vectors are also centered in Line 2. The decompressed image,

Mc, is then obtained by sequentially adding the spectral information contained in vn

over each orthogonal vector, q, as it can be seen from Lines 3-10. As it can be inferred

analysing the addition shown in Line 6, the decompressed image, Mc, is the result of a

linear combination of the p selected pixels, E, and the projection vectors, V, similarly to

the LMM.

As it can be also seen, the above described decompression process is clearly distinguishable

from the initial methodology introduced by [2]. In this previous work, the decorrelated

image, Mrk, was directly codified using the standard CCSDS 121 coder. Unlike it, only

a limited set of vectors, E, V and µ̂, are handled in this current work, which also ensures

the achievement of higher compression ratios than the aforementioned previous version.

Algorithm 6 Inverse HyperLCA Transform

Inputs:

µ̂ {Average Pixel}; E = [e1, e2, ..., ep] {Characteristic pixels}; V = [v1,v2, ...,vp]

{Projection vectors}
Outputs:

Mck = [r1, r2, ..., rBS]

Algorithm:

1: Mck = µ̂;

2: E = E− µ̂;

3: for n = 1 to p do

4: q = en;

5: u = q/(q′ · q);

6: Mck = Mck + q · vn;

7: for j = n+ 1 to p do

8: ej = ej − (u′ · ej) · q
9: end for

10: end for

4.3.2.3 HyperLCA Preprocessing

Before entropy coding the HyperLCA Transform outputs, they must be firstly adapted

to perform the posterior algorithm stages more efficiently. This transformation process is

performed in two steps:

Chapter 4. Hyperspectral Lossy Compression 101

- Scaling V vectors:

V vectors actually collect the projection of each pixel within Mk over the direction spanned

by each orthogonal vector, un. Since the selected pixel in each iteration, en, is the one

worst represented by earlier extracted pixels, values of each element within vn are typically

in the range of (−1, 1]. Nonetheless, the following Entropy-coding stage is configured to

deal only with integers. Therefore, elements within V must be scaled to fully exploit the

dynamic range offered by the input parameter Nbits, as shown in Equation (4.3). After

doing so, the scaled Vvectors are rounded up to the closest integer values.

vjscaled = (vj + 1) · (2Nbits−1 − 1) (4.3)

- Error Mapping:

In general terms, the HyperLCA Entropy Coding stage exploits the redundancies among

the data to be coded for assigning the shortest word length to the most common val-

ues. With it, the compression ratio achieved by the HyperLCA Transform is slightly

increased. For this purpose, µ̂ and each output vectors, en and un, are individually

lossless preprocessed and transformed in the HyperLCA Error Mapping stage to be ex-

clusively composed of positive integer values closer to zero than the original ones. To

that end, the HyperLCA algorithm uses the prediction error mapper described in the

CCSDS recommended standard for lossless multispectral and hyperspectral image com-

pression [211]. On the basis of the high spectral redundancies between contiguous spectral

bands, the differences between adjacent elements (yj−1 - yj) of a generic hyperspectral

pixel y =
{
yj, j = 1, ..., nb

}
, such as µ̂ or en, is closer to zero than the yj−1 or yj values

themselves. Similarly it happens with single vn vectors, although spatial redundancies are

lower in hyperspectral imagery. The overall process works as follows. Firstly, the possible

minimum and maximum values of each vector to be codified (ymin and ymax) is estimated

as (−2(DR−1), 2(DR−1)−1) when y contains negative integer values, otherwise, (0, 2DR−1),

being DR the number of bits for representing yj elements. Then, a threshold is calculated

as θj = minimum(yj−1− ymin,ymax− yj−1), which will be used to determine the way in

which the prediction error, 4j = yj − yj−1, is mapped as shown in Equation 4.4.

102 Chapter 4. Hyperspectral Lossy Compression

Yjmapped
=


24j 0 ≤ 4j ≤ θj

2‖4j‖ − 1 −θj ≤ 4j < 0

θj + ‖4j‖ otherwise

(4.4)

4.3.2.4 HyperLCA Entropy Coding

The HyperLCA Entropy Coding is the last stage of the HyperLCA compressor. It follows

a lossless entropy-coding strategy based on the Golomb–Rice algorithm [212]. As in the

HyperLCA Error Mapping stage, each single output vector is independently coded in the

same order that they are obtained in the previous compression stages of the HyperLCA

algorithm. This feature is a major advantage since it permits to pipeline the inputs and

outputs of the different compression stages for a single block of pixels, Mk.

For performing the codification process, the compression parameter, M , is estimated as

the average value of the targeted vector. Afterwards, each of its elements is divided by

M in order to obtain the results of the division, the quotient (q) and the remainder (r).

On the one hand, the quotient, q, is codified using unary code. On the other hand, the

remainder, r, could be coded using b = log2(M) + 1 bits if M is power of 2. Nevertheless,

M can actually be any positive integer. For this reason, the remainder, r, is coded as

plain binary using b − 1 bits for r values smaller than 2b −M , otherwise it is coded as

r + 2b −M using b bits.

4.3.2.5 Bitstream Generation

Finally, outputs of the previous compression stages are packed for each independently

processed image block, Mk, in order to generate the compressed bitstream that is sent

to the Earth surface. The generated bitstream consists of two parts: the header, which

contains the global information about the hyperspectral image that is needed to later

decompress it, and nr·nc
BS

data packages with the compressed data necessary to reconstruct

each image block, Mk.

Regarding the header, it collects the following data:

1. Size of the hyperspectral image; nc, nr and nb; representing the number of columns,

rows and spectral bands respectively, coded as plain binary using 16 bits each.

Chapter 4. Hyperspectral Lossy Compression 103

2. The number of pixels within an image block Mk, BS, coded as plain binary using

16 bits.

3. The number of hyperspectral pixels to be extracted during the compression process,

p, coded as plain binary using 8 bits.

4. The number of bits per pixel per band used to save the sensed hyperspectral image,

DR, coded as plain binary using 8 bits.

5. The number of bits per pixel per band used to save values of V, Nbits, coded as plain

binary using 8 bits.

6. One extra bit indicating if any additional stopping condition based on a quality

metric has been used.

The second part of the bitstream that contains the information of each individual block

of image pixels, Mk, may be packed in two different ways, as shown in Figure 4.2c - 4.2d.

The first option, graphically described in Figure 4.2c, is used when no additional stopping

condition is used and fixed p E and V vectors are extracted for all pixel blocks, Mk. On

the contrary, the number of E and V vectors, p, in the second alternative may be different

for each block of pixels, Mk. In this situation, parameter p is also included in each data

package, as shown in Figure 4.2d.

a)

b)

c)

d)

Figure 4.2: (a) General structure of the bitstream generated by the HyperLCA algo-
rithm. (b) Header distribution. (c) Data package structure for non-stopping condition
algorithm configuration. (d) Data package structure when a stopping condition based

on quality metrics is enabled.

104 Chapter 4. Hyperspectral Lossy Compression

4.4 Experimental Results

In this Section, it is provided a concise and precise description of the experimental results

carried out for evaluating the HyperLCA algorithm performance for the lossy compression

of HSIs. The strengths and limitations of the proposed method have been extensively

discussed through the analysis of a collection of quality metrics that assess the missing

information introduced by the lossy compression process. For doing this, a set of six HSIs

taken over real scenarios have been used. This test bench has been analysed using both

floating-point and fixed-point notations with different levels of precision.

4.4.1 Reference Hyperspectral Data

The HyperLCA reliability for the lossy compression of HSIs has been evaluated using

the bunch of real hyperspectral data collected by the acquisition platform described in

[89] and further analysed in Section 3.4.1 of Chapter 3. For the sake of clarity, a brief

summary about these image descriptions has been included in this Section, although we

encourage the reader to see Chapter 3 to expand the details about the flight campaigns

in which images were taken.

This data set was collected over multiple farming areas on the island of Gran Canaria

(Spain) by a pushbroom sensor mounted on a UAV. In particular, the reference images

are selected portions of some swaths within three different flight campaigns. These data

cover the spectral information from 400 to 1000 nm using 160 spectral bands and consist

of 825 lines height, each line comprising 1024 hyperspectral pixels with 12-bits depth. A

RGB representation of these hyperspectral image portions are displayed in Figure 4.3.

Images displayed in Figures 4.3 a–c were taken at a height of 72 m over the ground at a

speed-rate of 6 m/s with a camera frame-rate of 125 frames per second (FPS), resulting

in a ground sampling distance in line and across line of approximately 5 cm. Data shown

in Figure 4.3 d was sensed in a second flight campaign performed at a height of 45 m over

the ground and at a speed of 4.5 m/s with the hyperspectral camera capturing frames at

150 FPS, resulting in a ground sampling distance in line and across line of approximately

3 cm. Finally, frames exhibited in Figures 4.3 e–f were scanned at a flight height of 45 m

over the ground and at a speed of 6 m/s with the hyperspectral camera capturing at 200

FPS, resulting in a ground sampling distance in line and across line of approximately 3

cm.

Chapter 4. Hyperspectral Lossy Compression 105

The aforementioned images were calibrated using a white and dark calibration to obtain

reflectance values. Nonetheless, either orthorectification or georeferencing processes were

not carried out for the acquired raw data. In this sense, images were built up just by plac-

ing the subsequent captured hyperspectral frames one next to the other [156]. This does

not degrade the quality of the experiments carried out in this work since the tested algo-

rithms do not use any kind of spatial information. A notable aspect of these images is the

existence of some anomalous artefacts, such as some humans and concrete construction,

which have been circled in blue in Figure 4.3.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: RGB representation of the employed test bench. Pixels enclosed in blue
circles represent some anomalous spectra. (a) Drone Image 1. (b) Drone Image 2. (c)

Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f) Drone Image 6.

4.4.2 Assessment Metrics

The goodness of the HyperLCA algorithm for the compression of HSIs has been evalu-

ated for its differing proposed versions in both floating-point and integer arithmetic. To

this end, the hyperspectral imagery previously described in Section 4.4.1 has been com-

pressed/decompressed using multiple settings of the HyperLCA input parameters (BS,

Nbits, CR). As a matter of fact, the spectral distortions introduced by the missing infor-

mation after the lossy compression process has been measured using different assessment

metrics.

106 Chapter 4. Hyperspectral Lossy Compression

Firstly, the compression performance has been twofold evaluated by means of the achieved

CR, measured as the ratio between the data volume before and after the compression, and

the average number of bits per pixel per band, bpppb, used for representing the compressed

images. Secondly, the missing data after the compression-decompression process have

been also assessed using four different quality metrics: the Signal-to-Noise Ratio (SNR),

the Root Mean Squared Error (RMSE), the Maximum Absolute Difference (MAD) and

the Structural Similarity Index (SSIM). These assessment metrics are calculated using the

entire compressed-decompressed images (I and Ic) consisting of np pixels and nb bands

each.

The SNR (Equation 4.5) evaluates the average missing information by means of the com-

parison between the average error and the maximum reached one. Accordingly, a higher

SNR is indicative of a better compression performance. The RMSE (Equation 4.6) also

analyses the average missing information although, unlike the SNR, a higher RMSE value

means higher data losses and a weak compression performance. In contrast, the MAD

(Equation 4.7) assesses the error for the worst reconstructed image element. Finally, SSIM

(Equation 4.8) measures distortions as a combination of three factors: loss of correlation,

luminance distortion and contrast distortion. Therefore, SSIM is defined as the product

of the powers of these three similarities, as it can be seen in Equation 4.8 where α, β and

τ have been set to 1. The dynamic range is between [-1,1], where 1 indicates a perfect

structural similarity. Since SSIM is a quality assessment index originally designed for

two-dimensional grey-scale images, we have applied it in a band-by-band manner to eval-

uate the quality of the HSIs. Therefore, a mean SSIM index over all spectral bands has

been adopted in this work [213].

SNR = 10 · log10(

∑nb
i=1

∑np
j=1(Ii,j)

2∑nb
i=1

∑np
j=1(Ii,j − Ici,j)2

)(dB) (4.5)

RMSE =

√√√√ 1

np · nb
·
nb∑
i=1

np∑
j=1

(Ii,j − Ici,j)2 (4.6)

MAD = max(Ii,j − Ici,j) (4.7)

Chapter 4. Hyperspectral Lossy Compression 107

SSIM =
1

nb

nb∑
i=1

[(
2 · Īi · Ici + C1

Ī2i + Ici
2

+ C1
)α · (2 · SIi · SIci + C2

S2
Ii
· S2

Ici
+ C2

)β · (
S2
IIci

+ C3

SIi · SIci + C3
)τ] (4.8)

Ī =
1

np

np∑
j=1

Ij Ic =
1

np

np∑
j=1

Icj SI =
1

np− 1
·
np∑
j=1

(Ij − Ī)

SIc =
1

np− 1
·
np∑
j=1

(Icj − Ic) S2
IIc =

1

np− 1

np∑
j=1

(Ij − Ī) · (Icj − Ic)

4.4.3 Benchmarking performance among data types and preci-

sion

Most of the compression performance achieved by the HyperLCA algorithm is obtained

in the HyperLCA Transform stage, originally designed to be used with floating-point

notation [2]. Nonetheless, FPGA devices are, in general, more efficient dealing with

integer operations. Additionally, the execution of floating-point operations in different

devices may produce slightly different results. For this reason, the performance of the

HyperLCA algorithm using integer arithmetic is further discussed in this Section in order

to adapt it for being more suitable for this kind of devices.

As a matter of fact, the operations performed by the HyperLCA Transform are those

carried out by the modified Gram-Schmidt orthogonalization process and thus, through

the set of core operations proposed in this Thesis work. As it was comprehensively anal-

ysed in Chapter 2, these operations may be efficiently executed using both floating-point

and fixed-point integer arithmetic. Accordingly, the HyperLCA Transform stage can be

implemented using the four algorithmic versions described in Section 2.5, namely Float

32, Int32, Int16 and Int16-rd. The first one uses floating-point arithmetic, as done in

the original version of the HyperLCA compressor, while the other three employ integer

arithmetic with different levels of precision for representing the image values stored in the

centralized version of the hyperspectral frame to be processed, C.

The Float32, Int32 and Int16 versions are developed for working with HSIs whose element

values could be represented with up to 16 bits per pixel per band and 256 spectral bands

as maximum. In particular, the Float32 version employs single precision floating point

arithmetic (32 bits) for storing each element of C. On the contrary, the Int32 and the Int16

108 Chapter 4. Hyperspectral Lossy Compression

versions use customized fixed-point notation for representing fractional values within C

with 32 and 16 bits, respectively. Although the Int16 version turns into a very interesting

option for applications with limited available hardware resources, above all in terms of

RAM memory, some precision losses are introduced in the operations, which affects the

quality of the results. For this reason, the Int16-rd model emerged as a performance-

enhancing version derived from the original Int16. In this context, image values are

saved with a resolution up to 12 bits per pixel per band (bpppb), though they are really

stored using 16 bits per pixel per band (bpppb), padding four zeros at the beginning

of each sample. Table 4.1 gives an overview of the data precision, in number of bits,

used for representing each algorithm variable for the four aforementioned versions of the

HyperLCA algorithm. It should be pointed out that when integer arithmetic is used, V

vectors are directly represented using integer data types and do not need to be scaled and

rounded to integer values in the HyperLCA Preprocessing stage.

Variable
Integer part Decimal part Total

Int32 Int16 Int16-rd Int32 Int16 Int16-rd Int32 Int16 Int16-rd Float32

C 20 16 14 12 00 02 32 16 16 32

µ 16 16 12 00 00 00 16 16 12 32

b 48 48 48 16 16 16 64 64 64 64

q 20 16 14 12 0 02 32 16 16 32

u 02 02 02 30 30 30 32 32 32 32

v 02 02 02 30 30 30 32 32 32 32

Table 4.1: Number of bits used for representing the integer and decimal parts of the
variables involved by the HyperLCA Transform.

Figures 4.4 - 4.7 show a graphical representation of the average results obtained for each

quality metric described in Section 4.4.2 for assessing the performance of the HyperLCA

algorithm for the lossy compression of HSIs. The experiments have been made using

different configurations of the algorithm input parameters, that is, Nbits = (12, 8), BS =

(1024, 512, 256) and CR = (12, 16, 20). Although these metrics will be analysed in more

detail in next Section 4.4.4, we will now focus in particular on the comparative between

the different proposed algorithm versions.

Chapter 4. Hyperspectral Lossy Compression 109

Some conclusions can be drawn from the aforementioned displays. In this regard, the

quality of the compression results is very similar between the 32-bits fixed point pro-

posal (Int32) and the single precision floating-point version (Float32) for all case studies,

but being more suitable for those hardware devices that are more efficient using integer

arithmetic. Additionally, it is corroborated that the Int16-rd version offers slightly better

quality compression results than previous Int16 version, employing the same hardware

resources. Furthermore, deviations in the assessment metrics between the Int32 and the

Int16-rd versions are almost negligible, with the advantage of halving the memory space

required for storing C. On the contrary, the compression performance obtained by the

Int16 version is not as competitive as the other three solutions, as it is analysed down

below.

Regarding the performance of the Int16 version, the most significant differences are ob-

served for the MAD and the RMSE quality metrics displayed in Figures 4.5 - 4.6 and,

even more for Nbits = 8. The rationale behind this is that initial values of C are divided

by 2 in order to avoid overflowing, as it was described in Section 2.5 of Chapter 2, which

directly decreases the precision in one bit. When Nbits is set to 8 bits, less number of bits

is employed for scaling V vectors in the Preprocessing stage of the HyperLCA algorithm.

Therefore, higher number of p characteristic vectors can be potentially selected according

to Equation 4.1 described in Section 4.3.2.1. Nonetheless, the information contains in C

matrix decreases in every iteration, n. Consequently, image values are increasingly smaller

and differences among iterations can be disguised by the loss of precision introduced at

the beginning. Therefore, no matter how many extra pixels are extracted since the miss-

ing information cannot be reconstructed during the decompression process. Unlike the

Int16 version, this fact is discarded in the Int16-rd version, although the same number

of bits is used for representing the data, that is, C elements. It is because 2 extra bits

for representing the integer part of the data are available in the Int16-rd version for these

unlikely scenarios. Consequently, image precision is not altered as in previous Int16 ver-

sion for dealing with possible overflowing scenarios. Additionally, this new version also

allows having 2 bits for representing the decimal part of the fixed-point values of matrix

C, which is not possible in the Int16 version.

Nevertheless, the Int16 approach provides its best performance for very high compression

ratios, small BS and images packaged using less than 16 bits per pixel per band. Indeed,

the quality of the compression results for BS = 256 are closer to those provided by the

other approaches regardless the compression ratio. This fact turns the Int16 version of the

HyperLCA transform in a very interesting option when the available hardware resources

110 Chapter 4. Hyperspectral Lossy Compression

are limited, since the main goal of this version is to reduce the amount of resources

needed for the compression. Additionally, according to the quality metric values shown in

Figures 4.4 - 4.7, it can be drawn that the compression performance of the Int16 version

is competitive enough, specially for power-constrained scenarios where high compression

ration are demanded and hardware resources are restricted.

To sum up, it can be concluded that the HyperLCA compressor can be efficiently im-

plemented using integer arithmetic, what is specially useful for the onboard spaceborne

scenarios in order to carry out more efficient FPGA designs. The use of integer arithmetic

is also useful in order to ensure that the HyperLCA Transform produces the same results

whatever the computing device is employed, as recommended by the CCSDS 121.1-B-1

[210]. Additionally, the analysis carried out in this work for the different integer solutions

can be extrapolated for other configurations. This allows to customize the HyperLCA

algorithm according to the characteristics of the hyperspectral sensor acquiring the data

and the hardware device available for the compression in order to achieve the most efficient

solution.

(a) (b)

Figure 4.4: Average values of the SNR obtained for the Float32, Int32, Int16 and
Int16-rd versions of the HyperLCA algorithms. (a) Nbits = 12. (b) Nbits = 8.

4.4.4 Compression performance of the HyperLCA algorithm

This section discloses the results obtained in all addressed experiments with the purpose

of evaluating the goodness of the proposed HyperLCA algorithm for the lossy compression

of HSIs. To this end, only the results obtained by the Float32 version will be analysed

for the sake of reducing the complexity of the evaluation.

Chapter 4. Hyperspectral Lossy Compression 111

(a) (b)

Figure 4.5: Average values of the MAD obtained for the Float32, Int32, Int16 and
Int16-rd versions of the HyperLCA algorithms. (a) Nbits = 12. (b) Nbits = 8.

(a) (b)

Figure 4.6: Average values of the RMSE obtained for the Float32, Int32, Int16 and
Int16-rd versions of the HyperLCA algorithms. (a) Nbits = 12. (b) Nbits = 8.

4.4.4.1 Effect of the HyperLCA input parameters in the algorithm perfor-

mance

The HyperLCA algorithm has three main input parameters that may affect its compres-

sion performance: the number of pixels per block in which the image is divided, BS,

the number of bits used for scaling the extracted V vectors, Nbits, and the minimum

compression ratio to be desirable, CR. Different experiments have been done in order to

evaluate the behaviour of the HyperLCA compressor when using different values for these

parameters. In particular, the number of pixels per block, BS, has been set to 256, 512

and 1024 pixels, the dynamic range, Nbits, to 12 and 8 bits and, the minimum desirable

compression ratio, CR, to 12, 16 and 20. On the one hand, Figure 4.8a graphically shows

the distribution of the actual compression ratios achieved by the above mentioned input

112 Chapter 4. Hyperspectral Lossy Compression

(a) (b)

Figure 4.7: Average values of the SSIM obtained for the Float32, Int32, Int16 and
Int16-rd versions of the HyperLCA algorithms. (a) Nbits = 12; (b) Nbits = 8.

parameter settings. On the other hand, Figure 4.8b displays the tendency of the p pa-

rameter for the same case studies. The aforementioned plots represent the average results

for the six data sets described in Section 4.4.1. The specific outcomes for each data set

in particular are collected in Table 4.2.

(a) (b)

Figure 4.8: Evaluation of the HyperLCA compression results according to the average
results in terms of (a) the reached compression ratios (CR) and (b) the number of

extracted characteristic pixels (p) per image block, Mk.

At a first glance, it can be noted that the HyperLCA algorithm always gives rise to

higher compression ratios than those established as inputs. For instance, for an input

CR = 12, the range of achieved compression ratios are between 16.30 and 20.07. For

the most restricted scenario, input CR = 20, the achieved compression ratios ascend to

36 on average. In addition, all analysed algorithm settings employ less than 1 bpppb for

representing each element within the compressed images.

Chapter 4. Hyperspectral Lossy Compression 113

Nbits BS CR p
Drone Image 1 Drone Image 2 Drone Image 3 Drone Image 4 Drone Image 5 Drone Image 6

CR bpppb CR bpppb CR bpppb CR bpppb CR bpppb CR bpppb

12

1024
12 11 16.30 0.74 16.47 0.73 16.49 0.73 17.56 0.68 16.47 0.73 16.31 0.74
16 8 22.80 0.53 23.15 0.52 23.27 0.52 24.80 0.48 22.95 0.52 22.76 0.53
20 6 30.85 0.39 31.48 0.38 31.88 0.38 33.94 0.35 30.93 0.39 30.81 0.39

512
12 9 17.77 0.68 18.04 0.67 17.87 0.67 18.55 0.65 17.62 0.68 17.44 0.69
16 7 23.04 0.52 23.47 0.51 23.23 0.52 24.16 0.50 22.77 0.53 22.56 0.53
20 5 32.61 0.37 33.37 0.36 33.02 0.36 34.35 0.35 32.02 0.37 31.84 0.38

256
12 7 18.72 0.64 19.10 0.63 19.18 0.63 19.08 0.63 18.12 0.66 17.99 0.67
16 5 26.18 0.46 26.80 0.45 26.91 0.45 26.74 0.45 25.23 0.48 25.09 0.48
20 4 32.61 0.37 33.47 0.36 33.63 0.36 33.34 0.36 31.32 0.38 31.21 0.38

8

1024
12 16 17.42 0.69 17.63 0.68 17.60 0.68 19.38 0.62 17.85 0.67 17.58 0.68
16 11 26.17 0.46 26.61 0.45 26.63 0.45 29.50 0.41 26.61 0.45 26.19 0.46
20 9 32.56 0.37 33.25 0.36 33.41 0.36 37.07 0.32 32.99 0.36 32.49 0.37

512
12 13 18.15 0.66 18.49 0.65 18.32 0.66 19.30 0.62 18.10 0.66 17.82 0.67
16 9 26.77 0.45 27.39 0.44 27.01 0.44 28.59 0.42 26.46 0.45 26.05 0.46
20 7 34.89 0.34 35.88 0.33 35.29 0.34 37.46 0.32 34.28 0.35 33.80 0.36

256
12 9 20.07 0.60 20.58 0.58 20.74 0.58 20.60 0.58 19.29 0.62 19.10 0.63
16 7 25.86 0.46 26.59 0.45 26.74 0.45 26.55 0.45 24.74 0.49 24.50 0.49
20 5 36.16 0.33 37.35 0.32 37.54 0.32 37.21 0.32 34.38 0.35 34.11 0.35

Table 4.2: Compression Results. Achieved CR and bppp for the six datasets.

According to the results shown in Figure 4.8b, Nbits = 8 results in higher p selected pixels

than Nbits = 12. It makes sense since Nbits is part of the denominator in Equation 4.1.

Although this may give the idea that smaller CR are reached with Nbits = 8, due to the fact

that more p characteristics pixels are selected, in fact, the opposite is happened, as it can

be seen from Figure 4.8a. It is because less number of bits are used for coding V vectors

in the generated bitstream. In addition, the HyperLCA Entropy Coding also introduces

some data compression additional to that obtained in the HyperLCA Transform. In this

sense, the gaps among data that could be represented using Nbits = 8 bits is bigger than

employing Nbits = 12 bits, in concrete 0.0039 vs 0.000244 in decimal notation respectively.

It means that the Entropy Coder is able to code those vectors represented with Nbits = 8

using less number of bits than with Nbits = 12 bits.

Regarding BS, when the image is split up in smaller groups, smaller BS values, a set

of orthogonal vectors is obtained for each one and hence, each image block has to be

compressed using less p vectors for obtaining the same compression ratio, as can be seen

from Figure 4.8b. In relation with the compression ratio, CR, little variations are shown

among different BS settings, though a slightly higher CR are obtained for smaller BS

due to the above mentioned reasons.

114 Chapter 4. Hyperspectral Lossy Compression

Nbits BS CR
Drone Image 1 Drone Image 2 Drone Image 3

SNR MAD RMSE SSIM SNR MAD RMSE SSIM SNR MAD RMSE SSIM

12

1024
12 44.33 94.00 8.87 0.98 44.14 97.00 8.10 0.98 44.63 74.00 6.98 0.97
16 42.60 141.00 10.82 0.98 42.59 115.00 9.68 0.97 43.45 85.00 8.00 0.97
20 40.94 173.00 13.10 0.97 41.10 148.00 11.50 0.96 42.39 117.00 9.04 0.96

512
12 43.97 98.00 9.24 0.98 43.64 94.00 8.58 0.97 44.32 76.00 7.24 0.97
16 42.68 130.00 10.72 0.98 32.45 113.00 9.84 0.97 43.48 100.00 7.97 0.97
20 40.48 182.00 13.81 0.97 40.44 147.00 12.41 0.96 42.22 148.00 9.22 0.96

256
12 43.11 101.00 9.12 0.96 34.93 247.00 20.70 0.92 43.88 97.00 7.61 0.97
16 41.28 167.00 12.60 0.97 41.26 165.00 11.29 0.97 42.74 153.00 8.68 0.96
20 39.60 228.00 15.28 0.97 39.69 214.00 13.52 0.96 41.87 210.00 9.60 0.96

8

1024
12 44.36 80.00 8.84 0.98 43.76 70.00 8.47 0.98 43.40 63.00 8.05 0.97
16 42.88 96.00 10.48 0.98 42.49 99.00 9.79 0.97 42.54 84.00 8.89 0.97
20 42.07 115.00 11.50 0.98 41.80 104.00 10.61 0.97 42.07 90.00 9.38 0.97

512
12 44.26 85.00 8.94 0.98 43.68 76.00 8.55 0.98 44.05 66.00 7.47 0.97
16 42.86 105.00 10.50 0.98 42.41 93.00 9.89 0.97 43.11 84.00 8.32 0.97
20 41.83 135.00 11.82 0.98 41.49 128.00 11.00 0.97 42.46 104.00 8.96 0.97

256
12 43.61 101.00 9.63 0.86 43.28 95.00 8.95 0.98 44.09 91.00 7.43 0.97
16 42.57 124.00 10.86 0.98 42.31 95.00 8.95 0.98 43.39 103.00 8.06 0.97
20 40.83 166.00 13.26 0.97 40.72 170.00 12.01 0.96 42.35 159.00 9.08 0.96

Table 4.3: Compression Results. Achieved SNR, MAD, RMSE and SSIM for Drone
Image 1, Drone Image 2 and Drone Image 3.

4.4.4.2 Evaluation of the HyperLCA performance for the lossy compression

of HSIs

The HyperLCA algorithm spectrally decorrelates the information contained in the HSIs

projecting the image pixels onto a smaller subspace composed of p projection vectors. The

amount of the data that can be spanned by this subspace is directly proportional to the

number of projection vectors extracted by the HyperLCA Transform and therefore, the

extent of missing data after the compression-decompression process. In this Section, the

quality of the compression results obtained after the spectral data reduction is evaluated

in terms of the rate-distortion introduced by the HyperLCA compressor. For doing so,

the HyperLCA performance is tested analysing the assessment metrics defined in Section

4.4.2, that is, the SNR, the MAD, the RMSE and the SSIM , in a similar way to

that was made in previous Section 4.4.4.1. The results obtained for these metrics are

displayed in Tables 4.3 and 4.4 for the six data sets described in Section 4.4.1. For the

sake of clarity, average results are also shown in Figure 4.9 for the different settings of the

algorithm input parameters.

According to the obtained results, it can be observed that the proposed method is able to

reach very high compression ratios with a good rate-distortion for all tested configurations.

On average, the SNR ascends to 38.26 with the minimum and maximum values ranging

Chapter 4. Hyperspectral Lossy Compression 115

(a) (b)

(c) (d)

Figure 4.9: Evaluation of the HyperLCA compression results according to the average
results in terms of (a) SNR, (b) MAD, (c) RMSE and (d) SSIM.

from 32.33 to 44.63. In terms of the MAD, the average result rounds the 4% of the

maximum possible (212 − 1), ranging from 63 to 280. Regarding the RMSE, the average

result is over 14.33, going from 6.98 to 25.59. In relation to the SSIM , the average result

ascends to 0.93, ranging from 0.83 to 0.98. In general terms, the assessment metrics are

better for Drone Image 1 - Drone Image 3 than for Drone Image 4 - Drone Image 6. It is

because the random noise inherent to the data set, which was acquired in three different

flight missions. Figures 4.10a - 4.10b show the SNR distribution per band for the six

HSIs, which was estimated as recommended by [81, 214]. As can be noted, the SNR is

more compromised for the second set of HSIs.

In addition, the highest-quality results are obtained for the biggest BS. This is due to

the fact that when the image is split up in smaller groups, smaller BS values, a set of

orthogonal vectors is obtained for each image block, and hence, each block has to be

compressed using less projection vectors for obtaining the same compression ratio. If

there is little variability among pixels, it is possible to compress many of them, bigger BS

values, with a single set of projection vectors with the same accuracy, obtaining a higher

116 Chapter 4. Hyperspectral Lossy Compression

Nbits BS CR
Drone Image 4 Drone Image 5 Drone Image 6

SNR MAD RMSE SSIM SNR MAD RMSE SSIM SNR MAD RMSE SSIM

12

1024
12 34.50 124.00 11.12 0.87 34.99 212.00 20.55 0.92 34.26 234.00 20.95 0.90
16 33.93 147.00 11.86 0.86 34.42 238.00 21.96 0.91 33.53 265.00 22.77 0.89
20 33.18 177.00 12.93 0.85 33.80 250.00 23.58 0.90 32.73 269.00 24.98 0.88

512
12 34.44 141.00 11.19 0.86 34.86 220.00 20.88 0.91 34.26 227.00 20.95 0.91
16 33.98 156.00 11.80 0.86 34.41 264.00 21.99 0.91 33.74 278.00 24.33 0.89
20 33.05 224.00 13.13 0.85 33.70 271.00 23.84 0.90 32.96 278.00 24.33 0.89

256
12 34.44 138.00 11.19 0.86 34.93 247.00 20.70 0.92 33.32 243.00 20.81 0.91
16 33.80 162.00 12.04 0.86 34.37 267.00 22.07 0.91 33.69 261.00 22.36 0.90
20 33.22 220.00 12.88 0.85 33.94 280.00 23 19 0.91 33.23 264.00 25.59 0.90

8

1024
12 32.06 122.00 14.71 0.84 35.47 190.00 19.45 0.92 34.87 189.00 19.53 0.91
16 31.73 138.00 15.28 0.83 34.83 216.00 20.94 0.92 34.09 237.00 21.36 0.90
20 31.54 155.00 15.62 0.83 34.49 226.00 21.78 0.91 33.67 255.00 22.43 0.90

512
12 33.04 118.00 13.14 0.85 35.35 199.00 19.72 0.92 34.83 199.00 19.63 0.91
16 32.64 160.00 13.77 0.84 34.74 216.00 21.17 0.91 34.12 228.00 21.29 0.91
20 32.33 166.00 14.27 0.84 34.30 259.00 22.26 0.91 33.62 247.00 22.55 0.90

256
12 33.69 138.00 12.19 0.86 35.23 215.00 19.99 0.92 34.67 240.00 19.97 0.91
16 33.37 141.00 12.66 0.86 34.84 251.00 20.92 0.92 34.23 246.00 21.03 0.91
20 32.86 169.00 13.42 0.85 34.29 270.00 22.28 0.91 33.62 264.00 22.56 0.90

Table 4.4: Compression Results. Achieved SNR, MAD RMSE and SSIM for Drone
Image 4, Drone Image 5 and Drone Image 6.

(a) (b)

Figure 4.10: SNR distribution per spectral band: (a) Drone Image 1, Drone Image 2
and Drone Image 3, (b) Drone Image 4, Drone Image 5 and Drone Image 6.

compression ratio. On the other hand, smaller BS settings may lead to better results

when there is too much variability between pixels.

The MAD assessment metric measures the maximum reconstruction error among all image

elements. As it can be noted from Figure 4.9b, MAD metric reaches bigger values for

Nbits = 12. This makes totally sense since less p projection vectors are selected, as it was

analysed in previous Section 4.4.4.1 and it can be plainly see in Figure 4.8b. It means

Chapter 4. Hyperspectral Lossy Compression 117

that the remaining C matrix defined within the set of core operations contains much more

spectral information that cannot be reconstructed after the compression process.

Analysing the global distortions through the SNR and the RMSE metrics, results follow

the logical tendency; the higher CR, the greater reconstruction errors. In addition, Figure

4.9c also reveals that although configurations with greater Nbits values obtain in general

better decompressed images, this situation turns over for higher CR and smaller Nbits

values.

In conclusion, the HyperLCA compressor stands as a quite competitive solution for the

lossy compression of HSIs that offers high compression ratios introducing little losses

of information. Additionally, its compression performance is also very solid and steady

for the six different images, which contain a high quantity of random noise due to the

fluctuations in the trajectory of the aerial acquisition system.

4.4.5 Evaluation of the distortions introduced by the lossy com-

pression for the subsequent anomaly detection

Generally speaking, anomalies are considered as groups of rare and not abundant pix-

els whose spectral signature significantly differs from their surroundings. Normally, their

existence may be indicative of abnormal or suspicious behaviour. For this reason, it is

crucial the early detection of these atypical anomalous patterns. However, preserving

these pixels through the lossy compression-decompression process represents a challeng-

ing task. It is because this kind of pixels covers a small fraction of the entire image and

therefore, there is a high likelihood that anomalous spectra are lost after the compres-

sion/decompression process since most of existing lossy compression solutions behave as

low-pass filters. Although the HyperLCA algorithm is also a lossy compressor, it has been

specially designed for preserving the most different pixels within each image block to be

independently processed, Mk, and hence, retains the anomalous spectra.

On this basis, a detailed analysis of how the distortions introduced by the HyperLCA

algorithm after the lossy compression process affects to the posterior anomaly detection.

To this end, anomaly detection is performed over the images compressed by the HyperLCA

algorithm for different input parameter settings. For doing so, the Line-by-Line Fast

Anomaly Detector for Hyperspectral Imagery (LbL-FAD), described in Chapter 3 of this

Thesis work, is used for the identification of the anomalous spectra. Figures 4.11 - 4.13

118 Chapter 4. Hyperspectral Lossy Compression

display the 2D binary maps obtained by the LbL-FAD algorithm employing input images

compressed by the HyperLCA algorithm configured with Nbits = (12, 8), CR = (12, 16,

20) and BS = (1024, 512, 256), respectively. For the sake of clarity, these detection

maps are superimposed on a panchromatic representation of the scenes in order to make

easier the result interpretation. In these displays, lines in blue color indicate the nf

frames employed to estimate the background pattern, while red color highlights spatial

lines corrupted by anomalous entities. In addition, those anomalous pixels detected by

the LbL-FAD algorithm have been also locked up in red circles.

Compared to the RGB representations displayed in Figure 4.3 where the location of the

anomalous objects has been pointed out inside blue circles, it can be seen that the Hy-

perLCA compressor is able to accurately preserve these strange entities since all of them

have been detected for all case studies. In general terms, the detection results are more

accurate for Drone Image 1, Drone Image 2 and Drone Image 3 since random noise in-

herent to these images is more reduced than the other set of images, as it can be seen

from Figure 4.10. A case in point is that in some noisy cases, such as Drone Image 5,

higher CR improves the performance of the ulterior anomaly detection process since the

random noise cannot be reconstructed. In this sense, the HyperLCA Transform acts as

a noise filter. It is also worth mentioned that more accurate detection performance are

obtained for bigger groups of pixels, BS = 1024, which matches with the behaviour of

the HyperLCA compressor.

Finally, it may be concluded that the use of the same core operations for the definition of

both the HyperLCA compressor and the LbL-FAD algorithm guarantees that the compres-

sion process does not seriously affect the posterior anomaly detection performance when

it is off-board executed using the compressed/decompressed data. As a consequence, it

permits tailoring to different scenarios that impose different requirements, ensuring the

same results in all situations.

4.4.6 Computational complexity analysis

A comprehensive analysis about the computational complexity of the proposed set of core

operations was made in Chapter 2. In this Section, it is extended for the particular case

of the HyperLCA algorithm in order to evaluate the number of operations (OPs) required

by each of its computing stages. Table 4.5 summarizes the number of OPs required by the

HyperLCA Transform and the HyperLCA Entropy Coding stages to process a single block

Chapter 4. Hyperspectral Lossy Compression 119

N
b
it
s
=

1
2
,
C
R

=
1
2

N
b
it
s
=

1
2
,
C
R

=
1
6

N
b
it
s
=

1
2
,
C
R

=
2
0

N
b
it
s
=

8
,
C
R

=
1
2

N
b
it
s
=

8
,
C
R

=
1
6

N
b
it
s
=

8
,
C
R

=
2
0

G
ro

u
n
d

T
ru

th

Figure 4.11: Anomaly detection results obtained by the LbL-FAD algorithm using
the compressed images obtained by the HyperLCA algorithm for BS = 1024.

120 Chapter 4. Hyperspectral Lossy Compression
N

b
it
s
=

1
2
,
C
R

=
1
2

N
b
it
s
=

1
2
,
C
R

=
1
6

N
b
it
s
=

1
2
,
C
R

=
2
0

N
b
it
s
=

8
,
C
R

=
1
2

N
b
it
s
=

8
,
C
R

=
1
6

N
b
it
s
=

8
,
C
R

=
2
0

G
ro

u
n
d

T
ru

th

Figure 4.12: Anomaly detection results obtained by the LbL-FAD algorithm using
the compressed images obtained by the HyperLCA algorithm for BS = 512.

Chapter 4. Hyperspectral Lossy Compression 121

N
b
it
s
=

1
2
,
C
R

=
1
2

N
b
it
s
=

1
2
,
C
R

=
1
6

N
b
it
s
=

1
2
,
C
R

=
2
0

N
b
it
s
=

8
,
C
R

=
1
2

N
b
it
s
=

8
,
C
R

=
1
6

N
b
it
s
=

8
,
C
R

=
2
0

G
ro

u
n
d

T
ru

th

Figure 4.13: Anomaly detection results obtained by the LbL-FAD algorithm using
the compressed images obtained by the HyperLCA algorithm for BS = 256.

122 Chapter 4. Hyperspectral Lossy Compression

of BS hyperspectral pixels. Since the number of OPs required by the Initialization and

the Preprocessing stages are negligible, it has not been included in Table 4.5. Moreover,

the possibility of performing an additional stopping condition based on quality metrics

has not been retained in this analysis.

Stage Number of operations (OPs)

HyperLCA Transform pmax · (6 ·Nb ·BS + Nb) + 2 ·Nb ·BS + Nb

HyperLCA Entropy Coding 5·(pmax+1)·Nb+5·pmax ·BS+17·(2·pmax+1)

Table 4.5: Number of OPs required by the HyperLCA Trasnform and the Entropy
Coding stages to process a single block of BS hyperspectral pixels

On the basis that p is much smaller than BS and nb, it can be easily argued that the

computation of the HyperLCA Transform involves much more operations than the Entropy

Coding stage. For the sake of clarity, Table 4.6 collects some numeric examples using

the test bench described in Section 4.4.1 for different configurations of the HyperLCA

input parameters. In this sense, Table 4.6 displays the average number of OPs required

to perform both stages for a hyperspectral image block with BS elements, Mk. From

the obtained results, it is right to conclude that the HyperLCA Transform is the most

computationally intensive part of the HyperLCA compressor, executing up to three orders

of magnitude more OPs than the HyperLCA Entropy Coding.

Nbits BS CR
Number of operations

HyperLCA Transform Entropy Coding

12

1024
12 1,11E+07 6,63E+04
16 8,19E+06 4,84E+04
20 6,23E+06 3,65E+04

512
12 4,59E+06 3,14E+04
16 3,61E+06 2,46E+04
20 2,62E+06 1,78E+04

256
12 1,80E+06 1,56E+04
16 1,31E+06 1,14E+04
20 1,07E+06 9,27E+03

8

1024
12 1,61E+07 9,61E+04
16 1,11E+07 6,63E+04
20 9,18E+06 5,44E+04

512
12 6,56E+06 4,49E+04
16 4,59E+06 3,14E+04
20 3,61E+06 2,46E+04

256
12 2,30E+06 1,98E+04
16 1,80E+06 1,56E+04
20 1,31E+06 1,14E+04

Table 4.6: Evaluation of the number of OPs required by the HyperLCA Transform
and the HyperLCA Entropy Coding to process an image block of BS pixels, Mk.

Chapter 4. Hyperspectral Lossy Compression 123

4.5 Conclusions

In this Chapter, the novel state-of-the-art hyperspectral imagery lossy compressor, named

HyperLCA, has been described. The HyperLCA compressor is a transform-based algo-

rithm that performs an spectral transform for the decorrelation and reduction of the

hyperspectral data. To do so, the HyperLCA algorithm projects the data onto a set of

orthogonal vectors, similarly to other state-of-the-art approaches that employ the well-

known KLT transform. In this Thesis work, some performance-enhancing improvements

have been made in the first release of the HyperLCA compressor in order to use the set of

core operations extensively analysed in this manuscript during the transformation process

of the input data.

Unlike other state-of-the-art transform-based compressors, the HyperLCA was introduced

as a low-complexity alternative that provides a good compression performance at high

compression ratios with a reasonable computational burden. Additionally, this algorithm

permits compressing blocks of image pixels independently that promotes, on the one

hand, the reduction of the data to be managed at once besides the hardware resources to

be allocated. On the other hand, the HyperLCA algorithm becomes a very competitive

solution for most applications based on pushbroom/whiskbroom scanners, paving the way

a for real-time compression performance.

Most of the compression performance achieved by the HyperLCA algorithm is obtained

in the HyperLCA Transform stage, originally designed to use floating-point precision.

Nonetheless, some parallel dedicated hardware devices, such as FPGAs, are in general

more efficient dealing with integer operations. For this reason, three alternative versions

of the HyperLCA Transform described with integer arithmetic at different precision levels

have been proposed in this Thesis work. Concretely, these strategies employ the fixed-

point notation and they are referred to as Int32, Int16 and Int16-rd, respectively. The

Int32 and Int16 versions were developed for working with HSIs with up to 16 bits-depth

while Int16-rd version is though for images with up to 12 bits-depth. From experiments

made, it has been confirmed that the Int32 and the Int16-rd versions lead to very similar

results that the Float32 version, but being more suitable for those hardware devices that

are more suitable for working with integers. In the particular cases of the Int16-rd and

Int16 versions, they also halves the memory space required for storing the input data.

Several simulations have been carried out using real hyperspectral data sets to evaluate

the HyperLCA performance for spectrally decorrelating and reducing HSIs. To this end,

124 Chapter 4. Hyperspectral Lossy Compression

different statistical assessment metrics have been used, such as the SNR, RMSE, MAD

and SSIM. Regarding the computational burden, it has also been evaluated in terms of

the number of operations to be executed. Finally, the effects of the missing information

introduced by the lossy compression performed by the HyperLCA have been tested on

anomaly detection application. For this end, anomaly detection has been conducted on

the decompressed images using the LbL-FAD algorithm proposed in this Thesis work.

Based on the obtained results, it can be drawn that the HyperLCA algorithm is able to

preserve rare non-dominant spectra, what is crucial for many hyperspectral applications

such as anomaly detection, tracking or classification.

To sum up, the methodology proposed in this Thesis work introduces the following ad-

vantages:

1. High compression ratios and competitive rate-distortion compression performance.

HSIs resulting from the compression process performed by the HyperLCA algorithm

have been analysed in terms of the SNR, RMSE, MAD and SSIM assessment metrics

for different configurations of the algorithm input parameters. The average values

for these quality metrics are SNR = 38.26, RMSE = 14.33 , MAD = 4% of the total

and SSIM = 0.98 for compression ratios ranging from 16.3 to 36.

2. Preservation of the most atypical spectra.

Despite being a lossy compression approach, the HyperLCA algorithm is able to pre-

serve the most different HSIs within a data set after the compression-decompression

process, which is crucial for several applications, such as anomaly detection, classi-

fication, unmixing, or target detection [69, 185–188]. It is because the HyperLCA

Transform extracts the projection vectors that best represent the most different

pixels within the data set.

3. Line-by-Line performance.

The HyperLCA algorithm was specially designed for independently processed blocks

of image pixels with no spatial strings attached among them. On the one hand, this

feature prevents the accumulation of high amount of uncompressed data onboard.

On the other hand, the data volume to be managed and transferred at a time

is reduced. Consequently, the proposed methodology becomes an ideal solution for

applications under tight latency constraints or with limited available resources, such

as memory, power and computational capabilities. Furthermore, most of nowadays

Chapter 4. Hyperspectral Lossy Compression 125

remote sensing applications employ pushbroom/whiskbroom scanners [31, 49–51],

which collect the HSIs in a line-by-line fashion. In this regard, the HyperLCA

compressor is also oriented to face the requirements imposed by these applications

since sensed hyperspectral frames may be compressed on-the-fly.

4. Low computational complexity and speed-up due to parallelization.

As it was analysed along this Chapter, the HyperLCA Transform bears most of

the complexity and computational burden of the compression process. Similarly to

the KLT transform-based approaches, and in particular to the PCA transform, the

HyperLCA algorithm extracts a set of orthonormal vectors using the set of core

operations proposed in this Thesis work, which are then used for projecting the

data into a new orthogonal subspace. Unlike these state-of-the-art solutions, the

HyperLCA algorithm provides a reduced computational burden and implementation

complexity with a high grade of parallelism and scalability while also maintaining

most of the benefits provided by the aforementioned approaches. The flexibility

and the high level of parallelism intrinsic to the HyperLCA algorithm have been

evaluated in earlier publications, such as [215–217], and will be further assessed in

Chapter 6 of this document.

5. Reduction in the required hardware resources.

The capacity of independently compressing blocks of image pixels develops into the

advantage of keeping in memory just small portions of the data and thus, reducing

the hardware resources for this purpose. Additionally, less data have to be handled

at once, which do positively affect on this.

6. Different data types and precision.

The performance analysis carried out in this Thesis work demonstrates that the

HyperLCA Transform can be efficiently executed using floating-point and integer

arithmetic. For the latter, it was used in particular the fixed-point concept in a

custom way employing integer arithmetic and bits shifting. Three versions of the

HyperLCA Transform were considered employing 32, 16 and 12 bits, respectively.

Additionally, the methodology followed in this Thesis work can be used for devel-

oping any other integer version of the compressor that uses a different precision for

optimizing it to the necessities of the targeted applications.

Chapter 5

Concurrent Execution of Multiple

Hyperspectral Imaging Applications

The onboard processing of remotely sensed hyperspectral images for on-the-fly making-

decision applications has gained momentum in recent years. Nonetheless, the adoption of

this operation mode brings with it many huge challenges to be faced in the near future,

mainly related with the increase of the sensor data rates and the limited amount of avail-

able onboard computational resources. Indeed, this situation becomes even more complex

and cumbersome when different time-sensitive applications coexist, since different tasks

must be sequentially processed onto the same computing device. As a contribution to this

field of interest, we come up with a strategy based on the reuse of the set of core opera-

tions proposed in this Thesis work for the execution of several processing techniques. In

particular, we analyse the potential of the suggested methodology towards the concurrent

execution of multiple hyperspectral analysis processes, whilst optimizing the computa-

tional resources and the human endeavours invested during the implementation stage. In

concrete, we focus on the issue behind the proposed HW-LbL-FAD algorithm and the

HyperLCA method for the simultaneous detection of anomalous spectra and the lossy

compression of hyperspectral images.

127

128 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

5.1 Rationale

The onboard processing of remotely sensed hyperspectral images (HSIs) has experienced

a steady surge in popularity in recent decades. Indeed, it represents a potential solution

for those applications that demand quick response in which the conventional approaches

based on the off-line data handling do not meet the actual needs. Unfortunately, the data

transmission from the remote sensing platforms to the Earth surface introduces impor-

tant delays related to the communication of large amount of data. Consequently, this fact

acts as a barrier that can seriously reduce the effectiveness of real-time applications or

applications that demand prompt replies [36, 37]. In this contest, the real-time onboard

processing has become a very interesting solution to this type of stringent applications

[37–40]. Nonetheless, the adoption of this operation mode is not an easy matter and there

are still many challenges ahead, due mainly to the high data rate of the new-generation hy-

perspectral sensors and the limited amount of available onboard computational resources.

In addition, the aforementioned scenario becomes even more challenging when different

time-sensitive applications coexist. It is because different tasks must be sequentially

processed onto the same computing device. Regrettably, the algorithms traditionally pro-

posed for the hyperspectral analysis have been addressed as independent entities, using

those mathematical methods that better maximize the results for each particular case. In

addition, these approaches normally give rise to complex algorithms with many data de-

pendencies. This is because the algorithm development phase is usually detached from the

hardware implementation stage, resulting in very inefficient hardware implementations.

All of this makes the onboard execution of multiple processes for analyzing the acquired

hyperspectral data not fully viable, especially under real-time constraints [38, 48]. In view

of the computationally intensive nature of the state-of-the-art hyperspectral imaging algo-

rithms, new hardware-friendly solutions are required enabling real-time execution based

on an appropriate trade-off among design requirements [38].

Against this backdrop, we have dealt in this Thesis work with the issue around the onboard

execution of multiple hyperspectral image analysis techniques onto the same piece of

hardware. To this end, we come up with a strategy based on the reuse of the proposed

set of core operations, focusing the efforts in the interconnections among them for the

targeted applications to be addressed. Consequently, the greatest strength of our proposal

is the ability to concurrently execute multiple hyperspectral analysis processes, whilst

optimizing the computational resources and the human endeavours invested during the

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 129

implementation stage. It is because the targeted imaging applications are based on the

same mathematical methods, in particular, the modified version of the Gram–Schmidt

orthogonalization method performed by the set of core operations proposed in this Thesis

work.

In order to demonstrate the viability of the defended methodology, we have focused on

the lossy compression of hyperspectral images and the detection of anomalous spectra, in

particular in the Hardware-Friendly Line-by-Line Fast Anomaly Detector for Hyperspec-

tral Imagery (HW-LbL-FAD) and, in the Lossy Compression Algorithm for Hyperspectral

Image Systems (HyperLCA), extensively analysed in previous Chapters 3 and 4. Never-

theless, we would like to mention that this methodology could be potentially extended

to include other processes without a relevant increment of the required computational

resources, as it will be further analysed in Appendix A.

5.2 Towards the Concurrent Execution of Multiple

Hyperspectral Imaging Applications

In this Section, we discuss the suitability of the proposed set of core operations for the

concurrent execution of multiple hyperspectral imaging applications, in particular, the

lossy compression of HSIs and the detection of anomalous spectra. To this end, we analyse

different methodological strategies ranging from the independent execution of the targeted

applications to the definition of two highly optimized versions for the joint implementation

of both processes using a single configuration of the hardware utilisation.

5.2.1 Using the proposed set of core operations for the detection

of anomalous spectra OR for the lossy compression of HSIs

In preceding Chapters, we introduced the feasibility of the proposed set of core operations

for the detection of anomalous spectra and the lossy compression of HSIs. To this end, two

algorithms were extensively analysed, in particular, the HW-LbL-FAD and the HyperLCA

algorithms. Nonetheless, these two issues were evaluated as two independent entities. In

this Section, we go a step further in order to prove that the proposed methodology can

be efficiently employed for the execution of any such above mentioned analysis techniques

using a single configuration of the proposed set of core operations. On the one hand, it

130 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

means less cost, time and human endeavours during the implementation phase of each

targeted hardware solutions. In this sense, designed blocks of logic or data (intellectual

property (IP) cores) in making FPGA-based solutions or routines compiled for GPUs

(kernels) can be shared among the processing techniques to be launched. On the other

hand, the proposed methodology permits the execution of many different tasks with the

advantage of sharing the most computationally costly core operations, thus reducing the

overall computational cost and the required hardware resources. Although these matters

will be further analysed in Chapter 6, in this Section we focus on the description of the

methodology behind this statement.

For the sake of clarity, a short description about the algorithmic stages involved in the

HW-LbL-FAD and the HyperLCA methods is also presented in the following lines. This

overview is supported by the schematic diagram displayed in Figure 5.1, where the pro-

posed methodology for the execution of the set of core operations applied to anomaly

detection or lossy compression of HSIs is depicted. A closer view of the aforementioned

graphical representation is collected in Figure 5.2 for each targeted application.

Figure 5.1: Proposed scheme for the execution of the set of core operations applied
to anomaly detection or lossy compression of HSIs.

In general terms, the HyperLCA algorithm is mainly structured in four stages: Initial-

ization, HyperLCA Transform, Preprocessing and Entropy Coding. Nevertheless, the Hy-

perLCA Transform involves the most computationally demanding operations, besides, it

actually executes the proposed set of core operations. For this reason, we focus on this

stage of the HyperLCA algorithm through the rest of the analysis made in this Chapter.

Overall, the flow of operations carried out by the HyperLCA Transform is highlighted in

pink color in Figure 5.2a and listed below:

1. Each time that a new block of image pixels, Mk, is available, it feeds the set of

core operations in order to extract the p most characteristic pixels, E, and their

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 131

a)

b)

c)

d)

Figure 5.2: Detailed view of the schematic diagram displayed in Figure 5.1. (a) Lossy
Compression. (b) Anomaly Detection, Stage 1. (c) Anomaly Detection, Stage 2. (d)

Anomaly Detection, Stages 3 and 4.

132 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

corresponding projection vectors, V. Parameter p is set at the very beginning in the

previous Initialization stage according to some input parameters.

2. Then, the average pixel of spectra within Mk, µ̂, is estimated (Average block in

Figure 5.2a) and used to centralize the input image in the Centralization step,

resulting in the centralized version of the image, C.

The following operations are repeated p times:

3. The pixels selected as the most characteristic within each image block, E, are those

with the highest l2-norm, also referred to as brightness in this Thesis work. Derived

from it, orthogonal vectors, qn and un, are also estimated in order to be used in the

following algorithm stages, as it can be seen from rows getting out from Brightness

block in Figure 5.2a.

4. Subsequently, the projection vector, vn, is computed as the spectral information of

each pixel within C spanned by un (Projection block in Figure 5.2a).

5. Finally, the data from C that is orthogonal to the already selected en pixels are

retained in the Subtraction step for the next iteration, n. In this sense, C matrix is

updated if n ≤ p, as it can be seen from the multiplexor located in the bottom right

side of Figure 5.2a, which activates the corresponding switch for this condition.

The HW-LbL-FAD algorithm entirely employs the proposed set of core operations but

their proper execution order depends on the four different defined algorithm stages. It

means that the major complexity of this process lies in the interconnections among oper-

ations in relation to the algorithm stage to be launched. Overall, the flow of operations

carried out by the HW-LbL-FAD algorithm for its different computing stages is displayed

from Figure 5.2b to Figure 5.2d and listed below:

1. Stage 1 : In this stage, the first nf image blocks, Mk, are independently analysed

in search of the p most different pixels, E, within them. In this sense, the set

of core operations is executed in the same way as by the HyperLCA Transform,

as it can be noticed from the comparison between Figures 5.2a and 5.2b. The

major difference is the estimation of the number of iterations, n, to be carried out

for extracting the p reference vectors. Regarding the HyperLCA compressor, p is

known beforehand since it is computed in the Initialization stage as a function

of some input parameters. On the contrary, a stop condition is checked in every

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 133

iteration in the case of the HW-LbL-FAD algorithm. For this reason, an extra green

block is included in the schematic diagram shown in Figures 5.1 and 5.2, named

Stop Condition, for representing this additional stopping condition. Therefore, the

multiplexor placed in the bottom right side of Figures 5.1 and 5.2 is in charge of

activating the corresponding switch that updates the C values if n ≤ p, when the

compression process is enabled, or if the stopping condition is not fulfilled in the

case of anomaly detection.

2. Stage 2 : In this stage, the subspace of orthogonal vectors, Q and U, that model

the background distribution is estimated using the set of core operations organized

in the same way as it was defined in Stage 1 (see Figure 5.2c). Nonetheless, the set

of vectors, E, above selected is employed as input pixel block, B*, instead of Mk.

For this reason, it is included the first multiplexor placed in the left side of Figures

5.1 and 5.2 that selects the data to be used according to the algorithm stage.

3. Stages 3 and 4 : Once the background pattern is modelled, the next HW-LbL-FAD

stages deal with the detection of the anomalous pixels within the following sensed

HSI blocks, Mk. These stages slightly differ from the previous two, as it can be

seen from Figure 5.2d. For doing so, the average pixel, µ̂, estimated in the Stage

2 is used for centralizing the input image block, Mk. Consequently, the Average

blue block must be skipped in this third Stage and thus, it requires the use of the

second multiplexor located in the left side of Figures 5.1 and 5.2. Subsequently, the

information spanned by the Q and U vectors computed in Stage 2 is subtracted

from pixels within Mk. To do this, the Projection and Subtraction operation blocks

are repeated p times, that is, the number of vectors contained in Q or U. As it can

be noticed, the Brightness operation block is not required in the actual stage and

therefore, it is defined the multiplexor located in the middle of Figures 5.1 and 5.2.

Finally, the brightness of the remaining spectral information in each image pixel

is used for identifying the anomalous entities in the Stage 4. For this reason, it is

defined an additional operation block, named Brightness AD, though it basically

performs the l2-norm of each image pixel as the Brightness operation block.

To sum up, it can be drawn that the proposed set of core operations can be potentially

used to perform the different algorithm stages involved by the HW-LbL-FAD detector or

the spectral transform carried out by the HyperLCA algorithm using a single configuration

of the aforementioned operations for both processing techniques. Consequently, this will

134 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

result in a marked reduction in the hardware resources and human endeavours if it is

pretended to launch both processes independently in the same piece of hardware.

5.2.2 Using the proposed set of core operations for the concur-

rent execution of the anomaly detection issue AND the

lossy compression of HSIs

As discussed in preceding Section, the lossy compression of HSIs as well as the detec-

tion of anomalous pixels can be addressed using the same mathematical method and, in

particular, by means of the set of core operations proposed in this Thesis work. In this

Section, we go a step further and explore the potential of the suggested methodology for

the joint implementation of both targeted applications.

5.2.2.1 First approximation towards the simultaneous detection of anomalous

pixels and the lossy compression of HSIs

In the field of hyperspectral lossy compression, the most different pixels, E, and their

corresponding projection vectors, V, within an image block, Mk, can be potentially used

to decorrelate the HSIs and thereby, to compress them. In the field of anomaly detection,

the most characteristic pixels, E, and their orthogonal counterparts, Q and U, can be

efficiently employed for the estimation of the orthogonal subspace spanned by the back-

ground pattern in which anomalous spectra are easily detectable. On this basis, the first

step to be followed consists in extracting the most representative pixels within each image

block, Mk.

To this end, the set of core operations is executed in the same way as the HyperLCA and

the HW-LbL-FAD methods in its Stage 1, as it was further analysed in Section 5.2.1. The

main difference lies in the estimation of the number of iterations, n, to be carried out for

extracting the p reference vectors needed by each targeted application. In the following,

pc and pAD represent the number of p pixels selected by the HyperLCA algorithm and the

HW-LbL-FAD detector, respectively. Regarding the HyperLCA compressor, pc is known

beforehand since it is computed in the Initialization stage as a function of some input

parameters. On the contrary, a stop condition is checked in every iteration in the case of

the HW-LbL-FAD algorithm. On this basis, the set of core operations might be executed

just once and its outputs could be reused by both targeted applications. In this sense,

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 135

the number of p iterations to be carried out by the set of core operations is determined

by the requirements imposed by both pc and pAD, in such a way that if pAD < pc, then

EAD is a subset of Ec. Otherwise, Ec is a subset of EAD.

The process described in the above lines is done on the first nf images blocks, Mk.

Nonetheless, in order to estimate the subspace spanned by the background distribution

required for the detection of anomalous pixels, the Stage 2 of the HW-LbL-FAD algorithm

has to be also computed. For doing so, the set of core operations may be applied once

again in background, playing B* = Ek (k ≤ nf) as the input matrix Mk. As a result,

they are obtained the average pixel of the background distribution, µ̂, and the orthogonal

vectors, Q and U, which will be later employed to identify the anomalous spectra.

So far, the outputs of the proposed set of core operations could be reused for both targeted

applications enabling their simultaneous performance. Nonetheless, the issue is further

complicated from this point on. Regarding the anomaly detection issue, once the back-

ground pattern is modelled in the Stage 2 of the HW-LbL-FAD algorithm, the detection

of the anomalous spectra is addressed on the new sensed HSI blocks, Mk, in the Stage 3

of the algorithm. For doing so, the average pixel, µ̂, estimated in the Stage 2 is used for

centralizing the input image block, Mk, and hence, the operations involved in the average

pixel calculation are indeed discarded. Subsequently, the information spanned by the Q

and U vectors computed in the Stage 2 is subtracted from pixels within Mk. To do this,

the projection and subtraction operations are repeated pAD times, that is, the number

of vectors contained in Q or U. As it can be noticed, the brightness computation is not

required in the actual stage since characteristic pixels were selected in the previous Stage

2. For the sake of clarity, we encourage the reader to see Figure 5.2d. Nonetheless, the

methodology followed by the HyperLCA algorithm for compressing the new sensed HSI

blocks, Mk, remains the same as it was defined at the beginning. Therefore, it implies the

centralization of the data according to the average pixel of the current image block, µ̂, the

computation of the pixel brightness in search of the most characteristic pixels within Mk,

E, and the execution of the projection and subtraction operations employing the already

selected pixels, en, from the image block in question.

Having regard to the above, it can be concluded that, though the computing operations

performed by the HyperLCA and the HW-LbL-FAD methods are those defined within

the proposed set of core operations, different data are processed by them for each case.

Consequently, if both targeted applications are desired to be simultaneously executed in

136 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

the same piece of hardware, the Centralization, the Projection and the Subtraction oper-

ation blocks displayed in Figures 5.1 and 5.2 must be replicated. Naturally, it negatively

affects the resource utilisation because they have to be duplicated for indeed performing

the same operations. An alternative solution for power-constrained scenarios with lim-

ited hardware resources would focus on the serial execution of the targeted hyperspectral

analysis techniques for preventing the replication of the aforementioned core operations.

However, it would clearly concern the execution times.

Against this backdrop, the versatility inherent to the proposed set of core operations

leads to two optimized proposals for the simultaneous detection of anomalous pixels and

the lossy compression of HSIs. The first one, referred to as ADeLoC, searches for the

highest accuracy in the detection and compression results, whereas the other, namely

HADeLoC, prioritizes the optimization of the hardware resources and the minimization

of the execution times.

5.2.2.2 Optimized proposal for the simultaneous detection of anomalous pix-

els and the lossy compression of HSIs (ADeLoC)

As it was previously mentioned, the ADeLoC version focuses on the preservation of the

accuracy of the results for the two targeted applications, that is, anomaly detection and

lossy compression. For this reason, this alternative ensures the same results as the original

HW-LbL-FAD and the HyperLCA methods [218] in exchange of some minor changes in

the way as Stages 3 and 4 of the HW-LbL-FAD method are performed. In return, this

avoids the replication of the Centralization, the Projection and the Subtraction operation

blocks and reduces the number of operations to be performed compared with the context

of the issue raised in previous Section 5.2.2.1.

In this regard, although the pAD background reference vectors were extracted from the

previous nf image blocks, Mk, in the Stage 2 of the HW-LbL-FAD algorithm, the whole

package of the proposed set of core operations has to be run on the new received hyper-

spectral frames to extract the pc most characteristic pixels, Ec, needed for the compression

process. Nonetheless, these Ec vectors are actually the most different pixels within Mk,

and hence, they also collect the rarest signatures too. For this reason, if any anomalous

pixel is present in Mk, it must be collected in Ec. Therefore, the ADeLoC approach only

projects these Ec vectors onto the orthogonal subspace to the one spanned by the Q and

U vectors estimated in the Stage 2 of the HW-LbL-FAD algorithm. In case of presence of

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 137

any anomalous pixel within Ec, the entire image block, Mk, is processed in order to also

detect mixed anomalous pixels. Otherwise, only Ec vectors are checked, thus reducing

the number of operations to be performed.

5.2.2.3 Hardware-friendly proposal for the simultaneous detection of anoma-

lous pixels and the lossy compression of HSIs (HADeLoC)

As already concluded in the previous Section 5.2.2.1, the proposed set of core operations

may be perfectly applicable for the simultaneous execution of both anomaly detection

and lossy compression of HSIs. Nonetheless, in the way that the methodology was defined

in previous Section 5.2.2.1, some operations must be replicated due to the different data

handled by the two targeted applications, which obviously negatively affects the hardware

utilisation. On this basis, we present a more resource-optimized solution in this Section

that, although is not a faithful image of the HW-LbL-FAD and the HyperLCA algorithms,

but it is based on the same rationale behind the methodology followed by them. It will

be referred to as HADeLoC along the remainder of this Section. Figure 5.3 displays a

schema of the operations carried out by this new proposal for the parallel execution of

anomaly detection and lossy compression. Additionally, a closer view of the aforemen-

tioned graphical representation is collected in Figure 5.4 for each algorithmic stage, which

are further explained in the following lines.

Figure 5.3: Proposed methodology for the simultaneous performance of the anomaly
detection process and the lossy compression of HSIs.

1. Stage 1 : This stage corresponds with the Stage 1 of the HW-LbL-FAD algorithm.

As a reminder, the set of core operations is independently performed on each of the

first nf image blocks, Mk, for extracting the set of the most characteristic pixels, E,

within them. Indeed, this stage also corresponds with the spectral transformation,

138 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

named HyperLCA Transform, conducted by the HyperLCA compressor. The main

difference between both algorithms lies in how the number of pixels to be selected,

p, is determined. In the case of the HyperLCA algorithm, it is previously estimated

according to same input parameters, in particular, BS,Nbits and CR, in the Initial-

ization stage. For the HW-LbL-FAD algorithm, an stopping condition based on the

ratio between the brightness of the selected pixel in Mk and C is checked in every

iteration. In the actual proposal, the stopping condition inherent to the HW-LbL-

FAD algorithm is maintained. The selected E pixels are saved for the subsequent

algorithm stages and, jointly with their corresponding projection vectors, V, and

the average pixel of the image block, µ̂, are packaged to be send to the ground seg-

ment as the compressed data. For the sake of clarity, the work-flow of the operations

involved in this first stage of the current approach is shown in Figure 5.4a.

2. Stage 2 : This stage has also a correspondence with the Stage 2 of the HW-LbL-

FAD algorithm. Although in this point no image block, Mk, is processed, this stage

is indeed a key point since the background distribution is modelled through the

definition of its average pixel, µ̂, and a set of orthogonal vectors, Q and U. These

vectors will be later used in subsequent stages for the detection of anomalous spectra

and the compression of the hyperspectral frames. In general terms, it executes the

same operations as above Stage 1 but the input image block is in turn the set of

pixels, B* = Ek (k ≤ nf), selected in this previous stage. Since the data currently

handled is not part of the image to be compressed and reconstructed on the Earth

surface, only the selected pixels, E, and the average pixel, µ̂, will be added to the

bitstream. These pixels are essential for decompressing the subsequent image blocks,

Mk, as it will be more clear in the description of the next algorithm stages. A closer

view of the flow of operations conducted in this second stage is displayed in Figure

5.4b.

3. Stages 3 and 4 : The detection of the anomalous spectra takes place in these two

stages. This process is conducted in the new received image blocks, Mk, in a sim-

ilar way to what it is done in the HW-LbL-FAD algorithm. On the contrary, the

compression process changes considerably compared with the original HyperLCA

compressor in the interest of preventing the replication of the Centralization, the

Projection and the Subtraction operations, as it was analysed in Section 5.2.2.1. In

the original version of the HyperLCA compressor, it would be proceeded to extract

the most characteristic pixels within the image block under analysis, Mk, as those

with the highest brightness within matrix C in each iteration. On the basis that

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 139

vectors Q and U, which were estimated in previous Stage 2, model the background

pattern, they should be representative enough of the majority of the spectral infor-

mation contained in each pixel within Mk. In addition, the aforementioned vectors

are employed by the HW-LbL-FAD algorithm as a vector space basis for projecting

the image pixels onto them in order to just retain the orthogonal information. In

this sense, the orthogonal subspace to the one spanned by the background distri-

bution modelled by Q and U vectors represents better the anomalous spectra. For

this reason, an anomalous pixel would be identified by a notably high value of the

l2-norm, also named brightness, after the subtraction of the spectral information

spanned by the background pattern. For doing so, the Projection and the Subtrac-

tion operations are repeated as many times as the number of pixels selected in the

Stage 2, p. Regarding the compression process, a projection vector, vn, is obtained

in each iteration, n, and it may be used for off-line reconstructing the data. In this

sense, Q and U vectors are also needed for this purpose but they can be estimated

from E vectors transmitted in Stage 2. For this reason, these two set of vectors

are not required to be part of the bitstream in this algorithm stage. For the sake

of clarity, the work-flow of the operations involved in this algorithm stage of the

current approach are shown in Figure 5.4c.

4. Stage 5 : Unlike the HW-LbL-FAD algorithm, this approach involves an additional

computing stage. It is because the anomalous pixels detected in the above stage

could not be well reconstructed using the transmitted V vectors since they just

retain the spectral information representative of the background pattern. For this

reason, when anomalous spectra are identified, the group of operations Brightness -

Projection - Subtraction - Brightness AD is repeated until Brightness AD does not

extract any more anomalous pixels. Therefore, apart from V vectors estimated in

Stage 3, the new selected pixels with the highest brightness, en, and its corresponding

projection vectors, vn, are also included in the bitstream to be transmitted for each

image block, Mk. It is clear that this stage is not conducted if no anomalous pixels

are detected at the very beginning. A closer view of the flow of operations involved

in this last stage is displayed in Figure 5.4d.

It is important to mention that the Golomb-Rice encoding conducted by the HyperLCA

compressor is performed as well for each single outcome, en, vn or µ̂, resulting from each

of the aforementioned stages. Therefore, the Error Mapping step within the HyperLCA

140 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

a)

b)

c)

d)

Figure 5.4: Detailed view of the schematic diagram displayed in Figure 5.3. (a) Stage
1. (b) Stage 2. (c) Stages 3 and 4. (d) Stage 5.

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 141

Preprocessing stage is also launched. Additionally, V vectors must be also scaled ex-

ploiting the dynamic range offered by the input parameter Nbits. As it was mentioned in

Section 4.3.2.3 of Chapter 4, values of each element within vn are typically in the range of

(−1, 1]. It is because E pixels in the HyperLCA compressor are extracted independently

for all sensed image blocks and hence, each vn is a function of each en selected from the

same image block, Mk. Nonetheless, in Stage 3 of the current approach, pixels within

the image block in question, Mk, are projected onto the Q and U vectors that were esti-

mated from previous frames in Stage 2. In this context, light conditions could fluctuate

among new sensed frames during the flight mission. Therefore, it could derive in higher

values of vn elements when illumination conditions change during the acquisition of new

hyperspectral frames whilst keeping the Q and U vectors, which may be obtained under

other environmental conditions. Consequently, values of each element within vn could be

higher in such unlikely situations. Therefore, we have considered to set the limits of the

value range in [−2, 2], which would prevent overflowing even with an increment of the

pixel brightness up to a factor of 2. A wider range could be defined as well, though it

derives in the decrease of the precision for representing elements of V vectors after the

scaling, since a greater variability in the data has to be represented with Nbits bits. Hence,

V vectors are ultimately scaled according to the function displayed in Equation 5.1. To

sum up, though these stages of the HyperLCA compressor are not displayed in Figures

5.3 and 5.4, they are addressed as well.

vjscaled = (vj + 2) · (2Nbits−2 − 1) (5.1)

In general, the work-flow inherent to the anomaly detection process largely follows the

same scheme as the HW-LbL-FAD method. Nonetheless, the compression process has

been subjected to the methodological changes introduced by the anomaly detection one.

For this reason, the generated bitstream representative of the compressed data slightly

differs from the one defined by the original HyperLCA algorithm. In this current version,

the generated bitstream consists of two parts: the header, which contains the global

information about the HSI that is needed to later decompress it, and k+ 1 data packages

with the compressed data necessary to reconstruct each image block, Mk.

Regarding the header, it collects the following data:

1. Size of the HSI (nc and nb): they represent the number of columns and spectral

bands, respectively and, are coded as plain binary using 16 bits each.

142 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

2. The number of pixels within an image block Mk, BS, coded as plain binary using

16 bits.

3. The number of image blocks used to estimate the background distribution, nf , coded

as plain binary using 16 bits.

4. The number of bits per pixel per band used to save the sensed HSI, DR, coded as

plain binary using 8 bits.

5. The number of bits per pixel per band used to save values of V, Nbits, coded as plain

binary using 8 bits.

The second part of the bitstream that contains the information of each individual block of

image pixels, Mk, may be packed in four different ways according to the algorithm stage,

as shown in Figure 5.5.

1. Stage 1 : The bitstream generated in this stage is very similar to the one created

by the HyperLCA compressor since the average pixel, µ̂, the selected pixels, E, and

the projection vectors, V, are codified and packaged. The main difference lies in

that the number of selected pixels, p, is not known beforehand as in the HyperLCA

algorithm, since it depends on the fulfilment of the defined stopping condition. In

this regard, the process that will later decompress the data receives an array of bits

and it must identify somehow the vectors that correspond with each iteration, n.

For this reason, an additional bit is introduced among the couple of vectors, en and

vn, estimated in each iteration: 0 means that a new iteration will be addressed and

new en and vn vectors will be incorporated to the bitstream, while 1 means that the

processing of the actual image block, Mk, is over and thus, a new Mk+1 will be then

managed. This synchronization barrier will be also employed in the other strategies

considered for the data packing. Figure 5.5a displays a graphical representation of

the data structure within the bitstream for this first stage, which only affects the

first nf hyperspectral frames.

2. Stage 2 : In this point, only the average pixel, µ̂, and the selected pixels, E, are

codified and packaged, as it can be seen from Figure 5.5b. It is because they are

employed solely for modelling the background information that is essential for the

reconstruction of the spectral information contained in the subsequent image blocks.

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 143

3. Stages 3 and 4 : When only Stages 3 and 4 are serially performed means that the

image block in question, Mk, does not contain any anomalous spectra. Therefore,

the data can be perfectly representative by pixels selected in previous Stage 2. For

this reason, projection vectors, V, are solely part of the bitstream, as displayed in

Figure 5.5c. In this case, the aforementioned method to distinguish among vectors

is not included since the number of p Q and U vectors used for projecting the data

is actually known since the Stage 2.

4. Stages 3, 4 and 5 : The execution of the Stage 5 implies that the image block in

question, Mk, is corrupted by anomalous spectra. For this reason, the bistream

framework slightly differs from the above mentioned situations free of anomalies.

In this sense, the bitstream also comprises the projection vectors, V, of the image

pixels onto the Q and U vectors representative of the background pattern and

the additional selected en vectors and their corresponding vn as well. Figure 5.5d

displays the structure of the data within this type of data packages.

Additionally, an extra bit is also included in the bitstream once each package has been

codified. The rationale behind this is to indicate if more image blocks, Mk, will be codified

and transmitted to the ground segment or if the flight mission has been completed. The

former situation is represented by zero value of the mentioned bit while the latter by one.

a)

b)

c)

d)

Figure 5.5: Data package structure for the different stages of the HADeLoC proposal
for the simultaneous execution of the anomaly detection process and the lossy compres-
sion of HSIs. (a) Stage 1. (b) Stage 2. (c) Stages 3 and 4 (no anomalies in the image

block, Mk). (d) Stages 3, 4 and 5 (existence of anomalies in the image block, Mk).

144 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

Given the above, it is reasonably safe to conclude that although the minimum desired

compression ratio cannot be known in advance unlike the original HyperLCA compressor,

very high compression ratios will be reached. The reasoning behind this is that the average

pixel, µ̂, the selected pixels, E, and the projection vectors, V, are always transmitted in

the HyperLCA compressor but this only eventuates in the first nf hyperspectral frames in

the current methodology for the estimation of the background distribution. In this sense,

nf represents a negligible part of the total number of image blocks to be streamed. In

fact, Q and U vectors could be uploaded in advance from previous flight missions. For

the other image blocks, Mk (k > nf), just the projection vectors, V, are packaged when

non anomalies are detected. In the opposite scenario, it might be packaged more bits in

some cases but the likelihood of the existence of anomalous spectra is very low, which

could be set to less than 10% of the image blocks.

5.3 Experimental Results

The performance of the HW-LbL-FAD algorithm for the detection of anomalous spectra

and the HyperLCA algorithm for the lossy compression of HSIs were carefully evaluated

in their corresponding Chapters 3 and 4. On the basis that the results obtained by the

ADeLoC approach are identical to those obtained by the aforementioned methods, this

Section looks more closely to the evaluation of the HADeLoC performance for the simul-

taneous detection of anomalous pixels and the lossy compression of HSIs. The strengths

and limitations of the proposed method have been extensively discussed and the quality

of the results for both targeted applications has been compared with those obtained by

the original methods, the HW-LbL-FAD and the HyperLCA. Additionally, a first approx-

imation towards the estimation of the savings in terms of the number of operations to be

computed for the concurrent implementation of both targeted analysis techniques is also

set out, though a through evaluation is made in Chapter 6.

5.3.1 Reference Hyperspectral Data

For evaluating the performance and effectiveness of the proposed methodology and in the

interest of the comparison with the original HW-LbL-FAD and HyperLCA methods, the

bunch of real hyperspectral data collected by the acquisition platform described in [89]

and employed in preceding Chapters 3 and 4, is also used in this Section. For the sake of

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 145

clarity, a brief summary about these image descriptions is provided below, although we

encourage the reader to see Chapter 3 to expand the details about the flight campaigns

in which images were taken.

This data set was collected over multiple farming areas on the island of Gran Canaria

(Spain) by a pushbroom sensor mounted on a UAV. In particular, the reference images

are selected portions of some swaths within three different flight campaigns. These data

cover the spectral information from 400 to 1000 nm using 160 spectral bands and consist

of 825 lines height, each line comprising 1024 hyperspectral pixels with 12-bits depth. A

RGB representation of these hyperspectral image portions are displayed in Figure 5.6.

Images displayed in Figures 5.6 a–c were taken at a height of 72 m over the ground at a

speed-rate of 6 m/s with a camera frame-rate of 125 frames per second (FPS), resulting

in a ground sampling distance in line and across line of approximately 5 cm. Data shown

in Figure 5.6 d was sensed in a second flight campaign performed at a height of 45 m over

the ground and at a speed of 4.5 m/s with the hyperspectral camera capturing frames at

150 FPS, resulting in a ground sampling distance in line and across line of approximately

3 cm. Finally, frames exhibited in Figures 5.6 e–f were scanned at a flight height of 45 m

over the ground and at a speed of 6 m/s with the hyperspectral camera capturing at 200

FPS, resulting in a ground sampling distance in line and across line of approximately 3

cm.

The aforementioned images were calibrated using a white and dark calibration to obtain

reflectance values. Nonetheless, either orthorectification or georeferencing processes were

not carried out for the acquired raw data. In this sense, images were built up just by plac-

ing the subsequent captured hyperspectral frames one next to the other [156]. This does

not degrade the quality of the experiments carried out in this work since the tested algo-

rithms do not use any kind of spatial information. A notable aspect of these images is the

existence of some anomalous artefacts, such as some humans and concrete construction,

which have been circled in blue in Figure 5.6.

5.3.2 Assessment Metrics

The goodness of the proposed method has been evaluated from two different perspec-

tives, the quality of the compression performance and the efficiency in the detection of

anomalous pixels. Firstly, the compression performance has been twofold evaluated by

means of the achieved compression ratio, measured as the ratio between the data volume

146 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

(a) (b) (c)

(d) (e) (f)

Figure 5.6: RGB representation of the employed test bench. Pixels enclosed in blue
circles represent some anomalous spectra. (a) Drone Image 1. (b) Drone Image 2. (c)

Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f) Drone Image 6.

before and after the compression, and the average number of bits per pixel per band,

bpppb, used for representing the compressed images. Secondly, the missing data after the

compression-decompression process have been also assessed using five different quality

metrics: the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error (RMSE), the

Maximum Absolute Difference (MAD), the Structural Similarity index (SSIM) and the

Peak Signal-to-Noise Ratio (PSNR). Regarding the anomaly detection process, the evalu-

ation of the detection performance is visually made at object-level through the description

of the resulting binary maps where anomalies and background elements are segmented.

This is because the test images have been sensed at high altitudes and the exact position

of the anomalies in the field was not measured. As a consequence, anomalous entities

cover a very small number of image pixels. Additionally, the pixels at the object borders

are mixed with the background. For this reason, it is very difficult to establish precise

boundaries and hence, generate accurate pixel-level ground-truths.

5.3.3 Compression performance of the proposed HADeLoC ap-

proach

This section discloses the results obtained in all addressed experiments with the purpose

of evaluating the goodness of the proposed methodology for the lossy compression of HSIs.

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 147

On the basis that in preceding Chapters it was demonstrated the feasibility of the proposed

set of core operations for their implementation using floating-point notation and integer

arithmetic based on fixed-point notation, only the results obtained by the Float32 version

are analysed in this Section, in pursuit of reducing the complexity of the evaluation and

comparison with the performance of the original HyperLCA compressor.

Image Nbits BS CR bpppb SNR MAD RMSE PSNR SSIM

D
ro
n
e
1

Im
a
g
e 14 1024 39.23 0.31 39.45 287.00 15.55 48.41 0.98

10 1024 66.35 0.18 39.32 286.00 15.79 48.28 0.98

D
ro
n
e
2

Im
a
g
e 14 1024 40.75 0.29 38.03 317.00 16.38 47.96 0.96

10 1024 70.15 0.17 37.90 320.00 16.62 47.83 0.96

D
ro
n
e
3

Im
a
g
e 14 1024 42.52 0.28 40.09 203.00 11.78 50.82 0.96

10 1024 75.62 0.16 39.76 205.00 12.24 50.49 0.96

D
ro
n
e
4

Im
a
g
e 14 1024 55.57 0.22 21.49 470.00 49.68 38.32 0.62

10 1024 102.74 0.12 21.47 471.00 49.79 38.30 0.61

D
ro
n
e
5

Im
a
g
e 14 1024 25.30 0.47 33.66 568.00 23.97 44.65 0.90

10 1024 42.70 0.28 33.58 567.00 24.18 44.58 0.90

D
ro
n
e
6

Im
a
g
e 14 1024 60.07 0.20 30.19 371.00 33.48 41.75 0.85

10 1024 101.61 0.12 30.18 372.00 33.52 41.74 0.85

Table 5.1: Compression Results. Achieved CR, bpppb, SNR, MAD, RMSE, PSNR
and SSIM for the six data sets.

Unlike the HyperLCA algorithm, the minimum compression ratio to be desirable, CR, is

not required as input parameter since the number of p pixels to be selected in Stages 1

and 2 of the current solution is estimated according to the outcome of a quality stopping

condition. Additionally, only settings of BS = 1024 have been evaluated since the image

acquisition system captures 1024 spatial pixels per scanned cross-track line, as well as,

the HyperLCA algorithm gets the best possible results with this configuration. Therefore,

experiments carried out for evaluating the behaviour of the proposed methodology for the

lossy compression of HSIs have been done according to BS = 1024 and Nbits = [14, 10]. As

can be seen, Nbits values have been increased in two bits compared to when the HyperLCA

algorithm was evaluated in Chapter 4 (Nbits = [12, 8]). It is due to the scaling process of

V vectors presented by Equation 5.1. Unlike the HyperLCA algorithm where values of

V vectors after scaling are between [0,2], they are ranging from [0,4] here or even more

for increments of pixel brightness higher than 2. Table 5.1 collects the obtained results

148 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

for the assessment metrics defined in Section 5.3.2, that is, the reached CR, the bpppb,

the SNR, the MAD, the RMSE, the SSIM and, new in this Chapter 5, the PSNR.

In addition, Figures 5.7 and 5.8 compare the obtained CR, SNR, MAD, RMSE and

SSIM with those results analysed in Chapter 4 for the HyperLCA algorithm. Since the

HyperLCA performance was evaluated in terms of three different settings of the minimum

desirable CR = [12, 16, 20] in this preceding Chapter 4, the obtained results for all these

tested configurations have been included in the graphics displayed in Figures 5.7 and 5.8.

In addition, a correspondence in the comparison has been established between Nbits values

equal to 14 and 12 bits and, 10 and 8 bits, respectively.

(a) (b)

Figure 5.7: Comparison among the compression ratios obtained by the HyperLCA
algorithm for different settings of the input parameters CR = [12, 16, 20] and Nbits =
[12, 8] and, by the HADeLoC proposal with Nbits = [14, 10]. (a) Nbits = 14 and 12. (b)

Nbits = 10 and 8.

Several observations may be drawn from the analysis of these results:

1. The CR obtained by the proposed methodology is automatically calculated as a

function of the spectral variability present in the HSIs to be independently analysed.

From results displayed in Figure 5.7, it is inferred that the obtained CRs are in

general much higher than those obtained by the HyperLCA compressor for an input

minimum CR = 20. These differences are more pronounced for Nbits equal to 10. In

fact, CRs obtained by configurations of Nbits = 14 are roughly 40-46% lower than

using Nbits = 10. It makes totally sense since the same p pixels are selected in Stages

1 and 2 and the same number of anomalous spectra are detected. Indeed, Nbits is

solely used for the scaling and encoding of each element within V vectors. On this

basis, compressed data packaged using Nbits = 14 employ 40% more bits than using

Nbits = 10. In those cases where the proportion in the compression ratios is higher

(> 40%), it is due to the additional data compression introduced by the coder.

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 149

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Comparison among the quality of the compression results obtained by the
HyperLCA algorithm for different settings of the input parameters CR = [12, 16, 20]
and Nbits = [12, 8] and, by the HADeLoC proposal with Nbits = [14, 10]. (a) SNR for
Nbits = 14 and 12. (b) SNR for Nbits = 10 and 8. (c) MAD for Nbits = 14 and 12. (d)
MAD for Nbits = 10 and 8. (e) RMSE for Nbits = 14 and 12. (f) RMSE for Nbits = 10

and 8. (g) SIIM for Nbits = 14 and 12. (h) SIIM for Nbits = 10 and 8.

150 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

2. Regarding the results of the quality metrics collected in Table 5.1, the data losses

derived from the use of less number of bits for representing V vectors are negligible

between Nbits = 14 and 10 settings. Therefore, it is worthwhile algorithm configu-

rations using Nbits = 10 since roughly 60% more compression ratio is obtained for

almost the same spectral distortions introduced by the lossy compression process.

3. In general terms, the quality of the compression results are worse than those obtained

by the HyperLCA algorithm for all assessment metrics. Nonetheless, it should keep

in mind that the obtained CRs are much higher than those shown by the HyperLCA

algorithm. In fact, CRs bigger than 100 are reached for Nbits = 10 settings. For

instance, the CR obtained by the proposed methodology and by the HyperLCA

algorithm for a minimum desirable CR = 20 is almost the same for Drone Image

5 and hence, the SNR values reach similar outcomes for both targeted methods.

Nonetheless, the test bench is in general composed of dark images that do not exploit

the full dynamic range available by the sensor. It can be seen from the PSNR values

collected in Table 5.1. PSNR represents the ratio between the maximum possible

power of a signal (212 − 1 for the data set employed in the experiments) and the

power of corrupting noise. On the contrary, the SNR represents the ratio between

the power of the signal and the power of the noise. In this sense, the obtained

PSNR values are much higher than the SNR values and it is indicative that images

were obtained under dark light conditions. For this reason, the proportion of the

inherent image noise is comparable to the signal power and hence, the SNR values

get affected.

4. The presence of undesirable distortions derived from sparkles, scattering or from the

sweeping motion of the data acquisition platform might lead to a misrepresentation

of the background model estimated in Stages 1 and 2 and hence, this fact impacts

the quality of the compression in the subsequent image blocks. This phenomena can

be observed in Image Drone 4 that is actually the worst reconstructed image after

the compression/decompression process. This data set is very challenging since

pixels located on the white lines of the road are close to be very saturated and

hence, their are characterized by a high l2-norm value or brightness. Consequently,

they will be selected as pixels of interest for the background modelling performed in

Stages 1 and 2, though they are not really representative of the spectra contained in

the subsequent hyperspectral frames. In addition, the stopping condition defined for

the pixel selection process is actually based on the ratio between pixel brightnesses.

Consequently, the existence of outliers in the frames employed for the estimation of

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 151

the background pattern could lead to not trustworthy Q and U vectors. Given the

above, enough nf hyperspectral frames must be taken to ensure that the variability

of the background has been fully covered to generate accurate background models.

5. Finally, concerning the MAD assessment metric, it is the one that shows the greatest

differences compared with the results obtained by the HyperLCA compressor. As a

reminder, the MAD reveals the biggest reconstruction error among all image pixels

after the compression/decompression process. In this sense, pixels placed on the

rounded edges of the anomalous entities are composed in its majority by background

spectra mixed with the anomalous signature. Consequently, they cannot be perfectly

reconstructed by a linear combination of the background spectra and therefore, the

biggest MAD values are reached by these pixels in the proposed methodology. To

illustrate this point, Figure 5.9 displays a portion of the MAD value map near the

location of the anomalous entity in Drone Image 5.

Figure 5.9: Portion of the MAD value map around the anomalous entity located in
Image Drone 5.

Apart from the analysis made in above lines, we have also compared the HyperLCA

algorithm with the proposed methodology under more similar conditions. In this sense,

we have forced the HyperLCA algorithm to reach similar CRs as those obtained by the

proposed method. Under this scenario, Figure 5.10 displays graphical representations

of the achieved CRs and the quality of the compression results in terms of the SNR,

the MAD, the RMSE and the SIIM obtained by both targeted algorithms. Four main

observations may be drawn from the analysis of these results:

152 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

1. Concerning the MAD and the RMSE assessment metrics, the HyperLCA perfor-

mance results in less losses of information after the compression/decompression pro-

cess. The main methodological differences between both targeted algorithms start

from Stage 3 of the HADeLoC proposal. In this sense, the HyperLCA algorithm

centralizes each image block, Mk, using the average pixel, µ̂, obtained from pixels

within Mk and, codifies and packages selected pixels, E, within the image block in

question. On the contrary, the proposed methodology uses the average pixel, µ̂, and

the orthogonal vectors Q and U estimated from pixels selected from the first sensed

nf image blocks in the Stage 2 of the algorithm. This makes us conclude that the

quality of the compression performance of the proposed methodology is influenced

by the environmental conditions under the data were sensed.

2. On the basis of the above stated hypothesis, the data set employed in the experi-

ments carried out in this Chapter 5 were calibrated using white reference and dark

images obtained prior to the beginning of the flight campaigns. Therefore, they could

have been sensed under different light conditions to those shown when the first nf

hyperspectral frames were captured; besides, the subsequent frames analysed in the

Stage 3 using data obtained from Stage 2.

3. On the basis that operations involved in Stage 1 of the proposed methodology are

identical to those performed by the HyperLCA Transform and the reached CRs are

very close among each other, almost the same pixels are selected from the first nf

frames by both targeted methods. Therefore, pixels placed on the white lines of the

road contained in Drone Image 4 are selected as pixels of interest by both methods.

Nonetheless, Drone Image 4 is once again far from being equally reconstructed using

the data packaged by the proposed method than the HyperLCA algorithm. This

fact reinforces the importance of the calibration and the radiometric calibration of

the data.

4. Finally, the worst MAD values are also obtained by the proposed methodology due

to the same reasons analysed in the preceding analysis, that is, due to the pixels

located at the rounded edges of the anomalous entities.

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 153

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: Comparison among the quality of the compression results obtained by
the HyperLCA algorithm with Nbits = [12,8] and by the HADeLoC proposal with Nbits

= [14,10] for similar reached CRs. (a) SNR for Nbits = 14 and 12. (b) SNR for Nbits =
10 and 8. (c) MAD for Nbits = 14 and 12. (d) MAD for Nbits = 10 and 8. (e) RMSE
for Nbits = 14 and 12. (f) RMSE for Nbits = 10 and 8. (g) SIIM for Nbits = 14 and 12.

(h) SIIM for Nbits = 10 and 8.

154 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

5.3.4 Anomaly Detection performance of the proposed HADe-

LoC approach

In general terms, the proposed methodology for the concurrent implementation of both

targeted applications was structured in such a way as to maintain the same schedule based

on the processing stages defined by the HW-LbL-FAD algorithm. Indeed, the compression

process is actually the application that has undergone several changes, as shown the results

presented in Section 5.3.3. For this reason, the anomaly detection results given as output

by the current proposal are identical to those obtained by the original HW-LbL-FAD

algorithm. In this regard, two-dimensional (2D) binary maps displayed in Figure 5.11

clearly demonstrated this. As it was done in preceding Chapters, the aforementioned

anomaly detection maps have been superimposed on a panchromatic representation of

the scenes to be analysed in order to make easier the result interpretation. Pixels and

spatial lines corrupted by anomalous signatures have been also highlighted in red color.

As can be seen, detected anomalous pixels are the same, even regardless the configured

values of Nbits parameter. It makes totally sense since this parameter is solely employed for

preprocessing and encoding the V vectors that are part of the bitstream, which actually

concerns to the compression process.

5.3.5 Discussions about the HADeLoC performance

From the findings of the foregoing study, some discussions emerge about the HADeLoC

proposal:

1. In the solution analysed in this Section, the background distribution is estimated

from several of the first sensed HSI blocks, nf , under the assumption that they are

fully representative of the background pattern. On this basis, enough nf hyper-

spectral frames must be taken to ensure that all the spectral variability is covered

and hence, to estimate a trustworthy background model. Nonetheless, this method-

ology could be not a feasible solution in very heterogeneous scenarios or beneath

the presence of undesirable distortions derived from sparkles, scattering or from the

sweeping motion of the data acquisition platform, which may be one limitation of

our proposal. In this regard, a potential solution might be to already have a set of

reliable orthogonal vectors, Q and U, resulting from the study and the analysis of

the spectral signatures taken from previous flights over the same areas.

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 155

HADeLoC Nbits = 14 HADeLoC Nbits = 10 HW-LbL-FAD Ground-truth

Figure 5.11: Anomaly detection results obtained by the HW-LbL-FAD algorithm and
by the HADeLoC proposal.

156 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

2. It should also be mentioned the importance of the calibration and the radiometric

correction of the HSI to obtain accurate reflectance values. It is a determining

factor since subsequent frames are centralized and projected over a subset of vectors

obtained from previous frames that may have been captured under other lighting

conditions. For instance, the data set employed in the experiments carried out

in this Chapter 5 were calibrated using white reference and dark images obtained

prior to the beginning of the flight campaigns. Therefore, luminance conditions over

the course of these data acquisition campaigns are likely to bear the brunt of the

environmental shifts. That is why there is an increasing scientific motivation towards

the definition of more accurate radiometric correction methods under operational

conditions that take into account the incident radiance at each instant [31, 219–222].

3. It is also important to mention the adequacy of exploiting the full dynamic range

of the hyperspectral sensors. In this sense, proper settings of the camera exposure

time according to the capturing frame rate are required in order to prevent from

taken dark images where a small range of the full sensor dynamic range is covered.

In this situations, as those presented in Section 5.3, the ratio between the signal and

the noise intrinsic to the image capture, in other words the SNR, gets affected since

the power of noise is comparable to the power of the signal.

4. One of the main conclusions drawn from the analysis of the compression results

conducted in preceding Section 5.3.3 is that the highest and worst MAD values

were attained by the pixels located in the rounded edges of the anomalous entities.

It is because they are mixed pixels composed of both anomalous signatures and

background spectra. In some cases they are not identified as anomalous and hence,

they are reconstructed as solely a linear combination of the vector space that defines

the background distribution. Against this backdrop, a workable solution consists in

always selecting a couple of additional pixels, en, in the same way as it done by

frames containing anomalous spectra.

5.3.6 Computational Complexity Analysis

The greatest strength of the proposed ADeLoC and HADeLoC approaches is the ability

to reuse operations when both the anomaly detection and the lossy compression processes

are simultaneously launched in the same piece of hardware. Consequently, the number

of operations to be executed considerably decreases compared to other approaches where

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 157

no algorithmically related processes are implemented. On this basis, the computational

complexity concomitant with the proposed methods are evaluated in this Section in terms

of the number of basic operations (OPs) involved in each algorithm stage. For clarity, OPs

are simple calculations such as additions, subtractions, multiplications, and divisions. In

addition, it is also compared with the number of OPs to be performed by classical ap-

proaches in which the lossy compression and the anomaly detection processes are executed

as two independent algorithms. For that purpose, the HW-LbL-FAD algorithm and the

HyperLCA compressor are used in the comparative analysis.

Table 5.2 collects the number of OPs required to process one image block, Mk, for each

method. Since the number of OPs computed by the proposed methodologies and the HW-

LbL-FAD algorithm is different according to the algorithm stages, it is specified for each

case. In addition, Table 5.2 just retains the number of OPs involved by the proposed set

of core operations, discarding those operations performed by the Preprocessing and the

Entropy Coding stages belonging to the compression process. Regarding the HyperLCA

and the HW-LbL-FAD algorithms, the number of pixels extracted per image block is

different and hence, there are referred to as pc and pAD, respectively. With regard to the

Stage 1 of the ADeLoC method, the number of p iterations to be carried out by the set

of core operations is determined by the requirements imposed by both pc and pAD and

therefore, it is represented by p. Finally, the HADeLoC maintains the stopping condition

inherent to the HW-LbL-FAD algorithm and hence, the number of pixels selected per

image block is equal to pAD.

For analysing the reduction in the number of OPs to be carried out for the approaches

proposed in this Chapter, let us set an example using an hypothetical HSI with the same

dimensions as those images employed in this manuscript (nr = 1024, nc = 1024, nb =

160). For the sake of simplicity, we have considered the number of selected pixels p and

pAD equal to pc for every targeted methods, though it is not applied in real scenarios.

In this scene, pc is a function of the minimum desirable CR and the BS in the case of

the HyperLCA algorithm and for the others, it depends on the variability of the spectra

present in the image block, Mk, in question. Moreover, experience has demonstrated

that normally pAD < pc. On this basis, the comparison among methods could be done

as a function of different values of BS and the minimum desired CR. Additionally, the

number of hyperspectral frames used for estimating the background model for addressing

anomaly detection, nf , has been set to 100 frames of 1024 hyperspectral pixels, no matter

BS setting. It means that for BS = 512, 200 frames of 512 pixels are used, whereas

400 frames of 256 hyperspectral pixels are used for BS = 256 settings. Finally, the

158 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

number of OPs carried out by the ADeLoC and the HADeLoC methods also depends on

the probability of anomalous Mk, x, within the HSI. Since the presence of anomalous

pixels is very unlikely, the analysis has also contemplated three different settings of x =

[0.01, 0.05, 0.1].

Algorithm Stage Complexity

HyperLCA ∇k pc · (6 · nb ·BS + nb) + 2 · nb ·BS + nb

HW-LbL-FAD

Stage 1 : k ≤ nf pAD · (6 · nb ·BS + nb) + 2 · nb ·BS + nb

Stage 2 : pAD · (6 · nb · pAD · nf + nb) + 2 · nb · pAD · nf + nb

Stages 3 and 4 : k > nf BS · (4 · p · nb+ 3 · nb)

ADeLoC

Stage 1 : k ≤ nf p · (6 · nb ·BS + nb) + 2 · nb ·BS + nb

Stage 2 : pAD · (6 · nb · p · nf + nb) + 2 · nb · p · nf + nb

Stages 3 and 4 : k > nf
pc · (6 · nb ·BS + nb) + 2 · nb ·BS + nb

(No anomalies) +4 · pAD · pc · nb+ 3 · pc · nb

Stages 3 and 5 : k > nf pc · (6 · nb ·BS + nb) + 2 · nb ·BS + nb

(Anomalies) +4 · pAD · nb · (pc +BS) + 3 · nb · (pc +BS)

HADeLoC

Stage 1 : k ≤ nf pAD · (6 · nb ·BS + nb) + 2 · nb ·BS + nb

Stage 2 : pAD · (6 · nb · pAD · nf + nb) + 2 · nb · pAD · nf + nb

Stages 3 and 4 : k > nf
BS · (4 · pAD · nb+ 3 · nb)

(No anomalies)

Stages 3, 4 and 5 : k > nf BS · (4 · pAD · nb+ 3 · nb)

(Anomalies) +6 · pextra ·BS · nb+ pextra · nb

Table 5.2: Number of OPs performed for the processing of one image block, Mk,
by the HyperLCA compressor, the HW-LbL-FAD algorithm and the proposed method-
ologies for the simultaneous execution of the anomaly detection process and the lossy

compression of HSIs, that is, the ADeLoC and the HADeLoC approaches.

Figure 5.12 graphically displays the proportion, in percentage (%), of fewer number of

operations performed by the ADeLoC method (Figure 5.12a) and by the HADeLoC ap-

proach (Figure 5.12b) compared with the serial execution of the HW-LbL-FAD and the

HyperLCA algorithms for different settings of BS, CR and x. For this purpose, pextra

pixels selected by the HADeLoC approach for anomalous hyperspectral frames has been

set to 2, which means that up to two different anomalous materials may be present in the

Mk in question.

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 159

(a)

(b)

Figure 5.12: Reduction in the number of OPs (%) performed by the ADeLoC and the
HADeLoC algorithms compared with the serial execution of both the lossy compression

and the anomaly detection processes as two independent algorithms.

From results shown in Figure 5.12a, it can be concluded that the ADeLoC approach

carries out between approximately 41.21% - 38.58% fewer operations than independently

implementing the HW-LbL-FAD algorithm and the HyperLCA methods. Naturally, this

reduction in the number of OPs decreases for higher x, since it implies the computation

of 4 · pAD · nb · (pc + BS) + 3 · nb · (pc + BS) extra operations per anomalous block (see

Line 8 of Table 5.2). In terms of BS, the ADeLoC makes slightly more operations for

smaller BS (BS = 256). It is because, 4 · pAD · pc · nb + 3 · pc · nb operations are used to

project the pc pixels selected from each Mk over the set of Q and U orthogonal vectors

in order to see if there are anomalous entities in the current image block (see Line 8 of

Table 5.2). In this regard, the smaller BS, the higher the number of total image blocks to

160 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

process and hence, more times the aforementioned number of OPs have to be performed.

With respect to CR, more number of iterations of the set of core operations is executed

for smaller CR since more p pixels are selected. Therefore, the reduction in the number

of OPs decreases with lower CR.

From results shown in Figure 5.12b, it can be concluded that the HADeLoC approach

carries out between approximately 57.87% - 55.11% fewer operations than independently

implementing the HW-LbL-FAD algorithm and the HyperLCA methods. Moreover, the

HADeLoC approach implies the execution of 27-30% fewer OPs than the ADeLoC version.

Nonetheless, the HADeLoC behaviour according to the CR is opposite to the ADeLoC

approach. As it was mentioned in Section 5.2.2.3, the work-flow inherent to the HADeLoC

version largely follows the same scheme as the HW-LbL-FAD method. Therefore, the

reduction in the number of launched OPs is mainly due to the additional operations

carried out by the HyperLCA compressor. Therefore, lower desired CR involves more

iterations of the set of core operations for extracting pc. Since these additional operations

are not carried out by the HADeLoC, the reduction in the number of OPs is notoriously

higher for smaller CR. Another point to mention is that the reduction in the number of

computed operations for settings of CR = 20 and x= 0.01 are similar to those obtained

by CR = 12 and x = 0.05 for BS = 512. The same happens between CR = 16, x = 0.05

and CR = 12, x = 0.1. It is because the proportion of fewer operations inherent to the

extraction of less number of p pixels for higher CR is compensated by the higher number

of times that pextra pixels are extracted from anomalous image blocks.

In conclusion, it can be observed that the use of a common mathematical method for

addressing different targeted applications implies a considerably reduction in the number

of computing operations to be carried out. This is expected to be translated into a

reduction in the execution times, as well as in the required computational resources, as it

will be further analysed in Chapter 6.

5.3.7 General discussions

From the findings of the foregoing analysis, some general discusses emerge:

1. There is a trade-off between the causality in line-by-line approaches and how to

model the background distribution. Actually, very few publications can be found

within this field in the existing literature [129, 149, 157, 199, 203, 223–225]. In the

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 161

solutions analysed in this Section, the background distribution is estimated from

several of the first sensed HSI blocks, nf , under the assumption that they are fully

representative of the background pattern. On this basis, enough nf hyperspectral

frames must be taken to ensure that all the spectral variability is covered and hence,

to estimate a trustworthy background model. Nonetheless, this methodology could

be not a feasible solution in very heterogeneous scenarios or beneath the presence of

undesirable distortions derived from sparkles, scattering or from the sweeping motion

of the data acquisition platform, which may be one limitation of our proposal. In

this regard, a potential solution might be to already have a set of reliable pixels

representative of the background resulting from the study and the analysis of the

spectral signatures taken from previous flights over the same areas.

2. The strength of the proposed methodologies lies in the definition of a set of common

core operations for different hyperspectral analysis imaging applications. It results

in many benefits in view of hardware acceleration for real-time or near real-time

performance in terms of a reduction in the execution times, hardware resources

and above all, in human endeavours. Concerning this latter, it implies the studio

and analysis of only a single mathematical approach, which consequently permits

to focus the efforts from a methodological and productivity points of view, which

consequently results in a reduction in the time to market.

3. Regarding the ADeLoC approach, it outperforms the HADeLoC proposal in terms

of the quality of the results, which are the same as those obtained by the original

HyperLCA and the HW-LbL-FAD methods but carrying out approximately 41-39%

less number of operations. Unlike the HADeLoC, this approach permits to know in

advance the minimum compression ratio to be reached by the application since the

ADeLoC approach faithfully follows the same algorithmic stages performed by the

HyperLCA algorithm. On the contrary, this approach searches for the maximum

accuracy in the detection and compression results, relegating to a second plain the

issues around the computational complexity. Although it is also a hardware-friendly

solution, the ADeLoC approach executes roughly a 37-41% more operations than

the HADeLoC version.

4. The HADeLoC approach arises under the search of a more competitive solution in

terms of computational resources and execution times at the cost of a slight loss of

accuracy in the compression results. In this sense, the HADeLoC version performs

162 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

roughly 27-30% less number of operations than the ADeLoC and 58-55% beside

executing serially the HyperLCA and the HW-LbL-FAD methods.

5. Finally, the overall conclusion that can be drawn from the foregoing is that there is

always a trade-off among the quality of the results, the computational resources and

the execution times. These statement has been supported by the methodological

sequence presented in this Chapter.

5.4 Conclusions

In recent decades, much effort has been made for the onboard processing of HSIs in ap-

plications under real-time constraints. The mainstream solution has been focused on

the acceleration of the hyperspectral imaging calculations using high-performance com-

puting infrastructures and parallel techniques. It has been possible due to the latest

advances in parallel programmable hardware devices that, on the one hand, have been

extended in computing resources and, on the other hand, have drastically reduced their

energy consumption. It has permitted to bridge the gap towards the onboard execution

of hyperspectral analysis techniques. However, while the computational capability of the

next-generation commercial hardware devices is expected to continue growing, so is the

resolution of hyperspectral sensors in the spatial, spectral and temporal domains. There-

fore, the onboard real-time hyperspectral image processing is far from being an effective

solution nowadays, specially when multiple applications must be simultaneously executed

in the same piece of hardware. Consequently, it is mandatory the development of new

algorithmic solutions in the field of hyperspectral remote sensing on which to confront

these potential challenges.

In this Chapter, we have approached the issue around the real-time processing of HSIs

from a new algorithmic perspective. Concretely, we have analysed the adequacy of the set

of core operations proposed in this Thesis work for the simultaneous execution of multiple

hyperspectral analysis techniques. This provides several benefits, above all in the field

of onboard hyperspectral imaging processing when some time-sensitive applications must

be executed in the same computing hardware device. Firstly, it implies less time and

effort during the stage of hardware acceleration since the same product can be reused for

several algorithms targeting different applications. Secondly, it permits the execution of

several tasks at the same time with the advantage of sharing the most computationally

Chapter 5. Concurrent execution of multiple hyperspectral imaging applications 163

costly operations, thus reducing the overall computational cost and the required hardware

resources.

In particular, we have verified the suitability of the proposed methodology for the concur-

rent execution of the lossy compression of HSIs jointly with the detection of anomalous

signatures. In this sense, three different methodological approaches based on the proposed

set of core operations have been studied for performing both targeted applications, see-

ing them as an evolution towards a highly optimized version that permits the concurrent

implementation of both processes. Firstly, it was discussed the feasibility of the proposed

methodology for the execution of any such above mentioned analysis techniques using a

single configuration of the proposed set of core operations. For doing so, the different

computing stages performed by the HW-LbL-FAD algorithm and the HyperLCA com-

pressor, fully described in preceding Chapters 3 and 4, were accurately reproduced. In

the same vein, the potential of the suggested methodology for the joint implementation

of both targeted applications was secondly analysed. Nonetheless, it was concluded that,

though the computing operations performed by the HyperLCA and the HW-LbL-FAD

methods are those defined within the proposed set of core operations, different data are

processed by them for each case. Therefore, the simultaneous execution of both targeted

applications implies whether the replication of some operation blocks or the serial exe-

cution of the hyperspectral analysis techniques in question. Naturally, these approaches

concern either the hardware resource utilization or the execution times.

To meet this issue, two optimized versions for the simultaneous detection of anomalous

pixels and the lossy compression of HSIs were eventually proposed. The first one, referred

to as ADeLoC, searches for the highest accuracy in the detection and compression re-

sults, whereas the other, namely HADeLoC, prioritizes the optimization of the hardware

resources and the minimization of the execution times. The ADeLoC approach ensures

the same detection and compression results as the original HW-LbL-FAD and the Hy-

perLCA methods but, launching 41-39% less number of operations. On the contrary, the

HADeLoC follows the methodology behind the HW-LbL-FAD algorithm and the Hyper-

LCA compressor but introduces some minor changes in the search of a more competitive

solution from a hardware implementation point of view. The experiments carried out

prove the benefits of employing this methodology in terms of the number of operations to

be performed. Concretely, it was verified that roughly 59-55% fewer operations are exe-

cuted than if both processes were independently implemented and 30-27% less than the

ADeLoC version. Nonetheless, the quality of the results are not as competitive as those

obtained by the original HyperLCA compressor, though identical with the HW-LbL-FAD

164 Chapter 5. Concurrent execution of multiple hyperspectral imaging applications

algorithm. For the foregoing, the overall conclusion that can be drawn is that there is

always a trade-off among the quality of the results, the computational resources and the

execution times.

Chapter 6

Hyperspectral imaging acceleration

through the utilization of embedded

systems

Different algorithms for the processing of hyperspectral imagery have been proposed along

the previous Chapters of this Thesis. All these algorithmic solutions share a set of common

core operations based on projection techniques and more specifically, in the well-known

Gram-Schmidt orthogonalization method. This Chapter verifies the benefits of developing

algorithmic approaches based on the same mathematical method in terms of reducing the

execution-times, the hardware resources and the human endeavours. For doing this, the

HW-LbL-FAD, the HyperLCA and the HADeLoC algorithms have been implemented into

different kinds of parallel hardware devices, namely graphical processing units (GPUs) and

field-programmable gate array (FPGAs). In this sense, the HW-LbL-FAD, the HyperLCA

and the HADeLoC methods have been implemented on a Xilinx System on Chip (SoC)

FPGA device, while the HyperLCA has been also accelerated in embedded computing

boards from NVIDIA.

The proposed set of core operations takes into consideration the hardware-design char-

acteristics of the most commonly used computing platforms. Accordingly, it is evaluated

in this Chapter their adaptability to the requirements imposed by the targeted devices.

Therefore, the aforementioned algorithms have been implemented in FPGA devices using

integer arithmetic and the concept of fixed-point notation, while floating-point notation

is exploited for GPUs-based systems.

165

166 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

6.1 Rationale

Along the preceding Chapters, it has been demonstrated that multiple hyperspectral

analysis techniques can be efficiently addressed by the same mathematical method and,

in particular, by the modified version of the Gram–Schmidt orthogonalization method

performed by the set of core operations proposed in this Thesis work. In addition, it has

also proved the feasibility of the simultaneous execution of different hyperspectral im-

age processing tasks, whilst optimizing the computational resources, the execution times

and the human endeavours invested during the implementation stage. Nonetheless, these

assertions have been established from a methodological point of view. In this Chap-

ter, instead, the algorithms developed in this Thesis have been implemented on parallel

computing devices, such as graphical processing units (GPUs) and field-programmable

gate array (FPGAs), in order to determine the benefits derived from the definition of

algorithmic solutions based on the same mathematical method.

In general terms, this Chapter is oriented to achieve the following objectives:

1. Verifying the suitability of the developed algorithms for real-time applications by

implementing them on different parallel devices, namely GPUs and FPGAs. In this

sense, the HW-LbL-FAD, the HyperLCA and the HADeLoC methods have been

implemented on Xilinx system on chip (SoC) FPGA devices, while the HyperLCA

has been also accelerated in embedded computing boards from NVIDIA. Since all

algorithms developed in this Thesis use similar operations, it is assumed that the

results and conclusions obtained by the implementations of the HyperLCA algorithm

on embedded low-power GPUs (LPGPUs) could be extrapolated to the rest of the

developed algorithms within this Thesis.

2. To evaluate the accuracy of the obtained results using fixed-point notation in FP-

GAs and floating-point notation in GPUs. The proposed set of core operations

takes in consideration the hardware-design characteristics of the most commonly

used computing platforms, such as FPGAs and GPUs. Accordingly, they can be

easily adapted to the requirements imposed by the targeted devices and thereby,

be seamlessly implemented using both fixed-point and floating-point notation. In

this context, FPGA devices are in general more efficient dealing with integer oper-

ations with a close-to-hardware programming approach, while GPUs are optimised

for parallel processing of floating-point operations using thousands of small cores.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 167

3. To confirm the benefits of developing algorithmic solutions based on the same math-

ematical method in terms of a reduction in the execution-times, the hardware re-

sources and the human endeavours. In this sense, FPGA-based modules that im-

plement each of the proposed core operations have been defined using High-Level

Synthesis (HLS) tools. These defined modules have been reused in the hardware

implementation of the HW-LbL-FAD, the HyperLCA and the HADeLoC methods.

Consequently, efforts have been focused on the interconnections among them for

each target algorithm to be accelerated. In this sense, only memory buffers and

custom logic that integrates and orchestrates all the components in the design have

been instantiated and implemented using customized VHDL language (Very High

Density Language). Therefore, it implies less time and effort during the stage of

hardware acceleration since the same product can be reused for several algorithms

targeting different applications.

In order to define the targeted real-time constraints, we focus on remote sensing appli-

cations where the available computational resources are limited, due to power, weight or

space limitations. Concretely, we present a smart farming application where a visible-

near-infrared (VNIR) hyperspectral pushbroom scanner is mounted onto an unmanned

aerial vehicle (UAV), which results in a huge amount of data that needs to be managed,

processed and analysed. The employed camera is able to collect information from 400 to

1000 nm using 224 spectral bands and 1024 spatial pixels per frame. It provides a max-

imum frame rate of 330 frames per second (FPS), what results in 144.375 MB/s (more

than 8 GB per minute). In addition, this UAV carries a processing board that manages

many tasks at the same time, such as, the data acquisition, the data calibration, the data

storing and/or their transfers, the camera controlling and also the drone flight control.

Some of the limitations of this application are related to the limited power available as

well as the restrictions in the available space and weight that may be efficiently carried

by the drone.

Due to these reasons, we have paid special attention to the Xilinx Zynq-7000 pro-

grammable System on Chip (SoC). We have selected this SoC because it can be found in

low-cost, low-weight and compact-size development boards, such as the MicroZedTM,the

ZedBoardTM and the PYNQ boards. In addition, we have also analysed the performance

of LPGPUs embedded in several NVIDIA Jetson development boards, which provide a

reasonable computational power at a relatively low power consumption. Although UAVs

have been consolidated as trending aerial observation platforms, their acquisition costs are

168 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

still not accessible for many end customers, not only those who want to purchase them but

also those who lease their services. For this reason, we must also aim to solve the economic

implications that comes along with these devices. On this basis, we have also focused on

the search of less expensive computing platform alternatives that, in exchange, cannot

offer the same level of both performance and functionality than other costly commercial

products.

It is important to note that while experiments carried out in this work are oriented to

the current necessities imposed by an application based on drones, all drawn conclusions

can be extrapolated to other fields in which remotely sensed hyperspectral images (HSIs)

have to be processed in real time, such as spaceborne missions that employ next-generation

space-grade FPGAs.

6.2 Materials

This Section collects the data description and the most relevant characteristics of the tar-

get hardware devices used for the evaluation of the developed implementations addressed

in this Chapter.

6.2.1 Reference Hyperspectral Data

The hardware implementations developed in this Thesis work for the different devices and

architectures have been evaluated and compared in this Chapter using the bunch of real

hyperspectral data collected by the acquisition platform described in [89] and employed

in preceding Chapters 3-5. For the sake of clarity, a brief summary about these image

descriptions is provided below, although we encourage the reader to see Chapter 3 to

expand the details about the flight campaigns in which images were taken.

This data set was collected over multiple farming areas on the island of Gran Canaria

(Spain) by a pushbroom sensor mounted on a UAV. In particular, the reference images

are selected portions of some swaths within three different flight campaigns. These data

cover the spectral information from 400 to 1000 nm using 160 spectral bands and consist

of 825 lines height, each line comprising 1024 hyperspectral pixels with 12-bits depth. A

RGB representation of these hyperspectral image portions are displayed in Figure 6.1.

Images displayed in Figures 6.1 a–c were taken at a height of 72 m over the ground at a

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 169

speed-rate of 6 m/s with a camera frame-rate of 125 FPS, resulting in a ground sampling

distance in line and across line of approximately 5 cm. Data shown in Figure 6.1 d was

sensed in a second flight campaign performed at a height of 45 m over the ground and at a

speed of 4.5 m/s with the hyperspectral camera capturing frames at 150 FPS, resulting in

a ground sampling distance in line and across line of approximately 3 cm. Finally, frames

exhibited in Figures 6.1 e–f were scanned at a flight height of 45 m over the ground and

at a speed of 6 m/s with the hyperspectral camera capturing at 200 FPS, resulting in a

ground sampling distance in line and across line of approximately 3 cm.

The aforementioned images were calibrated using a white and dark calibration to obtain

reflectance values. Nonetheless, either orthorectification or georeferencing processes were

not carried out for the acquired raw data. In this sense, images were built up just by plac-

ing the subsequent captured hyperspectral frames one next to the other [156]. This does

not degrade the quality of the experiments carried out in this work since the tested algo-

rithms do not use any kind of spatial information. A notable aspect of these images is the

existence of some anomalous artefacts, such as some humans and concrete construction,

which have been circled in blue in Figure 6.1.

(a) (b) (c)

(d) (e) (f)

Figure 6.1: RGB representation of the employed test bench. Pixels enclosed in blue
circles represent some anomalous spectra. (a) Drone Image 1. (b) Drone Image 2. (c)

Drone Image 3. (d) Drone Image 4. (e) Drone Image 5. (f) Drone Image 6.

170 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

6.2.2 Targeted parallel computing devices

For the implementations described in this Chapter, different parallel computing platforms

have been used. First of all, the developed FPGA-based solutions have been implemented

onto a heterogeneous mid-range Zynq-7000 SoC chip (XC7Z020-clg484) from Xilinx that

combines a Processor System (PS), based on a dual core ARM processor, and a Pro-

grammable Logic (PL) based on a Artix-7 FPGA architecture. This SoC can be found in

the ZedBoardTM development board, which has been selected because of its low-cost, low-

weight and high flexibility, features that make it an interesting device to be integrated in

aerial platforms, such as drones. Secondly, different NVIDIA computing boards were se-

lected for the GPU-based implementation of the HyperLCA compressor, in particular, the

Jetson TK1, the Jetson Nano, the Jetson TX2 and the Jetson Xavier-NX. These embed-

ded system-on-modules include a LPGPU that allows parallel programming for speeding

up the executed processes. These boards embed different NVIDIA architectures, going

from the oldest Kepler architecture to the latest-generation Volta architecture. Due to

the importance of the characteristics of the selected developer kits for the research work

covered in this Chapter 6, their most relevant characteristics are described in Table 6.1.

Table 6.1: Most relevant characteristics of the NVIDIA modules Jetson TK1, Jetson
Nano, Jetson TX2 and Jetson Xavier-NX, as well as the ZedBoardTM development kit.

Jetson TK1

LPGPU GPU NVIDIA Kepler architecture with 192 CUDA cores
CPU ARM Cortex A15 quad-core NVIDIA 4-Plus-1
Memory 2GB DDR3L, 933MHz, 64 bits bandwidth, 14.93 GB/s

Jetson Nano

LPGPU GPU NVIDIA Maxwell architecture with 128 NVIDIA CUDA cores
CPU Quad-core ARM Cortex-A57 MP Core processor
Memory 4 GB LPDDR4, 1600 MHz, 64 bits bandwidth, 25.6 GB/s

Jetson TX2

LPGPU GPU NVIDIA Pascal architecture with 256 CUDA cores
CPU HMP Dual Denver 2/2 MB L2 + Quad ARM A57/2 MB L2
Memory 8 GB LPDDR4, 128 bits bandwidth, 59.7 GB/s

Jetson Xavier-NX

LPGPU GPU NVIDIA Volta architecture with 384 NVIDIA CUDA cores and 48 Tensor cores
CPU 6-core NVIDIA Carmel ARM v8.2 64-bit CPU, 6 MB L2 + 4 MB L3
Memory 8 GB LPDDR4, 128 bits bandwidth, 51.2GB/s

ZedBoardTM (Xilinx Zynq-7020 SoC)

Programmable Logic (PL) Artix-7, 85K logic cells, 53,2000 LUTs, 106,400 Flip-Flops, 612 KB BRAM (140 36Kb blocks)
Processing System (PS) Dual-core ARM Cortex-A9 MPCore, up to 866 MHz, 256 KB on-chip memory
Memory 512 MB DDR3, 533 MHz, 1066 Mb/s

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 171

6.3 Real-time FPGA implementation of the algo-

rithms proposed in this Thesis

An FPGA can be seen as a whiteboard for designing specialized hardware accelerators

(HWaccs) by a composition of predefined memory and logic blocks that are available in

the platform. Therefore, a HWacc is a set of architectural FPGA resources, connected

and configured to carry out a specific task. Each of these HWaccs can be composed of

smaller modules that work in parallel due to the high parallelism inherent to the FPGAs,

as well as the flexibility provided by FPGA-based solutions, which allows designers to

build customized solutions instead of adapting them to the hardware resources.

The definition of the HWaccs that implement the several algorithms proposed in this

Thesis has been carried out by using a combination of generated HLS modules and cus-

tom glue logic in VHDL. HLS technology [226] has been used to synthesize the RTL

(Register Transfer Language) code corresponding to the components that instantiate the

functionality of the proposed set of core operations. RTL models are the entry points

to the implementation tools that are in charge of the generation of the bitstream, that

is, the programming file that configures the FPGA fabric to behave as it is described by

the RTL. However, RTL models are low-level, time-consuming to write and verify, which

leads to error-prone and lengthy development cycles. Thus, the HLS tools are key to rise

productivity of such kind of developments since they are able to automatically generate

the RTL models out of a specification of the functionality by means of high-level program-

ming languages, such as C or C++ [226, 227]. This methodology focuses the effort on the

design and the verification of the HWacc, as well as the exploration of the solution space

that helps to speed up the search for value-added solutions.

Productivity is the strongest point of the HLS technology and one of the main reasons why

hardware architects and engineers have been recently attracted to it. Nonetheless, the HLS

tools that implement the synthesis process have some weaknesses. For example, despite

the fact that the designer can describe a modular and hierarchical implementation of a

HWacc, all sub-modules are orchestrated by a global clock due to the way the translation to

the RTL from the C code is done. Another example is the rigid semantic when specifying

dataflow architectures, allowing a reduced number of alternatives. This prevents the

designer from obtaining optimal solutions for certain algorithms and problems [228, 229],

as it was the case of the algorithmic solutions proposed in this Thesis. Therefore, to

overcome the limitations of current HLS tools, hybrid solutions that combine modules

172 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

developed using VHDL and HLS-synthesized C or C++ blocks have been selected. On

top of that, this approach makes it also possible to optimize the necessary resources

because of the use of custom producer-consumer data exchange patterns that are not

supported by the HLS tools.

In the following Sections, these aforementioned hybrid solutions are analysed and de-

scribed in detail. Firstly, the HLS modules developed for the execution and implementa-

tion of the proposed set of core operations are introduced. Secondly, these HLS modules

are combined with some tailor-made VHDL glue logics for the implementation of each par-

ticular targeted method, that is, the HW-LbL-FAD, the HyperLCA and the HADeLoC

algorithms.

6.3.1 Descriptions of the HLS modules that implement the pro-

posed set of core operations

As commented before, HLS technology has been used to synthesize the RTL codes corre-

sponding to the components that instantiate the functionality of the set of core operations

proposed in this Thesis. For this purpose, three HLS modules, referred to as Avg Cent,

Brightness and Proj Sub, have been modelled and implemented using the aforementioned

HLS tools. Instead, memory buffers and custom logic that integrate and orchestrate all

the components in the design have been instantiated and implemented using VHDL lan-

guage. For the sake of clarity, Figure 6.2 shows a diagram of the modules that implement

each core operation and whose functionality have been described using HLS tools (light

blue and white boxes) and the main glue logic and memory elements designed and in-

stantiated using VHDL language (light red boxes, FIFOs [First in, First out] and memory

elements). In this image, it has been distinguished the case of considering the stopping

condition inherent to the HW-LbL-FAD and the HADeLoC methods for the extraction of

the p most characteristic pixels (see Figure 6.2b).

It is important to emphasize that the tailor-made VHDL modules (light red boxes) imple-

ment an optimized dataflow. In this regard, the VHDL logic is responsible for connecting

the inputs and outputs of the HLS-synthesized blocks by means of a network of selectors

and buffers (i.e. FIFO and BRAM components that are generated using vendor-specific

tools) that is governed by a scheduler. The scheduler is implemented as a synchronous

FSM (Finite State Machine) that selectively activates/deactivates the HLS blocks and

the data paths depending on the processing stage in which the algorithm is. For this

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 173

reason, diagrams displayed by Figure 6.2 will be extended for each targeted algorithm in

the following Sections 6.3.2-6.3.4.

Among the main VHDL instantiated logics, Figure 6.2 highlights the importance of

SBuffer with capacity to store a complete hyperspectral block, Mk. The size of the

SBuffer depends on the BS hyperspectral pixels within the hyperspectral block, Mk, to

be independently processed and its depth is determined at design time. The role of this

SBuffer is to avoid the costly access to external memory, such it is the case of the double

data rate (DDR) memory in the Zynq-7000 SoCs. The implementation of the SBuffer is

based on a FIFO memory that is written and read by different producers. Since there

are more than one producer and consumer for the SBuffer, a dedicated synchronization

and control access logic has been developed in VHDL. The use of a FIFO contributes to

reduce the on-chip memory resources in the FPGA fabric, being its use feasible because of

the linear pattern access of the producers and consumers. However, this type of solutions

would not have been possible with HLS tools because the semantic of stream-based com-

munication between stages in a dataflow limits the number of producers and consumer to

one. Also, it is not possible to exploit inter-loop parallelism as it is done in the proposed

solution. Additionally, it is also important to underline the importance of the bridge

buffer (BBuffer) that connects the Avg Cent module with the others. It is a very small

FIFO element whose depth is only 32 words.

Notwithstanding the foregoing, this Section focuses on the description of the HLS modules

that implement the functionality of each operation within the set of cores proposed in this

Thesis. Their understanding is of central importance since all algorithms targeted in the

following Sections are based on these HLS modules to implement their workflow.

6.3.1.1 Avg Cent HLS module: average pixel calculation and image central-

ization

The Avg Cent HLS module implements the average pixel calculation, µ̂, and the central-

ization of the input image blocks, C, respectively. To this end, it is composed of two

sub-modules, namely Avg and Cent, which are described below.

1. Avg : This sub-module computes the average pixel, µ̂, of the original hyperspectral

block, Mk, and stores it in CBuffer, an array buffer that shares with Cent sub-

module. During this operation, Avg also forwards a copy of the centroid via a

174 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

a)

b)

Figure 6.2: Overview of the benchmark HWacc that performs the proposed set of
core operations. (a) Not considering stopping condition (HyperLCA algorithm). (b)
Considering stopping condition (HW-LbL-FAD and HADeLoC methods). Light blue
and white boxes represent modules implemented using HLS. Light red boxes, arrays
and FIFOs represent the glue logic and memory elements designed and instantiated

using VHDL language.

dedicated port (orange array µ̂ in Figure 6.2), which will be used in particular by

the Entropy Coding stage of the HyperLCA and the HADeLoC algorithms, as it

will later further explained in Sections 6.3.2 and 6.3.4. At the same time, the Avg

sub-module writes all the pixels within Mk into the SBuffer. A copy of the original

hyperspectral block, Mk, will be available once Avg finishes, ready to be consumed

as a stream by Cent, which reduces the latency.

Figure 6.3 shows in detail the functioning of the Avg stage. The main problem of

this stage is the way in which the hyperspectral data is stored. In our case, the

hyperspectral block, Mk, is ordered by the bands that make up a hyperspectral

pixel. However, to obtain the centroid, µ̂, the hyperspectral block must be read by

bands (in-width reading) instead of by pixels (in-depth reading). In this sense, we

introduce an optimization that handles the data as it is received (in-depth), avoiding

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 175

the reordering of the data to maintain a stream-like processing. This optimization

consists of an accumulate vector, whose depth is equal to the number of bands that

stores partial results of the summation for each band, i.e., the first position of this

vector contains the partial results of the first band, the second position the partial

results of the second band and so on.

2. Cent : This sub-module reads the original hyperspectral block, Mk, from the SBuffer

to centralize it, obtaining the centralized version of the input data, C. This operation

consists of subtracting the average pixel, µ̂, calculated in the previous stage, from

each hyperspectral pixel of the block. Figure 6.4 shows this process, highlighting the

elements that are involved in the centralization of the first hyperspectral pixel. Thus,

the Cent block reads the centroid, µ̂, which is stored in the CBuffer, as many times as

hyperspectral pixels have the original block (i.e., BS times in the example illustrated

in Figure 6.4). Therefore, CBuffer is an addressable buffer that permanently stores

the centroid of the current hyperspectral block that is being processed. The result of

this stage is written into the BBuffer FIFO, which makes unnecessary an additional

copy of the centralized image, C. As soon as the centralized components of the

hyperspectral pixels are computed, the data is ready at the input of the Brightness

module and, therefore, it can start to perform its operations without waiting for the

block to be completely centralized.

Figure 6.3: Overview of the Avg HLS sub-module that implement the average pixel,
µ̂, calculation.

... ...
...

...
opera

te
d in

 th
is
 d

ire
ct

io
n

nb b
ands

Figure 6.4: Overview of the Cent HLS sub-module that manages the centralization
of the image, C.

176 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

6.3.1.2 Brightness HLS module: brightness pixel calculation

The Brightness module calculates the brightness of each image pixel, bj, and looks for the

index of the image pixel with the maximum brightness, jmax. In this sense, Brightness

module has been optimized to achieve a dataflow behaviour that takes the same time

regardless of the location of the brightest hyperspectral pixel. The Brightness module

starts working as soon as there are data in the BBuffer. In this sense, this module works

in parallel with the rest of the system; the input of the Brightness module is the output of

the Cent module in the first iteration, that is, the centralized image, C, while the input

for all other iterations is the output of the Subtraction sub-module, depicted as X for

the sake of clarity. In addition, this module also estimates the qn and un vectors in each

iteration, which are later used by the Proj Sub module. For this reason, both modules

are connected by two FIFO components (uVectorB and qVectorB in Figure 6.2) using

customized VHDL code to link them. Additionally, Figure 6.5 shows in the detail the

functioning of the Brightness module.

The Brightness HLS module is designed to read in order the hyperspectral pixels of the

image block from the BBuffer (C or X depending on the loop iteration) for calculating

its brightness, bj, in the Brightness calc sub-module employing a loop unrolling strategy.

The Brightness calc sub-module also makes a copy of the hyperspectral pixel in an inter-

nal ping-pong buffer, h pixel, and in SBuffer. A ping-pong buffer is a double buffer that

is used here to contain the current hyperspectral pixel whose brightness is being calcu-

lated in one of the available buffers. If the actual brightness is greater than the previous

calculated ones, the Brightness calc sub-module saves the subsequent hyperspectral pixel

to be processed in the other buffer. In this way, one of the available buffer within the

h pixel ping-pong buffer always saves the pixel with the maximum brightness, rjmax . This

module also returns the index of the brightest pixel, jmax, the maximum brightness value,

bjmax , and an array with BS components, brightness iter0, that contains the original

pixel brightnesses within C. These outputs are later used by the module that performs

the stopping condition inherent to the HW-LbL-FAD and the HADeLoC algorithms (see

Figure 6.5b). Nonetheless, this stopping condition is discarded by the HyperLCA com-

pressor. For this reason, another approach is only to forward a copy of the jmax via a

dedicated port (orange array jmax in Figures 6.5a and 6.2a), which will be used in par-

ticular by the Entropy Coding stage of the HyperLCA compressor, as it will later further

explained in Section 6.3.2.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 177

Once that the brightness of all image pixels has been calculated, the orthogonal projection

vectors qn and un are accordingly obtained from the brightest pixel. For doing so, the

Build quVectors sub-module reads rjmax from the corresponding buffer within the h pixel

ping-pong buffer. Then, the Build quVectors sub-module writes both qn and un vectors in

two single FIFOs, that is qVectorB and uVectorB, respectively. Furthermore, the contents

of these FIFOs are copied in qVector and uVector arrays in order to get a double space

memory that does not deadlock the system and allows the Proj Sub module to read the

orthogonal projection vectors qn and un BS times to obtain the projection vector, vn.

a)

b)

Figure 6.5: Overview of the Brightness HLS module. (a) Not considering stopping
condition (HyperLCA algorithm). (b) Considering stopping condition (HW-LbL-FAD

and HADeLoC methods).

178 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

6.3.1.3 Proj Sub HLS module: projection vector calculation and spectral

information subtraction

The Proj Sub module implements the projection vector calculation, vn, and the subtrac-

tion of the spectral information spanned by the selected pixel, qn, from X. To this end, this

module includes two sub-modules, namely Projection and Subtraction. Although these

sub-modules are represented by separate boxes in Figure 6.2, it must be mentioned that

both perform their computations in parallel. Figure 6.6 shows a detailed representation

of the functioning of these aforementioned sub-modules. Firstly, each hyperspectral pixel

of the block is read by the Projection sub-module from SBuffer to obtain the projection

image vector, vn. At the same time, the hyperspectral pixel is written in PSBuffer, which

can store two hyperspectral pixels. It is because the Subtraction stage begins right after

the projection of the first hyperspectral pixel is ready, i.e. the execution of both the Pro-

jection and Subtraction sub-modules are shifted by one pixel, as indeed Figure 6.6 shows.

While pixel r1 is being consumed by the Subtraction sub-module, pixel r2 is being written

in PSBuffer. During the projection of the second hyperspectral pixel, r2, the subtraction

of the first one, r1, can be performed since all the input operands, including the projection

vn, are available. The output of the Projection sub-module is the projection image vector,

vn, which is forwarded via a dedicated port (orange array vn in Figure 6.2), which will

be used in particular by the Entropy Coding stage of the HyperLCA and the HADeLOC

methods, as it will be further explained in Sections 6.3.2 and 6.3.4. Hence, the Projection

module also addresses the Scaling of V vectors step inherent to these algorithms.

...

...

...
...

nb b
ands

BS pixels

... ...
...

.

Hyperspectral block (X)

Projected

......

uVector

nb b
ands vnvn

Figure 6.6: Example of the Projection and Subtraction sub-modules that implement
the projection vector calculation, vn, and the spectral information retained for the next

iterations, respectively.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 179

6.3.1.4 Stop cond HLS module: stopping condition inherent to the HW-LbL-

FAD and the HADeLoC algorithms

Apart from the aforementioned modules, one additional module is also considered related

with the anomaly detection process carried out by the HW-LbL-FAD and the HADeLoC

methods. This module is the Stop cond shown in Figure 6.2b. The Stop cond module

is in charge of the computation of the ratio between the actual maximum brightness,

bjmax , which is calculated in the Brightness module, and the original brightness of the

selected pixel, rjmax , in C. This is indeed calculated in the first iteration of the set of

core operations for the extraction of the first characteristic pixel, e1. For this reason, the

Brightness module contemplates the brightness iter0 array, which eases the calculation

of the stopping condition addressed in the Stop cond module in question. In addition,

when this module is executed, it is also responsible to forward a copy of the jmax via

a dedicated port (orange array jmax in Figures 6.2b and 6.5b) instead of the Brightness

module. This jmax index will be used in particular by the Entropy Coding stage of the

HADeLoC solution, as it will be further explained in Section 6.3.4.

6.3.1.5 Other considerations about the FPGA-based implementation of the

proposed set of core operations

So far, it has been described the inner architecture of a HWacc that only performs a com-

putational operation over a single band component of a hyperspectral pixel. Nonetheless,

it is not sufficient to reach the minimum targeted requirements imposed by the specific

application. For this reason, the described HWacc has been modified to increase the num-

ber of bands that are processed in parallel, which are referred to as processing element

(PE) along the remainder of this Chapter. Thus, the described HWacc turns from a

single PE to multiple PEs. This fact opens two new challenges. The first challenge is

to increase the width of the input and output ports of the modules, in accordance with

the number of bands that would be processed in parallel. It must be mentioned that it

is technologically possible because the HLS-based solutions allow designers to build their

own data types. For example, if a band component of a hyperspectral pixel is represented

by an unsigned integer of 16-bits, we could define our own data types consisting of an

unsigned integer of 160-bits packing ten bands of a hyperspectral pixel (see Figure 6.7).

The second challenge has to do with the strategy to process the data in parallel. In this

regard, a solution based on the map-reduce programming model has been followed [230].

180 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

Figure 6.7 shows an example of the improvements applied to the Cent stage following the

above-mentioned optimizations. The input of this stage is the hyperspectral block, Mk,

and the average pixel, µ̂, which are read in blocks of N bands. The example assumes

that the block is composed of ten bands and uses an user-defined data type, specifically

an unsigned integer of 160-bits (10 bands by 16-bits to represent each band). Then, both

blocks are broken down into the individual components that feed the PEs in an orderly

fashion. This process is also known as map phase in the map-reduce programming model

[230]. It must be mentioned that the design needs as many PEs as number of divisions

made in the block. Once the PEs have performed the assigned computational operation,

the reduce phase of the map-reduce model is executed. For Cent sub-module, this stage

consists of gathering in a block the partial results produced by each one of the PEs. Thus,

a new block of N -bands is built, which in turn is part of the centralized block, C, which

is also the output of the Cent sub-module.

Centroid ()

...

r

uint<160>

Figure 6.7: Map-reduce programming model and data packaging on the Cent module.

6.3.2 FPGA-based implementation of the HyperLCA lossy com-

pressor

As it was further described in Chapter 4, the HyperLCA algorithm is mainly structured

in four computing stages: the Initialization, the HyperLCA Transform, the Preprocessing

and the Entropy Coding. As a remainder, these algorithmic stages address the following

operations:

1. Initialization: this stage is just in charge of the estimation of the number of selected

pixels, p, according to some input parameters known at design time (the minimum

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 181

desired compression ratio (CR), the block size (BS) and the number of bits (Nbits)

used for scaling the projection vectors, V.

2. HyperLCA Transform: the HyperLCA Transform performs the spectral transfor-

mation that results in the uncorrelated and compressed image. Indeed, it involves

the most computationally demanding operations, besides, it actually executes the

proposed set of core operations to meet the aforementioned purpose.

3. Preprocessing : the HyperLCA Transform outputs (µ̂, E and V) are adapted in this

stage for being efficiently entropy coded in the subsequent Entropy Coding stage.

To this end, the projection vectors within V are firstly scaled to be represented

using integers in the Scaling of V vectors step. Secondly, the aforementioned listed

outputs are individually lossless preprocessed and transformed in the HyperLCA

Error Mapping stage to be exclusively composed of positive integer values closer to

zero than the original ones.

4. Entropy Coding : this stage is in charge of the entropy encoding of the HyperLCA

Transform outputs. For this purpose, it follows a lossless entropy-coding strategy

based on the Golomb–Rice algorithm [212].

Nonetheless, the aforementioned computing stages were defined from an algorithmic point

of view. Therefore, they have been redefined in this Chapter in order to be better adapted

to devices with a high degree of fine-grain parallelism, such as FPGAs. For instance,

the number of selected pixels, p, estimated in the Initialization stage depends on the

configuration of the input parameters and hence, it can be fixed at design time. Indeed,

several hardware components, such as internal memories or FIFOs, must be configured

with the appropriate size, which is also dependant on this parameter. For these reasons,

the HyperLCA algorithm has been structured in two main stages from an implementation

point of view: the HyperLCA Transform and the HyperLCA Entropy Coder. Therefore,

the FPGA-based implementation of the HyperLCA algorithm involves the definition of two

HWacc modules that actually address these two algorithm stages and also the two steps

within the Preprocessing stage. Their execution is managed in parallel, which improves the

performance of the designed implementation. These HWacc modules are further analysed

in below Sections 6.3.2.1 and 6.3.2.2.

182 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

6.3.2.1 HyperLCA Transform HWacc

The HyperLCA Transform module involves the most computationally demanding opera-

tions, besides, it actually executes the proposed set of core operations. For this reason,

the implementation of this HWacc module has been tackled exactly as it was described in

preceding Section 6.3.1 and, in particular, as shows Figure 6.2a. Therefore, the HyperLCA

Transform module also performs the computation of the Scaling of V vectors step within

the Preprocessing stage. However, the description made in above Section 6.3.1 only high-

lights how the operations are performed in parallel to make the most of such technology.

Apart from this, it has to be taken into account other considerations, as those discussed

in the following paragraph.

In this regard, the adopted hybrid solution based on HLS and hand-written VHDL codes

has also spotted specific synchronization scenarios that bring to life an efficient dataflow.

On this basis, it is a key point the use of optimal sized FIFOs to interconnect the HLS mod-

ules that execute each of the proposed core operations. For example, while the Brightness

module is filling the SBuffer, the Projection sub-module is draining it and, at the same

time, it supplies to the Subtraction sub-module with the same data read from SBuffer.

Finally, the Subtraction sub-module feeds back the Brightness sub-module through the

BBuffer FIFO. The Brightness sub-module fills, in turn, the SBuffer with the same data,

closing the circle, which is indeed repeated p times.

6.3.2.2 HyperLCA Entropy Coder HWacc

The HyperLCA Entropy Coder is the second HWacc module developed for the implemen-

tation of the HyperLCA algorithm in FPGA-based systems. The coder module teams

up with the HyperLCA Transform HWacc to perform in parallel the CCSDS prediction

error mapping [211] and the Golomb–Rice [212] entropy-coding algorithms as the different

vectors are received from the HyperLCA Transform block. It means that the operation

of the transform and the coder blocks overlaps in time. In this regard, the HyperLCA

transform module generates the centroid, µ̂, the indexes of the selected pixels, jmax, and

the projection vectors, vn, for an input hyperspectral block, Mk, which feeds the inputs of

the HyperLCA Entropy Coder. These arrays are consumed as they are received, reducing

the need for large intermediate buffers. Furthermore, the coder takes approximately half

of the time than the HyperLCA Transform needs to generate each vector for the maxi-

mum number of PEs. Therefore, a contention situation is not taking place, reducing the

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 183

pressure over the FIFOs that connect both blocks and, therefore, requiring less space for

these communication channels.

Figure 6.8 sketches the internal structure of the HyperLCA Entropy Coder that has been

modelled entirely using Vivado HLS. It is a dataflow architecture comprising three steps.

During the first step, the Error Mapping step and the Entropy coding stage are performed

on all input vectors by the Coding Command generator module. The output of this step

is a sequence of commands that are subsequently interpreted by the Bitstream Generator

module. The generation of the bitstream was extracted from the entropy-coding original

functionality, which enabled a more efficient implementation of the latter since could be

re-written as a perfect loop. Therefore, Vivado HLS was able to generate a pipelined dat-

apath with the minimum initiation internal (II = 1). To do this, the Bitstream Generator

module is continuously reading the cmd queue FIFO for a new command to be processed.

A command contains the operation (unary or binary coding) as well as the word (quo-

tient or reminder) to be coded, and the number of bits to generate. Unary and binary

coding functions simply iterate over the word to be coded and produces a sequence of bits

that corresponds to the compressed hyperspectral data. Finally, the third step packs the

compressed bitstream in words and writes them to memory. For this implementation, the

width of the memory word is 64 bits, the maximum allowed by the AXI Master interface

port for the Zynq-7020 SoC. The Bitstream Packer module instantiates a small buffer (64

words) that is flushed to DDR memory once it has been filled. This way, the average

memory access cycles per word is optimized by means of the use of burst requests.

As mentioned above, the HyperLCA Transform block feeds the coder with the indexes of

the selected pixels, jmax. Nonetheless, the HyperLCA Entropy Coder has indeed to codify

the selected hyperspectral pixels, en, not their indexes, jmax. Hence, the HyperLCA

Coder is the responsible to obtain each hyperspectral pixel, en, from the external memory

in which is stored the HSI to build the vector of most different hyperspectral pixels, E.

This is the role played by the Pixel Reader module. As in the case of the Bitstream Packer

step, the Pixel Reader uses a local buffer and issue burst requests to read the bands in

the minimum number of cycles.

Nonetheless, the real challenge of the Entropy Coder module implementation is to write a

C++ HLS model that is consistent through the whole design, verification and implemen-

tation processes. For this purpose, side-channel information is embedded in the cmd queue

and compressed stream FIFOs that connect the different stages of the coder. This infor-

mation is used by the different modules to reset their internal states or stop and resume

184 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

their operations (i.e., special commands to be interpreted by the Bitstream Generator or a

flush signal as input to the Bitstream Packer module). This way, it is possible to integrate

under a single HLS design all the functionality of the coder, which simplifies and speeds

up the design process.

As mentioned before, decoupling the generation of the compressed bitstream from the

entropy-coding logic, leads to a more efficient implementation of the latter by the HLS

synthesis tool. In the Coding Command Generator, a simple logic that controls the en-

coding of each input vector plus a header is implemented. It is an iterative process that

performs the error mapping and the entropy coding over the centroid, and p times over

the extracted pixels and projections vectors. The bulk of this process is, thus, the encod-

ing algorithm. The encoding is delegated in another module that implements an internal

dataflow itself. In this way, it is possible to reduce the interval between two encoding

operations. As can be seen in Figure 6.8, the Error Mapping and the Entropy-Coding

sub-modules communicates through a ping-pong buffer for the Mapped Vector.

Figure 6.8: Overview of the HyperLCA Entropy Coder HWacc.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 185

6.3.3 FPGA-based implementation of the HW-LbL-FAD algo-

rithm for the detection of anomalous spectra

The HW-LbL-FAD algorithm entirely employs the proposed set of core operations for the

detection of anomalous spectra and hence, the HLS modules described in preceding Section

6.3.1. Nonetheless, the main challenge of the HW-LbL-FAD implementation on FPGA-

based devices lies in the scheduler that governs the different computing stages inherent

to this algorithm. To overcome this issue, tailor-made VHDL logic has been defined to

implement an optimized dataflow. The VHDL logic is responsible for connecting the

inputs and outputs of the HLS-synthesized blocks by means of a network of selectors and

buffers (i.e. FIFO and BRAM components that are generated using vendor-specific tools)

that is governed by the scheduler. The scheduler is implemented as a synchronous FSM

that selectively activates/deactivates the HLS blocks and the data paths depending on

the processing stage in which the algorithm is.

Figure 6.9 shows a diagram of the modules implemented using the HLS tools (light blue

and white boxes) and the main glue logics and memory elements designed and instantiated

using VHDL language (light red boxes, FIFOs and memory elements). As it can be seen,

few additional resources are included in this diagram compared with those displayed in

Figure 6.2b. Small coloured squares indicate the algorithm stage or stages in which these

resources are operative. The same color code is used to tag the data sources in the selectors

(trapeziums in Figure 6.9) for the different steps of the algorithm. This strategy not only

promotes the optimization of the available hardware resources for the targeted application

but it also permits that one memory buffer can be shared by more than one producer and

consumer, such as in the case of the SBuffer. For the sake of clarity, further details are

provided about the designed scheduler according to the different algorithm stages:

1. Stage 1 : In this stage, the first nf image blocks, Mk, are independently analysed in

search of the p most different pixels, E, within them. In this sense, the set of core

operations is executed in the same way as by the HyperLCA Transform described

in previous Section 6.3.2. The major difference is the estimation of the number of

iterations, n, to be carried out for extracting the p reference vectors. Regarding

the HyperLCA compressor, p is known beforehand since it is computed in the Ini-

tialization stage as a function of some input parameters. On the contrary, a stop

condition is checked in every iteration in the case of the HW-LbL-FAD algorithm.

For this reason, the Stop cond HLS module is also included in the schematic diagram

186 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

Figure 6.9: Overview of the HW-LbL-FAD HWacc.

shown in Figures 6.2b and 6.9. In the designed FSM, this HLS module does not

act as a blocking module that alters the implemented dataflow. In this regard, the

Proj sub module stars once the pixel with the maximum brightness, rjmax, is found

by the Brightness module. At the same time, the Stop cond HLS module computes

the HW-LbL-FAD stopping condition in order to determine if other iteration has

to be conducted. Otherwise, BBuffer and SBuffer are drained to be ready for the

allocation of a new received frame.

2. Stage 2 : In this stage, the subspace of orthogonal vectors, Q and U, that model the

background distribution is estimated using the set of core operations organized in

the same way as it was defined in Stage 1. Nonetheless, the set of vectors, E, above

selected is employed as input pixel block, B*, instead of Mk. For this reason, it is

included the first multiplexor (m0) placed in the left side of Figure 6.9. Nonetheless,

SBuffer depth is configured according to the number of BS elements within each

Mk. In this sense, the number of pixels within B* could be smaller than BS. For

dealing with this issue, elements within B* are repeated until fulfilling the required

BS pixels to fill the SBuffer. It is demonstrated that neither the average pixel

estimation, µ̂, nor the selected pixels, rjmax, are affected. Another aspect to be

highlighted is the estimation and storage of the set of orthogonal Q and U vectors

since they will be later used by the subsequent Stage 3. For this purpose, the circular

buffers qMatrix and uMatrix are used for storing these vectors respectively (xMatrix

in Figure 6.9).

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 187

3. Stage 3 : Once the background pattern is modelled, the next HW-LbL-FAD stages

deal with the detection of the anomalous pixels within the following sensed HSI

blocks, Mk. These stages slightly differ from the previous two. In this regard, the

average pixel, µ̂, estimated in the Stage 2 is used for centralizing the input image

block, Mk. Consequently, the Avg sub-module is skipped using the multiplexor

m1 and the input image block, Mk, is directly centralized in the Cent sub-module

using the average pixel computed in the Stage 2 and stored in the CBuffer ar-

ray. Therefore, the SBuffer is filled in this case trough the BBuffer. Additionally,

the Brightness operation block is not required in the actual stage and hence, the

definition of the selector m3.

Subsequently, the information spanned by the Q and U vectors computed in Stage

2 is subtracted from pixels within Mk. To do this, the Projection and Subtraction

operation blocks are repeated p times, that is, the number of vectors contained in Q

or U, which are also stored in qMatrix and uMatrix buffers, respectively. Therefore,

the Projection and Subtraction sub-modules read in each iteration one pixel qn and

un from qVectorB and uVectorB buffers (xVectorB in Figure 6.9). Nonetheless,

these vectors have to be still retained for next input images, Mk. For this reason,

xMatrix buffers are filled at the same time with the vector stored in xVectorB buffers,

obtaining a circular buffer behaviour. This is achieved by the definition of the m4

and m5 selectors.

4. Stage 4: Finally, the brightness of the remaining spectral information in each image

pixel is used for identifying the anomalous entities in the Stage 4. For this reason,

it is defined an additional HLS module, named Brightness AD. The Brightness AD

calculates the brightness of each pixel within X in a similar way as the Bright-

ness calc sub-module. In this sense, this HLS module is also designed to read in

order the hyperspectral pixels of the image block from the BBuffer (see m2 multi-

plexor) for calculating their brightness, bj, employing also a loop unrolling strategy.

Nonetheless, since the brightness calculation is just addressed at this point, non the

search of rjmax as well, the internal ping-pong buffer is not included in the definition

of the Brightness AD module. The output of the Brightness AD module is a binary

map where anomalies are marked as class 1 and the background pixels as class 0

(orange array ADmap in Figure 6.9). For doing so, the brightness of the last pixel

selected in the Stage 2, τ , is used as a threshold (see mb last iter register in Figure

6.9). This parameter is also an output of the Stop cond HLS module.

188 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

Finally, it is also important to mention that dedicated ports µ̂ and vn displayed in Figure

6.9 are not actually required by the correct implementation of the HW-LbL-FAD algo-

rithm. Nonetheless, they have been kept in order to reuse the defined HLS modules for

the other algorithms addressed in this Thesis.

6.3.4 FPGA-based implementation of the HADeLoC solution

for the simultaneous execution of the anomaly detection

process and the lossy compression of HSIs

The FPGA-based implementation of the HADeLoC proposal for the simultaneous execu-

tion of the anomaly detection process and the lossy compression of HSIs was straightfor-

ward building on the above described HWaccs that implement the HW-LbL-FAD detector

and the Entropy Coding stage of the HyperLCA compressor. As it was analysed in Chap-

ter 5, the workflow inherent to the anomaly detection process largely follows the same

scheme as the HW-LbL-FAD method. Therefore, the strategy follows for the implemen-

tation of the HW-LbL-FAD in FPGA-based systems could be reused in its totality, in

addition to some minor changes introduced in the FSM. Regarding the compression pro-

cess, it has been subjected to the methodological changes introduced by the anomaly

detection one. For this reason, the generated bitstream representative of the compressed

data slightly differs from the one defined by the original HyperLCA algorithm. Nonethe-

less, irrespective of the vectors to to be codified, the HADeLoC algorithm also uses the

Golomb-Rice encoding conducted by the HyperLCA compressor for the individual coding

of the respective vectors. Consequently, the workflow follows by the HyperLCA Entropy

Coder HWacc described in Section 6.3.2.2 can be also replicated for the HADeLoC issue.

In general terms, the HADeLoC method behaves similarly as the HyperLCA compressor

in the way that there are two HWaccs that work in conjunction. The first one indeed

executes the set of core operations proposed in this Thesis in a similar way as described

in Section 6.3.3. This module manages the computation of the data vectors that make

up the bitstream that will be later handled by the codification stage. Therefore, the

HyperLCA Entropy Coder HWacc module teams up with the aforementioned module to

perform in parallel the CCSDS prediction error mapping and the Golomb–Rice entropy-

coding algorithms on the different vectors received as outputs of the preceding HWacc. It

means that the operations involved in both modules overlap in time.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 189

Although the HADeLoC method is almost a faithful mirror of the HW-LbL-FAD algo-

rithm, it includes an additional computing stage (Stage 5) that requires to extend the

FSM described in Section 6.3.3 for the HW-LbL-FAD algorithm to include this fifth stage.

Figure 6.10 displays a diagram of the hybrid solution for the FPGA implementation of the

HADeLoC solution. As it can be seen, few additional glue logics are instantiated using

VHDL language compared with the module displayed in Figure 6.9. In this sense, the

search of anomalous spectra addressed by the HW-LbL-FAD method in each image block,

Mk, finishes once the binary map output is obtained in the BrightnessAD module in the

Stage 4. In this point, it was not necessary to fill the SBuffer with the data, X, obtained

in the last iteration of the Proj Sub module, since they are processed in the Brightness AD

module and then discarded pending the reception of a new image block, Mk, to be anal-

ysed. Nonetheless, these data have to be retained in the case of the HADeLoC algorithm

for the computation of this additional Stage 5.

As a reminder, the anomalous pixels detected in the Stage 4 could not be well recon-

structed using the transmitted V vectors since they just retain the spectral information

representative of the background pattern. For this reason, when anomalous spectra are

identified, the group of operations Brightness - Projection - Subtraction - Brightness AD

is repeated until Brightness AD does not extract any more anomalous pixels. There-

fore, apart from V vectors estimated in Stage 3, the new selected pixels with the highest

brightness, en, and its corresponding projection vectors, vn, are also included in the bit-

stream to be transmitted for each image block, Mk. For this reason, unlike Figure 6.9,

the Brightness AD module must transmit the image block, X, to SBuffer in case that

anomalous pixels are detected and the Stage 5 has to be launched. If so, then the BBuffer

reads the data from SBuffer to bridge them with the Brightness module.

It is also important to mention that the Brightness AD module is in charge of indicating

the number of times that the group of operations Brightness - Projection - Subtraction -

Brightness AD is repeated in the Stage 5 instead of the Stop cond module. Nevertheless,

the latter is actually which forwards a copy of the indexes of the selected pixels via a

dedicated port (orange array jmax) in Figure 6.10, which is latter read by the HyperLCA

Entropy Coder HWacc. Consequently, the operations involved in the Stop cond module

are also executed in background although just for the forwarding of the jmax output. This

was done in this way merely for reusing the initial HLS definition of this aforementioned

module.

190 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

Figure 6.10: Overview of the HADeLoC HWacc.

6.3.5 Experimental results

Several experiments have been carried out in order to evaluate the performance of the

HWaccs described in preceding Sections for the FPGA-based implementations of the Hy-

perLCA compressor, the HW-LbL-FAD detector and the HADeLoC joint solution. In this

regard, the conducted analysis has been done in terms of two critical factors in this kind of

implementations, that is, the resource utilization and the maximum frame rates reached

by the targeted processes, which is defined as the number of image blocks composed of

BS hyperspectral pixels that can be processed in one second.

Concerning the data width of the designed architectures, it depends on two parameters:

the number of hyperspectral bands that can be processed in parallel (PEs) and the size of

the image block to be compressed (BS and the number of bits used to save each image el-

ement). Consequently, the benchmarking made in following Sections have been addressed

for different PEs settings. It is worth mentioning that the number of instantiated PEs

must be a divisor of the number of hyperspectral bands in order to simplify the design of

the datapath logic. Additionally, only settings of BS = 1024 have been evaluated since

the image acquisition system captures 1024 spatial pixels per scanned cross-track line, as

well as, the HyperLCA compressor and the HW-LbL-FAD algorithm get the best results

with this configuration.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 191

Finally, the feasibility of the proposed set of core operations for its implementation using

integer arithmetic and fixed-point notation with different levels of precision was demon-

strated in preceding Chapters. For this reason, the Int16-rd version has been selected for

the targeted HWaccs under evaluation, due to its good behaviour in terms on the qual-

ity and the precision of the obtained results and the resource savings it brings. For the

Int16-rd version, a band is represented with an unsigned short int which turns into 16-bit

words in memory. On the contrary, the Int32 version, for instance, demands almost the

double of memory resources and internal buffers (such as the SBuffer), since unsigned int

data type is used in the model definition.

6.3.5.1 Evaluation of the HyperLCA Hardware Accelerator

This section discloses the discussion made about the developed HyperLCA HWacc with

the purpose of evaluating the goodness of the proposed design for the execution of this

algorithmic solution in FPGA-based systems. The architecture of the HWacc is divided

into two blocks, the HyperLCA Transform and the HyperLCA Entropy Coder that run

in parallel following a producer-consumer approach. Consequently, the slowest block is

the one determining the productivity of the proposed architecture. In this sense, the

HyperLCA Transform block bears most of the complexity and computational burden

of the compression process. For this reason, several optimizations have been applied

during its design in order to achieve a high degree of parallelism and, thus, to reduce the

latency. One of the most important improvements is the realization of the map-reduce

programming model to enable an architecture with multiple PEs working concurrently

on several bands. The experiments have been made using different configurations of the

algorithm input parameters, that is, Nbits = (12, 8), BS = (1024) and CR = (12, 16,

20) and, for PEs = (1,2,4,8,10,16,20). The number of p pixels to be extracted from each

image block, Mk, to ensure the minimum CR desirable by the user is obtained at design

time from the input parameters following Equation4.1 of Chapter 4.

To evaluate the HyperLCA HWacc, the proposed architecture has been implemented using

the Vivado Design suite. This toolchain is provided by Xilinx and features a HLS tool

(Vivado HLS) devoted to optimize the developing process of an IP component FPGA-

based solutions for their own devices. The implemented prototype targets the XC7Z020-

CLG484 version of the Xilinx Zynq-7000 SoC. This FPGA has been selected because of

its low-cost, low-weight and high flexibility, features that make it an interesting device to

be integrated in aerial platforms, such as drones. The aim is to evaluate the capability of

192 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

a mid-range reconfigurable FPGAs, such as the XC7Z020 chip, for a specific application

such as the HyperLCA compression algorithm. Hence, and due to the amount of resources

available on the target device, the maximum possible number of PEs for the proposed

hardware prototype is 20.

Table 6.2 summarizes the average resource utilization required by the HyperLCA Trans-

form block for the processing of the test-bench described in Section 6.2.1. In this sense,

the demanded hardware resources only depend on the BS and the PEs parameters. Ta-

ble 6.3 shows the post-synthesis results for the HyperLCA Entropy Coder block. Unlike

Table 6.2, the resources demanded by the coder does not depend on the BS parameter or

the number of PEs. It is important to mention that the majority of the employed BRAM,

flipflops (FFs) and look-up-tables (LUTs) are assigned to the two AXI-Memory interfaces

that the HLS tool generates for the Pixel Reader and the Bitstream Packer modules (see

Figure 6.8).

BS PEs BRAM18K DSP48E FlipFlops LUTs

1 96 (68.57%) 9 (4.09%) 7121 (6.69%) 5434 (10.21%)

2 94.5 (67.50%) 16 (7.2%) 6655 (6.25%) 6257 (11.76%)

4 98 (70%) 30 (13.64%) 7725 (7.26%) 7416 (13.94%)

1024 8 96.5 (68.93%) 58 (26.36%) 9910(9.31%) 9553(17.96%)

10 104.5 (74.64%) 72 (32.73%) 11415 (10.73%) 11630 (21.86%)

16 95.5 (68.21%) 114 (51.82%) 14891 (14%) 14721 (27.67%)

20 95.5 (68.21%) 142 (64.55%) 17916 (16.87%) 18851 (35.43%)

Table 6.2: Post-Synthesis results for the different versions of the HyperLCA Transform
HWacc for a Xilinx Zynq-7020 programmable SoC and image block up to 160 bands.

BS BRAM18K DSP48E FFs LUTs

1024 7 (2.5%) 1 (0.45%) 3464 (3.25%) 4106 (7.71%)

Table 6.3: Post-Synthesis results for the HyperLCA Entropy Coder HWacc for a Xilinx
Zynq-7020 programmable SoC and pixel size up to 160 bands.

Additionally, Table 6.4 shows the average number of hyperspectral blocks, Mk, that the

HWacc is able to compress per second (FPS) for a specific configuration of the HWacc

using a clock frequency of 143 MHz. It is worth noting that these results include only

the computation of the HyperLCA Transform block since the Entropy Coding stage is

executed in parallel and takes roughly 50% less time on average. Since the relation

between both hardware components is a dataflow architecture, the latency of the whole

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 193

process corresponds to the maximum one, that is, the delay of the HyperLCA Transform

stage.

Nbits BS CR
Maximum frame rate (FPS)

PE=1 PE=2 PE=4 PE=8 PE=10 PE=16 PE=20

12 1024

12 67.91 140.30 275.81 503.45 603.09 857.47 997.80

16 88.38 182.37 357.02 636.44 754.67 1045.57 1200.30

20 110.61 202.63 444.14 772.54 906.49 1225.44 1387.95

8 1024

12 48.99 101.32 199.98 373.50 451.81 659.67 778.90

16 67.91 140.29 275.82 503.52 603.13 857.44 997.75

20 80.31 165.79 325.12 584.98 696.25 974.35 1123.68

Table 6.4: Maximum frame rates (FPS) obtained by the HyperLCA Transform HWacc
on a Xilinx ZynQ-7020 programmable SoC at a clock frequency of 143 MHz for hyper-
spectral images with 160 bands. Evaluation is made according to different PE settings.

Several conclusions can be derived from the aforementioned results. One key factor is

the minimum frame rate that must be supported for the targeted application. Ideally,

such threshold would correspond to the maximum frame rate provided by the employed

hyperspectral sensor, that is 330 FPS. However, the experimental validation of the camera

set-up in the targeted application tells us that frame rates between 150 and 200 FPS are

enough to obtain hyperspectral images with the desired quality, given the speed and

altitude of the flights. Therefore, a threshold value of 200 FPS is established as the

minimum throughput to validate the viability of the HyperLCA hardware core. As it

can be seen from Table 6.4, settings of PE ≥ 4 fulfil this constraint, even for the most

demanding scenario (CR = 12 and Nbits = 8). Furthermore, PE ≥ 8 settings also

complies with the maximum frame rate established in 330 FPS. Indeed, the range of

maximum compression frame rates obtained by PE = 20 are between 778.90 and 1387.95

FPS.

From the above analysis, we can also conclude the importance of the followed map-reduce

programming model for the attainment of the requirements imposed by the targeted

application. Nonetheless, the increase in the number of PEs implies the utilisation of

more hardware resources. In this sense, it is important to also corroborate that the usage

of the necessary logic falls into the available resources within the targeted device. As

it can be seen from results shown in Table 6.2, the amount of digital signal processors

(DSPs), FFs and LUTs increases with the number of PEs. Nonetheless, the percentages

of these hardware resources are within the limits imposed by the resources available on

194 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

the targeted device for all considered PE settings. In fact, the employed DSPs ascend to

the 64.55% of the total, the FFPs to 16.87% and the LUTs to the 35.43% for PE = 20.

The limiting factor is indeed the BRAM, which are employed in roughly 67.50%-74.64% of

the totality. Nonetheless, the overall consumption of hardware resources expended by the

parallel execution of both the HyperLCA Transform and the HyperLCA Entropy Coder

blocks in the same targeted device does not surpass the boundaries.

The PE=10 version needs a special remark. Such version represents an anomaly in

the linear behaviour of the resource demand. The total capacity of the BRAM used to

instantiate SBuffer is clearly oversized for that datawidth to assure that a hyperspectral

block and its transformations could be stored in-circuit. Secondly, in addition to the

resources needed by the HWacc of the HyperLCA Transform, it is necessary to take into

account those corresponding to the other components in the system such as the HyperLCA

Entropy Coder or the DMA (Direct Memory Access) used to move the hyperspectral data

(Mk) from/to DDR to/from the HWacc.

6.3.5.2 Evaluation of the HW-LbL-FAD Hardware Accelerator

In order to evaluate the HW-LbL-FAD HWacc, the proposed architecture explained in

Section 6.3.3 has been also implemented using the Vivado Design suite from Xilinx, as

well as targeting the XC7Z020-CLG484 version of the Xilinx Zynq-7000 SoC. The ex-

periments addressed in this Section have been made using different configurations of the

PE parameter within the map-reduce programming model. Unlike the preceding analysis

made about the HyperLCA algorithm, Nbits and CR parameters have been not included

in the assessment since they only take part in the compression process.

BS PEs BRAM18K DSP48E FFs LUTs

1 107 (76.43%) 14 (6.36%) 8073 (7.59%) 6744 (12.68%)

2 91.5 (65.36%) 22 (10%) 8624 (8.11%) 7470 (14.08%)

4 95.5 (68.21%) 38 (17.27%) 9981 (9.38%) 9115 (17.13%)

1024 8 98.5 (70.36%) 70 (31.82%) 12666(11.90%) 12411(23.33%)

10 102.5 (73.21%) 86 (39.09%) 14787 (13.90%) 14856 (27.92%)

16 96.5 (68.93%) 134 (60.91%) 18433 (17.32%) 18724 (35.20%)

20 98.5 (70.36%) 166 (75.45%) 23071 (21.68%) 23493 (44.16%)

Table 6.5: Post-Synthesis results for the different versions of the HW-LbL-FAD HWacc
for a Xilinx Zynq-7020 programmable SoC and image block up to 160 bands.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 195

BS
Maximum frame rate (FPS)

PE=1 PE=2 PE=4 PE=8 PE=10 PE=16 PE=20

1024 130.11 259.96 518.87 900.22 1055.30 1423.01 1609.90

Table 6.6: Maximum frame rates (FPS) obtained by the HW-LbL-FAD HWacc on a
Xilinx ZynQ-7020 programmable SoC at a clock frequency of 143 MHz for hyperspectral

images with 160 bands. Evaluation is made according to different PE settings.

Table 6.5 summarizes the average resource utilization required by the HW-LbL-FAD

HWacc displayed in Figure 6.9 for the processing of the test-bench described in Sec-

tion 6.2.1. As it can be seen, all types of hardware resources show a slight increase due

to the additional logic required by this HWacc compared with the HyperLCA Transform

HWacc. In this regard, the Brightness AD and the Stop cond HLS modules have been

included, as well as the xMatrix FIFOs for the storage of the orthogonal Q and U vectors

representative of the background distribution and intermediate multiplexors. Nonethe-

less, the total amount of hardware resources expended by the anomaly detection process

performed by the HW-LbL-FAD HWacc does not surpass the limited established by the

targeted platform. In fact, they ascend to the 70.36% of the BRAM, the 75.45% of the

DSPs, the 21.68% of the FFs and the 44.16% of the LUTs for the most demanding scenario

in terms of hardware resource, that is, PE = 20.

Additionally, another key factor of the targeted application is the minimum number of

hyperspectral frames that should be processed in a second in order to ensure a real-time

processing. In this sense, Table 6.6 shows the average number of hyperspectral blocks,

Mk, that the HWacc is able to compress per second (FPS) for a specific configuration of

the HWacc using a clock frequency of 143 MHz. As it can be seen, it surpasses the limit

of 330 FPS for configurations of PE ≥ 4 and also, more than 200 FPS are obtained by

PE = 2. Indeed, the reached frame rates are slightly higher for the HW-LbL-FAD HWacc

than the HyperLCA HWacc. It has totally sensed since the Brightness HLS module is

not repeated p times once the background distribution is estimated in Stage 2 and the

Brightness AD module is just launched once at the end of the process for the identification

of the anomalous spectra.

196 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

6.3.5.3 Evaluation of the HADeLoC Hardware Accelerator

As it was concluded in preceding Chapter 5, the set of core operations proposed in this

Thesis may be perfectly applicable for the simultaneous execution of both anomaly de-

tection and lossy compression of HSIs. The HADeLoC emerged as a resource-optimized

solution to those scenarios where the aforementioned hyperspectral analysis techniques

have to be concurrently launched in the same piece of hardware. In this Section, we focus

on the evaluation of this proposed methodology for the execution of multiple processes in

FPGA-based systems through the assessment of the developed HADeLoC HWacc. The

architecture of this HWacc is divided as well in two blocks, the block that executes the

set of core operations as it was described in Section 6.3.4 and the Entropy Coder block

that performs the CCSDS prediction error mapping and the Golomb–Rice entropy-coding

algorithms on the different vectors that will constitute the compressed data. Although

slight differences are introduced in the way as the bitstream is configured, the hardware-

design followed for the definition of the HyperLCA Entropy Coder block in the HyperLCA

HWacc may be also reused for the HADeLoC issue. Therefore, the conclusions drawn in

Section 6.3.5.1 about this hardware module can be also extrapolated for the analysis of

the HADeLoC approach.

The experiments addressed in this Section have been made using different configurations

of the PE parameter within the map-reduce programming model. In this case, it has been

discarded the effects of the Nbits and the CR since they do not affect either the hardware

resource utilization or the average number of hyperspectral blocks, Mk, that the HWacc

is able to process per second. As a remainder, the number of p selected pixels from

each image block, Mk, for the background estimation is now a function of the spectral

variability present in the HSIs and does not depend on the minimum desired CR and the

Nbits parameter, unlike the Initialization stage of the HyperLCA compressor. Regarding

Nbits, it only intervenes in the packing of the estimated V vectors to be compressed and

transmitted. Therefore, it could slightly affect the number of cycles required for the

execution of the HyperLCA Entropy Coder block. Nevertheless, the two modules that

compose the HADeLoC HWacc work within a dataflow architecture and thus, the latency

of the whole process corresponds to the maximum one, that is, the delay of the set of core

operations computed by the former module.

Table 6.7 summarizes the average resource utilization required by the HADeLoC block

displayed in Figure 6.10 for the processing of the test-bench described in Section 6.2.1.

As it can be seen, only the FFs and the LUTs are increased in barely 0.2-0.3% compared

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 197

with the HW-LbL-FAD HWacc. On the contrary, the BRAM and DSP utilisation remains

constant. It is due to some minor changes introduced in the FSM described in Figure

6.3.4 for connecting the Brightness AD module with the SBuffer. As it can seen, two

hyperspectral analysis techniques, that is, the lossy compression of HSIs and the detection

of anomalous spectra, can be simultaneously managed in the same piece of hardware

with the developed HADeLoC HWacc using the 70.36% of the BRAM, the 75.45% of

the DSPs, the 21.71% of the FFs and the 45.04% of the LUTs for the most demanding

scenario in terms of hardware resource, that is, PE = 20. The limiting factor is indeed the

BRAM, which are employed in roughly 68.21%-76.43% of the totality. Nonetheless, the

total hardware resources expended by the parallel execution of both the HADeLoC block

displayed in Figure 6.10 and the HyperLCA Entropy Coder block in the same targeted

device does not surpass the boundaries. Additionally, the extension of the set of core

operations for the execution of both processes only involves an increase of 2.15% of the

BRAM, 10.90% of the DSPs, 4.84% of the FFs and 10.51% of the LUTs compared with

the execution of only the lossy compression of the HSIs performed by the HyperLCA

compressor.

BS PEs BRAM18K DSP48E FFs LUTs

1 107 (76.43%) 14 (6.36%) 8181 (7.69%) 6857 (12.89%)

2 91.5 (65.36%) 22 (10%) 8731 (8.21%) 7624 (14.33%)

4 95.5 (68.21%) 38 (17.27%) 100041 (9.44%) 9261 (17.41%)

1024 8 98.5 (70.36%) 70 (31.82%) 12728(11.96%) 12576(23.64%)

10 102.5 (73.21%) 86 (39.09%) 14840 (13.95%) 14846 (27.91%)

16 96.5 (68.93%) 134 (60.91%) 18491 (17.38%) 18970 (35.66%)

20 98.5 (70.36%) 166 (75.45%) 23096 (21.71%) 23959 (45.04%)

Table 6.7: Post-Synthesis results for the different versions of the HADeLoC HWacc
for a Xilinx Zynq-7020 programmable SoC and image block up to 160 bands.

Regarding the execution times, Table 6.8 shows the average number of hyperspectral

blocks, Mk, that the designed HWacc is able to process per second (FPS) for a specific

configuration of the HWacc using a clock frequency of 150 MHz. Once again, it surpasses

the limit of 330 FPS for configurations of PE ≥ 4. In this case, it is not right a com-

parison with the HyperLCA HWacc since different CRs are reached by both proposals.

Regarding the HW-LbL-FAD HWacc, the average decrease in the achieved frame rates as-

cends to roughly the 4%, which indeed matches with the proportion of anomalous frames

since more en are extracted for these abnormal behaviours. Nonetheless, the maximum

obtained frame rates substantially exceeds the minimum limit set in 330 FPS by the target

198 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

application when both image processing analysis are being simultaneously running in the

same piece of hardware.

BS
Maximum frame rate (FPS)

PE=1 PE=2 PE=4 PE=8 PE=10 PE=16 PE=20

1024 122.63 245.05 489.26 855.45 1006.04 1366.99 1552.60

Table 6.8: Maximum frame rates (FPS) obtained by the HADeLoC HWacc on a Xilinx
ZynQ-7020 programmable SoC at a clock frequency of 143 MHz for hyperspectral images

with 160 bands. Evaluation is made according to different PE settings.

6.3.5.4 General discussions about the obtained results

As fully discussed in Sections 6.3.5.1-6.3.5.3, the developed HWaccs for the implementa-

tion of the HyperLCA, the HW-LbL-FAD and the HADeLoC algorithms on FPGA-based

systems meet the requirements imposed by the targeted application in terms of the max-

imum frame rate defined by the data acquisition platform. In this section, we would like

to also provide a comprehensive benchmarking studio among these proposed HWaccs in

terms of the resource utilisation and the maximum reached date rates. To this end, we

support on Figures 6.11-6.12.

Figure 6.11 graphically shows the percentage of the total number of hardware resources

(BRAM, DSPs, FFs and LUTs) required by the developed HWaccs according to the

different configurations of the PE parameter considered in the analysis made along this

Section. Additionally, it is also displayed a hypothetical situation in which the HyperLCA

and the HW-LbL-FAD algorithms are independently implemented in the same piece of

device for a parallel and simultaneous execution of both processes. With it, we want to

represent those situations in which different mathematical methods are selected from the

wide assortment of proposals encountered in the literature for each hyperspectral data

analysis technique to be addressed and accelerated using parallel computing devices. As

it can be seen, it is clear that the implementation of both the HW-LbL-FAD detector and

the HyperLCA compressor could not be addressed as independent entities in the selected

XC7Z020-CLG484 FPGA due mainly to the total amount of available BRAM resources

for any PE configuration. This situation is also repeated for the DSPs with PE = [16,

20], although it is not a critical situation since the minimum target frame rate can be also

fulfilled with PE = 8. Nonetheless, this scenario is solved by the HADeLoC proposal since

it carries out both the lossy compression of HSIs and the detection of anomalous spectra

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 199

employing almost the same resources as only one process, specially, the HW-LbL-FAD

method. Therefore, it is deduced the importance of the design of algorithmic solutions

based on the same mathematical method in order to allow sharing blocks of operations

among them in the pursuit of reducing the resource utilization.

Figure 6.11: Comparison in terms of the resource utilization made by the HWaccs
developed for the FPGA implementation of the HyperLCA, the HW-LbL-FAD and the
HADeLoC methods. Additionally, they have been also compared with a parallel and
independent implementation of the HyperLCA and the HW-LbL-FAD methods on the

same hardware device.

On this basis, the HyperLCA and the HW-LbL-FAD methods are based on the same

mathematical method and, more specifically, in the Gram-Schmidt method performed by

the set of core operations proposed in this Thesis. For this reason, it could be inferred that

they could be sequentially executed in the same piece of hardware without an excessive

increment of the hardware resources and above all, within the limits imposed by the

target computing device in terms of the available BRAM resources. Figure 6.12 shows

a comparison in terms of the maximum processing data rates reached by each of the

developed HWaccs, as well as, by the above mentioned scenario in which the HyperLCA

and the HW-LbL-FAD methods are serially launched. From it, we can conclude that,

200 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

although configurations of PE ≥ 8 are able to fulfil the requirements imposed by the

targeted application according to the number of hyperspectral frames to be processed

in a second, the execution times get affected in such a way that they are increased in

almost the 50% compared with those required by HADeLoC approach, which actually

addresses both processes as well, and by the single execution of each the HyperLCA and

the HW-LbL-FAD methods. This fact can be deduced since the columns of Figure 6.12

corresponding with the HyperLCA + HW-LbL-FAD are half as high as those related

with the HADeLoC, the HyperLCA and the HW-LbL-FAD methods. Results also show

that the execution times required for the implementation of both the lossy compression

of HSIs and the detection of anomalous spectra handled by the HADeLoC approach is

almost the same as just the performance of only one process, specially, the HW-LbL-FAD

algorithm. Therefore, these discussions are certainly in the line of the research goals to be

accomplished in this Thesis. Additionally, the conclusions drawn in above lines could be

also extrapolated to those scenarios in which different mathematical methods have to be

sequentially addressed in the same computing device, besides, it may not have sufficient

available resources for that purpose.

Finally, although the implementation of the ADeLoC solution has not been addressed in

this Thesis, it can be inferred that its implementation may be also efficiently carried out

in the the selected XC7Z020-CLG484 FPGA since there is enough additional DSPs, FFs

and LUTs for such purpose and, the employed resources in terms of BRAM should be

almost the same as the HADeLoC solution. In this sense, the execution times would not

be so affected as the serial execution of the HyperLCA + HW-LbL-FAD methods but the

same results are ensured, unlike with the HADeLoC solution as it was further discussed

in Chapter 5.

6.4 Real-time implementation of the HyperLCA al-

gorithm on embedded GPUs

This section focuses on the parallel implementation of the HyperLCA algorithm on

NVIDIA GPUs through the NVIDIA Computer Unified Device Architecture (CUDA)

programming model. In this Section, we evaluate the suitability of the HyperLCA algo-

rithm for the real-time lossy compression of hyperspectral data for applications character-

ized by high data-rates. Likewise, it is focused on remote sensing applications where the

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 201

Figure 6.12: Comparison in terms of the maximum processing data rates achieved by
the HWaccs developed for the FPGA implementation of the HyperLCA, the HW-LbL-
FAD and the HADeLoC methods. Additionally, they have been also compared with a
sequential execution of the HyperLCA and the HW-LbL-FAD algorithms on the same

hardware device.

available computational resources are limited, due to power, weight or space limitations.

Concretely, we focus on the smart farming application described in preceding Section 6.1.

In this context, a hyperspectral pushbroom scanner is mounted onto a UAV for collecting

periodical information of the crops, which results in a huge amount of data that needs

to be managed, processed and analysed. The hyperspectral camera provides a maximum

frame rate of 330 FPS when collecting 224 spectral bands, or even more for less number of

them. Therefore, this maximum frame rate sets the minimum target compression frame

rate to be reached by the conduced hardware implementations. By achieving this frame

rate, it can be guaranteed that the collected hyperspectral data can be always compressed

in real-time and, the capturing frame rate can be specified according to the characteristics

of the application (such as flight height, intensity of the light, area to be covered, etc.)

without being limited by the data compression process. It must be mentioned that this

scenario represents the most extreme case since capturing frame rate settings are normally

lower, roughly 150-200 FPS.

Additionally, the data acquisition platform needs a processing board for the management

of many tasks at the same time, such as, the data acquisition, the data calibration, the

202 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

data storing and/or their transfers, the camera controlling and also the drone flight con-

trol. Therefore, some of the characteristics to be met by the selected processing board

in order to be useful for the target application can be determined by the necessities and

limitations imposed by the drone and the hyperspectral imaging acquisition system. In

particular, it has to be relatively small and light and it has also to demand a relatively

low power consumption. Additionally, this processing device has to be able to manage

and process the high amount of data provided by the hyperspectral sensor in real-time.

Due to these reasons, we have put our attention in the NVIDIA Jetson developer boards,

and more specifically in the Jetson TK1, the Jetson TX2, Jetson Nano and the most re-

cent supercomputer Jetson Xavier-NX developer kits. The Jetson TK1 module integrates

the less advanced, oldest generation of the four GPU architectures, while the Jetson Nano

instantiates the fewer execution units or CUDA cores. On the contrary, the Jetson Xavier-

NX represents one of the latest NVIDIA power-efficient products, which offers more than

10x the performance of its widely adopted predecessor, Jetson TX2. Moreover, these

boards embed a LPGPU that allows parallel programming for speeding up the executed

processes. This is specially useful for accelerating the compression of the collected hy-

perspectral data. Although, the experiments carried out are oriented to the necessities

imposed by a specific smart farming application, all drawn conclusions are extrapolated

to other fields in which remotely sensed HSIs have to be compressed in real-time.

In this sense, the HyperLCA Transform is the most computational demanding processing

stage of the HyperLCA compressor in terms of the number of operations to be performed

and the execution times. For this reason, it has been implemented on the LPGPUs

available in the Jetson boards through the use of NVIDIA CUDA programming language.

Furthermore, three different implementation models of the whole compression model have

been studied, seeing them as an evolution towards an optimal configuration that fulfils

the constraints imposed by the targeted application. These strategies are focused on

exploiting the parallelism of the HyperLCA compressor beyond the thread level parallelism

inherent to the GPU programming model, more concretely, pipelining the execution of the

compression stages of the HyperLCA algorithm for each independently processed image

block, as well as the communications and memory transfers.

6.4.1 Graphics Processing Units

A GPU can be understood as an array of many independent processors that correspond

with an independent execution thread. Each of these execution threads are able to only

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 203

execute one operation per cycle. However, the high parallelism inherent to the GPUs

arises from their capability of executing the same operation in many different threads at

the same time using different data. Figure 6.13 shows a graphic example of the thread-

level parallelism achieved in a GPU in which three groups of independent operations; GA,

GB and GC; must be performed on each image pixel. As it can be seen, each i ∈ [1, n]

thread processes an image pixel independently and each operation is serially executed,

one after the other, in different clock cycles for all employed GPU threads. In order to

better understand the GPU architectures and their parallelism, the basic components of

any NVIDIA GPU architecture will be briefly described in Sections 6.4.1.1 and 6.4.1.2.

Figure 6.13: GPU thread-level parallelism (image extracted from [4]).

6.4.1.1 GPU hardware platforms

A GPU is built around a scalable array of Streaming Multiprocessors (SMs) that support

the concurrent execution of multiple threads. The replication of this architectural block

leads to the high hardware parallelism of the GPUs [231]. The basic components that

compose a SM are: execution units or CUDA cores, shared memory/L1 cache, register file,

load/store units, special function units, instruction dispatch units and warp schedulers.

From a software point of view, the GPU threads are organized into thread blocks when

a kernel grid is launched in the CUDA programming model. These thread blocks are a

pure software concept that actually do not exit in the hardware design. From a hardware

point of view, these thread blocks are scheduled on only one SM but, a SM can handle

more than one thread block at the same time. Once that a thread block is assigned to a

SM, CUDA manages these threads in groups of 32, called warps. All threads in a warp

execute the same instructions at the same time. The warp schedulers select active warps

on each clock cycle and dispatch them to the execution units. After several clock cycles,

a pipeline of instructions is scheduled within the SM, as it is shown in Figure 6.14. The

objective of this pipeline is to hide the instruction latencies. Hence, it is mandatory that

204 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

some warps are available in every clock-cycle to launch instructions in them while other

warps are busy running previous instructions. In Figure 6.14, it can be seen how warp 0

is not selected again at least until it finishes executing the received instruction.

However, this ideal situation may be limited by the different GPU resources, causing

gaps of time where no eligible warps are available in a clock cycle and consequently, new

instructions cannot be launched. Figure 6.15 shows an example of this situation where,

in a particular clock cycle, there are no warps that can be eligible by the warp scheduler

2. Some factors that negatively affect the instructions pipeline are:

1. The number of resident warps per SM, as well as, the number of resident thread

blocks and threads. Generally, it is desired to achieve a high number of active warps

per SM in such a way that it is more likely to find eligible warps in every clock cycle.

2. Shared memory and register files. The amount of shared memory is fixed and parti-

tioned among the thread blocks scheduled on a SM while register file is partitioned

among the threads. Hence, the higher the consumption of registers and shared mem-

ory by threads and blocks, the fewer warps that can be simultaneously scheduled

on a SM.

Figure 6.14: Pipeline of warps in a SM with two warp schedulers.

6.4.1.2 Streams and Concurrency

CUDA programming model permits the concurrent execution of kernels and memory

transfers through a mechanism named CUDA Streams. A CUDA stream refers to a queue

of operations; such as kernel launches, host-device data transfers and other commands;

that are executed in the device in a strict ordering managed by the host code. However,

the execution of operations in a stream are totally asynchronous with respect to the host

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 205

Figure 6.15: Pipeline with a gap of time where no warps are eligible.

and the operations running in other streams. It means that each stream may execute

its operations out of order with respect to other streams. As a consequence, it permits

overlapping multiple kernel launches and data transfers, which are being executed in

different streams, if there are enough available GPU resources.

Nonetheless, if no stream is specified, all kernel launches and data transfers are implicitly

queued in a default stream named NULL stream. The use of this default stream implies

that all kernel launches and memory transfers are blocking calls and therefore, serially

executed in the Host-Device model. It means that the aforementioned concurrency of

multiple GPU operations is lost. As a consequence, those operations managed by non-

default streams are blocked until the default stream is idle. Therefore, if the pipeline of

multiple GPU operations is desired, non-default streams must be explicitly created and

the GPU operations to be performed must be assigned to them.

The use of non-default streams is a powerful tool of the CUDA programming model that

allows to deepen in the parallelism offered by the GPUs. Hence, they have been exploited

in the hardware implementations conducted in this Section.

6.4.2 CUDA implementation of the HyperLCA algorithm

In this Section, the various methodologies proposed for the implementation of the Hyper-

LCA lossy compressor in embedded LPGPUs are extensively described. Firstly, a GPU

implementation of the HyperLCA Transform stage has been adequately handled in Section

6.4.2.1 following the traditional Host-Device CUDA programming model. Secondly, three

different implementation models of the whole HyperLCA compressor have been addressed

206 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

in Section 6.4.2.2, using additional parallelization strategies beyond the thread level par-

allelism inherent to the GPU programming model. These parallelization strategies aim to

make a more efficient use of the resources available in the targeted Jetson boards.

It is also important to mention that the four original computing stages of the HyperLCA

compressor, that is, Initialization, HyperLCA Transform, Preprocessing and Entropy Cod-

ing, were defined from an algorithmic point of view. Nonetheless, they have been redefined

for being implemented using a Host-Device model depending of whether they are poten-

tial candidates for being executed in the host domain, that is the central processing unit

(CPU), or they are more prone to be executed in the device, that is the LPGPU. Hence,

from an implementation point of view, the HyperLCA algorithm has been structured in

three main stages:

1. Initialization. The number of p pixels to be selected from each image block, Mk, is

estimated according to the desired minimum compression ratio (CR) to be reached.

This operation simply consists of a division where a configuration setting is defined.

Moreover, it is computed once at the beginning of the compression process with

independence of the number of image blocks to be compressed.

2. HyperLCA Transform. This current stage involves not only the operations of the

HyperLCA Transform, but also the Scaling of V vectors. This stage comprises the

greatest number of operations and consequently, it is the most computationally

intensive part. Taking advantage of the high level of parallelism of the involved

operations, they can be easily implemented in the LPGPUs embedded in the Jet-

son boards in order to decrease the overall time required by the execution of the

compression process and ensure the high frame rates imposed by the targeted ap-

plication.

3. Entropy Coding. This stage involves now the HyperLCA Entropy Coding stage and

the Error Mapping step. The involved operations are much less computational de-

manding than those inherent to the aforementioned HyperLCA Transform and they

have also a more sequential nature. For this reason, they are potential candidates

for being executed in the host domain, that is, the CPU.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 207

6.4.2.1 GPU implementation of the HyperLCA Transform

As it was further explained in Section 4.4.6 of Chapter 4, the HyperLCA Transform is the

most computationally intensive part of the HyperLCA compressor, executing up to three

orders of magnitude more number of operations than the Entropy Coding stage. For this

reason, it has been implemented on the LPGPUs embedded in the targeted Jetson boards

using CUDA as design language and following the traditional Host-Device CUDA model

shown in Figure 6.16.

The CUDA programming model has been commonly used for developing applications for

PCIe (Peripheral Component Interconnect Express) GPUs. In these systems, the GPU

memory is separated from the Host memory. Accordingly, the traditional Host-Device

model implies the data transfer from the host to the device. In the more recent embedded

computing devices, such as the Jetson boards, the physical memory is shared between

both the GPU and the CPU. In this situation, it is not necessary to copy the data from

the host memory to the device memory. Additionally, the latest versions of the NVIDIA

CUDA offer new mechanisms that allow taking advantage of these situations, such as

the use of the unified memory concept. However, in the application targeted in this

research work, there are many processes running in the Jetson boards that need to access

to the same memory positions. For instance, the processes involved in the synchronization

and data acquisition have to be able to store the data in memory places that are later

read by the processes involved in the processing of them, such as the calibration or the

compression processes. For doing so the benefits of the Linux shared memory concept has

been exploited.

For being able to integrate the compression process with the rest of processes of the system,

the captured frames are copied from the Linux shared memory space to other RAM

memory spaces initialized in the style and manner proper to the CUDA programming

language, which makes the data understandable and accessible by the processes running

in the LPGPUs. Despite the evident disadvantage of introducing one extra copy for

each captured frame, this also provides the advantage of following the traditional Host-

Device model, copying the data from the Host memory to the Device memory, which is

just another location on the same physical memory in this situation. Accordingly, the

implementation of the HyperLCA compressor described below could be straightforward

compiled for any system that uses PCIe GPUs with its own separated memory.

208 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

In general terms, the implementation of the HyperLCA Transform using the Host-Device

CUDA model comprises 3 main stages:

1. Write H → D : a preliminary transfer of BS hyperspectral pixels from the host

(Mhostk) to the device (Mk).

2. Kernels : seven different operation blocks or kernels are launched in the GPU to

perform the operations involved in the HyperLCA Transform.

3. Write D → H : transfer of the HyperLCA Transform outputs, that is µ̂, E and V,

from the device to the host.

The operation blocks or kernels that encompass the second stage are briefly outlined

below. In addition, the kernel configurations with respect to the set CUDA thread blocks

and CUDA threads are also shown in Table 6.9, where d−e means rounding-up to the

nearest whole number. Since BS directly affects the fixed number of threads per CUDA

block, this parameter has been defined in terms of this HyperLCA input parameter. It is

also noted that the employed kernel configurations have been selected taking into account

that the maximum number of threads per CUDA block for NVIDIA GPUs with compute

capabilities higher than 2.0 is 1024 [232]. In addition, kernels have been defined for HSIs

up to 256 spectral bands and for a maximum BS of 1024 pixels.

1. Kernel 1: Cast to float.

The HyperLCA Transform was originally designed to use floating-point arithmetic.

In addition, GPUs are generally optimized to execute single precision floating-point

operations. Accordingly, the data captured by the hyperspectral sensor, which are

stored as unsigned integer values, are firstly converted to single precision floating

point representation. This process is fully parallelizable since each GPU thread

independently processes one element within the image block, Mk.

2. Kernel 2: Centroid Calculation.

This kernel computes the average pixel, µ̂, of the image block, Mk. To issue this

calculation, nb CUDA thread blocks are defined. Threads of a common block inde-

pendently work with the pixel elements within the same spectral band. To compute

the mean value per band, a reduction strategy is employed, making use of the GPU

shared memory. For this reason, the number of CUDA threads has been defined as

the power of two whole number closer to the half of BS. In addition, each element

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 209

Figure 6.16: Flow-chart of the HyperLCA Transform in the Host-Device model

of the average pixel is rounded to the closest integer value before starting the Hyper-

LCA transform stage. This not only eases the posterior Preprocessing and Entropy

coding stages, since these two stages work with integer values, but also guarantees

to use the exact same vector when the inverse process is performed to decompress

the image, which increases the overall accuracy of the compression-decompression

process. Nonetheless, since the HyperLCA Transform uses floating point arithmetic,

the resulting centroid pixel after the rounding is again casted to float.

3. Kernel 3: Centralization.

To centralize Mk, the average pixel, µ̂, is subtracted from each image pixel, getting

the centralized version of the image, C. To issue this operation, BS CUDA thread

blocks of nb threads are defined where each block independently processes each pixel.

In fact, each thread within the same block works with a pixel band, subtracting the

information of the corresponding band in vector µ̂.

4. Kernel 4: Brightness calculation.

The brightness calculation of a pixel involves the addition of the squared values of

each spectral bands. To issue this set of operations in just one kernel, 2D CUDA

thread blocks are defined where x dimension matches up with each image pixel and

210 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

y dimension with the spectral bands. Once each thread performs the square of each

image element, a reduction strategy along y dimension is followed to perform the

addition of the squares for each image pixel. To do this, the number of threads

along y dimension has been defined as the half of the maximum number of spectral

bands, that is, 256/2. A portion of the GPU shared memory is also employed.

5. Kernel 5: Maximum Brightness Calculation.

This kernel calculates the brightest pixel index and its value, as well as the orthog-

onal qn and un vectors. To address all these issues, just one CUDA thread block

is required. In order to find the brightest pixel index and its value, a reduction

strategy is followed making use of the GPU shared memory. Unlike kernel 2, the

number of threads must be defined as the power of two whole number closer to BS

in this case, since we need to work with thread indexes. The qn vector corresponds

to the pixel in C with the highest brightness. The un vector is equal to the qn

vector but whose elements have been divided by the maximum brightness. Since

kernels have been defined for a maximum of 256 spectral bands and hence, un and

qn vectors will have 256 elements as maximum, a minimum of 256 CUDA threads

is required in this case.

6. Kernel 6: Projection Vector Calculation.

This kernel computes the projection vectors, vn. This calculation may be tackled

in the same way as Kernel 4, where the brightness vector calculation is performed.

In this case, instead of computing the addition of the squares of each pixel element,

each pixel band is multiplied by its homologous in vector un.

7. Kernel 7: Subtraction.

This kernel addresses the subtraction of the spectral information spanned by the

selected qn vector from C. Due to this reason, C contains the remaining spectral

information which cannot be represented by the previous extracted pixels. To ad-

dress these operations, nb CUDA blocks of BS threads are defined. Each block

independently processes each spectral band and each thread within the same block

works with a pixel band. Taking advantage of this thread distribution, the Scaling

of V vectors is also performed.

Since p pixels must be extracted, kernels 4 to 7 are launched p times for each image block,

Mk.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 211

Kernel CUDA thread blocks CUDA threads

Cast to Float dBS·nb
1024 e 1024

Centroid Calculation nb 2(dlog2(BS/2)e)

Centralization BS nb

Brightness Vector Calc. d BS
1024
256/2

e (1024
256/2 ,

256
2)

Maximum Brightness Calc. 1 2(dlog2(BS)e) ≥ 256

Projection Vector Calc. d BS
1024
256/2

e (1024
256/2 ,

256
2)

Subtraction nb BS

Table 6.9: Kernel configurations in terms of CUDA threads and thread blocks.

6.4.2.2 Host-Device Model of the HyperLCA lossy compressor

In general terms, the ultimate goal of the developed GPU-based implementations of the

HyperLCA algorithm is to design a model that permits to compress the hyperspectral

frames in real-time for applications with limitations on computational resources. It means

being able to compress each hyperspectral frame in less time than the required for captur-

ing it. Accordingly, it is avoided the accumulation of high data volumes of hyperspectral

pixels until being able to process them. Moreover, the targeted Jetson boards share the

same physical RAM memory between the CPU and the GPU. Consequently, the maxi-

mum amount of data that can be hold in RAM memory for the compression process is

limited, specially considering that, at the same time, other processes are being handled

by the computing device.

In particular, we present an application where a hyperspectral sensor is mounted on a

UAV that captures frames with a very high frame rate, using a computer platform with

an embedded LPGPU. Many processes are running at the same time in the computer

platform apart from the compression process. On this basis, the main objective of the

addressed implementations lies in the acceleration of the most demanding parts of the

HyperLCA compressor in order to guarantee the high frame rates imposed by the targeted

application. At the same time, it is also necessary to lessen the computational burden of

the CPU, which is executing many other processes apart from the compression one. As a

consequence, different configurations of the Host-Device model have been studied, seeing

them as an evolution towards an optimal configuration that fulfils the constraints of the

particular application.

212 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

The first and simplest approach is to accelerate the second stage of the HyperLCA com-

pressor, corresponding to the HyperLCA Transform, executing it in the LPGPU. It gives

rise to the Host-Device model already described in Section 6.4.2.1 and shown in Figure

6.16. In this case, the three different HyperLCA compressor stages are managed sequen-

tially by a single CPU process but, operations involved by the HyperLCA Transform stage

are executed in the LPGPU. Here, each block of BS pixels is also serially compressed,

one after the other, as Figure 6.17 shows. Throughout this Section, this configuration is

referred as Parallel Model 1.

Figure 6.17: Parallel Model 1: HyperLCA compressor stages are sequentially per-
formed in a single CPU process but the HyperLCA Transform stage is accelerated in

the GPU [5].

A more in-depth analysis of the behavior of the different HyperLCA stages reveals that

the execution of the Entropy Coding stage can be performed with total independence

of the HyperLCA Transform stage. Once the coder receives the HyperLCA Transform

outputs of a pixel block, that is µ̂, E and V, it can work with them in the background

while the HyperLCA Transform stage processes a new block of pixels. In this context,

two independent CPU processes have been used to implement this solution. One of them

is in charge of the execution of the HyperLCA Transform, which involves transferring the

data from the host to the device, launching the kernels that are executed in the LPGPU

and bringing back the outputs of the HyperLCA Transform to the Host memory. The

other CPU process is constantly waiting for new available HyperLCA Transform outputs

for codifying them. As it was explained in more detail in Section 4.4.6 of Chapter 4,

the codification is much less computational demanding than the HyperLCA Transform.

Therefore, it is efficiently executed in the CPU. Throughout this Section, this configuration

is referred as Parallel Model 2 and its flow-chart is shown in Figure 6.18.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 213

Figure 6.18: Parallel Model 2: the HyperLCA Transform and the Entropy Coding
stage are managed by two independent CPU processes. The HyperLCA Transform is

also executed by the GPU [5].

Finally, the task parallelism introduced by the CUDA streams has been also considered

giving rise to the third and the last tested configuration named Parallel Model 3. As it was

already introduced in Section 6.4.1.2, a CUDA stream represents a queue of operations

executed in the GPU in a strict and specific order. However, different non-default streams

run asynchronously and concurrently if there are enough available GPU resources. This

has been used for pipelining the data transfers between the host and the device and the

kernel executions for different block of pixels as shown in Figure 6.19. Specifically, one

stream, named GPU Stream Write, is used for copying the pixel blocks to be compressed,

one by one, from the host to the device. Another stream, named GPU Stream Kernels,

manages the execution of the different kernels that perform the HyperLCA Transform

operations for each pixel block, Mk. Finally, a third stream, named GPU Stream Read, is

used for copying the HyperLCA Transform outputs for each pixel block from the device

to the host. For instance, the copy of the image block number 3, M3, from the host to

the device, the execution of the HyperLCA Transform kernels for the image block number

2, M2, and the copy from the device to the host of the HyperLCA Transform outputs

estimated from the image block number 1, M1, are concurrently launched. As in Parallel

Model 2, the execution of the Entropy Coding stage is also pipelined with the HyperLCA

Transform stage using another CPU process.

It is also important to highlight how the data synchronization among processes has been

faced. As it was already mentioned, Jetson boards share the same physical RAM memory

between the CPU and the GPU. Accordingly, the maximum amount of data that can be

214 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

Figure 6.19: Parallel Model 3: the HyperLCA Transform has been implemented on
the GPU using three non-default streams while theEntropy Coding stage is running in

another CPU process [5].

hold in RAM memory for the compression process is limited, specially considering that

at the same time, the boards are managing other processes such as the HSI capturing

and the storage or transfers of the compressed images. Against this backdrop, we have

used ring buffers in an asynchronous manner to stream the data. For instance, when the

capturing process finishes sensing the first frame, this frame is stored in the first position

of the capturing ring buffer and, starts capturing and storing the second frame in the

second position of this buffer. At this time, the compression process starts processing the

data that were stored in the first position of this buffer. Similarly, the results provided by

the HyperLCA Transform are stored in another ring buffer from which the codification

process reads the data to be coded. Finally, the coded data are stored in another ring buffer

from which the storing and/or transferring processes read the information to be stored

and/or transmitted. In order to avoid losing portions of data if any of the aforementioned

processes momentarily stalls, these buffers need to be able to hold a relatively high amount

of data in relation to the amount of data that is processed in one iteration. Hence, an

image block, Mk, composed of BS = 1024 pixels with 256 spectral bands each implies the

definition of ring buffers intended for the capturing process of X times that size, where

X is the number of frames that this buffer can hold. This is also applied to the other ring

buffers involved in the whole process.

Due to all these reasons, BS has been kept as small as possible without compromising

the quality of the compression results, as well as the maximum number of spectral bands

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 215

to be processed. Concretely, we have limited the BS to 1024 pixels and the number of

spectral bands to 256, as maximum. However, since BS is a parameter inherent to the

HyperLCA compressor and does not have to match the pixel-wide swath of the sensor, it

is applicable to any pushbroom/whiskbroom hyperspectral scanner that provides images

with less than 256 hyperspectral bands. For instance, this solution could perfectly work

with well-known sensors used in remote sensing, such as AVIRIS (whiskbroom scanner,

677 pixel-wide swath, 224 bands), HYDICE (pushbroom scanner, 320 pixel-wide swath,

210 bands), CASI (pushbroom scanner, 512 pixel-wide swath, 288 bands) and HYPERION

(pushbrrom scanner, 256 pixel-wide swath, 242 bands). In addition, it could also sit with

most of the hyperspectral sensors collected by [31] in its Table 2 for being coupled with

UAVs and certainly, with the application targeted in this Section. It is also worth to

mention that kernels from 1 to 6, except for kernel 5, described in Section 6.4.2.1 can

be actually launched for a BS up to 2048 pixels. For BS ≥ 1024, kernels 5 and 7 must

be redefined since the maximum number of CUDA threads per block that the CUDA

compiler can manage is 1024 threads.

6.4.3 Experimental results

Several experiments have been carried out in order to evaluate the performance of the

various implementation models developed for the execution of the HyperLCA compressor

in some Jetson boards. In this regard, two assessment metrics have been used, that is, the

speed-up reached by the parallel HyperLCA models compared with a serial reference model

and, the obtained compression frame rate, which is defined as the number of image blocks

composed of BS hyperspectral pixels that are compressed using the HyperLCA algorithm

in one second. In the aforementioned serial model, the three stages of the HyperLCA

compressor are managed sequentially, one after the other, giving rise to a Host model

where the performance of the device is discarded. It means that once the compression of

a pixel block has been completed, the next image block is processed. Throughout this

Section, this model is referred as Reference Model.

216 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

6.4.3.1 Performance of the parallel implementations of the HyperLCA com-

pressor in embedded LPGPUs in terms of speed-up

The experiments covered in this Section evaluate the speed-up achieved by the proposed

parallel implementation models of the HyperLCA compressor compared with the Refer-

ence Model. These implementations have been described in Section 6.4.2.2 and they are

referred to as Parallel Model 1, Parallel Model 2 and Parallel Model 3. Additionally,

the effects of different configurations of the HyperLCA input parameters have been also

included in the analysis made. In this sense, the minimum desired CR parameter has

been set to 12, 16 and 20, the BS to 1024, 512 and 256 and the Nbits parameter to 12

and 8. Regarding the BS, we have selected the above mentioned configurations since

they are multiple of 32, that is, a warp size. As it has been explained in Section 6.4.1,

the CUDA thread blocks are scheduled on only one SM of the GPU and CUDA manages

these threads in groups of 32, called warps, where all threads in the same warp execute

the same instructions at the same time. In order to define efficient kernels and making

the best use of the GPU resources, we have defined CUDA thread blocks whose number

of threads are multiple of 32. Hence, it must be also the case for BS since it directly

affects them, as it can be inferred from Table 6.9.

Figures 6.20 and 6.21 graphically show the average speed-up obtained by the parallel

implementations of the HyperLCA compressor in relation to its reference version for dif-

ferent configurations of the HyperLCA input parameters. For simplicity, we have only

included the results for the Jetson TK1 and the Jetson TX2 boards. Specifically, Figure

6.20 shows the results obtained in the Jetson TK1 developer kit while Figure 6.21 shows

the results obtained in the Jetson TX2. The speed-up is calculated as the ratio between

the average time spent by each parallel model and the reference model to complete the

entire compression process under the same settings of the HyperLCA input parameters.

For doing this, the test bench described in Section 6.2.1 was used.

Several conclusions can be drawn from Figures 6.20 and 6.21. First of all, it can be

observed that the Parallel Model 1, labeled as Model 1, is already 3 to 5 times faster

than the reference version for both targeted boards. This speed-up is obtained just by

executing the HyperLCA Transform in the corresponding LPGPU, using the developed

kernels, as described in Figure 6.17. Secondly, it is also appreciable that this speed-up

considerably increases for the Parallel model 2 and Parallel model 3, labeled as Model 2

and Model 3, respectively, being Model 3 generally faster than Model 2 in both targeted

boards.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 217

Figure 6.20: Speed-up obtained by the described parallel models with respect to the
reference version of the HyperLCA compressor in the NVIDIA Jetson TK1 board.

Figure 6.21: Speed-up obtained by the described parallel models with respect to the
reference version of the HyperLCA compressor in the NVIDIA Jetson TX2 board.

Further conclusions can be drawn by making a deeper analysis of these results. As ex-

plained in Section 6.4.2.2, Model 1, Model 2 and Model 3 introduce different levels of

parallelism, as shown Figures 6.17, 6.18 and 6.19, respectively. These parallelism strate-

gies reduce the time required for compressing the hyperspectral data. However, for being

able to apply these parallel models and use the LPGPUs, the image blocks as well as

the HyperLCA Transform outputs need to be copied to different parts of the memory.

218 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

These copies are not needed in the reference model, and hence, negatively affect the ob-

tained speed-up. Accordingly, the obtained speed-up corresponds to the time saved by

applying the different parallelization strategies minus the time spent in making the copies

of the image blocks and the HyperLCA Transform outputs. The time spent in each of

these tasks depends on the specified configuration of the HyperLCA compressor and the

characteristics of the Jetson TK1 and Jetson TX2 boards.

The impact of the Nbits parameter is not so high in the achieved speed-up. Basically, this

parameter is used for calculating the p value, which determines the number of iterations of

the HyperLCA Transform and hence, the number of times that the kernels are launched.

In this sense, Nbits = 8 produces higher p values than Nbits = 12. The time saved in each

kernel execution should be the same with independence of the number of times that the

kernel is executed, hence, the speed-up should also be the same. However, the transfers

of the image blocks and the HyperLCA Transform outputs are executed just once per

image block. Due to this reason, the time lost in the memory transfers is proportionally

smaller in relation with the time required by the HyperLCA Transform for processing

the data when more iterations are to be executed (higher p values). Accordingly, the

achieved speed-up is slightly higher for Nbits = 8 than for Nbits = 12. Something similar

happens with the CR input parameter. Higher CR values result in lower p values and less

iterations to be performed by the HyperLCA Transform for each image block.

Additionally, the CR and Nbits values also affect the number of outputs given by the

HyperLCA Transform. Therefore, higher CR and Nbits values slightly decrease the amount

of data to be copied for each image block. Due to these reasons, the variations in the

speed-up obtained when using different CR and Nbits values will depend in how much

time is saved in the HyperLCA Transform operations using these parallel models and how

much time is lost in the memory transfers. This also depends on the characteristics of

the hardware. For instance, higher CR values provide faster results in the Jetson TX2

board when using the Model 2, while the opposite happens for the Jetson TK1 board

using the same parallel model. This, together with the fact that the speed-up obtained

by the Model 2 in the Jetson TX2 is much higher than the speed-up obtained with this

parallel model in the Jetson TK1, suggests that the time spent in memory transfers has

a higher impact in the Jetson TK1 than in the Jetson TX2 board.

Finally, the compression processes are pipelined as well as the memory transfers in the

Model 3 and hence, the time spend in memory transfers can be neglected. This model

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 219

results in the highest speed-ups, specially for bigger image blocks (BS = 1024). Addition-

ally, the speed-up obtained by the Model 3 is much higher than the speed-up obtained by

the Model 2 for bigger image blocks (BS = 1024), but it is almost the same for smaller

blocks (BS = 256) in both boards. It is because when a kernel or a memory transfer is

launched, the consumed time is not only spent on executing the kernel/transferring the

data itself but also, on setting up and launching the instructions to do this. This means

that the time consumed in transferring image blocks of 256 pixels is negligible compared

with the overhead of launching the memory transfers and the additional logic required in

the Model 3. Nonetheless, the time required for transferring image blocks of 1024 pixels

is considerably higher than the overhead of initializing the copy and the additional logic

required by the Model 3. On the basis that Model 2 and 3 only differ in the pipeline of the

data transfers, we can conclude that bigger the BS, better the performance of the Model

3 in terms of speed-up than the Model 2, since it better hides the extra time required to

transfer bigger image blocks.

6.4.3.2 Performance of the parallel implementations of the HyperLCA com-

pressor in embedded LPGPUs in terms of average compression frame

rates

In addition to the speed-up analysis made in preceding Section 6.4.3.1, we have also eval-

uated the average number of hyperspectral frames that the developed parallel models are

theoretically able to compress using the NVIDIA Jetson TK1 and Jetson TX2 boards.

Table 6.10 shows the average results obtained after the compression of the HSIs that com-

pose the test-bench introduced in Section 6.2.1 for the same settings of the HyperLCA

input parameters considered in the previous Section 6.4.3.1. These frame rates are esti-

mated by a rule of three using the average execution times required for processing each

HSI within the defined test bench. Therefore, the average frame rate can be approximated

by dividing these runtimes by 825 and rounding up to the nearest entire whole number.

As described in Section 6.4.3.1, the average compression frame rate is a key factor for

the utility of this research work in the targeted application. Ideally, the desirable frame

rates to be obtained by the developed implementations of the HyperLCA compressor

should be higher than 330 FPS. This is due to the fact that the employed hyperspectral

sensor is able to provide up to 330 FPS when collecting 224 spectral bands, and even

more when collecting less number of spectral bands. By achieving this frame rate, it can

220 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

be guaranteed that the collected hyperspectral data can be always compressed in real-

time and, the capturing frame rate can be specified according to the characteristics of

the application (such as flight height, intensity of the light, area to cover, etc.) without

being limited by the data compression process. It must be mentioned that the desirable

frame rate represents the most extreme case since the employed frame rates are normally

smaller. For instance, the images included in the test bench were collected at 150 and 200

FPS.

According to the results shown in Table 6.10, it can be concluded that the parallel im-

plementation of the HyperLCA compressor named Model 3 executed in the Jetson TX2

board is able to achieve more than 330 FPS with independence of the configuration used.

It is also observable that using bigger Nbits values, (Nbits = 12), always guarantee faster

compression results (higher FPS). This is due to the fact that less V vectors are extracted

by the HyperLCA Transform, which results in less iterations required by the HyperLCA

Transform and less output vectors to be copied back to the host. Additionally there are

less vectors to be processed by the entropy coder. Model 2 executed in the Jetson TX2

board is also able to achieve more than 330 FPS for some configurations, specially for

higher compression ratios (CR = 20 and CR = 16). The fact of obtaining faster results

for higher compression ratios represents an extra advantage, since it means the rise of the

amount of compressed data to be stored and/or transmitted. It is also worth to mention

that compression frame rates higher than 330 FPS are only achievable using Model 3

when using the Jetson TK1 developer kit. As it occurs with the Jetson TX2 board, the

fastest results are obtained using Nbits = 12, higher compression ratios and bigger image

blocks. Despite the achieved frame rates using Model 2 and Model 3 do not surpass the

desired 330 FPS for all the situations, specially in the Jetson TK1 board, the achieved

FPS are still relatively high in relation with the frame rates typically used in the targeted

application.

On the basis that Parallel Model 3 achieves the highest speed-up and compression frame

rates, we have also assessed the performance of this hardware implementation model on

other two embedded computing devices, that is, the Jetson Nano and the Jetson Xavier-

NX. These modules have been selected for the reasonable computational power provided

at a relatively low power consumption. Therefore, the Jetson TK1 module integrates

the less advanced, oldest generation of the four targeted GPU architectures, followed by

the Jetson Nano. On the contrary, the Jetson Xavier-NX module represents one of the

latest NVIDIA power-efficient products, which offers more than 10x the performance of

its widely adopted predecessor, the Jetson TX2 board.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 221

Jetson TK1 Jetson TX2

Input parameters Time (s) Frame Rate (FPS) Time (s) Frame Rate (FPS)

Nbits BS CR Ref. Mod.1 Mod.2 Mod.3 Ref. Mod.1 Mod.2 Mod.3 Ref. Mod.1 Mod.2 Mod.3 Ref. Mod.1 Mod.2 Mod.3

12 84.32 20.96 9.78 2.07 12 49 105 495 77.91 20.02 3.70 1.83 13 51 277 558

1024 16 65.66 19.07 8.43 1.70 16 54 122 603 60.66 16.72 2.78 1.47 17 61 368 697

20 53.26 18.99 8.10 1.47 19 54 127 697 49.16 14.19 2.19 1.24 21 72 468 829

12 71.96 28.86 15.01 3.18 14 35 72 322 65.41 23.88 3.41 2.16 16 43 300 473

12 512 16 59.44 33.78 14.11 2.70 17 30 76 379 53.92 20.45 2.77 1.82 19 50 370 561

20 46.93 31.45 12.92 2.24 22 33 87 457 42.50 16.56 2.12 1.49 24 62 483 689

12 59.78 12.53 4.97 5.11 17 82 206 201 53.94 25.99 3.42 2.91 19 39 300 352

256 16 47.09 9.86 4.03 4.14 22 104 254 248 42.39 20.13 2.66 2.35 24 51 385 436

20 34.40 6.94 3.06 3.14 30 148 335 327 30.87 14.26 1.93 1.81 33 72 530 567

12 114.05 21.25 10.04 2.65 9 48 102 386 105.21 21.35 4.14 2.46 10 48 247 417

1024 16 89.50 20.33 8.98 2.17 11 50 114 473 82.60 18.10 3.18 1.96 12 57 322 523

20 71.10 16.65 8.43 1.81 14 62 122 565 65.63 15.55 2.46 1.59 16 66 416 643

12 95.88 39.31 16.82 4.14 11 26 61 247 87.25 27.38 3.85 2.87 12 37 266 357

8 512 16 71.17 28.93 14.51 3.18 14 35 72 322 64.78 21.58 2.79 2.18 16 48 367 471

20 58.81 33.54 14.02 2.70 17 31 76 379 53.43 18.17 2.29 1.83 19 57 448 560

12 71.65 14.41 5.89 6.05 14 71 174 169 64.82 28.53 3.56 3.45 16 36 288 296

256 16 52.86 10.61 4.49 4.62 19 97 228 221 47.68 19.14 2.64 2.65 21 54 388 387

20 46.60 9.24 4.03 4.12 22 111 254 248 41.99 16.93 2.35 2.36 24 61 436 434

Table 6.10: Evaluation of the average execution times and frame rates obtained by
the NVIDIA Jetson TK1 and the Jetson TX2 boards.

Table 6.11 collects the average results in terms of the compression frame rate obtained

by the four Jetson boards executing the Parallel Model 3. As it can be seen, the Jetson

Xavier-NX clearly outperforms the other targeted devices regardless the HyperLCA input

parameter settings. Nevertheless, it should be noticed by the reader that the Jetson

Xavier-NX represents one of the latest, most advanced NVIDIA single-board computers.

In general terms, more than 200 FPS can be processed using any of the computing boards

contemplated in the studio for almost all targeted algorithm configurations. In this sense,

compression rates higher than 330 FPS are obtained for bigger image blocks (BS = 1024)

and Nbits (Nbits = 12). In addition, these configurations also get the best possible results

in terms of the quality of the decompressed data, as it was analysed in Section 4.4.5 of

Chapter 4 using different distortion evaluation metrics, such as, the Signal-to-Noise Ratio

(SNR), the Root Mean Squared Error (RMSE), the Maximum Absolute Difference (MAD)

and the Structural Similarity Index (SSIM).

222 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

Input parameters FPS

Nbits BS CR Jetson TK1 Jetson Nano Jetson TX2 Jetson Xavier-NX

1024

12 495 533 558 2062

16 603 638 762 2422

20 697 729 923 2682

512

12 322 351 506 1405

12 16 379 408 599 1582

20 457 487 748 1767

256

12 201 225 372 909

16 248 275 465 1052

20 327 357 620 1251

1024

12 386 421 452 1730

16 473 511 568 2020

20 565 606 700 2294

512

12 247 276 384 1149

8 16 322 350 511 1409

20 379 409 596 1574

256

12 169 192 309 794

16 221 249 414 973

20 248 276 463 1053

Table 6.11: Evaluation of the average frame rates obtained by the NVIDIA Jetson
TK1, the Jetson Nano, the Jetson TX2 and the Jetson Xavier-NX boards using the

Parallel Model 3.

6.5 Benchmarking between the different parallel de-

vices for the acceleration of the HyperLCA algo-

rith

Among the research goals to be reached with the realization of this Thesis, it was con-

templated the evaluation of the different parallel devices considered in the analysis made

according to the characteristics of the target application. Consequently, this Section also

provides a comprehensive analysis between the HWaccs targeting the HyperLCA imple-

mentation on FPGAs and LPGPUs developed in this Thesis. For the latter, we exclusively

focus on the Parallel Model 3 since it achieves the highest speed-up, especially for bigger

image blocks (BS = 1024), which is indeed the only configuration evaluated in Section

6.3 for the FPGA-based HWaccs. Two assessment metrics have been selected for the

comparison: the number of frames compressed in a second (FPS) and the power efficiency

in terms of FPS per watt. The latter figure of merit is of great importance given the

target application, since it is critical to maximize the battery life of a UAV-based system

as the drone used for collecting the data set employed in the experiments made.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 223

Regarding the GPU-based Parallel Model 3, its performance was evaluated on different

NVIDIA Jetson embedded computing devices in Section 6.4. However, the analysis made

in the following lines will be focused solely in the Jetson Nano, the Jetson TX2 and the

most recent supercomputer, the Jetson Xavier NX. The Jetson Nano module integrates

the less advanced, oldest generation of the three GPU architectures, instantiating the

fewer execution units or CUDA cores as well. On the contrary, the Jetson Xavier-NX

represents one of the latest NVIDIA power-efficient products, which offers more than 10x

the performance of its widely adopted predecessor, the Jetson TX2.

Table 6.12 collects the performance results obtained for the three GPU-based implemen-

tations of the HyperLCA and the most powerful implementation of the HWacc in a Zynq-

7020 SoC (PE = 20) for different settings of the algorithm input parameters. It is

also specified the clock frequency and power budget for each addressed implementation.

Additionally, Figure 6.22 displays the obtained frame rates according to different config-

urations of the Nbits parameter and the minimum desirable compression ratio, CR. As

expected, the achieved frame rates increase when higher CR are desirable for all target

devices. However, the FPGA-based implementation on a Xilinx Zynq-7020 SoC surpris-

ingly outperforms those performed on the Jetson Nano and the Jetson TX2 boards. On

the contrary, the GPU-based implementation on the Jetson Xavier-NX clearly exceeds

the maximum number of FPS achieved by the FPGA for all algorithm settings. Nev-

ertheless, it should be noticed that the Jetson Xavier-NX represents one of the latest,

most advanced NVIDIA single-board computers whereas the Xilinx Zynq-7020 SoC that

mounts the ZedBoard (i.e., XC7Z020-clg484) is a mid-range FPGA several technological

generations behind. In fact, there are more powerful FPGA devices currently on the mar-

ket, nonetheless, one of the main purpose of this comparison is to explore the minimum

requirements of an FPGA-based computing platform that is able to fulfil the performance

demands and constraints of the hyperspectral application under study. Thus, the selected

version of the Xilinx Zynq-7020 SoC meets the demand for all algorithm configurations,

at a lower cost as it will be seen in following lines.

Going deeper in the analysis of the results, Figure 6.23 plots the power efficiency for each

target device, measured as the FPS achieved divided by the average power budget. In this

sense, the Jetson boards are designed with a high-efficient Power Management Integrated

Circuit that handles voltage regulators, and a power tree to optimize power efficiency.

According to [233–235], the typical power budgets of the selected boards amount to 10

W, 15 W and 10 W for the Jetson Nano, Jetson TX2 and Jetson Xavier NX modules,

respectively. In the case of the XC7Z020-clg484 FPGA, the estimated power consumption

224 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

Nbits BS CR

Maximum frame rate (FPS)

FPGA GPU

XC7Z020-CLG484 Jetson Nano Jetson TX2 Jetson Xavier-NX

143 MHz 921.6 MHz 1.12 GHz 800 MHz

2.51W 10W 15W 10W

12 1024

12 998 533 558 2062

16 1200 638 762 2422

20 1388 729 923 2682

8 1024

12 779 421 452 1730

16 908 511 568 2020

20 1124 606 700 2294

Table 6.12: Maximum frame rates obtained in the compression process by a Xilinx
Zynq-7020 programmable SoC and some NVIDIA power-efficient embedded computing

devices, such as the Jetson Nano, Jetson TX2 and Jetson Xavier-NX.

(a) (b)

Figure 6.22: Comparison of the speed-up obtained in the compression process, in
terms of FPS and the input parameter CR, reached by a Xilinx Zynq-7020 programmable
SoC and some NVIDIA power-efficient embedded computing devices, such as the Jetson
Nano, Jetson TX2 and Jetson Xavier-NX. (a) Nbits = 12, BS = 1024. (b) FPS Nbits = 8,

BS = 1024.

after Place & Route stage in the Vivado toolchain goes up to 2.59 W at 143 MHz. Based on

the trend lines shown in Figure 6.23, it can be concluded that the FPGA-based platform

is by far more efficient in terms of power consumption that the target Jetson boards, for

all algorithm configurations. Nonetheless, this gap has been decreased compared with

the latest Jetson Xavier-NX. The reason that explains this behaviour roots in the fact

that GPU-embedded platforms have been able to significantly increase their performance

while maintaining or even reducing the power demand. The combination of architectural

improvements and better integrated system (IC) manufacturing processes have paved the

way to an scenario where embedded-GPU platforms are gaining ground and could be seen

as competitors of FPGAs concerning power efficiency in the near future.

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 225

(a) (b)

Figure 6.23: Comparison of the energy efficiency in the compression process, in terms
of the ratio between obtained FPS and power consumption and the input parameter CR,
reached by a Xilinx Zynq-7020 programmable SoC and some NVIDIA power-efficient
embedded computing devices, such as the Jetson Nano, Jetson TX2 and Jetson Xavier-

NX. (a) Nbits = 12, BS = 1024. (b) FPS Nbits = 8, BS = 1024.

6.6 Conclusions

In this Chapter, we tackle two research goals within those defined initially for the re-

alization of this Thesis. Firstly, it has been verified the suitability of the algorithms

proposed along the preceding Chapters for real-time applications. Secondly, it has also

confirmed the benefits of developing algorithmic solutions based on the same mathemat-

ical method in terms of reducing the execution-times, the hardware resources and the

human endeavours. For doing this, the algorithmic solutions proposed in this Thesis, that

is; the HyperLCA, the HW-LbL-FAD and the HADeLoC methods; have been efficiently

implemented in a heterogeneous mid-range Zynq-7000 SoC chip (XC7Z020-clg484) from

Xilinx. Additionally, the HyperLCA algorithm has been also accelerated in low-power

GPUs (LPGPUs) embedded in NVIDIA boards in order to evaluate the adaptability of

the proposed set of core operations to other scenarios according to the characteristics of

the targeted applications.

In order to stablish the real-time constraints to be fulfilled, we focus on remote sensing

applications where the available computational resources are limited, due to power, weight

or space limitations. Concretely, we present a smart farming application where a VNIR

hyperspectral pushbroom scanner is mounted onto a UAV for collecting periodical infor-

mation of the crops, which results in a huge amount of data that needs to be managed,

processed and analysed. In this sense, the developed hardware accelerators must reach

frame rates higher than 330 FPS, being a frame composed of 1024 hyperspectral pixels,

in order to surpass the maximum frame rates provided by the acquisition system. By

226 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

achieving this frame rate, it can be guaranteed that the collected hyperspectral data can

be always processed in real-time and, the capturing frame rate can be specified according

to the characteristics of the application (such as flight height, intensity of the light, area

to cover, etc.) without being limited by the data processing methods.

The definition of the FPGA-based HWaccs that implement the several algorithms pro-

posed in this Thesis has been carried out by using a combination of generated HLS mod-

ules and custom glue logic in VHDL. In this sense, FPGA-based modules that implement

each of the proposed core operation are defined using HLS tools. These defined modules

are reused in the hardware implementation of the HW-LbL-FAD, the HyperLCA and

the HADeLoC methods. Consequently, efforts have been focused on the interconnections

among them for each targeted algorithm to be accelerated. In this sense, memory buffers

and custom logic that integrates and orchestrates all the components in the design are

instantiated and implemented using customized VHDL language. Therefore, it implies

less time and effort during the stage of hardware acceleration since the same product can

be reused for several algorithms targeting different applications. Additionally, FPGA de-

vices are generally more efficient dealing with integer operations with a close-to-hardware

programming approach. For this reason, the Int16-rd version of the proposed set of core

operations has been selected for the definition of the HWaccs under evaluation, due to its

good behaviour in terms on the quality and the precision of the obtained results and the

resource savings it brings.

Regarding the addressed LPGPU-based implementation of the HyperLCA compressor,

the parallelism inherent to this hyperspectral lossy compressor has been exploited be-

yond the thread-level concurrency of the GPU programming model and more specifically,

pipelining the execution of the compression stages of the HyperLCA algorithm for each

independently processed image block, as well as, the communications and memory trans-

fers. In this sense, three different implementation models of the whole compression model

have been studied, seeing them as an evolution towards an optimal configuration that ful-

fils the constraints imposed by the targeted application. In particular, the third approach,

referred to as Parallel Model 3, achieves the highest speed-up, especially for bigger image

blocks (BS = 1024). This implementation model bets for pipelining the data trans-

fers between the host and the device and the kernel executions for the different image

blocks, Mk. To do this, such proposal exploits the benefits of the concurrent kernel exe-

cution through the management of CUDA streams. Unlike the FPGA-based HWacc also

Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms 227

described for this particular algorithm, only the HyperLCA Transform stage is acceler-

ated in the LPGPU. In this sense, the codification stage is pipelined with the HyperLCA

Transform stage but it is executed on the Host using another parallel CPU process.

Several experiments have been carried out in order to evaluate the performance of the

hardware accelerators described in this Chapter targeting both the FPGAs and the GPUs.

In all cases, developed implementations have overcome by far the requirements imposed

by the maximum capturing frame rate of the hyperspectral sensor. Regarding the FPGA-

based HWacc, a map-reduce programming model that permits the parallel management of

several spectral bands (PE) is able to obtain between 778.90-1600 FPS with PE = 20. For

the three targeted HWAccs, the employed hardware resources in terms of BRAM, DSPs,

FFs and LUTs do not exceed the limits imposed by the targeted device. Indeed, it is used

the 70.36% of the BRAM, the 75.45% of the DSPs, the 21.71% of the FFs and the 45.04%

of the LUTs for the most unfavourable situation. Nonetheless, this scenario corresponds

with the HADeLoC approach that actually carries out both the lossy compression process

and the detection of anomalous spectra.

From the obtained results, it can be also drawn two additional conclusions. Firstly, it

is clear that the implementation of both the HW-LbL-FAD detector and the HyperLCA

compressor could not be addressed as independent entities in the selected XC7Z020-clg484

FPGA due the available hardware resources. Nonetheless, this issue is solved by the for-

mulation of algorithmic solutions based on the same mathematical method in order to

reuse block of operations among the targeted analysis, as the HADeLoC does. Secondly,

the execution times required for the implementation of both the lossy compression of

HSIs and the detection of anomalous spectra handled by the HADeLoC approach is al-

most the same as just the performance of only one process, specially, the HW-LbL-FAD

algorithm. Therefore, these discussions are certainly in the line of the research goals to

be accomplished in this Thesis.

In relation to the implementation of the HyperLCA algorithm on NVIDIA boards, it

can be concluded that the parallel Model 3 executed in both the Jetson TX2 and the

Jetson Xavier NX boards is able to achieve more than 330 FPS with independence of the

input parameter settings. The frame rates obtained by the former reaches the 452-923

FPS while the latter is able to process 1730-2682 FPS. As it can be seen, the newest

embedded-GPU platforms, such as the Jetson Xavier NX, are gaining ground and they

can be seen as competitors of FPGAs concerning both the computing performance and

even power efficiency [217].

228 Chapter 6. Hyperspectral imaging acceleration using parallel computing platforms

Finally, it is important to note that although experiments carried out in this work are

oriented to the current necessities imposed by an application based on drones, all drawn

conclusions can be extrapolated to other fields in which remotely sensed hyperspectral

images have to be compressed in real time, such as spaceborne missions that employs

next-generation space-grade FPGAs.

Chapter 7

Conclusions and further research

lines

This Chapter summarizes the main contributions of this Thesis and proposes further

research topics, which are expected to complement and enhance the future developments

of this work.

229

230 Chapter 7. Conclusions and further research lines

7.1 Conclusions

Hyperspectral imagery has gained an increasing interest by the scientific community in

the last years in such a manner that it has been consolidated as one of the mainstream

terrestrial Earth observing systems. Its attraction lies in the large amount of informa-

tion along the electromagnetic spectrum that this technology brings for each single image

pixel. Human eyes are sensitive to the visible light in the way that they are able to distin-

guish mostly three wavelength ranges corresponding to the red, green and blue colours.

Nonetheless, hyperspectral images (HSIs) are able to capture the reflection distribution

from the observed objects along a broader range of the electromagnetic spectrum dividing

it in many contiguous spectral bands. Therefore, any single image pixel is associated

with a full continuous spectrum, commonly called spectral signature of the pixel. This

in fact permits the identification of certain Earth surface materials due to their unique

”fingerprint” along the electromagnetic spectrum.

On this basis, remote sensing is the field in which hyperspectral imaging techniques have

traditionally acquired more relevance. In this sense, the hyperspectral data analysis en-

ables detailed examinations of the land surfaces and the identification of visually similar

materials, as well as the estimation of physical parameters of many complex surfaces.

Within this domain, three different hyperspectral acquisition platforms have been exten-

sively utilized, such as aeroplanes, satellites and unmanned aerial vehicles (UAVs). Indeed,

the latter is gaining momentum and has become a very popular solution for the data col-

lection in applications oriented to the inspection, surveillance and monitoring due to its

lower-cost and more flexible revisit time than the other aforementioned Earth-observation

platforms.

Nevertheless, despite the existence of a wide variety of remote sensing data acquisition

systems, the onboard hyperspectral image processing still poses several challenges mainly

due to the management of large amounts of data. On one hand, it jeopardizes the real-time

performance of this kind of applications and, on the other hand, it demands a significant

computing capability, which also means a greater degree of hardware resources utilisa-

tion. Additionally, the steadily growing data-rate and resolution of the latest-generation

sensors aggravate the issue even further. Consequently, on-Earth processing has been

the mainstream solution for remote sensing applications that sense HSIs. In this regard,

images acquired by Earth observation platforms aboard satellites or manned/unmanned

Chapter 7. Conclusions and further research lines 231

aerial vehicles are traditionally downloaded to the ground segment for being off-line pro-

cessed on supercomputing systems. Unfortunately, the data transmission from the remote

sensing platforms to the Earth surface introduces important delays related to the commu-

nication of large amount of data. Consequently, this operating mode clearly compromises

the real-time response of time-sensitive applications due to the large amount of data to

be transmitted and the bottleneck represented by the limited communication bandwidth

of the downlink system.

Against this backdrop, the onboard processing of remotely sensed HSIs has experienced

a steady surge in popularity in recent years. Indeed, it represents a potential solution

for those applications that demand quick response in which the conventional approaches

based on the off-line data handling do not meet the actual needs. Nevertheless, it is still

necessary to overcome many other obstacles imposed by the available aboard hardware

devices in order to efficiently carry out this alternative and to execute onboard the hy-

perspectral data processing. Regrettably, the algorithms traditionally proposed for the

hyperspectral analysis have been addressed as independent entities, using those mathe-

matical methods that better maximize the results for each particular case. In addition,

these approaches normally give rise to complex algorithms characterized by computation-

ally costly operations, intensive memory requirements, high implementation costs and a

non-scalable nature. For these reasons, a great deal of effort has been made to reduce the

heavy computational burden required by the involved operations in order to accelerate

the process through alternative mathematical methods or through parallel computing via

high-performance architectures.

The aforementioned scenario becomes even more challenging when different time-sensitive

applications coexist in the same computing device. In this regard, the simplest and the

most commonly adopted solution is to select a different mathematical algorithm from the

wide assortment of proposals encountered in the literature for each hyperspectral image

processing type to be performed and then, to accelerate them using parallel computing

devices. The issue arises when they have to be sequentially processed onto the same

computing device due to restrictions in terms of power, weight and size. The main ratio-

nale behind this is based on the detaching between the algorithm design phase and the

hardware implementation stage, resulting in very inefficient hardware implementations.

Therefore, there is a need in the literature for new algorithmic solutions that take into

consideration the above mentioned currently existing constrains imposed by nowadays

remote sensing applications. Additionally, the causality inherent to real-time frameworks

based on pushbroom/whiskbroom scanners must be also met through the definition of

232 Chapter 7. Conclusions and further research lines

non-global algorithms capable of independently processing blocks of image pixels. In

turn, this prevents the storing and management of large data volumes, thereby reducing

the computing resources and speeding up the execution process.

Against this backdrop, we have dealt in this Thesis work with the issue around the on-

board execution of multiple hyperspectral image analysis techniques onto the same piece

of hardware. In this regard, a new algorithmic solution is proposed to meet the aforemen-

tioned requirements, paving the to a real-time performance of the hyperspectral image

processing. For this end, this Thesis contributes to the research community with the

achievements described below:

� A set of core operations that extract features from the HSIs useful for many ap-

plications has been uncovered. This set permits the concurrent execution of many

different tasks at the same time; such as anomaly detection, target detection, lossy

compression, classification, and unmixing; with the advantage of sharing the most

computationally intensive operations. To do this, the proposed set of core operations

is based on orthogonal projection techniques and more specifically, on the well-

known Gram-Schmidt orthogonalization method. Additionally, this methodology

also features low computational complexity since non-complex matrix calculations

are involved and previously computed information is reused.

As a novelty, the proposed set of core operations can be efficiently and independently

applied on blocks of image pixels without requiring any specific spatial alignment.

This distinguishing feature makes this proposal a promising solution for real or near

real-time applications specially when using hyperspectral sensors based on pushb-

room scanners, which sense the data in a line-by-line fashion.

One of the major benefits of the introduced core operations lies in the definition

of a set of variables whose values are always within numeric ranges known before-

hand. Consequently, it allows to fix in advance the maximum and minimum values

of the results obtained in each operation. This feature makes possible to use the

fixed-point concept in a custom way using integer arithmetic and bit shifting for

representing the integer and decimal parts of the numbers. Therefore, the proposed

set of core operations can be easily adapted to the requirements imposed by the

targeted devices and thereby, be seamlessly implemented using both fixed-point and

floating-point notation. In this context, field programmable gate array (FPGA)

devices are in general more efficient dealing with integer operations with a close-

to-hardware programming approach, while graphical processing units (GPUs) are

Chapter 7. Conclusions and further research lines 233

optimised for parallel processing of single floating-point operations using thousands

of small cores.

� A new algorithm for the detection of anomalous spectra has been also developed

in this Thesis, named A Line-by-Line Fast Anomaly Detector for Hyperspectral Im-

agery (LbL-FAD). The LbL-FAD algorithm is a subspace-based anomaly detection

algorithm designed to fulfil the constraints imposed by nowadays remote sensing

applications based on pushbroom/whiskbroom scanners. In this regard, the LbL-

FAD algorithm is able to independently process blocks of hyperspectral pixels with

not taking into consideration any spatial alignment requirement. As a result, this

feature is well aligned with the needs imposed by the aforementioned acquisition

systems since the detection of anomalous pixels can be conducted in a line-by-line

fashion.

For the detection of abnormal spectra, the LbL-FAD algorithm focuses on the calcu-

lation of an orthogonal subspace to the one spanned by the background distribution

in which the anomalous spectra are better distinguishable. To do this, the LbL-FAD

follows an orthogonal projection strategy and, more specifically, by means of the set

of core operations introduced in this Thesis. Therefore, this methodology allows ex-

cluding the use of traditional linear transformation methods, such as the Principal

Component Analysis (PCA) or the Singular Value Decomposition (SVD), that are

high computational complex in nature, nor the inverse of big data matrices.

� A performance-enhancing version of the state-of-the-art Lossy Compression Algo-

rithm for Hyperspectral Image Systems (HyperLCA) has been proposed for the

spectral decorrelation and compression of HSIs. The HyperLCA algorithm is a

low-computational complexity transform-based alternative that provides high com-

pression ratios with a good compression performance at a reasonable computational

burden. As a further advantage, the HyperLCA algorithm permits compressing

blocks of image pixels independently. This feature promotes, on one hand, the re-

duction of the data to be managed at once besides the hardware resources to be

allocated, and on the other hand, the HyperLCA algorithm becomes a very com-

petitive solution for most applications based on pushbroom/whiskbroom scanners,

paving the way to a real-time compression performance.

The HyperLCA algorithm was for the first time introduced in [2]. As a novelty,

the methodology described in [2] has been widened in this Thesis work in order to

234 Chapter 7. Conclusions and further research lines

be adapted and, thereby, fallen within the proposed set of core operations. More-

over, an efficient and comprehensive compression system has been also introduced.

Additionally, it has also extended the definition of the operations performed by

the HyperLCA Transform with the purpose of analysing their suitability for being

executed using integer arithmetic.

Finally, it has also been demonstrated that the HyperLCA algorithm is able to pre-

serve the most different pixels after the compression-decompression process, which

is crucial for many posterior hyperspectral image processing techniques. Indeed, the

use of the same core operations for the definition of both the HyperLCA compressor

and the above-mentioned LbL-FAD algorithm guarantees that the compression pro-

cess does not seriously affect the posterior anomaly detection performance when it is

off-board executed using the compressed/decompressed data. As a consequence, it

permits tailoring to different scenarios that impose different requirements, ensuring

the same results in all situations.

� The feasibility of the concurrent execution of multiple hyperspectral analysis tech-

niques based on the same mathematical method has been also demonstrated. Con-

cretely, we have analysed the adequacy of the set of core operations proposed in

this Thesis work for the simultaneous execution of multiple hyperspectral analysis

techniques. This provides two main benefits. Firstly, it implies less time and effort

during the stage of hardware acceleration since the same product can be reused

for several algorithms targeting different applications. Secondly, it permits the ex-

ecution of several tasks at the same time with the advantage of sharing the most

computationally costly operations, thus reducing the overall computational cost and

the required hardware resources.

In particular, it was verified the suitability of the proposed methodology for the

concurrent execution of the lossy compression of HSIs jointly with the detection of

anomalous signatures. To meet this issue, two optimized versions were eventually

proposed. The former, referred to as Optimized proposal for the simultaneous de-

tection of anomalous pixels and the lossy compression of HSIs (ADeLoC), searches

for the highest accuracy in the detection and compression results. In this sense,

the ADeLoC approach ensures the same detection and compression results as the

original LbL-FAD and the HyperLCA methods but, launching 39-41% less number

of operations. The latter, named Hardware-friendly proposal for the simultaneous

Chapter 7. Conclusions and further research lines 235

detection of anomalous pixels and the lossy compression of HSIs (HADeLoC) prior-

itizes the optimization of the hardware resources and the minimization of the execu-

tion times at the expense of a loss of accuracy in the compression results compared

with the original HyperLCA compressor. In this case, it was verified that roughly

55-59% fewer operations are executed than if both processes were independently

implemented and 27-30% less than the ADeLoC version. Therefore, the overall con-

clusion that was drawn is that there is always a trade-off among the quality of the

results, the computational resources and the execution times.

� To confirm the benefits of developing algorithmic solutions based on the same math-

ematical method in terms of a reduction in the execution-times, the hardware re-

sources and the human endeavours, and also to verify the suitability of the developed

algorithms for real-time applications, the main proposals of this Thesis have been

also implemented on different parallel devices, namely GPUs and FPGAs. Con-

cretely, the LbL-FAD, the HyperLCA and the HADeLoC methods were accelerated

on a Xilinx system on chip (SoC) FPGA device, while the HyperLCA was adapted

to be launched in embedded computing boards from NVIDIA.

The definition of the FPGA-based hardware accelerators (HWaccs) that implement

the several algorithms proposed in this Thesis has been carried out by using a com-

bination of generated high level synthesis (HLS) modules and custom glue logic in

VHDL (Very High Density Language). In this sense, FPGA-based modules that

implement each of the proposed core operation are defined using HLS tools. These

modules are reused in the hardware implementation of the HW-LbL-FAD, the Hy-

perLCA and the HADeLoC methods. Consequently, efforts have been focused on

the interconnections among the described HLS modules particularly for each tar-

geted algorithm to be accelerated. In this sense, memory buffers and custom logic

that integrates and orchestrates all the components in the design have been instanti-

ated and implemented using customized VHDL language. Therefore, it implies less

time and effort during the stage of hardware acceleration since the same product

can be reused for several algorithms targeting different applications. In relation to

the average obtained processing rates, the developed HWaccs are able to manage

between 778 and 1600 frames of 1024 hyperspectral pixels in a second (FPS), which

surpass the minimum of 330 FPS imposed by the targeted application and hence,

ensuring a real-time performance.

Regarding the GPU-based implementation of the HyperLCA compressor, three dif-

ferent implementation models of the whole compression model have been studied,

236 Chapter 7. Conclusions and further research lines

seeing them as an evolution towards an optimal configuration that fulfils the con-

straints imposed by a high data-rate application. The last implementation model,

referred to as Parallel Model 3, bets for pipelining the data transfers between the

host and the device and the kernel executions for the different image blocks, Mk.

To do this, such proposal exploits the benefits of the concurrent kernel execution

through the use of the CUDA stream concept. In terms of the obtained compression

frame rates, this Parallel Model 3 is able to ensure a real-time performance since

452-923 FPS can be efficiently processed using the Jetson TX2 developer kit, while

more than 1730 FPS are obtained with the Jetson Xavier NX, which is also one of

the latest embedded GPU NVIDIA platforms.

� Finally, we have also briefly discussed the possibility of extending the use of orthog-

onal subspace projections and, in particular, the Gram-Schmidt orthogonalization

method by means of the set of core operations proposed in this Thesis work, in

the fields of band selection, target detection, unmixing and classification. Although

the analysis made is far from being as exhaustive as those carried out by LbL-FAD

detector and the HyperLCA compressor, it indeed represents a turning point in the

way of future research works.

7.2 Future Research Lines

Several topics could be derived from those dealt in this Thesis as part of future research

works that extend and complement the conclusions drawn along this dissertation. Some

of them are briefly introduced in below lines.

� Future research lines are focused on extending the use of the proposed set of core

operations to other fields such as, band selection, target detection, unmixing and

classification. Although the first approximations towards the realization of these hy-

perspectral image processing analysis are briefly illustrated in Appendix A, a more

comprehensive study is required in order to set the strengths and weaknesses of

the proposed methodology for these particular issues. This fact also opens up new

avenues towards the concurrent execution of multiple hyperspectral imaging appli-

cations. Therefore, it is also desirable to analysis the viability of the simultaneous

performance of some of the aforementioned methods in a similar way as it has been

done in this Thesis for the anomaly detection and the lossy compression issues.

Chapter 7. Conclusions and further research lines 237

� The set of core operations proposed in this Thesis selects the p most spectrally

different pixels as representative of a certain distribution of spectral signatures.

Nonetheless, the presence of undesirable distortions derived from sparkles, scatter-

ing or from the sweeping motion of the data acquisition platform might lead to the

selection of some pixels of interest that they are not really representative of the

spectra contained in the data to be analysed. Hence, it could jeopardize the qual-

ity of the compression results and also the accurate modelling of the background

distribution within the anomaly detection issue. Consequently, there is also a need

for the development of outlier detectors that are able to discard these undesirable

spectra and minimize the impact of the above-mentioned phenomena.

� Regarding the performance of the LbL-FAD anomaly detector proposed in this The-

sis, it is also desirable to study other alternatives in order to estimate a more accurate

threshold that automatically segments the abnormal spectra from the background.

With it, we achieve to increase the detection probability of mixed pixels placed on

the rounded edges of the anomalous entities. In this regard, these pixels are com-

posed in its majority by background spectra mixed with the anomalous signature

and for this reason, their detection is not straightforward.

� Nowadays, there are other types of entropy coders that the one used in this Thesis

in conjunction with the HyperLCA Transform for the lossy compression of HSIs.

Concretely, the entropy coder used in the HyperLCA algorithm description done in

this dissertation is a sample-adaptive entropy coding approach. Nonetheless, the

CCSDS organization also includes in its recommended standards other solutions,

such as the block-adaptive coder and the hybrid encoding approach. Therefore,

the analysis of these other existing solutions could be interesting in order to max-

imize the trade-off between the reached compression ratios and the rate-distortion

performance.

� During the assessment of the proposed HADeLoC method, it was shown the impor-

tance of the calibration and the radiometric correction of the hyperspectral data to

obtain accurate reflectance values before performing any further analysis on them.

Indeed, it is a determining factor since luminance conditions over the course of the

data acquisition campaigns are likely to bear the brunt of the environmental shifts.

In addition, there is an increasing scientific motivation towards the definition of more

accurate radiometric correction methods under operational conditions that take into

account the incident radiance at each instant [31, 219–222]. Any improvements done

238 Chapter 7. Conclusions and further research lines

in this field will have repercussion in hyperspectral imaging applications under real-

time constraints since they are actually the first step required in any hyperspectral

imaging application.

� Further research work is being carried out at this moment related with the trans-

mission of the acquired hyperspectral data or the results obtained after the onboard

processing of these data. It allows the rapid download of the acquired data to

the ground stations where an operator could analyse and visualize them in real-

time. Currently, we are working on the design of a complete working solution that,

starting from the GPU-based hardware accelerator described in this Thesis, it has

been adapted for being incorporated in the acquisition platform described in [89] for

testing the goodness of the HyperLCA compressor in a real operation mode [236].

However, we have also come across some operational limitations related with the

use of non-volatile memory and the transmission process based on a wireless local

area network (WLAN) via the Secure Shell Protocol (SSH) connection. Therefore,

a great deal of work remains to be done in this field but, not only targeting the

lossy compression of HSIs but also, the other algorithmic solutions proposed in this

dissertation and other computing devices such as FPGAs.

Appendix A

Application of the proposed

methodology to other hyperspectral

image processing research fields

Future research lines are focused on extending the use of the set of core operations pro-

posed in this Thesis work to other fields such as, band selection, target detection, unmixing

and classification. In this Appendix, we briefly illustrate the first approximations towards

the performance of these hyperspectral image analysis techniques.

239

240 Appendix A. Other research fields within the hyperspectral image processing

A.1 Rationale

In preceding Chapters, the potential of the orthogonal projection techniques performed in

the way as does the set of core operations defended in this Thesis work has been corrob-

orated for the detection of anomalous spectra and the lossy compression of hyperspectral

images (HSIs). Nonetheless, there are other relevant and distinctive hyperspectral data

analysis techniques in which this methodology could be efficiently applied as well, such as

unmixing, target detection, classification and band selection.

HSIs offer a high spectral resolution in return for a limitation in the spatial resolution,

which is normally less than the size of most land object types and so, spectrally mixed

pixels exist. Hence, the signal recorded by a hyperspectral sensor at a given band and from

a given pixel is a mixture of the “light” scattered by the constituent substances located in

the respective pixel coverage [55]. In this context, the hyperspectral unmixing paradigm

provides a solution to the spectral mixing modelling issue, which consists of determining

the spectrally pure components, also called endmembers, present in mixed pixels, as well as

the amount of spectral information collected by each image pixel that can be represented

by each endmember, also called abundances. The linear mixing model (LMM) is one of the

most popular approximations to the mixing simulation. It assumes that measured spectra

can be expressed as a linear combination of the endmember signatures present in the mixed

pixel. On this basis, a HSI can be represented as a function of some image pixels, E =

{en, n = 1, ...p}, and their corresponding abundances, A = {aj,n, j = 1, ...np, n = 1, ...p},
which can be derived from the projection of each image pixel onto each endmember [105].

As it can be noticed, the set of core operations proposed in this Thesis actually addresses

these issues as long as results in a set of the most characteristic or distintive pixels within

a set of image blocks that are obtained by orthogonal projection techniques. Moreover,

the linear hyperspectral unmixing process could be also a preliminary step for many other

hyperspectral processes, such as classification and target detection, since it allows a better

understanding of the scene under analysis.

Hyperspectral imagery has been used in reconnaissance and surveillance applications

where targets of interest are detected and identified. In some applications, there is a

prior knowledge about the spectral characteristics of the desired targets. In this sce-

nario, target detection consists of searching these known spectral signatures of interest,

for example from a database. In this sense, the mixing model can be used to character-

ize the targets and the interfering background. Indeed, a subpixel target is mixed with

Appendix A. Other research fields within the hyperspectral image processing 241

the background spectra resulting in an image pixel with a combined spectral signature.

Therefore, subpixel target detection issue could involve some kind of linear separation of

pixel constituent elements [108] that could be solved by addressing the linear hyperspec-

tral unmixing process. Additionally, unlike the spectral signature of interest that is known

in advance, the background subspace could be estimated from the HSI using statistical or

geometrical techniques. A good statistical approximation of the background can be done

using the eigenvectors of the hyperspectral cube correlation matrix. On the contrary, the

extraction of the p most representative pixels of the background, also commonly referred

to as undesired signatures, could arise as an accurate geometrical description of the back-

ground distribution that will be used later to annihilate the spectral information that does

not belong to the desired target. As it can be seen, this feature extraction issue is equiv-

alent to the modelling of the background distribution carried out for anomaly detection

and lossy compression, which was efficiently settled by the set of operations proposed in

this Thesis.

Regarding the latter, orthogonal projection techniques may be also used to select the

spectral bands that best differentiate the desired target and the background signatures

in order to maximize the spectral differences between both classes. The proposed set

of core operations is indeed able to identify the most characteristic pixels within a HSI.

This makes us think that processing the transpose of the data applying this methodology

could result in an accurate selection of the most distinctive spectral bands within spectral

classes inherent to the data set instead of pixels. Therefore, the set of core operations

could be potentially used to tackle feature selection, in particular, band selection, which

would also ease the posterior target detection.

Lastly, classification of a HSI entails the identification of which pixels contain various

spectrally distinct materials that have been specified by the user. As it can be noticed,

the classification problem can be treated as a problem of abundance calculations as in

the unmixing field where user-defined spectra can be seen as the endmembers. In this

sense, each image pixel could be classified as a function of its spectral similarity with each

reference spectra, which would be assessed by the maximum estimated abundance factor,

an, [237].

The possibility of extending the use of the set of core operations proposed in this Thesis

work to the above mentioned fields has been analysed in this Chapter. Although these

hyperspectral data analysis themes have not been studied in as much detail as the detec-

tion of anomalies and the lossy compression of HSIs discussed in preceding Chapters, we

242 Appendix A. Other research fields within the hyperspectral image processing

briefly illustrate the first approximations towards the performance of these hyperspectral

processing techniques.

A.2 Dimensionality Reduction: band selection

Hyperspectral sensors gather spectral information of hundreds of continuous and narrow

wavelengths along the electromagnetic spectrum. Its abundant spectral information pro-

vides the potential of accurate object identification. Nonetheless, this feature also involves

the handling of large data volume, which brings about problems in data transmission and

storage. Moreover, adjacent spectral bands are highly correlated and hence, spectral in-

formation contains in them is redundant. In this context, dimensionality reduction (DR)

techniques emerge in order to reduce the very high-dimensional data inherent to the HSIs

to a manageable low-dimensional space where data analysis can be performed in a more

effective way [238].

In general terms, there are two main categories of DR methods found in the literature:

transform-based and band selection-based methods. The former consists in transforming

the data onto a low-dimensional space by means of certain criteria. Some examples of

these approaches are the well-known Principle Component Analysis (PCA), Minimum

Noise Fraction (MNF), Independent Component Analysis (ICA), Orthogonal Subspace

Projection(OSP), among others. In addition, the HyperLCA Transform proposed in this

Thesis work for the lossy compression of HSIs is also an example of this kind of DR

methodologies. However, transform-based solutions normally change the physical mean-

ing of the original data because components of the resulting low-dimensional space do

not correspond to individual original spectral bands [239]. By contrast, selection-based

methods search for a subset of original bands in pursuit of preserving the physical mean-

ing of pixel spectra. It is on this latter that the set of core operations proposed in this

Thesis work may be also potentially employed. While the goodness of this methodology

was analysed as a data transform-based point of view in Chapter 4, its expanded use in

the field of band selection-based approaches is briefly outlined in this Section.

The basic idea behind the unsupervised band selection methods is to find the most dis-

tinctive bands among a set of spectra that still allow the detection and discrimination of

classes present in the original data. For this reason, state-of-the-art approaches proposed

to search for distinctive spectral signatures in endmember extraction has been commonly

Appendix A. Other research fields within the hyperspectral image processing 243

used to address the band selection issue, as it was analysed in [239]. The main difference

lies in the domain in which data is analysed. In the case of band selection, algorithms

are applied in the spatial domain instead of being applied in the spectral domain for

endmember extraction. On this basis, the set of core operations proposed in this Thesis

has been extensively analysed so far for the extraction of the most characteristic pixels,

which play a similar role as endmembers. Therefore, it is straightforward to think that

this methodology could be also applied for band selection after introducing some minor

changes in the way the data are read, that is, using the transpose of the original data.

Figure A.1 shows a graphical representation of the variables and their dimensions involved

by each proposed core operation when using the original hyperspectral data (Figure A.1a)

for the extraction of characteristic pixels, E, and the transpose of the data (′) for band

selection (Figure A.1b). For the sake of clarity, a HSI is composed of np pixels that

contain spectral information along nb wavelengths and hence, each pixel is represented

as rji, j = 1, ..., np, i = 1, ..., nb. When the selection of the most characteristic pixels,

E, is addressed, input data is arranged in such a way that image rows contain the nb

elements of each image pixel, which are aligned in the image columns. On the contrary,

the transpose of the data is used for band selection and hence, image rows contain the

values of the np pixels for each spectral band, which are aligned in the image columns.

Regarding the set of core operations, they are further analysed in what follows:

1. Average pixel calculation, µ̂, and centralization of the input image:

In the original version (see Figure A.1a), the average pixel, µ̂, is a vector of nb

components that contain the average value of the np pixels within the HSI for each

particular spectral band, i. Conversely, when the transpose of the input image is

used for band selection (see Figure A.1b), µ̂ is now a vector of np components that

contain the average value of the nb spectral bands within the HSI for each particular

image pixel, j. As a consequence, µ̂ in this latter configuration actually acts as a

panchromatic image composed of the average values along the whole range of the

electromagnetic spectrum covered by the sensor. Moreover, these sensors normally

present a poorly spectral response for extreme spectral bands. Therefore, these

spectral bands are far from being zero after the centralization and thus, have a high

probability to be selected as distinctive spectral bands, which is in fact not desirable.

Consequently, these two computing stages of the proposed set of core operations are

not tackled for band selection.

244 Appendix A. Other research fields within the hyperspectral image processing

2. Brightness calculation:

When pixel selection is faced, the vector of brightnesses, b, collects the square of

the l2-norm of each image pixel with itself, also named the brightness of a pixel.

Therefore, the selected pixels, en, are those with the highest l2-norm, bjmax , and

thus, qn and un are vectors with nb components as well. Nonetheless, the vector

of brightnesses, b, for the second data configuration is composed of nb components

that contain the brightness of each spectral band, i. Consequently, the maximum

brightness, bimax , corresponds now with a spectral band rather than with a pixel.

For this reason, qn and un comprise np components instead of nb.

3. Projection vector, vn:

As it has been mentioned along this manuscript, projection vectors, vn, collect the

scalar values of the np pixels projected on the direction spanned by un. However, un

is a vector of np components in the proposed methodology for band selection that

contains the np pixel values for the most distinctive spectral band above selected.

Therefore, vn collects the scalar values of the nb spectral bands projected on the

direction spanned by the np components contained by un.

4. Subtraction:

As it can be noticed, qn and un vectors are in fact orthogonal vectors derived from

image pixels when the original configuration of the input image is used for pixel

selection. For this reason, the spectral information retained by each image pixel

for the next iterations does not contain the information spanned by the direction of

the already selected pixel. Consequently, qn and un vectors are orthogonal vectors

with each other, but not their components in the spectral domain. Nonetheless, qn

and un in the second case study contain the information of the np pixels spanned

by the most distinctive spectral bands selected in each algorithm iteration. As a

consequence, spectral information retained for the next iteration is orthogonal to

the pixel information contained in the wavelength already selected and hence, qn

and un are uncorrelated among each other.

The methodology proposed in this Chapter for band selection is very close to the one

followed by the traditional Orthogonal Subspace Projection (OSP) [239] method but,

the orthogonal subspace spanned by the selected wavelengths is approached in a more

hardware-friendly way using the Gram-Schmidt orthogonalization method conducted by

Appendix A. Other research fields within the hyperspectral image processing 245

the proposed set of core operations. The goodness of this proposal for band selection is

evaluated in next Section in which the detection of spectral targets of interest is addressed.

It is also important to mention that the proposed methodology works best when a subset

of the most characteristic pixels of the classes contained in the image are used as input.

It is due to the brightness calculation since it implies the addition of the squared pixel

values for each spectral band. Therefore, if many more pixels of one particular class are

present in the training set, they count for more in the selection of the wavelength with

the highest l2-norm.

A.3 Target Detection

In this Section, we analyse the suitability of the core operations proposed in this The-

sis work for their expanded used in the field of target detection. In the past decades,

many algorithms have been proposed in the literature for the detection of targets of inter-

est. According to the way of modelling the spectral variability problem, two approaches

exist: geometric models and statistical models. The former describes the background

geometrically while the latter patterns it statistically through the computation of the cor-

relation/covariance of the background [57]. Within the geometric group, we can find the

OSP algorithm and the Spectral Angle Mapper (SAM). Within the statistical group, the

most employed algorithms are the Constraint Energy Minimization (CEM) algorithm, the

Adaptive Coherence/Cosine Estimator (ACE) detector and the Matched Filter (MF). In

the recent years, sparsity has been also considered in the field of target detection [240, 241].

Nonetheless, the majority of the state-of-the-art solutions act as global detectors that need

the entire HSIs to start the target detection process. Therefore, few solutions are found

in the literature that fulfil the limitations imposed by real-time applications based on

pushbroom scanners where hyperspectral frames are sensed in a line-by-line fashion. In

this context, some recent works have been proposed to address this issue by intraline

approaches, such as [242–244].

The methodology analysed in this Section is an hybrid approach that physically and

statistically models the background using the linear mixing model and the correlation

matrix estimation. It is based on the well-known Gram-Schmidt orthogonalisation method

behind the set of core operations proposed in this Thesis work, which is used for three

different purposes. Firstly, it is employed to extract the pu most representative pixels

246 Appendix A. Other research fields within the hyperspectral image processing

(a) (b)

Figure A.1: Graphical representation of the variables and their dimensions involved
by each proposed core operation when using the original hyperspectral data for the

extraction of characteristic pixels and the transpose of the data for band selection.

within the background distribution, which can be seen as undesired signatures, Ud =

{udn, n = 1, ...pu}. To this end, the first nf hyperspectral frames are employed as it is

done in the LbL-FAD algorithm introduced in Chapter 3 for anomaly detection. Secondly,

and in order to maximize the spectral differences between the desired target, d, and the

background signatures, Ud, the set of core operations is used once again in order to select

the spectral bands that best differentiate both classes. The target detection process is

performed on the following received hyperspectral frames but just using the previously

Appendix A. Other research fields within the hyperspectral image processing 247

selected spectral bands. In order to obtain a lower-dimensional feature subspace with

uncorrelated predictors, these spectrally reduced frames are transformed using for the

third time the Gram-Schmidt orthogonalization method. With it, we achieve a diagonal

correlation matrix that significantly reduces the computational burden required to perform

the inverse of this matrix. The output of the proposed method for each frame pixel is

computed following a similar methodology to the one used by the CEM detector.

In the next Section, the different computing stages behind the proposed methodology for

addressing the target detection issue are further described.

A.3.1 Description of the proposed methodology for the detec-

tion of targets of interest

This Section collects short descriptions about the four different stages performed by the

proposed methodology for addressing the target detection issue.

A.3.1.1 Line-by-Line extraction of the background reference spectra

In order to annihilate all spectral information that does not only belong to the desired

target, d, we follow a similar strategy as in the Stage 1 of the LbL-FAD algorithm for the

modelling of the background distribution. To this end, the first sensed nf hyperspectral

frames are independently processed using the proposed set of core operations in order to

select the pu most representative pixels, E, within each targeting image block, Mk.

A.3.1.2 Overall background subspace estimation

One of the main novelties of the methodology followed by the proposed set of core op-

erations is that image blocks, Mk, are independently processed ruling out any spatial

alignment restriction. For this reason, many pixels extracted from previous nf hyper-

spectral frames actually represent the same materials or entities. In order to elimi-

nate redundancies and select the purest undesired vectors, Ud, the set of core oper-

ations is applied once again, though input matrix, Mk, is now replaced by a matrix

B* = {Ek, k = 1, ..., nf} whose columns collect the background reference vectors extracted

from each first nf frames. Consequently, a subset of the pu most representative undesired

pixels, Ud = {udn, n = 1, ...pu}, is obtained.

248 Appendix A. Other research fields within the hyperspectral image processing

As it can be noticed, this computing stage also matches with the Stage 2 of the LbL-FAD

algorithm. Lastly, it is also worth mentioning that samples obtained in previous flights

may be used instead of those obtained from the first nf frames.

A.3.1.3 Selection of the most representative spectral bands

Once that the subspace of undesired signatures is obtained, Ud, the next stage consists in

the selection of those spectral bands that best separate both d and Ud. It also permits to

compress the image under analysis onto a lower-dimensional feature subspace where pre-

dictors are uncorrelated. The Principal Component Analysis (PCA) has been traditionally

employed to perform dimensionality reduction in hyperspectral images. Nonetheless, we

also propose the use of the set of core operations to this end, as it was described in Sec-

tion A.2. On the one hand, they do not perform computationally demanding calculations

as the eigenvalues and eigenvectors decomposition, covariance matrix and inverse matrix

computations. On the other hand, it also permits the reuse of the hardware resources

and the human endeavours intended for the implementation of the targeted set of core

operations, which are common to the different algorithm stages.

As it was commented in Section A.2, some minor considerations have to be taken into

account in order to use the proposed set of core operations for the selection of a reduced

number of the most characteristic spectral bands, nbr. In this sense, the transpose of the

set of pixels consisting of d and Ud signatures is used as input. It is done in this way in

order to select the spectral bands with the biggest brightness in each iteration of the set

of core operations, instead of selecting the most different pixels as it is done in preceding

stages described in Sections A.3.1.1 and A.3.1.2. Accordingly, output vectors E, Q and

U consist now of nbr vectors with pu + 1 elements. Anyway, indexes of the nbr most

characteristic bands, Index = {indb, b = 1, ...nbr}, are just needed for the subsequent

algorithm stage.

A.3.1.4 Target Detection

After selecting the nbr most characteristic spectral bands using the first nf hyperspectral

frames, the target detection process itself is performed on the following received image

blocks. In this stage, we work with spectrally reduced image blocks, Mk, whose pixels just

retain the spectral information contained in the selected nbr spectral bands. Therefore,

elements of Mk are still correlated.

Appendix A. Other research fields within the hyperspectral image processing 249

In order to obtain a new subspace with uncorrelated variables, the modified Gram-Schmidt

method displayed in Lines 9 to 12 of Algorithm 2 in Chapter 2 is applied to the transpose

of Mk and d, resulting in outputs vectors Q and U where the nbr variables within each

qj and uj are orthogonal among them and hence, uncorrelated. In this case, operations

involved in Lines 9 to 12 of Algorithm 2 in Chapter 2 are repeated nbr times.

Similar to the CEM detector, the output of the proposed method for each pixel rj is

shown in Equation A.1, where R−1 is the inverse of the correlation sample matrix of

the image block under analysis, Mk. Nevertheless, R−1 is a diagonal matrix in the

proposed methodology, since the predictors of the new subspace are orthogonal, and equal

to U ·U′ = (Q ·Q′)−1, which is much less computationally expensive than computing the

inverse of a matrix.

y =
q(d) ·R−1 · q(rj)

′

q(d) ·R−1 · q(d)′
(A.1)

For the sake of clarity, the overall description of the proposed methodology for the detec-

tion of targets of interest is summarized in Algorithm 7. The three-dimensional (3D)

input hyperspectral cube, HI = [M1,M2, ...,Mk], is a sequence of nr hyperspectral

frames or lines of pixels composed of nc pixels with nb spectral bands. Pixels within

HI are grouped in blocks of BS pixels, Mk = {rj, j = 1, ..., BS}, being normally BS

equal to nc, or multiple of it, and k spans from 1 to nr·nc
BS

. The output is a map

Y =
{
ykj, k = 1, ..., nr·nc

BS
, j = 1, ..., BS

}
where each image pixel has a score as a func-

tion of its spectral similarity with the target signature to be found. In this regard, d is

the desired target, which is a spectral signature with nb spectral bands. Ud is a set of

pu undesired pixels or background spectra. nbr is the number of the most characteristic

spectral bands and F is the input block composed of d and pixels within Mk whose spec-

tral bands are the selected nbr wavelengths. The transpose of a vector is represented as
′. Finally, R−1 represents the inverse of the correlation sample matrix, which is actually

a diagonal matrix of size [nbr, nbr].

A.3.2 Experimental Results

In this Section, we briefly analyse some of the detection results obtained by the proposed

methodology for the detection of targets of interest using some HSIs sensed over real

scenarios and one taken over a laboratory-controlled scene.

250 Appendix A. Other research fields within the hyperspectral image processing

Algorithm 7 Proposed methodology for target detection.

Inputs:

HI = [M1,M2, ...,Mk],d, nf , α

Outputs:

Y = [y11,y12, ...,ykj]

Algorithm:

Stage 1: Line-by-Line extraction of the background reference spectra

1: for k = 1 to nf do

2: Ek = Set of core operations (Mk, α);

3: B* = [B*,Ek];

4: end for

Stage 2: Overall background subspace estimation

5: Ud = Set of core operations (B*, α); // Set of Undesired signatures

Stage 3: Selection of the most representative spectral bands

6: Index = Set of core operations ([d,Ud]’, α); // Indexes of the selected spectral bands

Stage 4: Target Detection

7: for k = nf + 1 to nr·nc
BS

do

8: F = [d(Index), Mk (Index)]’; // Size of F is [BS+1, nbr]

9: for b = 1 to nbr do

10: q = F(b);

11: u = q/(q′ · q);

12: v = u′ · F;

13: F = F− q · v;

14: Q = [Q, q’]; // Size of Q is [nbr, BS]

15: U = [U, u’]; // Size of U is [nbr, BS]

16: end for

17: R−1 = U ·U′; // Size of R−1 is [nbr, nbr]

18: for j = 1 to BS do

19: ykj = q(1)·R−1·q(j)′
q(1)·R−1·q(1)′

20: end for

21: end for

Appendix A. Other research fields within the hyperspectral image processing 251

A.3.2.1 Reference Hyperspectral Data

In order to test the goodness of the proprosed method, we have used a subset of the

bunch of real hyperspectral data collected by the acquisition platform described in [89]

and employed in preceding Chapters 3-5. This data set was collected over multiple farming

areas on the island of Gran Canaria (Spain) by a pushbroom sensor mounted on a UAV.

In particular, the reference images are selected portions of some swaths collected in one

flight campaign. These data cover the spectral information from 400 to 1000 nm using 160

spectral bands and consist of 825 lines height, each line comprising 1024 hyperspectral

pixels with 12-bits depth. A RGB representation of these hyperspectral image portions

are displayed in Figure A.2 a-c. These images were taken at a height of 72 m over the

ground at a speed-rate of 6 m/s with a camera frame-rate of 125 frames per second

(FPS), resulting in a ground sampling distance in line and across line of approximately

5 cm. The targets to be detected are the vegetation and the main background materials

are the ground and some rock walls. The d signature is calculated as the average pixel

of some spectra selected from Drone Image 1 and represented as yellow points in Figure

A.3a.

In order to test the goodness of the proposed methodology in other scenarios, we have

also used a second data set that was generated in our hyperspectral imaging laboratory

using the Headwall hyperspectral sensor Hyperspec®, which operates in the shortwave

infrared range (SWIR) between 0.9-2.5 µm. It is a pushbroom camera that provides

384 spatial pixels and 273 spectral bands. However, due to the low-signal-to-noise ratio

(SNR) of the first and last spectral bands, they were removed (1-4, 269-273), so that, 264

available bands were retained. The image scene covers an area of 151x126 pixels. Targets

are some legumes and two plastic squares. The main background material is peat. This

last material is quite challenging since it is composed of multiple different elements and

consequently, being less homogeneous. The d signatures are calculated as the average

pixel of some spectra selected from pixels highlighted in blue and red colors, respectively,

in Figure A.3b.

A.3.2.2 Target Detection performance of the proposed methodology

Figure A.4 shows the detection maps given as result by the proposed methodology for

the two real data sets. These detection maps are coloured maps where dark red colour

252 Appendix A. Other research fields within the hyperspectral image processing

(a) (b) (c) (d)

Figure A.2: RGB representation of the HSIs employed in the experiments (a) Drone
Image 1. (b) Drone Image 2. (c) Drone Image 3. (d) Laboratory-controlled scene.

(a) (b)

Figure A.3: Location of the spectra employed to generate the average target signa-
tures to be detected.

represents pixels very similar to the desired targets to be detected while blue colour repre-

sents very dissimilar pixels. Figures A.4a-A.4c display the detection results for the smart

farming areas collected by the UAV over scenes shown in Figures A.2a-A.2c. Figures A.4d

and A.4e display the detection results for the legumes and plastic squares, respectively,

present in the second real data set shown in Figure A.2d. Experimental results have been

carried out for image blocks, Mk, composed of BS = nc hyperspectral pixels. The number

of image blocks, Mk, used to estimate the undesired signatures, nf , has been specified in

the captions of each representation within Figure A.4.

As it can be seen, our proposal has been able to accurate detect the desired targets in

the five case studies. For the smart farming scenes, it has been also demonstrated that

although the target signature was estimated from some pixels located in solely Drone

Image 1, it has been accurately detected in the other HSIs as well. In addition, the

separability between the desired target and the background is quite precise, resulting

in less noisy detection maps for Drone Image 1 and Drone Image 2. Drone Image 3

Appendix A. Other research fields within the hyperspectral image processing 253

covers a small arid area on the right side characterized by dry thorn bushes, which have

been slightly distinguished from the background. Nonetheless, some sparkles and spectral

distortions introduced by the acquisition system movement have been also marked with

a comparable score as those aforementioned entities. Anyway, they are far from being

misclassified with respect to vegetation placed on the left side of the scene in question. In

general, our proposal has been capable of detecting even isolated plants as those placed in

the middle of Drone Image 1. Regarding the second data set, the proposed methodology

has been also able to detect the legumes and plastic squares with high precision. However,

these detection results are a bit more noisy than those represented in Figures A.4a-A.4c.

It is due to the high variability of materials that conform the background and undesired

flashes occurred during the capturing process.

Finally, it is worth mentioning that our proposal is able to detect any target regardless

of the proportion of the image covered by them, unlike the traditional concept of target

detection where the presence of the desired signatures to be detected is scarce.

(a) nf = 100 (b) nf = 100 (c) nf = 100

(d) nf = 10 (e) nf = 10

Figure A.4: Target Detection results. (a) Drone Image 1. (b) Drone Image 2.
(c) Drone Image 3. (d) Laboratory-controlled scene - bean spectra. (e) Laboratory-

controlled scene - plastic spectra.

254 Appendix A. Other research fields within the hyperspectral image processing

A.4 Unmixing

Linear spectral unmixing has been consolidated as an essential tool for the analysis of

remotely sensed HSIs. It is based on the idea that each captured pixel in a HSI can

be represented as a linear combination of a collection of constituent spectra, also called

endmembers, weighted by an abundance factor. The endmembers are generally assumed

to represent the pure materials present in the image and the abundances at each pixel

establish the proportion of each endmember in the pixel under inspection. This linear

mixture model assumes that secondary reflections and scattering effects can be neglected

from the data collection procedure, and hence, the measured spectra can be expressed as

a linear combination of the spectral signatures of materials present in the mixed pixels.

Therefore, it can be concluded that a HSI can be represented as a function of some image

pixels, E, and their corresponding abundances, which can be derived from the projection

of each image pixel onto each endmember.

By analogy, it can be deduced that the set of core operations proposed in this Thesis

work follows an unmixing-based strategy where the most characteristic pixels selected

from each image block, E, can be seen as local endmembers, while abundances can be

inferred from the projection vectors, V. Indeed, the Gram-Schmidt orthogonalization

method was firstly employed in the field of hyperspectral unmixing by the Fast algorithm

for linearly UNmixing hyperspectral images (FUN)[105]. The FUN algorithm allows per-

forming the estimation of the number of endmembers and their extraction simultaneously

using the aforementioned Gram–Schmidt method. In addition, this algorithm is also able

to calculate the abundance factors employing very similar operations based on orthogonal

projection techniques as well. Although the FUN algorithm was designed to overcome the

limitations imposed by the computationally complex nature of the hyperspectral imagery

processing, it still shows some constraints linked to the following points:

1. The FUN algorithm has to be applied globally to the entire HSI in order to address

the unmixing process. In this regard, our proposed methodology is able to estimate

the endmembers present in an image from the local endmembers extracted from

each image block, Mk, which are processed independently. It allows to be adapted

to those scenarios in which images are sensed in a line-by-line fashion as those

addressed in this Thesis work.

2. In the original FUN algorithm, vectors U are orthonormalized vectors resulting from

dividing each qn by its norm, which involves resolving a squared root. Naturally,

Appendix A. Other research fields within the hyperspectral image processing 255

it is not a suitable solution from the hardware implementation point of view and

hence, it was proposed in [245] to redefine U vectors as the division of each qn by

its own bright. On this basis, we have also followed this recommendation in the

definition of the proposed set of core operations, which was demonstrated in Section

2.3.1 of Chapter 2 to be equivalent to the approximation shown in the original FUN

algorithm.

3. The FUN algorithm tries to select as endmembers the most different pixels, or

the most extreme ones, within the captured dataset. Therefore, in order to select

the first endmember according to this criterion, the FUN algorithm also uses the

average pixel, µ̂, as our proposal does. Nonetheless, the FUN algorithm projects all

image pixels onto the average pixel in order to quantize how much information of

each pixel is not contained in the centroid pixel and hence, showing how different

each pixel is from the average. Finally, the FUN algorithm selects the pixel with

the largest orthogonal projection as the first endmember. On the contrary, our

proposal employs the average pixel to centralize the input image and selects the

first endmember of those with the highest brightness, that is, the one most deviated

from the media. It implies to work with the centralized version of the image along

the remaining computing operations and also, to reduce the number of operations

to be executed.

4. The main difference between the FUN algorithm and the methodology introduced

in this Section lies in the calculation of the abundance factors. To this end, the FUN

algorithm uses orthogonal projections as well for the definition of these parameters.

In this sense, the FUN algorithm transforms the p selected endmembers in a set of p

vectors, U*, that contain the spectral information in the direction spanned by each

endmember, en, and not shared with the others. Nonetheless, this results in a set

of U* vectors which are really not orthogonal among each other. Figure A.5 shows

an example where two vectors, e1 and e2, and their corresponding u*
1 and u*

2 , are

displayed. As can be seen, u*
1 is orthogonal to e2 and, also u*

2 with respect to e1,

but u*
1 and u*

2 are not orthogonal among each other. In this sense, our proposal

does estimate a set of orthogonal vectors for computing the orthogonal projection

matrix, P, in a similar way as described by the LbL-FAD algorithm.

5. Finally, the FUN algorithm was designed to be used with floating-point notation.

Nonetheless, the methodology for the unmixing of hyperspectral imagery proposed

in this Section is actually based on the set of core operations proposed in this Thesis

256 Appendix A. Other research fields within the hyperspectral image processing

work. Therefore, this methodology could be potentially implemented using fixed-

point notation by means of integer arithmetic as well.

In the next Section, the proposed methodology for addressing the linear unmixing of HSIs

is briefly described.

Figure A.5: Example of two vectors, u*
1 and u*

2 , estimated by the FUN algorithm for
the calculation of the abundances.

A.4.1 Description of the proposed methodology for linearly un-

mixing HSIs

The whole process for linearly unmixing a given HSI may be seen as a three-stage process:

1) estimation of the number of endmembers that are present in the hyperspectral image

under consideration, 2) extraction of these endmembers from the hyperspectral data set

and, 3) calculation of the abundances associated with the endmembers induced in the

previous step per each mixed pixel of the image. This Section collects short descriptions

about these three different stages performed by the proposed methodology for addressing

the linear unmixing of HSIs.

A.4.1.1 Estimation of the number of endmembers and their extraction

The extraction of the p most characteristic pixels or endmembers present in a HSI has

been treated in the same way as in the other algorithmic solutions proposed in this Thesis

work, such as the LbL-FAD and the HyperLCA. To this end, the set of core operations in-

troduced in Chapter 2 has been used. In this sense, the first endmember to be extracted is

the one with the highest deviation from the average pixel. Then, subsequent endmembers

are those identified with the largest orthogonal projections to the endmembers already

Appendix A. Other research fields within the hyperspectral image processing 257

extracted. Nonetheless, the strength of the proposed methodology lies in the independent

processing of blocks of image pixels, Mk. For this reason, the endmember extraction is

addressed in a line-by-line fashion in order to extract the local endmembers inherent to

each Mk. Subsequently, the global endmembers are extracted from the set of selected

local signatures using the above mentioned methodology.

Regarding the estimation of the number of endmembers, the proposed methodology uses

the same stopping condition as the LbL-FAD algorithm for the selection of the bakc-

ground spectra. As it was explained in Chapter 2, each time that a pixel en is selected,

the spectral information that could not be represented by the already extracted pixels

remains in image matrix C. It means that if the image is represented using the selected

en pixels, according to the LMM, a small part of the spectral information is lost when

the image is reconstructed using the p selected en pixels and besides, equal to the remain-

ing information contained in C. In this sense, the maximum brightness, bjmax , after the

ep vectors have been selected may be representative of the spectral losses introduced by

the unmixing process and consequently, it could be used to set p. In this context, the

endmember extraction process finishes when the loss, in percentage terms, is less than an

input parameter that represents the percentage of the spectral information that will be

considered as noise, α. This stop condition can be seen in Equation A.2 where (rjmax− µ̂)

represents the initial value of rjmax in C.

This way, the proposed methodology manages to extract the endmembers and to estimate

the number of endmembers in a single process.

bjmax

(rjmax − µ̂)′ · (rjmax − µ̂)
· 100 < α→ Stop selecting p en pixels (A.2)

A.4.1.2 Abundance Estimation

Linear unmixing is based on the idea that each captured pixel in a hyperspectral image

can be represented as a linear combination of a set of p spectrally pure constituent spectra

or endmembers weighted by an abundance factor that establishes the proportion of each

endmember in the pixel under inspection. On this basis, the proposed methodology

considers that image pixels can be perfectly reconstructed by the space spanned by these

characteristic pixels in order to estimate the abundance vectors. To this end, the rationale

behind the orthogonal projection matrix, P, is exploited as it was done by the LbL-FAD

algorithm for the detection of anomalous spectra.

258 Appendix A. Other research fields within the hyperspectral image processing

Let’s set an example where three endmembers, e1, e2 and e3, and its corresponding

abundance vectors, a1, a2 and a3, are considered. Therefore, an image pixel, rj, can

be represented following the LMM shown in Equation A.3. For the estimation of the

abundance vector, three different vector space basis are estimated, one per concerned

endmember. Since each abundance factor represents the proportion of each endmember,

en, in the pixel under inspection, rj, each an can be estimated from the pixel projection

over the orthogonal subspace to the one spanned by the other endmembers. For instance,

the subset of endmembers e2 and e3 can be orthogonalized using the Gram-Schmidt

method obtaining the Q and U vectors. As it was further explained in Chapter 3, the

computation of the orthogonal projection matrix, P, to the space spanned by e2 and e3 is

equivalent to P⊥e2,e3 = I−Q ·U′. Hence, the pixel projection over the space spanned by

e1 could be computed as a1 = r′j · P⊥e2,e3 · rj. The other abundances, a2 and a3, could be

estimated as an analogous way. In this way, we manage to have a new subspace on which

to project the data whose basis vectors are really orthogonal with each other. Naturally,

the explicit computation of the orthogonal projection matrix, P, could be replaced by the

Gram-Schmidt method as well, as it was explained in Chapter 3 for the HW-LbL-FAD.

rj = a1 · e1 + a2 · e2 + a3 · e3 (A.3)

Nonetheless, the resulting abundances do not meet one of the two physical constraints im-

posed to the LMM, in particular, the abundance sum-to-one constraint, which establishes

that
∑n=p

n=1 an = 1. Nonetheless, experience has shown that the obtained abundances are

indeed very close to meet the constraint. Taking this into account, it is possible to apply

the aforementioned constraint to the estimated abundances by dividing each element with

the abundance vector by the sum of their terms.

A.4.2 Experimental Results

In this Section, we briefly analyse the performance of the proposed methodology for the

unmixing of HSIs. For this purpose, the common-used AVIRIS Cuprite image has been

used in this work in order to test the proposed algorithm in a more realistic scenario. In

addition, it also permits to compare the performance in terms of endmember extraction

with the FUN algorithm and the state-of-the-art Vertex Component Analysis (VCA). Re-

garding the accuracy of the abundance calculation process, we have evaluated it using

a set of 3 real HSIs commonly used in the field of unmixing of hyperspectral imagery,

Appendix A. Other research fields within the hyperspectral image processing 259

namely Samson, Jasper Ridge and Urban data sets. On the basis of a set of reference

endmembers, we evaluate the goodness of the abundance maps obtained by our proposal

with an available ground-truth using the root mean squared error (RMSE) as an assess-

ment metric. All these data sets and their corresponding ground truths were downloaded

from [246], and detailed a explanation about them is provided in [247].

A.4.2.1 Reference Hyperspectral Data

As it was above mentioned, four real hyperspectral datasets are used for conducting the

experiments to assess the performance of the proposed methodology for hyperspectral

unmixing. A short description about these scenes are given below:

Samson data: Samson dataset is originally of size 952x952 pixels. Nonetheless, a short

region of 95x95 pixels is used in the experiments. Each pixel is recorded at 156 channels

covering the wavelengths from 401 nm to 889 nm. There are three target endmembers in

the dataset, including “Rock”, “Tree”, and “Water”. Figure A.6a shows the Samson data

and the corresponding ground truth of the abundance distributions.

Jasper Ridge data: Jasper Ridge is one of the most widely used hyperspectral unmixing

datasets. It is originally of size 512x614 pixels, recording spectral information at 224

channels covering the wavelengths from 380 nm to 2500 nm. Nonetheless, a short region

of 100x100 pixels is used in the experiments. In addition, the channels 1–3, 108–112,

154–166 and 220–224 have been removed due to dense water vapor and atmospheric

effects, lastly retaining 198 channels. There are four endmembers latent in this data:

”Road”, ”Soil”, ”Water” and ”Tree”. Figure A.6b shows the Jasper Ridge data and the

corresponding ground truth abundance maps.

Urban data: Urban dataset is a very popular hyperspectral dataset for unmixing studies.

The images are composed of 307Ö307 pixels, and the spatial resolution is 2 m. Spectral

channels 1–4, 76, 87, 101–111, 136–153 and 198–210 have been removed due to dense

water vapor and atmospheric effects, lastly retaining only 162 channels. There are six

endmembers in the dataset, including “Asphalt Road”, “Grass”, “Tree”, “Roof”, “Metal”,

and “Dirt”. Figure A.6b shows the Urban data and the corresponding reference abundance

maps.

Cuprite data: Cuprite dataset is well understood from the mineralogical point of view

and consists of 224 spectral bands between 0.4 and 2.5 µm. Prior to the analysis, several

260 Appendix A. Other research fields within the hyperspectral image processing

bands have been removed due to water absorption and low SNR, resulting in a total of

188 spectral bands. Particularly, we have used in our experiments a portion of the full

Cuprite image, with a spatial size of 250 Ö 190 pixels, where there are 14 types of minerals.

Nonetheless, in order to compare the extracted endmembers with those obtained by the

FUN and the VCA algorithms, results shown in [105] are used in the analysis. In it, five

available spectral signatures known in the AVIRIS Cuprite scene are used as ground-truth,

which are Alunite, Buddingtonite, Calcite, Kaolinite, and Muscovite. The accuracy of the

pixel selected as endmember is evaluated by calculating the spectral angle (°) between the

reference spectra and the selected ones. Figure A.6d shows the AVIRIS Cuprite data and

the reference endmember spectra.

A.4.2.2 Performance of the proposed method for hyperspectral unmixing and

abundance calculation

Firstly, we evaluate the accuracy of the proposed method for the identification and ex-

traction of the endmembers. For this purpose, the reference spectral signatures of alunite,

buddingtonite, calcite, kaolinite, and muscovite, which are present in the Cuprite images,

are compared with those obtained with the proposed method through the analysis of the

spectral angle. In addition, the obtained results are compared with the FUN algorithm

and the VCA method analysed in [105]. Table A.1 shows the spectral angle scores obtained

by the proposed method, the FUN algorithm and the VCA algorithm when comparing the

respective extracted endmembers with respect to the reference pure spectral signatures.

The experimental results demonstrate that the accuracy obtained by the proposed algo-

rithm when extracting the endmembers is very similar to the FUN algorithm and for four

of the spectral signatures outperforms the VCA algorithm. In this sense, there is a slight

deviation from these two state-of-the-art methods for the muscovite mineral. Nonetheless,

the spectral angle values are quite better for the calcite and kalonite examples compared

with the FUN and the VCA methods. Lastly, the proposed method extracts in general

spectral signatures more similar to the reference spectra, as can be seen from the last

column of Table A.1 that collects the average value of the reached spectral angles.

Regarding the abundance estimation, Table A.2 collects the RMSE values obtained by the

comparison between the ground-truth and the abundance maps estimated by the proposed

methodology using the Samson, the Jasper Ridge and the Urban data sets. To do this,

reference endmember signatures are employed for a fairer comparison. In addition, Figure

A.7 displays some classification maps obtained from the reference abundance maps and

Appendix A. Other research fields within the hyperspectral image processing 261

(a)

(b)

(c)

(d)

Figure A.6: RGB representation of the HSIs employed in the experiments. (a)
Samson data and the ground truth abundance maps. (b) Jasper Ridge data and the
ground truth abundance maps. (c) Urban data and the ground truth abundance maps.

(d) AVIRIS Cuprite data and the reference endmember spectra.

the ones obtained by our proposal. In this sense, colours represent the different classes

established as a function of the similarity of each pixel with each endmember. To this

end, each pixel has been classified within one of each endmember class according to its

largest abundance factor, an. As it can be concluded, very small errors are obtained

262 Appendix A. Other research fields within the hyperspectral image processing

Algorithms
Spectral Angle (°)

Alunite Buddingtonite Calcite Kaolinite Muscovite Average

Proposed Method 4.92 4.15 4.72 5.06 7.97 5.36

FUN 4.83 4.26 9.62 10.98 4.64 6.87

VCA 11.95 5.85 6.45 14.90 5.57 8.94

Table A.1: Comparison of the spectral signatures obtained by the proposed method,
the FUN algorithm and the VCA algorithm.

when estimating the abundances maps with the proposed method. Therefore, it can be

concluded that this could be an accurate approximation for this purpose.

Algorithm
RMSE

Samson data Jasper Ridge data Urban data

Proposed Method 4.73E-04 6.32E-04 2.67E-04

Table A.2: RMSE values obtained after the comparison between the reference abun-
dance maps and the ones obtained by our proposal using the reference signatures of the

endmembers for the Samson, Jasper Ridge and Urban data sets.

A.5 Classification

Since the early days of the study and analysis of the remotely-sensed hyperspectral data,

the LMM and the concept of orthogonal subspace projections (OSPs) have been exten-

sively explored in hyperspectral image classification. The first time that orthogonal pro-

jections were used to address this analysis was in [110]. In this previous work, the LMM

was rewritten as an addition of three components, that is, the desired signatures, d, a

set of undesired targets, Ud, and the random noise. The reason for separating Ud is

to design an OSP to annihilate Ud from an observed pixel prior to classification. For

doing so, the orthogonal subspace projection matrix to the space spanned by Ud, PUd
⊥,

can be applied to the LMM in order to eliminate the Ud from the equation. On this

basis, a mixed pixel classification can be carried out by a two-stage process, an undesired

signature rejecter followed by a matched filter. Nonetheless, this first approximation as-

sumes the complete knowledge of the abundances of the spectral signatures in advance,

Appendix A. Other research fields within the hyperspectral image processing 263

(a) (b)

(c)

Figure A.7: Classification maps obtained from the ground-truth of the abundance
estimation and the ones obtained by our proposal for the Samson data, the Jasper

Ridge data and the Urban data.

which unfortunately is not possible in real-world applications. For this reason, a posteri-

ori OSP solutions emerged to fill this gap, which also contemplated the estimation of the

abundances [109, 242, 248].

Against this backdrop, the unmixing model described in Section A.4 could be extended

to tackle the problematic behind the classification issue. It is based on OSP by means of

the computation of the orthogonal projection matrix for the calculation of the abundance

vectors. On the basis of the LMM described in [110], the desired signatures, d, could be

seen as each cluster of spectral signatures of one material type, whereas Ud represents

the other classes concerned for the classification of a set of hyperspectral images. Finally,

the classification of a spectrum in one of the concerned classes could be made according

to the largest abundance factor.

264 Appendix A. Other research fields within the hyperspectral image processing

A.5.1 Description of the proposed methodology for the classifi-

cation of the HSIs

This Section collects short descriptions about the different algorithm stages performed by

the proposed methodology for addressing the classification of HSIs. The whole process

may be seen as a two-stage process: 1) estimation of the orthogonal subspace to each

class in order to calculate the abundance maps and, 2) classification from the abundance

maps.

A.5.1.1 Abundance Estimation

There are some studies using abundance maps as inputs for the classification of image pix-

els within a set of user-defined classes [237, 249–251]. For this reason, we have focused on

the methodology proposed in Section A.4.1.2 for the estimation of the abundance factors.

In this sense, as many vector space basis as endmembers present in the HSI are computed.

Nonetheless, we have spectral classes instead of endmembers in the targeted classification

issue. For this reason, they would be estimated as many orthogonal projection matrix,

P, as classes are concerned. To do this, the set of labeled training samples within the

other classes not included in the targeted one are used as input of the proposed set of

core operations in order to obtain the orthogonal vectors Q and U and thus, the orthog-

onal projection matrix, P, that projects the image in the direction spanned by solely the

class in question. Another approximation would be to use the average pixel of each class

instead of the bunch of spectral signatures selected as training samples [237].

For the sake of clarity, let’s set an example with 3 classes composed of p labeled training

samples, c1 = [r1n , n = 1, ...p], c2 = [r2n , n = 1, ...p] and c3 = [r3n , n = 1, ...p]. Firstly,

the orthogonal projection matrix, P1, that projects the data on the direction spanned by

c1 is computed as P1 = I −Q ·U′, in which Q and U are orthogonal basis of the space

composed by the other classes, c2 and c3. Secondly, the pixel projection over the space

spanned by c1 could be computed as a1 = r′j · P1 · rj. The other abundances, a2 and a3,

could be estimated as an analogous way.

Nonetheless, the resulting abundances do not meet one of the two physical constraints im-

posed to the LMM, in particular, the abundance sum-to-one constraint, which establishes

that
∑n=p

n=1 an = 1. Nonetheless, experience has shown that the obtained abundances are

indeed very close to meet the constraint. Taking this into account, it is possible to apply

Appendix A. Other research fields within the hyperspectral image processing 265

the aforementioned constraint to the estimated abundances by dividing each element with

the abundance vector by the sum of their terms.

A.5.1.2 Classification using abundance maps

Finally, the maximum abundance classification (MAC) is proposed as the final stage within

the classification process. In this sense, each image pixel, rj, is classified within one of

the concerned spectral classes according to its largest abundance factor.

A.5.2 Experimental Results

In this Section, we briefly analyse the performance of the proposed methodology for

the classification of HSIs. The evaluation of the detection performance is visually made

at object-level through the description of the resulting classification maps where image

pixels are sorted in one of the user-defined material classes by its largest abundance factor.

Labelled training samples are a reduced number of image pixels directly selected from the

images.

A.5.2.1 Reference Hyperspectral Data

The data set used to evaluate the proposed methodology was sensed by the aerial platform

described in [89] and employed in preceding Chapters 3-5. Nonetheless, other portions of

the hyperspectral scenes sensed in the different flight campaigns are used in the experi-

ments to consider a major variety of spectral classes for the classification. In particular,

the reference images are selected portions of some swaths within two different flight cam-

paigns. These data cover the spectral information from 400 to 1000 nm using 160 spectral

bands. A RGB representation of these hyperspectral image portions are displayed in Fig-

ure A.8. These images were taken at a height of 45 m over the ground and at a speed

of 4.5 m/s with the hyperspectral camera capturing frames at 150 FPS. This results in a

ground sampling distance in line and across line of approximately 3 cm.

Regarding the spectral classes in which we classify image pixels, they basically consists

of vegetation and bare soil. Nevertheless, other materials are also included in the exper-

iments. For instance, Image 1, shown in Figure A.8a, mainly contain signatures of three

classes: vegetation, a white roof of a wine facility and some very dark areas where the

266 Appendix A. Other research fields within the hyperspectral image processing

(a) (b) (c)

(d) (e)

Figure A.8: RGB representation of the HSIs employed in the experiments. (a) Image
1. (b) Image 2. (c) Image 3. (d) Image 4. (e) Image 5. Pixels highlighted in colour are

used as labelled training samples.

sun light does not reach or composed of black volcanic rocks, such as the external walls of

the building and curtain walls among vineyard crop fields. Labelled training samples are

composed of 6 pixels, respectively, for each considered class. Image 2, shown in Figure

A.8b, is composed four spectral classes, that is vegetation, bare soil, volcanic rocks within

the curtain walls among vineyard crops, as well as, the white shirt of a person in the

middle of the corps. Labelled training samples are composed of 5, 6, 4 and 1 hypespectral

pixels, respectively, for each considered class. Image 3, shown in Figure A.8c is the most

simple scenario since only vegetation, bare soil and volcanic rocks are classified. Labelled

training samples are composed of 5 pixels, respectively, for each considered class. In the

case of Image 4, shown in Figure A.8d, apart from vegetation and bare soil classes, it

is also defined a new spectral class composed of spectral signatures of some water pond.

Labelled training samples are composed of 10, 9 and 5 hypespectral pixels, respectively.

The last image, Image 5, shown in Figure A.8e, contains 5 different classes of materials,

Appendix A. Other research fields within the hyperspectral image processing 267

that is, vegetation, bare soil, volcanic rocks, a road and a white panel used to radiomet-

rically correct the acquired images. Labelled training samples are composed of 8, 8, 10,

6, 2 hyperspectral pixels, respectively, for each considered class.

A.5.2.2 Performance of the proposed method for the classification of HSIs

Figure A.9 shows the classification maps given as result by the proposed methodology

for the five real data sets used in the experiments. For the sake of clarity, they are

superimposed on a panchromatic representation of the scenes to be analysed in order to

make easier the result interpretations. In these displays, colours represent the different

user-defined spectral classes in which we classify image pixels. In the lines that follow, the

performance of the proposed method for the classification of the above mentioned spectral

classes are commented by means of the description of the resulting classification maps.

1. Regarding the vegetation class, it is easily distinguishable from the others as a

spectral point of view. For this reason, image pixels within this class have been

accurate classified for all data sets. In addition, many dry thorn bushes present in

Image 4 characterized by red leaves are also well classified. As a singularity, some

aquatic plant species located in the border of the pond are also detected.

2. In relation to the bare soil, image pixels have been also well classified for almost

all the test cases. Nonetheless, very small and dry bushes located on the right side

of the curtain wall located in the middle of Image 2 have been misclassified. It is

because they really represent a barren area where pixels are mixed by the ground.

3. Concerning the black volcanic rocks that curtain walls are built with, it is the most

challenging class and hence, a greater proportion of image pixels are misclassified.

For Image 2, Image 3 and Image 5, shadows cast by plants are also classified within

this class. It makes sense since very poor sun light reaches these areas. For the same

reason, the plastic bag placed at the bottom of Image 5 has been also sorted in this

class. In relation to Image 1, some pixels within the shadows projected by the white

roof were included in the labelled training samples and hence, shadows have been

classified in this class as well as the external wall that surrounds the building. Since

this class has been not considered in the analysis of Image 4, pixels that are actually

part of this class have been classified as bare soil.

268 Appendix A. Other research fields within the hyperspectral image processing

4. Regarding the white roof of the building shown in Image 1, its colour is easily

distinguishable from the other classes and hence, it has been accurately classified.

In addition, some pixels located on the top of the boundary wall are also included

in this class since they are painted in white as well.

5. Water pond displayed in Image 4 has been well segmented as well in this image

in question, though some dark pixels located near the curtain wall that separates

the crop fields with the pond have been misclassified. It is because the sun light

hardly reaches this area and shadows are projected. It is not a trivial issue since

many researches have concluded that the separation of water pixels from other dark

surfaces and shadows is highly confused in image classification [252, 253].

6. Finally, in relation to the strange entities shown in Image 2 and Image 5, they have

been well segmented from the other image classes though they represent very few

image pixels. In the case of the white reference panel displayed in Figure Image 5,

some pixels over the edge lines of the road are also classified within this class due

to their white color.

A.6 Conclusions

In this Appendix, we establish a first contact towards the expanded use of the orthogonal

subspace projections and, in particular, the Gram-Schmidt orthogonalization method by

means of the set of core operations proposed in this Thesis work, in the fields of band

selection, target detection, unmixing and classification. The analysis made is far from

being as exhaustive as those carried out by the anomaly detection issue and the lossy

compression of HSIs in preceding Chapters 3 and 4, but represents a turning point in the

way of future research works.

The most remarkable aspect is the potential of the proposed methodology for addressing

other types of hyperspectral analysis. This is certainly in the line of the research goals

to be accomplished in this Thesis. In this sense, it is demonstrated the feasibility of

targeting several hyperspectral analysis techniques using the same mathematical method.

This fact opens up new avenues towards the concurrent execution of multiple hyperspectral

imaging applications. Additionally, it also results in many benefits in view of hardware

acceleration for real-time or near real-time performance in terms of a reduction in the

Appendix A. Other research fields within the hyperspectral image processing 269

(a) (b) (c)

(d) (e)

Figure A.9: Classification maps obtained by the proposed method. (a) Image 1. (b)
Image 2. (c) Image 3. (d) Image 4. (e) Image 5. Colours represent each user-defined

class label.

execution times, hardware resources and above all, in human endeavours. Concerning

this latter, it implies the studio and analysis of only a single mathematical approach,

which consequently permits to focus the efforts from a methodological and productivity

points of view, which consequently results in a reduction in the time to market.

Nonetheless, there is always a trade-off among the performance, the hardware utiliza-

tion and the design requirements. In this regard, the search of optimal quality in the

results would involve a custom-made algorithmic solution for the targeted application.

Normally, this stringent scenarios require complex and computational demanding mathe-

matical models characterized by intensive memory requirements, low grade of parallelism

and a non-scalable nature. All of this may clearly compromise the real-time or near real-

time performance for time-sensitive applications and make these approaches not suitable

for power-constrained environments. To sump up, the use of the methodological proposal

introduced in this Thesis work will depend on the targeted scenario and the objectives

set by the application and by the user.

Appendix B

Sinopsis en español

En este Apéndice se recoge una visión general del trabajo de investigación realizado en

la presente Tesis Doctoral cuyas principales contribuciones son en el campo del desarrollo

de algoritmos de baja complejidad computacional y alta naturaleza paralelizable para el

procesamiento de imágenes hiperespectrales a bordo de sistemas aéreos de acquisición

de datos. En concreto, este trabajo brinda una solución a la problemática existente en

relación a la ejecución simultánea de múltiples técnicas de procesamiento de imágenes en

un mismo dispositivo hardware, a través de la definición de un conjunto de operaciones

comunes cuyas variables de salida puedan ser reutilizadas por distintos métodos de análisis.

En particular, la metodoloǵıa presentada se ha centrado en los campos de la detección

de agentes anómalos y la compresión con pérdidas de imágenes hiperespectrales, aunque

también se han abordado las primeras aproximaciones para su extensión a otros sectores

como la clasificación, la selección de bandas y la deteción de objetivos.

271

272 Appendix B. Sinopsis en español

B.1 Introducción

En los últimos años, la tecnoloǵıa hiperespectral se ha convertido en una herramienta de

gran interés para la comunidad cient́ıfica en el campo de la teledetección y la observación

de la superficie terrestre. Hoy en d́ıa la podemos encontrar en muchas aplicaciones como la

agricultura de precisión, la mineraloǵıa, en acciones de vigilancia y seguridad nacional, en

actividades de protección ambiental y desastres naturales, entre muchas otras. Además,

su campo de actuación también se ha visto ampliado hacia otros sectores, por lo que

actualmente podemos encontrar sistemas de adquisición de imágenes hiperespectrales en

biomedicina y aplicaciones comerciales e industriales, como son el control alimentario,

separación en plantas de reciclaje, etc.

La creciente popularidad de los sistemas hiperespectrales se fundamenta en la capacidad

que presentan para recoger información sobre la escena observada en muchas y continuas

longitudes de onda a lo largo del espectro electromagnético. Mientras que el ojo humano

puede percibir longitudes de onda dentro del espectro visible (el rojo, el verde y el azul),

los sensores hiperespectrales son elementos pasivos capaces de captar la luz reflejada por

los objetos y obtener su distribución en cientos de longitudes de onda que incluso abarcan

el espectro infrarrojo. Partiendo de la base que muchos elementos puros de la naturaleza

presentan una ‘huella’ única en el espectro electromagnético, la aplicación más importante

de la tecnoloǵıa hiperespectral radica en la detección e identificación de materiales que

puedan parecer a simple vista el mismo ente pero que a través del análisis de su firma

espectral se ratifique su naturaleza distintiva. De todo ello es claramente deducible el por

qué la teledetección es el campo en el que tradicionalmente la tecnoloǵıa hiperespectral

ha tenido mayor impacto. En este sector, los sensores hiperespectrales son colocados

a bordo de satélites, aeronaves tripuladas o muy en boga hoy en d́ıa, los drones, para

la caracterización y el análisis detallado del suelo terrestre, el estudio de la atmósfera,

la estimación de parámetros f́ısicos de gran complejidad, la identificación de materiales

visualmente similares, etc.

Sin embargo, a pesar de la gran variedad de plataformas de adquisición de datos existentes,

el procesamiento abordo de las imágenes hiperespectrales aún presenta muchos retos a

abordar, debidos sobretodo al tratamiento y manejo de grandes volúmenes de datos. Por

una parte, esto pone en riesgo la actuación en tiempo real de muchas aplicaciones que

requieren de resultados inmediatos. Por otra parte, se requiere de dispositivos de cómputo

de altas prestaciones. Todo ello se complica aún más con el desarrollo y puesta en el

Appendix B. Sinopsis en español 273

mercado de los nuevos sensores hiperespectrales que presentan mayores tasas de captura

de datos por segundo, además de mayor resolución espacial y espectral. Por todo ello,

la corriente dominante ha sido el procesamiento en la superficie terrestre de los datos

capturados remotamente por los sistemas anteriormente mencionados tras su transmisión

y descarga. Desafortunadamente, la transmisión de datos presenta un cuello de botella

debido a los importantes retrasos derivados del limitado ancho de banda de los sistemas de

comunicación. Por lo tanto, este sistema de operación claramente compromete la ejecución

eficiente, segura y en tiempo real de aplicaciones que requieren de respuestas inmediatas

o en un corto periodo de tiempo.

Partiendo de este contexto, el procesamiento a bordo de los datos hiperespectrales adquiri-

dos se ha convertido en una solución muy atrayente y competitiva, pero aún quedan mu-

chos pasos que dar para que se convierta en una realidad. Lamentablemente, los algoritmos

tradicionalmente propuestos para el análisis de los datos hiperespectrales normalmente se

han abordado como entes independientes utilizando aquellos métodos matemáticos que

maximicen la calidad de los resultados obtenidos. Sin embargo, esto da lugar a prop-

uestas algoŕıtmicas muy complejas, dif́ıcilmente implementables debido a la ejecución de

operaciones computacionalmente costosas, intensivas en consumo de memoria y recursos

hardware y caracterizadas por altas dependencias de datos. Todo ello ha dado lugar a

que en los últimos años se hayan invertido muchos esfuerzos en la búsqueda de métodos

alternativos más ligeros, que puedan incluso ser adaptados a los requerimientos impuestos

por las arquitecturas de cómputo paralelo más habitualmente empleadas en este tipo de

aplicaciones, como son las FPGAs y las GPUs.

Sin embargo, el escenario anteriormente planteado se vuelve aún más complicado cuando

distintos procesos de análisis hiperespectral deben ser ejecutados de manera simultánea

y coexistir en un único dispositivo de cómputo asegurando respuestas en tiempo real. En

este sentido, la solución más simple y comúnmente utilizada se basa en la selección de

distintos algoritmos para cada aplicación a llevar a cabo y acelerarlos usando dispositivos

de cómputo paralelo. El problema radica en el momento de su ejecución concurrente en

un mismo dispositivo hardware en escenarios caracterizados por restricciones en términos

de consumo, recursos de cómputo, peso y espacio disponibles, como son, por ejemplo, los

drones. El principalmente fundamento de la imposibilidad de realización de la solución

anteriormente planteada se basa en que normalmente las etapas de desarrollo algoŕıtmicas

y la de implementación y aceleración hardware se abordan de manera totalmente inde-

pendiente, lo que da lugar a implementaciones totalmente ineficientes.

274 Appendix B. Sinopsis en español

Por lo tanto, hay una gran necesidad en la literatura de soluciones algoŕıtmicas que ten-

gan en consideración las actuales restricciones y limitaciones existentes en las aplicaciones

demandadas hoy en d́ıa. Además, también se requiere de la definición de nuevas alterna-

tivas algoŕıtmicas que tengan en cuenta la causalidad inherente a los procesos de captura

realizados por sistemas de tipo pushbroom y whiskbroom. Es por ello que para obtener una

respuesta en tiempo real en este tipo de aplicaciones es necesario disponer de métodos al-

goŕıtmicos capaces de procesar de manera independiente bloques de ṕıxeles y que además,

descarten la definición de restricciones espaciales. Por supuesto, esto también deriva en la

reducción de la cantidad de datos a almacenar y procesar en un cierto instante de tiempo

y por ende, la cantidad de recursos de cómputo necesarios y los tiempos de ejecución.

Partiendo del contexto descrito hasta ahora, la realización de esta Tesis Doctoral ha

contribuido al campo del procesamiento abordo y en tiempo real de las imágenes hipe-

respectrales en aplicaciones donde múltiples técnicas de análisis deban coexistir en un

único dispositivo de cómputo. Por lo tanto, esta Tesis Doctoral ha ayudado a abordar las

necesidades existentes con los siguientes logros:

� Desarrollando soluciones algoŕıtmicas hardware-friendly que han sido concebidas

desde sus etapas iniciales de diseño para ser implementadas y aceleradas en dispos-

itivos de cómputo paralelo.

� Adaptando los métodos propuestos para poder procesar bloques de ṕıxeles de man-

era independiente y brindar soluciones competitivas para aplicaciones basadas en

sistemas de adquisición de datos del tipo pushbroom y whiskbroom.

� Definiendo un conjunto de operaciones que permitan la ejecución simultánea de

múltiples tareas de análisis con la ventaja de compartir las operaciones más com-

putacionalmente complejas y además, reutilizar las variables de salida para la conse-

cución de cada método independiente. Esto por supuesto deriva en la disminución de

los recursos cómputo, los tiempos de ejecución y los esfuerzos humanos comparado

con la solución tradicionalmente adoptada basada en la implementación independi-

ente de distintos métodos matemáticos.

� Demostrando la capacidad de ejecución en tiempo real de las soluciones algoŕıtmicas

propuestas a través de su implementación en dispositivos de cómputo paralelo basa-

dos en FPGAs y GPUs de bajo consumo.

Appendix B. Sinopsis en español 275

B.2 Objetivos y metodoloǵıa de trabajo

El principal objetivo de esta tesis es proveer a la comunidad cient́ıfica con un conjunto

de operaciones capaces de extraer información espectral de utilidad para la realización de

múltiples técnicas de análisis hiperespectral. El hecho de centrarse en la utilización de un

único método matemático es especialmente beneficioso para la aceleración hardware de

estos procesos. Por una parte, esto se traduce en un ahorro de tiempo, costes y esfuerzo

humano durante la etapa de implementación hardware de estas soluciones algoŕıtmicas

pues sólo un único método matemático debe ser estudiado, comprendido y desarrollado.

Por otra parte, esta metodoloǵıa permite la ejecución conjunta de diversas tareas de proce-

samiento con la ventaja de compartir las operaciones más computacionalmente costosas y

complejas, con los beneficios derivado de ello. Además, la metodoloǵıa propuesta presenta

ya desde su definición una carga computacional relativamente baja a través del uso de

una serie de operaciones pensadas para ser eficientemente implementadas en dispositivos

de cómputo paralelo.

Esto objetivo, a su vez, se ha dividido en los siguientes seis subobjetivos:

1. Desarrollar un conjunto de operaciones de cómputo hardware-friendly. Estas opera-

ciones deben ser capaces de extraer caracteŕısticas de las imágenes hiperespectrales

de gran utilidad para su análisis desde distintas perspectivas de procesamiento.

Además, deben presentar una alta naturaleza paralelizable que facilite su imple-

mentación y aceleración en dispositivos de cómputo paralelo con objeto de obtener

respuestas en tiempo real. Para ello, deben poder definirse tanto en coma flotante

como en aritmética entera, haciendo uso del concepto de punto fijo, en aras de

poder adaptarse más eficientemente a la arquitectura hardware en la que vayan a

ser implementadas. Finalmente, estas operaciones deben poder ser ejecutadas sobre

bloques independientes de ṕıxeles en aras de facilitar su procesamiento inmediato

y en tiempo real, evitando por ende la definición de restricciones espećıficas de

alineación espacial. Esto permite la adaptabilidad de las operaciones propuestas a

aplicaciones basadas en sistemas de captura del tipo pushbroom/whiskbroom.

2. Demostrar la viabilidad de la ejecución concurrente de múltiples técnicas de análisis

hiperespectral basadas en el mismo método matemático. En este sentido, debe

comprobarse que se puede llevar a cabo la ejecución simultánea de distintos tipos de

técnicas de análisis hiperespectral sobre el mismo dispositivo hardware reutilizando

276 Appendix B. Sinopsis en español

las variables de salida del conjunto de operaciones descritas en el suobjetivo inmedi-

atamente superior. También se debe demostrar que el costo computacional general,

los recursos hardware requeridos, aśı como los esfuerzos humanos invertidos durante

la implementación de las soluciones algoŕıtmicas propuestas se reducen consider-

ablemente en comparación con escenarios donde métodos matemáticos distintos son

independiente implementados.

3. Desarrollar un nuevo algoritmo para la detección de agentes anómalos basado en el

conjunto de operaciones anteriormente citado. Dicho algoritmo debe ser capaz de

encontrar ṕıxeles raros que difieran notablemente de la distribución general de las

firmas espectrales más dominantes, también conocida como distribución del back-

ground. Para ello, esta propuesta algoŕıtmica debe cumplir con los requisitos im-

puestos por las aplicaciones de teledectección actuales y con la causalidad inherente

a los procesos de capturas basados en sistemas del tipo pushbroom/whiskbroom.

4. Proponer un nuevo algoritmo hardware-friendly para la compresión con pérdidas

de imágenes hiperespectrales basado en métodos de transformada. Esta propuesta

debe ser capaz de realizar el proceso completo de decorrelación y reducción de los

datos hiperespectrales aśı como su codificación entrópica. Además, debe presentar

una baja complejidad computacional y un alto grado de paralelismo y escalabilidad

en aras de que su ejecución pueda ser abordada de manera eficiente en escenarios a

bordo de sistemas del tipo pushbroom/whiskbroom.

5. Verificar la idoneidad de los algoritmos desarrollados para aplicaciones que requieran

de una respuesta en tiempo real a través de su implementación en diferentes dispos-

itivos de cómputo paralelo tales como GPUs y FPGAs. Además, también se desea

evaluar la eficiencia de estas arquitecturas en función de las caracteŕısticas de la

aplicación objetivo y su comportamiento utilizando notación en aritmética entera y

en coma flotante.

B.3 Contribuciones generales y principales conclu-

ciones extráıdas

Las principales contribuciones y conclusiones extráıdas de esta Tesis Doctoral en el campo

del procesamiento a bordo y en tiempo real de las imágenes hiperespectrales y, en conse-

cución con los objetivos planteados, son:

Appendix B. Sinopsis en español 277

1. Se presenta un conjunto de operaciones capaces de extraer caracteŕısticas de las

imágenes hiperespectrales de gran utilidad para la ejecución de múltiples técnicas

de procesamiento espectral. En consecuencia, esta propuesta permite la ejecución

concurrente de muchas tareas diferentes al mismo tiempo, tales como detección de

agentes anómalos; detección de objetivos de interés; compresión con pérdidas de

imágenes hiperespectrales; clasificación y desmezclado; con la ventaja de compartir

los núcleos operacionales más computacionalmente intensivos. Para ello, el con-

junto de operaciones propuesto se basa en técnicas de proyecciones ortogonales y,

más concretamente, en el conocido método de ortogonalización de Gram-Schmidt.

Además, esta metodoloǵıa presenta baja carga computacional ya que no involu-

cra cálculos complejos con matrices ni la estimación de autovalores y autovectores,

como realizan otros métodos del estado del arte como es el Análisis de Componentes

Principales (PCA, de sus siglas en inglés Principal Component Analysis).

Como novedad, el conjunto de operaciones propuesto se puede aplicar de manera

eficiente e independiente en bloques de ṕıxeles de la imagen sin requerir la definición

de restricciones espaciales espećıficas. Esta caracteŕıstica distintiva hace de esta

propuesta una solución prometedora para aplicaciones en tiempo real, especialmente

cuando se trata de escenarios que utilizan sensores del tipo pushbroom que sensan

los datos ĺınea a ĺınea.

No obstante, uno de los mayores beneficios del set de operaciones propuesto radica

en la definición de un conjunto de variables cuyos valores se encuentran definidos

dentro de unos rangos numéricos conocidos de antemano. Esto permite conocer

desde la etapa de diseño los valores máximos y mı́nimos que podrá alcanzar cada

variable definida dentro de cada operación. Esta caracteŕıstica hace posible explotar

el concepto de punto fijo en la aritmética entera de manera personalizada con objeto

de representar la parte entera y decimal de las variables envueltas en el proceso.

Por lo tanto, el conjunto propuesto de operaciones se puede adaptar fácilmente a los

requisitos impuestos por los dispositivos de cómputo paralelo que se van a utilizar

para su implementación. En este contexto, las FPGAs son en general más eficientes

con el manejo de operaciones definidas en aritmética entera, mientras que las GPUs

están optimizadas para el procesamiento en paralelo de operaciones en coma flotante

utilizado para ello cientos de pequeños núcleos de procesamiento.

2. En esta Tesis Doctoral se ha desarrollado un nuevo algoritmo para la detección de

espectros anómalos, denominado A Line-by-Line Fast Anomaly Detector for Hy-

perspectral Imagery (LbL-FAD). Dicho algoritmo ha sido especialmente diseñado

278 Appendix B. Sinopsis en español

para contribuir a la literatura con algoritmos capaces de procesar las imágenes ĺınea

a ĺınea y por tanto, está especialmente destinado a ser empleado en aplicaciones

basadas en sistemas de adquisición del tipo pushbroom/whiskbroom. En este sen-

tido, el algoritmo LbL-FAD es capaz de procesar de forma independiente bloques de

ṕıxeles hiperespectrales sin tener en cuenta ningún requisito de alineación espacial.

Para la detección de firmas espectrales anómalas, el algoritmo LbL-FAD se enfoca

en el cálculo de un subespacio ortogonal al definido por la distribución del back-

ground donde dichos agentes anómalos son más fácilmente detectables. Para ello, el

algoritmo LbL-FAD sigue una estrategia basada en proyecciones ortogonales y más

concretamente, mediante el conjunto de operaciones propuesta en esta Tesis Doc-

toral. Por tanto, esta metodoloǵıa permite excluir el uso de métodos tradicionales

basados en transformaciones lineales, como son el PCA o el Singular Value Descom-

position (SVD) cuyas operaciones presentan por naturaleza una alta complejidad

computacional, y también evita la estimación de inversas de grandes matrices de

datos.

3. También se ha propuesto una versión mejorada del algoritmo del estado del arte tit-

ulado Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA)

para la decorrelación espectral y compresión de las imágenes hiperespectrales. El al-

goritmo HyperLCA es un compresor basado en transformada que proporciona altas

relaciones de compresión con una baja carga computacional. Como ventaja adi-

cional, el algoritmo HyperLCA permite comprimir bloques de ṕıxeles de la imagen

de manera independiente. Esta caracteŕıstica promueve, por un lado, la reducción

de los datos que son manejados a la vez, además de los recursos hardware destina-

dos a ello y, por otro lado, se establece como una solución muy competitiva para

la mayoŕıa de las aplicaciones basadas en sistemas del tipo pushbroom/whiskbroom.

Todo ello ayuda a allanar el camino hacia el logro de un sistema de compresión que

actúe en tiempo real.

Existe un trabajo previo donde se introdujo por primera vez el algoritmo Hyper-

LCA. Éste estableció el punto de partida hacia el uso de técnicas de proyección

ortogonal y, en particular el método de Gram-Schmidt, para la compresión de datos

hiperespectrales. Como novedad, la metodoloǵıa descrita en ese trabajo previo se

ha ampliado con el fin de ser adaptada y poder ejecutarse con el conjunto de op-

eraciones propuesto en esta Tesis Doctoral. Además, también se ha definido un

sistema de compresión de imágenes hiperespectrales completo que incluye la etapa

Appendix B. Sinopsis en español 279

de codificación entrópica de los vectores que conforman los datos comprimidos. Adi-

cionalmente, se ha extendido la definición algoŕıtmica del método de transformada

en el que se basa el algoritmo HyperLCA para incluir su ejecución en aritmética

entera.

Finalmente, se ha demostrado que el algoritmo HyperLCA es también capaz

de conservar los ṕıxeles más diferentes o anómalos tras el proceso de com-

presión/descompresión. Esto es crucial para la correcta operación de muchas

técnicas de procesamiento de imágenes hiperespectrales a realizar con posterior-

idad al proceso de compresión de los datos. De hecho, el uso de un método

mátemático común en la descripción del compresor HyperLCA y el detector de

agentes anómalos LbL-FAD anteriormente mencionado, garantiza que el proceso de

compresión/descompresión no afecte seriamente al rendimiento del proceso de de-

tección de anomaĺıas utilizando los datos transformados y descomprimidos. Por lo

tanto, este rasgo distintivo hace posible adaptar las metodoloǵıas propuestas en esta

Tesis Doctoral a distintos escenarios en función de la aplicación objetivo, asegurando

resultados similares en todas las situaciones.

4. La viabilidad de la ejecución conjunta de múltiples técnicas de análisis hiperes-

pectral basadas en el mismo método matemático también ha sido verificada en

esta Tesis Doctoral. En concreto, se ha analizado la adecuación del conjunto de

operaciones propuesto para la ejecución simultánea de múltiples técnicas de proce-

samiento hiperespectral. Esto proporciona varios beneficios, sobre todo en el campo

del procesamiento a bordo de imágenes hiperespectrales cuando varias aplicaciones

deben coexistir en el mismo dispositivo y ser ejecutadas en tiempo real. En primer

lugar, el uso de esta metodoloǵıa implica invertir menos tiempo y esfuerzo durante la

etapa de implementación y aceleración hardware, ya que el mismo producto puede

ser reutilizado por varios algoritmos destinados a diferentes aplicaciones. En se-

gundo lugar, permite la ejecución de diversas tareas al mismo tiempo con la ventaja

de compartir las operaciones más costosas desde el punto de vista computacional,

reduciéndose aśı la carga computacional y los recursos hardware requeridos para

ello.

En particular, se ha verificado la idoneidad de la metodoloǵıa propuesta para la

ejecución simultánea de la compresión con pérdidas de imágenes hiperespectrales y

la detección de firmas espectrales anómalas. Para atender esta problemática se han

280 Appendix B. Sinopsis en español

propuesto dos soluciones algoŕıtmicas optimizadas. La primera, denominada Opti-

mized proposal for the simultaneous detection of anomalous pixels and the lossy com-

pression of HSIs (ADeLoC), busca la mayor precisión en los resultados en términos

de detección y compresión. En este sentido, el enfoque seguido por el algoritmo ADe-

LoC asegura los mismos resultados que los algoritmos LbL-FAD e HyperLCA pero

lanzando entre un 39-41% menos número de operaciones. La segunda propuesta, de-

nominada Hardware-friendly proposal for the simultaneous detection of anomalous

pixels and the lossy compression of HSIs (HADeLoC), prioriza la optimización de

los recursos hardware y la minimización de los tiempos de ejecución a expensas de

una pérdida en la precisión y la calidad de los resultados en la etapa de compresión

comparado con la versión original del compresor HyperLCA. Por el contrario, se ha

verificado que esta propuesta ejecuta entre un 55-59% menos operaciones que si los

algoritmos LbL-FAD e HyperLCA se implementaran de manera independiente en

el mismo dispositivo de cómputo, y un 27-30% menos operaciones que la versión

denominada ADeLoC. Por lo tanto, la conclusión principal que se puede extraer del

análisis realizado es que siempre existe un balance entre la calidad de los resulta-

dos que se deseen obtener, los recursos computacionales utilizados y el tiempo de

ejecución requerido.

5. En aras de confirmar los beneficios derivados de desarrollar soluciones algoŕıtmicas

basadas en el mismo método matemático; en términos de reducción en los tiem-

pos de ejecución, los recursos hardware empleados y el esfuerzo humano implicado;

y también verificar la idoneidad de las propuestas algoŕıtmicas desarrolladas para

aplicaciones en tiempo real, estas han sido implementadas en diversos dispositivos

de cómputo paralelo, tales como FPGAs y GPUs. En concreto, los algoritmos LbL-

FAD, HyperLCA y HADeLoC fueron acelerados en plataformas SoC, de sus siglas

en inglés System on Chip, basados en FPGAs de Xilinx. Además, el compresor Hy-

perLCA también fue adaptado para su ejecución en plataformas embebidas basadas

en GPU de NVIDIA.

La definición de los aceleradores hardware para FPGA (HWacc) que implementan

los distintos algoritmos propuestos en esta Tesis Doctoral se ha llevado a cabo medi-

ante la combinación de módulos descritos en lenguaje de śıntesis de alto nivel (HLS),

de sus siglas en inglés High Level Synthesis, con lógica de pega definida y person-

alizada con VHDL (Very High Density Language). En este sentido, los HWacc que

implementan cada una de las operaciones propuestas en esta Tesis Doctoral fueron

Appendix B. Sinopsis en español 281

definidos usando herramientas HLS. Estos módulos se han reutilizado en la imple-

mentación de los distintos HWacc que ejecutan los algoritmos anteriormente citados.

En consecución, los mayores esfuerzos se han focalizado en las conexiones entre los

citados módulos para ejecutar las etapas espećıficas de cada algoritmo en cuestión.

Para ello, los buffers de memoria y la lógica de pega que integra y orquesta todos los

componentes de interconexión entre módulos se instancian e implementan utilizando

lenguaje VHDL. Por lo tanto, todo ello implica menos tiempo y esfuerzo durante la

etapa de implementación hardware ya que un mismo producto puede ser reutilizado

por varias soluciones algoŕıtmicas destinadas a propósitos distintos. En relación a la

tasa promedio de frames hiperespectrales capaces de ser procesados por los HWacc

desarrollados, estos son capaces de manejar entre 778-1600 frames de 1024 ṕıxeles

hiperespectrales en un segundo (FPS), datos que claramente superan el mı́nimo es-

tablecido en 330 FPS por la aplicación en concreto definida. Por lo tanto, queda

aseguro y verificado el comportamiento en tiempo real de las soluciones propuestas.

En cuanto a la implementación en GPU realizada del algoritmo de compresión Hy-

perLCA, se han estudiado tres modelos diferentes de implementación del proceso

completo de compresión, viéndolos como una evolución hacia una configuración

óptima que cumple con las limitaciones impuestas por la aplicación en concreto

definida. Esta solución optimizada apuesta por canalizar las transferencias de datos

entre la CPU y la GPU y también la ejecución de los kernerls que implementan

las operaciones propuestas en esta Tesis, a través de una estrategia basada en un

pipeline de los datos. Para ello, dicha propuesta aprovecha los beneficios deriva-

dos de la ejecución concurrente de los kernerls definidos a través del recurso de los

streams instanciados en el modelo de programación de CUDA. En relación a la tasa

promedio de frames hiperespectrales capaces de ser procesados por segundo, la im-

plementación sobre GPU propuesta es capaz de garantizar un rendimineto en tiempo

real ya que se llegan a gestionar de manera eficiente entre 452-923 FPS empleando

la placa de desarrollo Jetson TX2 y más de 1730 FPS con una de las más recientes

placas embebidas comercializadas por NVIDIA, en concreto, la Jetson Xavier NX.

6. Finalmente, también se ha analizado brevemente la posibilidad de extender el uso

de las proyecciones ortogonales y, en particular, el método de ortogonalización de

Gram-Schmidit ejecutado por el conjunto de operaciones propuestas en esta Tesis

Doctoral, a otras técnicas de procesamiento de imágenes hiperespectrales, como son

la selección de bandas, el desmezclado, la detección de objetivos de interés y la

clasificación. Aunque el análisis realizado está lejos de ser tan exhaustivo como

282 Appendix B. Sinopsis en español

el llevado a cabo para los algoritmos LbL-FAD y el HyperLCA, śı que representa

un punto de partida hacia futuros trabajos de investigación dentro de la misma

temática.

Con objeto de resumir gráficamente las contribuciones aportadas por esta Tesis Doctoral

al campo del procesamiento de las imágenes hiperespectrales en tiempo real a bordo de

plataformas de observación terrestre basadas en sistemas del tipo pushbroom, la Figura

B.1 muestra los principales objetivos y contribuciones derivados de ella.

Figure B.1: Principales contribuciones de esta Tesis Doctoral.

Appendix C

Publications

283

284 Appendix C. Publications

C.1 Journals

The following publications are closely linked to the research goals defined for the realiza-

tion of this Thesis:

[1] Caba, J., Dı́az, M., Barba, J., Guerra, R., de la Torre, J.A., López, S. (2020). FPGA-

Based On-Board Hyperspectral Imaging Compression: Benchmarking Performance

and Energy Efficiency against GPU Implementations. 12 - 22, pp. 3741. MDPI

Remote Sensing. https://doi.org/10.3390/rs12223741.

[2] Dı́az, M., Guerra, R., Horstrand, P., López, S., López, J.F., Sarmiento, R. (2020).

Towards the Concurrent Execution of Multiple Hyperspectral Imaging Applications

by Means of Computationally Simple Operations. 12, pp. 1343. MDPI Remote

Sensing. https://doi.org/10.3390/rs12081343.

[3] Dı́az, M., Guerra, R., Horstrand, P., López, S. (2019). A Line-by-Line Fast Anomaly

Detector for Hyperspectral Imagery. 57 - 11, pp. 8968 - 8982. IEEE Transactions

on Geoscience and Remote Sensing. DOI: 10.1109/TGRS.2019.2923921.

[4] Guerra, R., Barrios, Y., Dı́az, M., Báez, B., López, S., Sarmiento, R. (2019). A

Hardware-Friendly Hyperspectral Lossy Compressor for Next-Generation Space-

Grade Field Programmable Gate Arrays. 12 - 12, pp. 4813 - 4828. IEEE Jour-

nal of Selected Topics in Applied Earth Observations and Remote Sensing. DOI:

10.1109/JSTARS.2019.2919791.

[5] Dı́az, M., Guerra, R., Horstrand, P., Martel, E., López, S., López, J.F., Sarmiento,

R. (2019). Real-Time Hyperspectral Image Compression Onto Embedded GPUs. 12

- 8, pp. 2792 - 2809. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing. DOI: 10.1109/JSTARS.2019.2917088.

[6] Guerra, R., Barrios, Y., Dı́az, M., Santos, L., López, S., Sarmiento, R. (2018). A

new algorithm for the on-board compression of hyperspectral images. 10 - 3, pp.

428 - 469. MDPI Remote Sensing. DOI: 10.3390/rs10030428.

[7] Dı́az, M., Guerra, R., López, S., Sarmiento, R. (2017). An Algorithm for an Accu-

rate Detection of Anomalies in Hyperspectral Images With a Low Computational

Complexity. 56 - 2, pp. 1159 - 1176. IEEE Transactions on Geoscience and Remote

Sensing. DOI: 10.1109/TGRS.2017.2761019.

Appendix C. Publications 285

In addition, it has also collaborated in the following publications:

[8] Morales, A., Guerra, R., Horstrand, P., Diaz, M., Jimenez, A., Melian, J., López,

S., López, J. F. (2020). A Multispectral Camera Development: From the Pro-

totype Assembly until Its Use in a UAV System. Sensors. 20 - 21, pp. 6129.

https://doi.org/10.3390/rs13050850.

[9] Melián, J.M., Jiménez, A., Dı́az, M., Morales, A., Horstrand, P., Guerra, R.,

López, S., López, J.F. (2021). Real-time hyperspectral data transmission for

UAV-based acquisition platforms. 13 - 5, pp. 850. MDPI Remote Sensing.

https://doi.org/10.3390/rs13050850.

[10] Ortega, S., Guerra, R., Dı́az, M., Fabelo, H., López, S, Callicó, G. (2019). Hyper-

spectral Push-Broom Microscope Development and Characterization. 7, pp. 122473

- 122491. IEEE Access. DOI: 10.1109/ACCESS.2019.2937729.

[11] Horstrand, P., Guerra, R., Rodŕıguez, A., Dı́az, M., López, S., López, J.F. (2019).

A UAV Platform based on a Hyperspectral Sensor for Image Capturing and On-

Board Processing. 7 - 1, pp. 66919 - 66938. IEEE Access. DOI: 10.1109/AC-

CESS.2019.2913957.

[12] Horstrand, P., Dı́az, M., Guerra, R., López, S., López, J.F. (2019). A Novel Hy-

perspectral Anomaly Detection Algorithm for Real-Time Applications With Push-

Broom Sensors. 12 - 12, pp. 4787 - 4797. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing. DOI: 10.1109/JSTARS.2019.2919911.

286 Appendix C. Publications

C.2 International Conferences

The following contributions to International Conferences are closely linked to the research

goals defined for the realization of this Thesis:

[1] Dı́az, M., Guerra, R., Horstrand, P., Martel, E., López, S., López, J.F., Roberto, S.

(2019). Real-time hyperspectral image compression: a low consumption approach

for UAV-based applications. In XXXIV Conference on Design of Circuits and In-

tegrated Systems (DCIS).

[2] Dı́az, M., López, S. (2019). Towards the efficient on-board processing of hyperspec-

tral images. In XXXIV Conference on Design of Circuits and Integrated Systems

(DCIS).

[3] Dı́az, M., Guerra, R., López, S. (2019). A hardware-friendly anomaly detector for

real-time applications with push-broom scanners. In Workshop on Hyperspectral

Image and Signal Processing Evolution in Remote Sensing (WHISPERS).

[4] Dı́az, M., Guerra, R., López, S. (2019). A novel hyperspectral target detection

algorithm for real-time applications with push-broom scanners. In Workshop on

Hyperspectral Image and Signal Processing Evolution in Remote Sensing (WHIS-

PERS).

[5] Guerra, R., Dı́az, M., Barrios, Y., López, S., Sarmiento, R. (2018). A Hardware-

friendly algorithm for the on-board compression of hyperspectral images. In Work-

shop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing

(WHISPERS).

[6] Guerra, R., Dı́az, M., Barrios, Y., López, S., Sarmiento, R. (2018). A hardware-

friendly algorithm for compressing hyperspectral images. In SPIE Remote Sensing.

DOI: https://doi.org/10.1117/12.2500493

[7] Dı́az, M., López, S., Sarmiento, R. (2016). A new comparison of hyperspectral

anomaly detection algorithms for real-time applications. In SPIE Remote Sensing.

DOI: https://doi.org/10.1117/12.2244297

Appendix C. Publications 287

In addition, it has also collaborated in the works listed below:

[8] Horstrand, P., Guerra, R., Dı́az, M., Morales, A., Jiménez, A., López, S., López,

J.F. (2019). A spectral imaging system for precision agriculture: from its inception

till a pre-commercial prototype. In XXXIV Conference on Design of Circuits and

Integrated Systems (DCIS).

[9] Ortega, S., Guerra, R., Fabelo, H., Dı́az, M., López, S., Callicó, G., Sarmiento, R.

(2019). Low-Cost Hyperspectral Push-broom Microscope, targeting Smart Farming

Applications. In XXXIV Conference on Design of Circuits and Integrated Systems

(DCIS).

[10] Guerra, R., Horstrand, P., Dı́az, M., López, S., López, J.F. (2019). Optimal UAV

movement control for farming areas scanning using hyperspectral pushbrrom scan-

ners. in XXXIV Conference on Design of Circuits and Integrated Systems (DCIS).

[11] Dı́az, M., Chanussot, J., Guerra, R., López, S., Sarmiento, R., Bertozzi, A.L. (2018).

A novel highly parallel algorithm for the detection and tracking of chemical gas

plumes using hyperspectral video sequences. In Workshop on Hyperspectral Image

and Signal Processing: Evolution in Remote Sensing (WHISPERS).

References

[1] Saba Daneshgar. Remote sensing observations for monitoring coastal zones,

Volturno River mouth case study. PhD thesis, 04 2015.

[2] Raúl Celestino Guerra Hernández. Towards the efficient processing of hyperspec-

tral images: new hardware-friendly algorithms and OpenCL-based implementations.

PhD thesis, Universidad de las Palmas de Gran Canaria, 2017.

[3] Maŕıa Lucana Santos Falcón. Hyperspectral image compression onboard next-

generation satellites: Implementation solutions on GPU and FPGAs. PhD thesis,

Universidad de Las Palmas de Gran Canaria, 2014.

[4] Raúl Guerra, Ernestina Martel, Jehandad Khan, Sebastián López, Peter Athanas,

and Roberto Sarmiento. On the evaluation of different high-performance computing

platforms for hyperspectral imaging: An OpenCL-based approach. IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing, 10(11):4879–

4897, 2017.

[5] Maŕıa Dı́az, Raúl Guerra, Pablo Horstrand, Ernestina Martel, Sebastián López,

José F. López, and Sarmiento Roberto. Real-time hyperspectral image compres-

sion onto embedded GPUs. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, pages 1–18, 2019. ISSN 1939-1404. doi:

10.1109/JSTARS.2019.2917088.

[6] Julie Transon, Raphaël d’Andrimont, Alexandre Maugnard, and Pierre Defourny.

Survey of hyperspectral earth observation applications from space in the Sentinel-2

context. Remote Sensing, 10(2):157, 2018.

[7] Megandhren Govender, K Chetty, and Hartley Bulcock. A review of hyperspectral

remote sensing and its application in vegetation and water resource studies. Water

Sa, 33(2), 2007.

289

290 References

[8] P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and A. Plaza.

Advances in hyperspectral image and signal processing: A comprehensive overview

of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 5(4):37–78,

Dec 2017. ISSN 2168-6831. doi: 10.1109/MGRS.2017.2762087.

[9] Alexander F.H. Goetz. Three decades of hyperspectral remote sensing of the Earth:

A personal view. Remote Sensing of Environment, 113:S5–S16, sep 2009. ISSN

00344257. doi: 10.1016/j.rse.2007.12.014. URL https://linkinghub.elsevier.

com/retrieve/pii/S003442570900073X.

[10] John A. Richards. Remote Sensing Digital Image Analysis. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-30061-5.

doi: 10.1007/978-3-642-30062-2. URL http://link.springer.com/10.1007/

978-3-642-30062-2.

[11] Andreas Birk, Burkhard Wiggerich, Heiko Bülow, Max Pfingsthorn, and Sören

Schwertfeger. Safety, security, and rescue missions with an unmanned aerial ve-

hicle (UAV). Journal of Intelligent & Robotic Systems, 64(1):57–76, 2011.

[12] Guolan Lu and Baowei Fei. Medical hyperspectral imaging: a review. Journal of

biomedical optics, 19(1):010901, 2014.

[13] Muhammad Jaleed Khan, Hamid Saeed Khan, Adeel Yousaf, Khurram Khurshid,

and Asad Abbas. Modern trends in hyperspectral image analysis: a review. IEEE

Access, 6:14118–14129, 2018.

[14] Petra Tatzer, Markus Wolf, and Thomas Panner. Industrial application for inline

material sorting using hyperspectral imaging in the nir range. Real-Time Imaging,

11(2):99–107, 2005.

[15] Silvia Serranti, Aldo Gargiulo, and Giuseppe Bonifazi. Hyperspectral imaging for

process and quality control in recycling plants of polyolefin flakes. Journal of Near

Infrared Spectroscopy, 20(5):573–581, 2012.

[16] Hans Grahn and Paul Geladi. Techniques and applications of hyperspectral image

analysis. John Wiley & Sons, 2007.

[17] G Vane, M Chrisp, H Enmark, S Macenka, et al. Airborne visible/infrared imaging

spectrometer (AVIRIS): an advanced tool for earth remote sensing. In From Res.

Towards Operational Use, volume 2, 1984.

https://linkinghub.elsevier.com/retrieve/pii/S003442570900073X
https://linkinghub.elsevier.com/retrieve/pii/S003442570900073X
http://link.springer.com/10.1007/978-3-642-30062-2
http://link.springer.com/10.1007/978-3-642-30062-2

References 291

[18] SK Babey and CD Anger. A compact airborne spectrographic imager (CASI). In

Quantitative Remote Sensing: An Economic Tool for the Nineties, Volume 1, pages

1028–1031, 1989.

[19] Peter A Mitchell. Hyperspectral digital imagery collection experiment (HYDICE).

In Geographic Information Systems, Photogrammetry, and Geological/Geophysical

Remote Sensing, volume 2587, pages 70–95. International Society for Optics and

Photonics, 1995.

[20] P Strobl, R Richter, A Mueller, F Lehmann, D Oertel, S Tischler, and A Nielsen.

Dais system performance, first results from the 1995 evaluation campaigns. In

Proceedings from the Second International Airborne Remote Sensing Conference and

Exhibition, volume 2, pages 325–334. Citeseer, 1996.

[21] B Kunkel, F Blechinger, D Viehmann, H VAN DER PIEPEN, and R Doerffer.

ROSIS imaging spectrometer and its potential for ocean parameter measurements

(airborne and space-borne). International Journal of Remote Sensing, 12(4):753–

761, 1991.

[22] Kai Makisara, Marko Meinander, Markku Rantasuo, Jukko Okkonen, Mauri Aikio,

and Kaarlo Sipola. Airborne imaging spectrometer for applications (AISA). In Pro-

ceedings of IGARSS’93-IEEE International Geoscience and Remote Sensing Sym-

posium, pages 479–481. IEEE, 1993.

[23] T Cocks, R Jenssen, A Stewart, I Wilson, and T Shields. The HyMap airborne

hyperspectral sensor: The system, calibration and performance. In Proceedings of

the 1st EARSeL workshop on Imaging Spectroscopy, pages 37–42. EARSeL, 1998.

[24] Thomas A Ellis, Jeffrey Myers, Patrick Grant, Steven Platnick, Daniel C Guerin,

John Fisher, Kai Song, Joseph Kimchi, Louis Kilmer, Daniel D LaPorte, et al. The

NASA enhanced MODIS airborne simulator. In Earth Observing Systems XVI,

volume 8153, page 81530N. International Society for Optics and Photonics, 2011.

[25] A Müller and A Hausold. The airborne imaging spectrometer data acquisition

programme in 1998 1999 and 2000. In The Digital Airborne Spectrometer Experiment

(DAISEX), volume 499, page 7, 2001.

[26] Jay S Pearlman, Pamela S Barry, Carol C Segal, John Shepanski, Debra Beiso,

and Stephen L Carman. Hyperion, a space-based imaging spectrometer. IEEE

Transactions on Geoscience and Remote Sensing, 41(6):1160–1173, 2003.

292 References

[27] Mike A Cutter, Dan R Lobb, and Robert A Cockshott. Compact high resolution

imaging spectrometer (CHRIS). Acta Astronautica, 46(2-6):263–268, 2000.

[28] Ettore Lopinto and Cristina Ananasso. The prisma hyperspectral mission. In pro-

ceedings of the 33rd EARSeL Symposium Towards Horizon, volume 2020, 2013.

[29] Hermann Kaufmann, Karl Segl, Luis Guanter, Stefan Hofer, K-P Foerster, Timo

Stuffler, Andreas Mueller, Rudolf Richter, Heike Bach, Patrick Hostert, et al. En-

vironmental mapping and analysis program (EnMAP)-recent advances and status.

In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Sympo-

sium, volume 4, pages IV–109. IEEE, 2008.

[30] Jose AJ Berni, Pablo J Zarco-Tejada, Lola Suárez, and Elias Fereres. Thermal

and narrowband multispectral remote sensing for vegetation monitoring from an

unmanned aerial vehicle. IEEE Transactions on geoscience and Remote Sensing, 47

(3):722–738, 2009.

[31] Telmo Adão, Jonáš Hruška, Lúıs Pádua, José Bessa, Emanuel Peres, Raul Morais,

and Joaquim João Sousa. Hyperspectral imaging: A review on UAV-based sensors,

data processing and applications for agriculture and forestry. Remote Sensing, 9

(11):1110, 2017.

[32] P. Horstrand, R. Guerra, M. DÍaz, A. Morales, A. Jiménez, S. López, and J. F.

López. A spectral imaging system for precision agriculture: From its inception till

a pre-commercial prototype. In 2019 XXXIV Conference on Design of Circuits and

Integrated Systems (DCIS), pages 1–6, 2019.

[33] Alberto Ortiz, Alfonso Rodŕıguez, Raúl Guerra, Sebastián López, Andrés Otero,

Roberto Sarmiento, and Eduardo De la Torre. A runtime-scalable and hardware-

accelerated approach to on-board linear unmixing of hyperspectral images. Remote

Sensing, 10(11):1790, 2018.

[34] Alberto G Villafranca, Jordi Corbera, Francisco Mart́ın, and Juan Fernando

Marchán. Limitations of hyperspectral earth observation on small satellites. Journal

of Small Satellites, 1(1):19–29, 2012.

[35] Rico Valentino, Woo-Sung Jung, and Young-Bae Ko. A design and simulation of the

opportunistic computation offloading with learning-based prediction for unmanned

aerial vehicle (UAV) clustering networks. Sensors, 18(11):3751, 2018.

References 293

[36] Antonio Plaza, Qian Du, Yang-Lang Chang, and Roger L King. High performance

computing for hyperspectral remote sensing. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 4(3):528–544, 2011.

[37] Adrián Alcolea, Mercedes E Paoletti, Juan M Haut, Javier Resano, and Antonio

Plaza. Inference in supervised spectral classifiers for on-board hyperspectral imag-

ing: An overview. Remote Sensing, 12(3):534, 2020.

[38] Sebastian Lopez, Tanya Vladimirova, Carlos Gonzalez, Javier Resano, Daniel Mo-

zos, and Antonio Plaza. The promise of reconfigurable computing for hyperspectral

imaging onboard systems: A review and trends. Proceedings of the IEEE, 101(3):

698–722, 2013.

[39] Alan D George and Christopher M Wilson. Onboard processing with hybrid and

reconfigurable computing on small satellites. Proceedings of the IEEE, 106(3):458–

470, 2018.

[40] Qian Du and Reza Nekovei. Fast real-time onboard processing of hyperspectral

imagery for detection and classification. Journal of Real-Time Image Processing, 4

(3):273–286, 2009.

[41] Ian Blanes, Joan Serra-Sagrista, Michael W Marcellin, and Joan Bartrina-Rapesta.

Divide-and-conquer strategies for hyperspectral image processing: A review of their

benefits and advantages. IEEE Signal Processing Magazine, 29(3):71–81, 2012.

[42] Mike Estlick, Miriam Leeser, James Theiler, and John J Szymanski. Algorithmic

transformations in the implementation of k-means clustering on reconfigurable hard-

ware. In Proceedings of the 2001 ACM/SIGDA ninth international symposium on

Field programmable gate arrays, pages 103–110, 2001.

[43] Naoufal Amrani, Joan Serra-Sagristà, Valero Laparra, Michael W Marcellin, and

Jesus Malo. Regression wavelet analysis for lossless coding of remote-sensing data.

IEEE Transactions on Geoscience and Remote Sensing, 54(9):5616–5627, 2016.

[44] Chein-I Chang and Shao-Shan Chiang. Anomaly detection and classification for

hyperspectral imagery. IEEE transactions on geoscience and remote sensing, 40(6):

1314–1325, 2002.

[45] Lifu Zhang, Bo Peng, Feizhou Zhang, Lizhe Wang, Hongming Zhang, Peng Zhang,

and Qingxi Tong. Fast real-time causal linewise progressive hyperspectral anomaly

294 References

detection via cholesky decomposition. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 10(10):4614–4629, 2017.

[46] Chunhui Zhao and Xifeng Yao. Fast real-time kernel RX algorithm based on cholesky

decomposition. IEEE Geoscience and Remote Sensing Letters, (99):1–5, 2018.

[47] Shih-Yu Chen, Yulei Wang, Chao-Cheng Wu, Chunhong Liu, and Chen-I Chang.

Real-time causal processing of anomaly detection for hyperspectral imagery. IEEE

Transactions on Aerospace and Electronic Systems, 50(2):1511–1534, 2014.

[48] Pedram Ghamisi, Naoto Yokoya, Jun Li, Wenzhi Liao, Sicong Liu, Javier Plaza,

Behnood Rasti, and Antonio Plaza. Advances in hyperspectral image and signal

processing: A comprehensive overview of the state of the art. IEEE Geoscience and

Remote Sensing Magazine, 5(4):37–78, 2017.

[49] Prasad S Thenkabail, John G Lyon, and Alfredo Huete. Fundamentals, Sensor

Systems, Spectral Libraries, and Data Mining for Vegetation. CRC Press, 2018.

[50] Thomas Lillesand, Ralph W Kiefer, and Jonathan Chipman. Remote sensing and

image interpretation. John Wiley & Sons, 2014.

[51] Chein-I Chang. Hyperspectral data exploitation: theory and applications. John Wiley

& Sons, 2007.

[52] Teresa G Cervero, Julián Caba, Sebastián López, Julio Daniel Dondo, Roberto

Sarmiento, Fernando Rincón, and Juan López. A scalable and dynamically reconfig-

urable FPGA-based embedded system for real-time hyperspectral unmixing. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8

(6):2894–2911, 2014.

[53] Alessandro Biondi and Giorgio Buttazzo. Timing-aware FPGA partitioning for

real-time applications under dynamic partial reconfiguration. In 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), pages 172–179. IEEE, 2017.

[54] Gary A Shaw and Hsiaohua K Burke. Spectral imaging for remote sensing. Lincoln

laboratory journal, 14(1):3–28, 2003.

[55] José M Bioucas-Dias, Antonio Plaza, Gustavo Camps-Valls, Paul Scheunders,

Nasser Nasrabadi, and Jocelyn Chanussot. Hyperspectral remote sensing data anal-

ysis and future challenges. IEEE Geoscience and remote sensing magazine, 1(2):

6–36, 2013.

References 295

[56] Peg Shippert. Introduction to hyperspectral image analysis. Online Journal of Space

Communication, 3(2003):13, 2003.

[57] Dimitris Manolakis and Gary Shaw. Detection algorithms for hyperspectral imaging

applications. IEEE signal processing magazine, 19(1):29–43, 2002.

[58] Nasser M Nasrabadi. Hyperspectral target detection: An overview of current and

future challenges. IEEE Signal Processing Magazine, 31(1):34–44, 2014.

[59] Stefania Matteoli, Marco Diani, and Giovanni Corsini. A tutorial overview of

anomaly detection in hyperspectral images. IEEE Aerospace and Electronic Sys-

tems Magazine, 25(7):5–28, 2010.

[60] Irving S Reed and Xiaoli Yu. Adaptive multiple-band cfar detection of an opti-

cal pattern with unknown spectral distribution. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 38(10):1760–1770, 1990.

[61] Nasser M Nasrabadi. Regularization for spectral matched filter and RX anomaly

detector. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ul-

traspectral Imagery XIV, volume 6966, page 696604. International Society for Optics

and Photonics, 2008.

[62] Yang Xu, Zebin Wu, Jun Li, Antonio Plaza, and Zhihui Wei. Anomaly detection in

hyperspectral images based on low-rank and sparse representation. IEEE Transac-

tions on Geoscience and Remote Sensing, 54(4):1990–2000, 2016.

[63] Yuxiang Zhang, Bo Du, Liangpei Zhang, and Shugen Wang. A low-rank and

sparse matrix decomposition-based mahalanobis distance method for hyperspectral

anomaly detection. IEEE Transactions on Geoscience and Remote Sensing, 54(3):

1376–1389, 2016.

[64] Wei Li and Qian Du. Collaborative representation for hyperspectral anomaly de-

tection. IEEE Transactions on geoscience and remote sensing, 53(3):1463–1474,

2015.

[65] Consultative Committee for Space Data Systems (CCSDS). Image Data Compres-

sion. CCSDS, Green Book 120.1-G-2. Available Online: https://public.ccsds.

org/Pubs/120x1g2.pdf, . (Accessed on 10 July 2020).

[66] Giovanni Motta, Francesco Rizzo, and James A Storer. Hyperspectral data compres-

sion. Springer Science & Business Media, 2006.

 https://public. ccsds.org/Pubs/120x1g2.pdf
 https://public. ccsds.org/Pubs/120x1g2.pdf

296 References

[67] Qian Du and James E Fowler. Hyperspectral image compression using JPEG2000

and principal component analysis. IEEE Geoscience and Remote sensing letters, 4

(2):201–205, 2007.

[68] Qian Du and James E Fowler. Low-complexity principal component analysis for

hyperspectral image compression. The International Journal of High Performance

Computing Applications, 22(4):438–448, 2008.

[69] Qian Du, Nam Ly, and James E Fowler. An operational approach to PCA +

JPEG2000 compression of hyperspectral imagery. IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, 7(6):2237–2245, 2013.

[70] Miloš Radosavljević, Branko Brkljač, Predrag Lugonja, Vladimir Crnojević, Željen

Trpovski, Zixiang Xiong, and Dejan Vukobratović. Lossy compression of multispec-

tral satellite images with application to crop thematic mapping: A hevc comparative

study. Remote Sensing, 12(10):1590, 2020.

[71] Ian Blanes, Enrico Magli, and Joan Serra-Sagrista. A tutorial on image compression

for optical space imaging systems. IEEE Geoscience and Remote Sensing Magazine,

2(3):8–26, 2014.

[72] Marco Conoscenti, Riccardo Coppola, and Enrico Magli. Constant SNR, rate con-

trol, and entropy coding for predictive lossy hyperspectral image compression. IEEE

Transactions on Geoscience and Remote Sensing, 54(12):7431–7441, 2016.

[73] Mahesh Pal and Giles M Foody. Feature selection for classification of hyperspectral

data by SVM. IEEE Transactions on Geoscience and Remote Sensing, 48(5):2297–

2307, 2010.

[74] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and

J. Chanussot. Hyperspectral unmixing overview: Geometrical, statistical, and

sparse regression-based approaches. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 5(2):354–379, April 2012. ISSN 2151-1535.

doi: 10.1109/JSTARS.2012.2194696.

[75] Joseph W Boardman. Automating spectral unmixing of AVIRIS data using convex

geometry concepts. 1993.

[76] José MP Nascimento and José MB Dias. Vertex component analysis: A fast algo-

rithm to unmix hyperspectral data. IEEE transactions on Geoscience and Remote

Sensing, 43(4):898–910, 2005.

References 297

[77] Michael E Winter. N-findr: An algorithm for fast autonomous spectral end-member

determination in hyperspectral data. In Imaging Spectrometry V, volume 3753,

pages 266–275. International Society for Optics and Photonics, 1999.

[78] Daniel C Heinz et al. Fully constrained least squares linear spectral mixture analysis

method for material quantification in hyperspectral imagery. IEEE transactions on

geoscience and remote sensing, 39(3):529–545, 2001.

[79] José M Bioucas-Dias and Mário AT Figueiredo. Alternating direction algorithms

for constrained sparse regression: Application to hyperspectral unmixing. In 2010

2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote

Sensing, pages 1–4. IEEE, 2010.

[80] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2001.

[81] José M Bioucas-Dias and José MP Nascimento. Hyperspectral subspace identifi-

cation. IEEE Transactions on Geoscience and Remote Sensing, 46(8):2435–2445,

2008.

[82] Gustavo Camps-Valls, Devis Tuia, Luis Gómez-Chova, Sandra Jiménez, and Jesús

Malo. Remote sensing image processing. Synthesis Lectures on Image, Video, and

Multimedia Processing, 5(1):1–192, 2011.

[83] Sicong Liu, Daniele Marinelli, Lorenzo Bruzzone, and Francesca Bovolo. A review

of change detection in multitemporal hyperspectral images: Current techniques,

applications, and challenges. IEEE Geoscience and Remote Sensing Magazine, 7

(2):140–158, 2019.

[84] Milica Orlandić, Johan Fjeldtvedt, and Tor Arne Johansen. A parallel FPGA im-

plementation of the CCSDS-123 compression algorithm. Remote Sensing, 11(6):673,

2019.

[85] Luis Alberto Aranda, Antonio Sánchez, Francisco Garcia-Herrero, Yubal Barrios,

Roberto Sarmiento, and Juan Antonio Maestro. Reliability analysis of the SHyLoC

CCSDS123 IP core for lossless hyperspectral image compression using COTS FP-

GAs. Electronics, 9(10), 2020. ISSN 2079-9292. doi: 10.3390/electronics9101681.

URL https://www.mdpi.com/2079-9292/9/10/1681.

https://www.mdpi.com/2079-9292/9/10/1681

298 References

[86] Luis Alberto Aranda, Pedro Reviriego, and Juan Antonio Maestro. Toward a fault-

tolerant star tracker for small satellite applications. IEEE Transactions on Aerospace

and Electronic Systems, 56(5):3421–3431, 2020.

[87] Justin A Hogan, Raymond J Weber, and Brock J LaMeres. Reliability analysis

of field-programmable gate-array-based space computer architectures. Journal of

Aerospace Information Systems, 14(4):247–258, 2017.

[88] Solomon Banteywalu, Baseem Khan, Valentijn De Smedt, and Paul Leroux. A novel

modular radiation hardening approach applied to a synchronous buck converter.

Electronics, 8(5):513, 2019.

[89] Pablo Horstrand, Raul Guerra, Aythami Rodŕıguez, Maŕıa Dı́az, Sebastián López,

and José Fco López. A UAV platform based on a hyperspectral sensor for image

capturing and on-board processing. IEEE Access, 2019.

[90] Kejie Lu, Junfei Xie, Yan Wan, and Shengli Fu. Toward UAV-based airborne com-

puting. IEEE Wireless Communications, 26(6):172–179, 2019.

[91] Interuniversity Microelectronics Centre (IMEC). Hyperspectral drone

camera system for application development. Available Online: https:

//www.imec-int.com/drupal/sites/default/files/inline-files/UAV%

20SNmosaic%20VIS%2BNIR%20hyperspectral%20imaging%20camera.pdf. (Ac-

cessed on 13 April 2020).

[92] Fredrik C Bruhn, Nandinbaatar Tsog, Fabian Kunkel, Oskar Flordal, and Ian Troxel.

Enabling radiation tolerant heterogeneous GPU-based onboard data processing in

space. CEAS Space Journal, 12(4):551–564, 2020.

[93] Robert Wright, Miguel Nunes, Paul Lucey, Luke Flynn, Thomas George, Sarath

Gunapala, David Ting, Alexander Soibel, Chiara Ferrari-Wong, Abigail Flom, et al.

Hyti: thermal hyperspectral imaging from a cubesat platform. In IGARSS 2019-

2019 IEEE International Geoscience and Remote Sensing Symposium, pages 4982–

4985. IEEE, 2019.

[94] Caleb Adams, Allen Spain, Jackson Parker, Matthew Hevert, James Roach, and

David Cotten. Towards an integrated GPU accelerated SoC as a flight computer

for small satellites. In 2019 IEEE Aerospace Conference, pages 1–7. IEEE, 2019.

 https://www.imec-int.com/drupal/sites/default/files/inline-files/UAV%20SNmosaic%20VIS%2BNIR%20hyperspectral%20imaging%20camera.pdf
 https://www.imec-int.com/drupal/sites/default/files/inline-files/UAV%20SNmosaic%20VIS%2BNIR%20hyperspectral%20imaging%20camera.pdf
 https://www.imec-int.com/drupal/sites/default/files/inline-files/UAV%20SNmosaic%20VIS%2BNIR%20hyperspectral%20imaging%20camera.pdf

References 299

[95] George A Salazar and Glen F Steele. Commercial off-the-shelf (COTS) graphics

processing board (gpb) radiation test evaluation report. 2013.

[96] Umar Ibrahim Minhas, Samuel Bayliss, and George A Constantinides. GPU vs

FPGA: A comparative analysis for non-standard precision. In International Sym-

posium on Applied Reconfigurable Computing, pages 298–305. Springer, 2014.

[97] Analog Devices. Fixed-point vs floating-point digital signal processing, 2010.

[98] DSP Berten. GPU vs FPGA performance comparison. In Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays-

FPGA’17, 2016.

[99] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar. Reducing power by optimizing

the necessary precision/range of floating-point arithmetic. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 8(3):273–286, 2000. doi: 10.1109/92.

845894.

[100] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

Deep learning with limited numerical precision. In International conference on

machine learning, pages 1737–1746. PMLR, 2015.

[101] Ambrose Finnerty and Hervé Ratigner. Reduce power and cost by converting from

floating point to fixed point. WP491 (v1. 0), 2017.

[102] Antonio Plaza, Jon Atli Benediktsson, Joseph W Boardman, Jason Brazile, Lorenzo

Bruzzone, Gustavo Camps-Valls, Jocelyn Chanussot, Mathieu Fauvel, Paolo Gamba,

Anthony Gualtieri, et al. Recent advances in techniques for hyperspectral image

processing. Remote sensing of environment, 113:S110–S122, 2009.

[103] Nor Rizuan Mat Noor and Tanya Vladimirova. Integer KLT design space exploration

for hyperspectral satellite image compression. In International Conference on Hybrid

Information Technology, pages 661–668. Springer, 2011.

[104] Youcef Saad. Numerical methods for large eigenvalue problems. Manchester Univer-

sity Press, 1992.

[105] Raúl Guerra, Lucana Santos, Sebastián López, and Roberto Sarmiento. A new

fast algorithm for linearly unmixing hyperspectral images. IEEE Transactions on

Geoscience and Remote Sensing, 53(12):6752–6765, 2015.

300 References

[106] Barbara Penna, Tammam Tillo, Enrico Magli, and Gabriella Olmo. Transform

coding techniques for lossy hyperspectral data compression. IEEE Transactions on

Geoscience and Remote Sensing, 45(5):1408–1421, 2007.

[107] Raúl Guerra, Yubal Barrios, Maŕıa Dı́az, Lucana Santos, Sebastián López, and

Roberto Sarmiento. A new algorithm for the on-board compression of hyperspectral

images. Remote Sensing, 10(3):428, 2018.

[108] Dimitris Manolakis, Christina Siracusa, and Gary Shaw. Hyperspectral subpixel

target detection using the linear mixing model. IEEE transactions on geoscience

and remote sensing, 39(7):1392–1409, 2001.

[109] Chein-I Chang. Orthogonal subspace projection (OSP) revisited: A comprehensive

study and analysis. IEEE transactions on geoscience and remote sensing, 43(3):

502–518, 2005.

[110] Joseph C Harsanyi and C-I Chang. Hyperspectral image classification and dimen-

sionality reduction: An orthogonal subspace projection approach. IEEE Transac-

tions on geoscience and remote sensing, 32(4):779–785, 1994.

[111] Hamid Jafarzadeh and Mahdi Hasanlou. An unsupervised binary and multiple

change detection approach for hyperspectral imagery based on spectral unmixing.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

2019.

[112] H Jafarzadeh and M Hasanlou. Assessing and comparing the performance of end-

member extraction methods in multiple change detection using hyperspectral data.

International Archives of the Photogrammetry, Remote Sensing & Spatial Informa-

tion Sciences, 2019.

[113] Alp Ertürk and Antonio Plaza. Informative change detection by unmixing for hy-

perspectral images. IEEE Geoscience and Remote Sensing Letters, 12(6):1252–1256,

2015.

[114] Sicong Liu, Lorenzo Bruzzone, Francesca Bovolo, and Peijun Du. Unsupervised

multitemporal spectral unmixing for detecting multiple changes in hyperspectral

images. IEEE Transactions on Geoscience and Remote Sensing, 54(5):2733–2748,

2016.

References 301

[115] Alp Ertürk, Marian-Daniel Iordache, and Antonio Plaza. Sparse unmixing-based

change detection for multitemporal hyperspectral images. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 9(2):708–719, 2015.

[116] Hongjun Su, Peijun Du, and Qian Du. Semi-supervised dimensionality reduction

using orthogonal projection divergence-based clustering for hyperspectral imagery.

Optical Engineering, 51(11):111715, 2012.

[117] C. Chang, W. Xiong, H. Chen, and J. Chai. Maximum orthogonal subspace projec-

tion approach to estimating the number of spectral signal sources in hyperspectral

imagery. IEEE Journal of Selected Topics in Signal Processing, 5(3):504–520, June

2011. ISSN 1941-0484. doi: 10.1109/JSTSP.2011.2134068.

[118] S. Bernabe, S. Lopez, A. Plaza, R. Sarmiento, and P. G. Rodriguez. FPGA design

of an automatic target generation process for hyperspectral image analysis. In 2011

IEEE 17th International Conference on Parallel and Distributed Systems, pages

1010–1015, Dec 2011.

[119] H. Li and C. Chang. Linear spectral unmixing using least squares error, orthogonal

projection and simplex volume for hyperspectral images. In 2015 7th Workshop on

Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHIS-

PERS), pages 1–4, June 2015. doi: 10.1109/WHISPERS.2015.8075424.

[120] Heesung Kwon and N. M. Nasrabadi. Kernel orthogonal subspace projection for

hyperspectral signal classification. IEEE Transactions on Geoscience and Remote

Sensing, 43(12):2952–2962, Dec 2005. ISSN 1558-0644. doi: 10.1109/TGRS.2005.

857904.

[121] Hsuan Ren and Chein-I Chang. Automatic spectral target recognition in hyper-

spectral imagery. IEEE Transactions on Aerospace and Electronic Systems, 39(4):

1232–1249, Oct 2003. ISSN 2371-9877.

[122] Ernestina Martel, Raúl Guerra, Sebastián López, and Roberto Sarmiento. A GPU-

based processing chain for linearly unmixing hyperspectral images. IEEE journal

of selected topics in applied earth observations and remote sensing, 10(3):818–834,

2017.

[123] Chuanmin Hu, Lian Feng, Zhongping Lee, Curtiss Davis, Antonio Mannino, Charles

Mcclain, and Bryan Franz. Dynamic range and sensitivity requirements of satellite

302 References

ocean color sensors: Learning from the past. Applied optics, 51:6045–62, 09 2012.

doi: 10.1364/AO.51.006045.

[124] Ashok Kumar, Sanjeev Mehta, Sandip Paul, R. Parmar, and R Samudraiah. Dy-

namic range enhancement of remote sensing electro-optical imaging systems. 12

2012.

[125] Dimitris Manolakis, David Marden, and Gary A Shaw. Hyperspectral image pro-

cessing for automatic target detection applications. Lincoln laboratory journal, 14

(1):79–116, 2003.

[126] Dimitris Manolakis, Eric Truslow, Michael Pieper, Thomas Cooley, and Michael

Brueggeman. Detection algorithms in hyperspectral imaging systems: An overview

of practical algorithms. IEEE Signal Processing Magazine, 31(1):24–33, 2014.

[127] Maŕıa Dı́az, Raúl Guerra, Sebastián López, and Roberto Sarmiento. An algorithm

for an accurate detection of anomalies in hyperspectral images with a low compu-

tational complexity. IEEE Transactions on Geoscience and Remote Sensing, 56(2):

1159–1176, 2017.

[128] Benyamin Hosseiny and Reza Shah-Hosseini. A hyperspectral anomaly detection

framework based on segmentation and convolutional neural network algorithms.

International Journal of Remote Sensing, 41(18):6946–6975, 2020.

[129] M. Dı́az, R. Guerra, P. Horstrand, S. López, and R. Sarmiento. A line-by-line fast

anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and

Remote Sensing, 57(11):8968–8982, 2019.

[130] Stefania Matteoli, Marco Diani, and Giovanni Corsini. Improved estimation of

local background covariance matrix for anomaly detection in hyperspectral images.

Optical Engineering, 49(4):046201, 2010.

[131] Qiandong Guo, Bing Zhang, Qiong Ran, Lianru Gao, Jun Li, and Antonio Plaza.

Weighted-RXD and linear filter-based RXD: Improving background statistics esti-

mation for anomaly detection in hyperspectral imagery. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 7(6):2351–2366, 2014.

[132] Heesung Kwon and Nasser M Nasrabadi. Kernel RX-algorithm: A nonlinear

anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience

and Remote Sensing, 43(2):388–397, 2005.

References 303

[133] A Schaum. Joint subspace detection of hyperspectral targets. In Aerospace Confer-

ence, 2004. Proceedings. 2004 IEEE, volume 3. IEEE, 2004.

[134] Chein-I Chang. Orthogonal subspace projection (OSP) revisited: A comprehensive

study and analysis. IEEE transactions on geoscience and remote sensing, 43(3):

502–518, 2005.

[135] Wei Li and Qian Du. Unsupervised nearest regularized subspace for anomaly detec-

tion in hyperspectral imagery. In 2013 IEEE International Geoscience and Remote

Sensing Symposium-IGARSS, pages 1055–1058. IEEE, 2013.

[136] Yang Xu, Zebin Wu, Jun Li, Antonio Plaza, and Zhihui Wei. Anomaly detection in

hyperspectral images based on low-rank and sparse representation. IEEE Transac-

tions on Geoscience and Remote Sensing, 54(4):1990–2000, 2016.

[137] Wei Li and Qian Du. Collaborative representation for hyperspectral anomaly de-

tection. IEEE Transactions on Geoscience and Remote Sensing, 53(3):1463–1474,

2015.

[138] James A Jablonski, Trevor J Bihl, and Kenneth W Bauer. Principal component

reconstruction error for hyperspectral anomaly detection. IEEE Geoscience and

Remote Sensing Letters, 12(8):1725–1729, 2015.

[139] Robert J Johnson, Jason P Williams, and Kenneth W Bauer. Autogad: An im-

proved ICA-based hyperspectral anomaly detection algorithm. IEEE Transactions

on Geoscience and Remote Sensing, 51(6):3492–3503, 2013.

[140] Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang, and Yanfeng Gu. Deep learning-

based classification of hyperspectral data. IEEE Journal of Selected topics in applied

earth observations and remote sensing, 7(6):2094–2107, 2014.

[141] Konstantinos Makantasis, Konstantinos Karantzalos, Anastasios Doulamis, and

Nikolaos Doulamis. Deep supervised learning for hyperspectral data classification

through convolutional neural networks. In 2015 IEEE International Geoscience and

Remote Sensing Symposium (IGARSS), pages 4959–4962. IEEE, 2015.

[142] Wenzhi Zhao and Shihong Du. Spectral–spatial feature extraction for hyperspectral

image classification: A dimension reduction and deep learning approach. IEEE

Transactions on Geoscience and Remote Sensing, 54(8):4544–4554, 2016.

304 References

[143] Yushi Chen, Xing Zhao, and Xiuping Jia. Spectral–spatial classification of hyper-

spectral data based on deep belief network. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 8(6):2381–2392, 2015.

[144] Wei Li, Guodong Wu, and Qian Du. Transferred deep learning for anomaly detection

in hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 14(5):597–

601, 2017.

[145] Ning Ma, Yu Peng, Shaojun Wang, and Philip HW Leong. An unsupervised deep

hyperspectral anomaly detector. Sensors, 18(3):693, 2018.

[146] Weiying Xie, Baozhu Liu, Yunsong Li, Jie Lei, Chein-I Chang, and Gang He. Spec-

tral adversarial feature learning for anomaly detection in hyperspectral imagery.

IEEE Transactions on Geoscience and Remote Sensing, 58(4):2352–2365, 2019.

[147] Kai Jiang, Weiying Xie, Yunsong Li, Jie Lei, Gang He, and Qian Du. Semisupervised

spectral learning with generative adversarial network for hyperspectral anomaly

detection. IEEE Transactions on Geoscience and Remote Sensing, 2020.

[148] Shangzhen Song, Huixin Zhou, Yixin Yang, and Jiangluqi Song. Hyperspectral

anomaly detection via convolutional neural network and low rank with density-

based clustering. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 12(9):3637–3649, 2019.

[149] Chunhui Zhao, Weiwei Deng, Yiming Yan, and Xifeng Yao. Progressive line process-

ing of kernel RX anomaly detection algorithm for hyperspectral imagery. Sensors,

17(8):1815, 2017.

[150] M. Dı́az, R. Guerra, and S. López. A hardware-friendly anomaly detector for real-

time applications with push-broom scanners. In 2019 10th Workshop on Hyperspec-

tral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS),

pages 1–5, 2019.

[151] Raúl Guerra, Yúbal Barrios, Maŕıa Dı́az, Abelardo Baez, Sebastián López, and

Sarmiento Roberto. A hardware-friendly hyperspectral lossy compressor for next-

generation space-grade field programmable gate arrays. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, pages 1–17, 2019. ISSN

1939-1404. doi: 10.1109/JSTARS.2019.2919791.

References 305

[152] USGS digital spectral library. URL http://speclab.cr.usgs.gov/

spectral-lib.html.

[153] Grupo de Inteligencia Computacional, Universidad del Páıs Vasco / Euskal Herriko

Unibertsitatea (UPV/EHU), Spain. Hyperspectral imagery synthesis (EIAs) tool-

box. URL http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_

Synthesis_tools_for_MATLAB.

[154] Jared A Herweg, John P Kerekes, Oliver Weatherbee, David Messinger, Jan van

Aardt, Emmett Ientilucci, Zoran Ninkov, Jason Faulring, Nina Raqueño, and Joseph

Meola. SPECTIR hyperspectral airborne Rochester experiment data collection cam-

paign. In SPIE Defense, Security, and Sensing, pages 839028–839028. International

Society for Optics and Photonics, 2012.

[155] Antonio Plaza, Qian Du, Yang-Lang Chang, and Roger L King. High performance

computing for hyperspectral remote sensing. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 4(3):528–544, 2011.

[156] Raúl Guerra, Pablo Horstrand, Aythami Rodŕıguez, Maŕıa Dı́az, Alejandro Morales,

Adán Jiménez, Sebastián López, and José F López. Optimal UAV movement control

for farming area scanning using hyperspectral pushbroom sensors. In 2019 XXXIV

Conference on Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE,

2019.

[157] P. Horstrand, M. Diaz, R. Guerra, S. Lopez, and J. F. Lopez. A novel hyperspectral

anomaly detection algorithm for real-time applications with push-broom sensors.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

pages 1–11, 2019. ISSN 1939-1404. doi: 10.1109/JSTARS.2019.2919911.

[158] Ming Gu and Stanley C Eisenstat. A divide-and-conquer algorithm for the bidiag-

onal SVD. SIAM Journal on Matrix Analysis and Applications, 16(1):79–92, 1995.

[159] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stan-

imire Tomov, and Ichitaro Yamazaki. The singular value decomposition: Anatomy

of optimizing an algorithm for extreme scale. SIAM Review, 60(4):808–865, 2018.

[160] Raúl Guerra, Ernestina Martel, Jehandad Khan, Sebastián López, Peter Athanas,

and Roberto Sarmiento. On the evaluation of different high-performance computing

platforms for hyperspectral imaging: An OpenCL-based approach. IEEE Journal

http://speclab.cr.usgs.gov/spectral-lib.html
http://speclab.cr.usgs.gov/spectral-lib.html
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB

306 References

of Selected Topics in Applied Earth Observations and Remote Sensing, 10(11):4879–

4897, 2017.

[161] Yang Xu, Zebin Wu, Jocelyn Chanussot, and Zhihui Wei. Joint reconstruction

and anomaly detection from compressive hyperspectral images using mahalanobis

distance-regularized tensor RPCA. IEEE Transactions on Geoscience and Remote

Sensing, 56(5):2919–2930, 2018.

[162] Dirk Borghys, Ingebjørg K̊asen, Véronique Achard, and Christiaan Perneel. Hy-

perspectral anomaly detection: Comparative evaluation in scenes with diverse com-

plexity. Journal of Electrical and Computer Engineering, 2012:5, 2012.

[163] Hongjun Su, Zhaoyue Wu, Qian Du, and Peijun Du. Hyperspectral anomaly de-

tection using collaborative representation with outlier removal. IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing, 2018.

[164] Victor Y Pan and Zhao Q Chen. The complexity of the matrix eigenproblem. In

Proceedings of the thirty-first annual ACM symposium on Theory of computing,

pages 507–516. ACM, 1999.

[165] Tarek Elgamal and Mohamed Hefeeda. Analysis of PCA algorithms in distributed

environments. arXiv preprint arXiv:1503.05214, 2015.

[166] Angelika Bunse-Gerstner and William B Gragg. Singular value decompositions of

complex symmetric matrices. Journal of Computational and Applied Mathematics,

21(1):41–54, 1988.

[167] Alan Kaylor Cline and Inderjit S Dhillon. Computation of the singular value decom-

position. In Leslie Hogben, editor, Handbook of linear algebra, chapter 45. Chapman

and Hall/CRC, 2006.

[168] James W Demmel. Applied numerical linear algebra, volume 56. Siam, 1997.

[169] S Fu, R Chang, S Couture, M Menarini, MA Escobar, M Kuteifan, M Lubarda,

D Gabay, and V Lomakin. Micromagnetics on high-performance workstation and

mobile computational platforms. Journal of Applied Physics, 117(17):17E517, 2015.

[170] Fred Ortenberg, PS Thenkabail, JG Lyon, and A Huete. Hyperspectral sensor

characteristics: airborne, spaceborne, hand-held, and truck-mounted; integration of

hyperspectral data with lidar. Hyperspectral Remote sensing of vegetation, pages

39–68, 2011.

References 307

[171] Naval Studies Board, National Research Council, et al. Autonomous vehicles in

support of naval operations. National Academies Press, 2005.

[172] Cristina Gómez and David R Green. Small unmanned airborne systems to support

oil and gas pipeline monitoring and mapping. Arabian Journal of Geosciences, 10

(9):202, 2017.

[173] Didier Keymeulen, Nazeeh Aranki, Ben Hopson, Aaron Kiely, Matthew Klimesh,

and Khaled Benkrid. GPU lossless hyperspectral data compression system for space

applications. In 2012 IEEE Aerospace Conference, pages 1–9. IEEE, 2012.

[174] Michael W Marcellin and David S Taubman. JPEG2000: image compression funda-

mentals, standards, and practice. Kluwer International Series in Engineering and

Computer Science, Secs 642, 2002.

[175] Lena Chang, Ching-Min Cheng, and Ting-Chung Chen. An efficient adaptive KLT

for multispectral image compression. In 4th IEEE Southwest Symposium on Image

Analysis and Interpretation, pages 252–255. IEEE, 2000.

[176] Pengwei Hao and Qingyun Shi. Reversible integer KLT for progressive-to-lossless

compression of multiple component images. In Proceedings 2003 International Con-

ference on Image Processing (Cat. No. 03CH37429), volume 1, pages I–633. IEEE,

2003.

[177] Andrea Abrardo, Mauro Barni, and Enrico Magli. Low-complexity predictive lossy

compression of hyperspectral and ultraspectral images. In 2011 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 797–800.

IEEE, 2011.

[178] B. Penna, T. Tillo, E. Magli, and G.Olmo. Progressive 3-d coding of hyperspectral

images based on JPEG 2000. IEEE Geoscience and remote sensing letters, 3(1):

125–129, 2006.

[179] Lucana Santos, Enrico Magli, Raffaele Vitulli, José F López, and Roberto

Sarmiento. Highly-parallel GPU architecture for lossy hyperspectral image compres-

sion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, 6(2):670–681, 2013.

[180] Yubal Barrios, Antonio J Sánchez, Lucana Santos, and Roberto Sarmiento. Shy-

loc 2.0: A versatile hardware solution for on-board data and hyperspectral image

compression on future space missions. Ieee Access, 8:54269–54287, 2020.

308 References

[181] L. Santos, J. F. López, R. Sarmiento, and R. Vitulli. FPGA implementation of

a lossy compression algorithm for hyperspectral images with a high-level synthesis

tool. In 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-

2013), pages 107–114, 2013.

[182] Aaron B Kiely, Matthew Klimesh, Ian Blanes, Jonathan Ligo, Enrico Magli, Nazeeh

Aranki, Michael Burl, Roberto Camarero, Michael Cheng, Sam Dolinar, et al. The

new CCSDS standard for low-complexity lossless and near-lossless multispectral and

hyperspectral image compression. 2018.

[183] Estanislau Auge, Josep Santalo, Ian Blanes, Joan Serra-Sagrista, Aaron Kiely, et al.

Review and implementation of the emerging CCSDS recommended standard for

multispectral and hyperspectral lossless image coding. In 2011 First International

Conference on Data Compression, Communications and Processing, pages 222–228.

IEEE, 2011.

[184] Estanislau Augé, Jose Enrique Sánchez, Aaron B Kiely, Ian Blanes, and Joan Serra-

Sagrista. Performance impact of parameter tuning on the CCSDS-123 lossless multi-

and hyperspectral image compression standard. Journal of Applied Remote Sensing,

7(1):074594, 2013.

[185] Bruno Aiazzi, Luciano Alparone, and Stefano Baronti. Quality issues for compres-

sion of hyperspectral imagery through spectrally adaptive dpcm. In Satellite Data

Compression, pages 115–147. Springer, 2012.

[186] Chulhee Lee, Sangwook Lee, and Jonghwa Lee. Effects of lossy compression on

hyperspectral classification. In Satellite Data Compression, pages 269–285. Springer,

2012.

[187] Fernando Garcia-Vilchez, Jordi Muñoz-Maŕı, Maciel Zortea, Ian Blanes, Vicente

González-Ruiz, Gustavo Camps-Valls, Antonio Plaza, and Joan Serra-Sagristà. On

the impact of lossy compression on hyperspectral image classification and unmixing.

IEEE Geoscience and remote sensing letters, 8(2):253–257, 2010.

[188] Chein-I Chang. Hyperspectral data processing: algorithm design and analysis. John

Wiley & Sons, 2013.

[189] Michael J Ryan and John F Arnold. The lossless compression of AVIRIS images by

vector quantization. IEEE transactions on geoscience and remote sensing, 35(3):

546–550, 1997.

References 309

[190] Shen-En Qian, Allan B Hollinger, Dan Williams, and Davinder Manak. Vector

quantization using spectral index-based multiple subcodebooks for hyperspectral

data compression. IEEE Transactions on Geoscience and Remote Sensing, 38(3):

1183–1190, 2000.

[191] Mark R Pickering and Michael J Ryan. Efficient spatial-spectral compression of

hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39(7):

1536–1539, 2001.

[192] Daniel Báscones, Carlos González, and Daniel Mozos. Hyperspectral image com-

pression using vector quantization, PCA and JPEG2000. Remote Sensing, 10(6):

907, 2018.

[193] Filipe Magalhães, Francisco M Araújo, Miguel Correia, Mehrdad Abolbashari, and

Faramarz Farahi. High-resolution hyperspectral single-pixel imaging system based

on compressive sensing. Optical Engineering, 51(7):071406, 2012.

[194] KS Gunasheela and HS Prasantha. Compressive sensing approach to satellite hy-

perspectral image compression. In Information and Communication Technology for

Intelligent Systems, pages 495–503. Springer, 2019.

[195] Saurabh Kumar, Subhasis Chaudhuri, Biplab Banerjee, and Feroz Ali. Onboard

hyperspectral image compression using compressed sensing and deep learning. In

Proceedings of the European Conference on Computer Vision (ECCV), pages 0–0,

2018.

[196] Giulio Coluccia, Cinzia Lastri, Donatella Guzzi, Enrico Magli, Vanni Nardino,

Lorenzo Palombi, Ivan Pippi, Valentina Raimondi, Chiara Ravazzi, Florin Garoi,

et al. Optical compressive imaging technologies for space big data. IEEE Transac-

tions on Big Data, 2019.

[197] Azam Karami, Soosan Beheshti, and Mehran Yazdi. Hyperspectral image compres-

sion using 3d discrete cosine transform and support vector machine learning. In

2012 11th International Conference on Information Science, Signal Processing and

their Applications (ISSPA), pages 809–812. IEEE, 2012.

[198] Jin Li and Zilong Liu. Multispectral transforms using convolution neural networks

for remote sensing multispectral image compression. Remote Sensing, 11(7):759,

2019.

310 References

[199] Consultative Committee for Space Data Systems (CCSDS). Lossless Multispectral

and Hyperspectral Image Compression, Recommended Standard CCSDS 123.0-B-1.,

. May 2012. Blue Book.

[200] Matthew A Klimesh. Low-complexity lossless compression of hyperspectral imagery

via adaptive filtering. 2005.

[201] Allen Gersho. Adaptive filtering with binary reinforcement. IEEE Transactions on

Information Theory, 30(2):191–199, 1984.

[202] D Keymeulen, D Dolman, S Shin, J Riddley, M Klimesh, A Kiely, DR Thompson,

M Cheng, S Dolinar, E Liggett, et al. High performance space data acquisition

clouds screening and data compression with modified COTS embedded system-on-

chip instrument avionics for space-based next generation imaging spectrometers

(ngis). In 6th International Workshop on On-Board Payload Data Compression

(OBPDC), 2018.

[203] Consultative Committee for Space Data Systems (CCSDS). Low-complexity Los-

less and Near-Lossless Multispectral and Hyperspectral Image Compression, Recom-

mended Standard CCSDS 123.0-B-2., . February 2019. Blue Book.

[204] Majid Rabbani. JPEG2000: Image compression fundamentals, standards and prac-

tice. Journal of Electronic Imaging, 11(2):286, 2002.

[205] Himanshu M Parmar and PG Scholar. Comparison of dct and wavelet based im-

age compression techniques. International journal of engineering development and

research, 2:664–669, 2014.

[206] Zixiang Xiong, Kannan Ramchandran, Michael T Orchard, and Ya-Qin Zhang. A

comparative study of dct-and wavelet-based image coding. IEEE Transactions on

circuits and systems for video technology, 9(5):692–695, 1999.

[207] Ian Blanes and Joan Serra-Sagristà. Cost and scalability improvements to the

karhunen–loêve transform for remote-sensing image coding. IEEE Transactions on

Geoscience and Remote Sensing, 48(7):2854–2863, 2010.

[208] Qian Du, Wei Zhu, and James E Fowler. Anomaly-based hyperspectral image com-

pression. In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing

Symposium, volume 2, pages II–974. IEEE, 2008.

References 311

[209] Ian Blanes and Joan Serra-Sagristà. Pairwise orthogonal transform for spectral

image coding. IEEE Transactions on Geoscience and Remote Sensing, 49(3):961–

972, 2010.

[210] Consultative Committee for Space Data Systems (CCSDS). Spectral Preprocessing

Transform for Multispectral and Hyperspectral Image Compression, Recommended

Standard CCSDS 122.1-B-1., . September 2017. Blue Book.

[211] Consultative Committee for Space Data Systems (CCSDS). Blue Books:

Recommended Standards. {[Online].Available:}https://public.ccsds.org/

Publications/BlueBooks.aspx, . (Accessed March 2019).

[212] Paul G Howard and Jeffrey Scott Vitter. Fast and efficient lossless image com-

pression. In Data Compression Conference, 1993. DCC’93., pages 351–360. IEEE,

1993.

[213] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE transactions on

image processing, 13(4):600–612, 2004.

[214] Chang Li, Yong Ma, Xiaoguang Mei, Fan Fan, Jun Huang, and Jiayi Ma. Sparse

unmixing of hyperspectral data with noise level estimation. Remote Sensing, 9(11):

1166, 2017.

[215] Raúl Guerra, Yubal Barrios, Maŕıa Dı́az, Abelardo Baez, Sebastián López, and

Roberto Sarmiento. A hardware-friendly hyperspectral lossy compressor for next-

generation space-grade field programmable gate arrays. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 12(12):4813–4828, 2019.

[216] Maŕıa Dı́az, Raúl Guerra, Pablo Horstrand, Ernestina Martel, Sebastián López,

José F López, and Roberto Sarmiento. Real-time hyperspectral image compression

onto embedded GPUs. IEEE Journal of Selected Topics in Applied Earth Observa-

tions and Remote Sensing, 12(8):2792–2809, 2019.

[217] Julián Caba, Maŕıa Dı́az, Jesús Barba, Raúl Guerra, Jose A López, et al. FPGA-

based on-board hyperspectral imaging compression: Benchmarking performance

and energy efficiency against GPU implementations. Remote Sensing, 12(22):3741,

2020.

{[Online]. Available:} https://public.ccsds.org/Publications/BlueBooks.aspx
{[Online]. Available:} https://public.ccsds.org/Publications/BlueBooks.aspx

312 References

[218] Maria Diaz, Raúl Guerra, Pablo Horstrand, Sebastián López, José F López, and

Roberto Sarmiento. Towards the concurrent execution of multiple hyperspectral

imaging applications by means of computationally simple operations. Remote Sens-

ing, 12(8):1343, 2020.

[219] Yaokai Liu, Tianxing Wang, Lingling Ma, and Ning Wang. Spectral calibration

of hyperspectral data observed from a hyperspectrometer loaded on an unmanned

aerial vehicle platform. IEEE Journal of Selected Topics in Applied Earth Observa-

tions and Remote Sensing, 7(6):2630–2638, 2014.

[220] Paul Geladi, Jim Burger, and Torbjörn Lestander. Hyperspectral imaging: calibra-

tion problems and solutions. Chemometrics and intelligent laboratory systems, 72

(2):209–217, 2004.

[221] Helge Aasen, Eija Honkavaara, Arko Lucieer, and Pablo J Zarco-Tejada. Quanti-

tative remote sensing at ultra-high resolution with UAV spectroscopy: a review of

sensor technology, measurement procedures, and data correction workflows. Remote

Sensing, 10(7):1091, 2018.

[222] Teemu Hakala, Lauri Markelin, Eija Honkavaara, Barry Scott, Theo Theocharous,

Olli Nevalainen, Roope Näsi, Juha Suomalainen, Niko Viljanen, Claire Greenwell,

et al. Direct reflectance measurements from drones: Sensor absolute radiometric

calibration and system tests for forest reflectance characterization. Sensors, 18(5):

1417, 2018.

[223] L. Zhang, B. Peng, F. Zhang, L. Wang, H. Zhang, P. Zhang, and Q. Tong. Fast

real-time causal linewise progressive hyperspectral anomaly detection via cholesky

decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, 10(10):4614–4629, 2017. doi: 10.1109/JSTARS.2017.2725382.

[224] Chunhui Zhao and Xifeng Yao. Progressive line processing of global and local real-

time anomaly detection in hyperspectral images. Journal of Real-Time Image Pro-

cessing, 16(6):2289–2303, 2019.

[225] Chein-I Chang, Yulei Wang, and Shih-Yu Chen. Anomaly detection using causal

sliding windows. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 8(7):3260–3270, 2015.

[226] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-Level

Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on

References 313

Computer-Aided Design of Integrated Circuits and Systems, 30(4):473–491, April

2011. ISSN 0278-0070. doi: 10.1109/TCAD.2011.2110592.

[227] Xilinx Inc. Ultrafast vivado hls methodology guide. Technical report, Xilinx Inc.,

2020.

[228] Donald G. Bailey. The advantages and limitations of high level synthesis for

FPGA based image processing. In Proceedings of the 9th International Confer-

ence on Distributed Smart Cameras, ICDSC ’15, page 134–139, New York, NY,

USA, 2015. Association for Computing Machinery. ISBN 9781450336819. doi:

10.1145/2789116.2789145. URL https://doi.org/10.1145/2789116.2789145.

[229] Johannes de Fine Licht, Simon Meierhans, and Torsten Hoefler. Transformations of

high-level synthesis codes for high-performance computing. CoRR, abs/1805.08288,

2018. URL http://arxiv.org/abs/1805.08288.

[230] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, 2008. ISSN 0001-0782. doi: 10.

1145/1327452.1327492. URL https://doi.org/10.1145/1327452.1327492.

[231] John Cheng, Max Grossman, and Ty McKercher. Professional Cuda C Program-

ming. John Wiley & Sons, 2014.

[232] NVIDIA Developer. CUDA Toolkit Documentation. Features and Technical Spec-

ifications - Table 14. Technical Specifications per Compute Capability. [Online]

.Available:https://docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html#features-and-technical-specifications. (Accessed March

2019).

[233] NVIDIA Corporation. NVIDIA Jetson Linux Developer Guide 32.4.3 Release.

Power Management for Jetson Nano and Jetson TX1 Devices. Available Online:

https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%

20Driver%20Package%20Development%20Guide/power_management_nano.html, .

(Accessed on 7 September 2019).

[234] NVIDIA Corporation. NVIDIA Jetson Linux Driver Package Software Features

Release 32.3. Power Management for Jetson TX2 Series Devices. Available Online:

https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.

html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/

power_management_tx2_32.html, . (Accessed on 7 September 2019).

https://doi.org/10.1145/2789116.2789145
http://arxiv.org/abs/1805.08288
https://doi.org/10.1145/1327452.1327492
[Online]. Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
[Online]. Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
[Online]. Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
 https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_nano.html
 https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_nano.html
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html

314 References

[235] NVIDIA Corporation. NVIDIA Jetson Linux Developer Guide 32.4.3 Release.

Power Management for Jetson Xavier NX and Jetson AGX Xavier Series De-

vices. Available Online: https://docs.nvidia.com/jetson/l4t/index.html#

page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_

management_jetson_xavier.html, . (Accessed on 7 September 2019).

[236] José M Melián, Adán Jiménez, Maŕıa Dı́az, Alejandro Morales, Pablo Horstrand,

Raúl Guerra, Sebastián López, and José F López. Real-time hyperspectral data

transmission for UAV-based acquisition platforms. Remote Sensing, 13(5):850, 2021.

[237] E. Ibarrola-Ulzurrun, L. Drumetz, J. Marcello, C. Gonzalo-Mart́ın, and J. Chanus-

sot. Hyperspectral classification through unmixing abundance maps addressing

spectral variability. IEEE Transactions on Geoscience and Remote Sensing, 57

(7):4775–4788, 2019. doi: 10.1109/TGRS.2019.2892903.

[238] Sicong Liu, Qian Du, Xiaohua Tong, Alim Samat, Haiyan Pan, and Xiaolong

Ma. Band selection-based dimensionality reduction for change detection in multi-

temporal hyperspectral images. Remote Sensing, 9(10):1008, 2017.

[239] Qian Du and He Yang. Similarity-based unsupervised band selection for hyperspec-

tral image analysis. IEEE Geoscience and Remote Sensing Letters, 5(4):564–568,

2008.

[240] Ahmad W Bitar, Loong-Fah Cheong, and Jean-Philippe Ovarlez. Sparse and low-

rank decomposition for automatic target detection in hyperspectral imagery. arXiv

preprint arXiv:1711.08970, 2017.

[241] Yi Chen, Nasser M Nasrabadi, and Trac D Tran. Sparse representation for tar-

get detection in hyperspectral imagery. IEEE Journal of Selected Topics in Signal

Processing, 5(3):629–640, 2011.

[242] Chein-I Chang, Hsuan Ren, and Shao-Shan Chiang. Real-time processing algorithms

for target detection and classification in hyperspectral imagery. IEEE transactions

on geoscience and remote sensing, 39(4):760–768, 2001.

[243] Chein-I Chang. Real-time recursive hyperspectral sample processing for active target

detection: Constrained energy minimization. In Real-Time Recursive Hyperspectral

Sample and Band Processing, pages 123–156. Springer, 2017.

https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html

References 315

[244] C. Chang, H. Li, M. Song, C. Liu, and L. Zhang. Real-time constrained en-

ergy minimization for subpixel detection. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 8(6):2545–2559, 2015. doi:

10.1109/JSTARS.2015.2425417.

[245] Ernestina Martel, Raul Guerra, Sebastian Lopez, and Roberto Sarmiento. A GPU-

based processing chain for linearly unmixing hyperspectral images. IEEE journal

of selected topics in applied earth observations and remote sensing, 10(3):818–834,

2016.

[246] Hyperspectral Unmixing Datasets and Ground Truths. Available Online: http:

//lesun.weebly.com/hyperspectral-data-set.html. Accessed: 2021-02-24.

[247] Feiyun Zhu, Ying Wang, Shiming Xiang, Bin Fan, and Chunhong Pan. Structured

sparse method for hyperspectral unmixing. ISPRS Journal of Photogrammetry and

Remote Sensing, 88:101–118, 2014.

[248] Cheng-I Chang, Xiao-Li Zhao, Mark LG Althouse, and Jeng Jong Pan. Least squares

subspace projection approach to mixed pixel classification for hyperspectral images.

IEEE Transactions on Geoscience and Remote Sensing, 36(3):898–912, 1998.

[249] Inmaculada Garćıa Dópido. New techniques for hyperspectral image classification.

PhD thesis, PhD thesis, Universidad de Extremadura, 2013.

[250] Jakob Sigurdsson, Magnus O Ulfarsson, and Johannes R Sveinsson. Total variation

and `q based hyperspectral unmixing for feature extraction and classification. In

2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),

pages 437–440. IEEE, 2015.

[251] Anabella Medina Mach́ın, Javier Marcello, Antonio I Hernández-Cordero, Javier

Mart́ın Abasolo, and Francisco Eugenio. Vegetation species mapping in a coastal-

dune ecosystem using high resolution satellite imagery. GIScience & Remote Sens-

ing, 56(2):210–232, 2019.

[252] AP Carleer and Eléonore Wolff. Urban land cover multi-level region-based classifi-

cation of vhr data by selecting relevant features. International Journal of Remote

Sensing, 27(6):1035–1051, 2006.

[253] Mathias Bochow, Birgit Heim, Theres Küster, Christian Rogaß, Inka Bartsch, Karl

Segl, Sandra Reigber, and Hermann Kaufmann. On the use of airborne imaging

http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html

316 References

spectroscopy data for the automatic detection and delineation of surface water bod-

ies. In Remote sensing of planet earth, pages 1–22. InTech, 2012.

	Abstract
	Resumen
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Rationale
	1.2 Preliminary concepts
	1.2.1 Characterization and resolution of the spectral images
	1.2.2 Data collection systems
	1.2.3 Hyperspectral data analysis methods and applications
	1.2.4 Acceleration through parallel computing platforms.

	1.3 Motivations, research goals and contributions of this Thesis
	1.3.1 Motivations of this Thesis
	1.3.2 Research goals of this Thesis
	1.3.3 Contributions of this Thesis

	1.4 Organization of this document
	1.4.1 Chapter 2: Set of Core Operations
	1.4.2 Chapter 3: Hyperspectral Anomaly Detection
	1.4.3 Chapter 4: Hyperspectral Lossy Compression
	1.4.4 Chapter 5: Concurrent Execution of Multiple Hyperspectral Imaging Applications
	1.4.5 Chapter 6: Hyperspectral imaging acceleration through the utilization of embedded systems
	1.4.6 Chapter 7: Conclusions and further research lines
	1.4.7 Appendix A: Application of the proposed methodology to other hyperspectral image processing research fields

	2 Set of Core Operations
	2.1 Rationale
	2.2 Background Notions
	2.3 The Set of Core Operations
	2.3.1 The Gram-Schmidt Orthogonalisation Method
	2.3.2 General Notations
	2.3.3 Description of the proposed Set of Core Operations

	2.4 Computational Complexity of the Set of Core Operations
	2.5 Data types and precision evaluation
	2.6 Conclusions

	3 Hyperspectral Anomaly Detection
	3.1 Rationale
	3.2 State-of-the-art in hyperspectral anomaly detection
	3.3 Proposed anomaly detection algorithm: A Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery (LbL-FAD)
	3.3.1 Line-by-Line extraction of the background reference spectra
	3.3.2 Overall background subspace estimation
	3.3.3 Orthogonal Subspace to the one spanned by the background samples
	3.3.4 Detection of anomalies

	3.4 Hardware-Friendly LbL-FAD (HW-LbL-FAD)
	3.5 Experimental Results
	3.5.1 Reference Hyperspectral Data
	3.5.2 Reference Algorithms
	3.5.3 Assessment Metrics
	3.5.4 Detection performance of the LbL-FAD algorithm
	3.5.5 Benchmarking against other state-of-the-art anomaly detectors
	3.5.6 Benchmarking performance among data types and precision: LbL-FAD vs HW-LbL-FAD
	3.5.7 Computational complexity analysis

	3.6 Conclusions

	4 Hyperspectral Lossy Compression
	4.1 Rationale
	4.2 State-of-the-art in hyperspectral data compression
	4.3 Lossy hyperspectral image compression with the HyperLCA algorithm
	4.3.1 Background notions about the HyperLCA Transform
	4.3.2 Description of the extended version of the HyperLCA algorithm
	4.3.2.1 HyperLCA Initialization
	4.3.2.2 HyperLCA Transform
	4.3.2.3 HyperLCA Preprocessing
	4.3.2.4 HyperLCA Entropy Coding
	4.3.2.5 Bitstream Generation

	4.4 Experimental Results
	4.4.1 Reference Hyperspectral Data
	4.4.2 Assessment Metrics
	4.4.3 Benchmarking performance among data types and precision
	4.4.4 Compression performance of the HyperLCA algorithm
	4.4.4.1 Effect of the HyperLCA input parameters in the algorithm performance
	4.4.4.2 Evaluation of the HyperLCA performance for the lossy compression of HSIs

	4.4.5 Evaluation of the distortions introduced by the lossy compression for the subsequent anomaly detection
	4.4.6 Computational complexity analysis

	4.5 Conclusions

	5 Concurrent Execution of Multiple Hyperspectral Imaging Applications
	5.1 Rationale
	5.2 Towards the Concurrent Execution of Multiple Hyperspectral Imaging Applications
	5.2.1 Using the proposed set of core operations for the detection of anomalous spectra OR for the lossy compression of HSIs
	5.2.2 Using the proposed set of core operations for the concurrent execution of the anomaly detection issue AND the lossy compression of HSIs
	5.2.2.1 First approximation towards the simultaneous detection of anomalous pixels and the lossy compression of HSIs
	5.2.2.2 Optimized proposal for the simultaneous detection of anomalous pixels and the lossy compression of HSIs (ADeLoC)
	5.2.2.3 Hardware-friendly proposal for the simultaneous detection of anomalous pixels and the lossy compression of HSIs (HADeLoC)

	5.3 Experimental Results
	5.3.1 Reference Hyperspectral Data
	5.3.2 Assessment Metrics
	5.3.3 Compression performance of the proposed HADeLoC approach
	5.3.4 Anomaly Detection performance of the proposed HADeLoC approach
	5.3.5 Discussions about the HADeLoC performance
	5.3.6 Computational Complexity Analysis
	5.3.7 General discussions

	5.4 Conclusions

	6 Hyperspectral imaging acceleration through the utilization of embedded systems
	6.1 Rationale
	6.2 Materials
	6.2.1 Reference Hyperspectral Data
	6.2.2 Targeted parallel computing devices

	6.3 Real-time FPGA implementation of the algorithms proposed in this Thesis
	6.3.1 Descriptions of the HLS modules that implement the proposed set of core operations
	6.3.1.1 Avg_Cent HLS module: average pixel calculation and image centralization
	6.3.1.2 Brightness HLS module: brightness pixel calculation
	6.3.1.3 Proj_Sub HLS module: projection vector calculation and spectral information subtraction
	6.3.1.4 Stop_cond HLS module: stopping condition inherent to the HW-LbL-FAD and the HADeLoC algorithms
	6.3.1.5 Other considerations about the FPGA-based implementation of the proposed set of core operations

	6.3.2 FPGA-based implementation of the HyperLCA lossy compressor
	6.3.2.1 HyperLCA Transform HWacc
	6.3.2.2 HyperLCA Entropy Coder HWacc

	6.3.3 FPGA-based implementation of the HW-LbL-FAD algorithm for the detection of anomalous spectra
	6.3.4 FPGA-based implementation of the HADeLoC solution for the simultaneous execution of the anomaly detection process and the lossy compression of HSIs
	6.3.5 Experimental results
	6.3.5.1 Evaluation of the HyperLCA Hardware Accelerator
	6.3.5.2 Evaluation of the HW-LbL-FAD Hardware Accelerator
	6.3.5.3 Evaluation of the HADeLoC Hardware Accelerator
	6.3.5.4 General discussions about the obtained results

	6.4 Real-time implementation of the HyperLCA algorithm on embedded GPUs
	6.4.1 Graphics Processing Units
	6.4.1.1 GPU hardware platforms
	6.4.1.2 Streams and Concurrency

	6.4.2 CUDA implementation of the HyperLCA algorithm
	6.4.2.1 GPU implementation of the HyperLCA Transform
	6.4.2.2 Host-Device Model of the HyperLCA lossy compressor

	6.4.3 Experimental results
	6.4.3.1 Performance of the parallel implementations of the HyperLCA compressor in embedded LPGPUs in terms of speed-up
	6.4.3.2 Performance of the parallel implementations of the HyperLCA compressor in embedded LPGPUs in terms of average compression frame rates

	6.5 Benchmarking between the different parallel devices for the acceleration of the HyperLCA algorith
	6.6 Conclusions

	7 Conclusions and further research lines
	7.1 Conclusions
	7.2 Future Research Lines

	A Application of the proposed methodology to other hyperspectral image processing research fields
	A.1 Rationale
	A.2 Dimensionality Reduction: band selection
	A.3 Target Detection
	A.3.1 Description of the proposed methodology for the detection of targets of interest
	A.3.1.1 Line-by-Line extraction of the background reference spectra
	A.3.1.2 Overall background subspace estimation
	A.3.1.3 Selection of the most representative spectral bands
	A.3.1.4 Target Detection

	A.3.2 Experimental Results
	A.3.2.1 Reference Hyperspectral Data
	A.3.2.2 Target Detection performance of the proposed methodology

	A.4 Unmixing
	A.4.1 Description of the proposed methodology for linearly unmixing HSIs
	A.4.1.1 Estimation of the number of endmembers and their extraction
	A.4.1.2 Abundance Estimation

	A.4.2 Experimental Results
	A.4.2.1 Reference Hyperspectral Data
	A.4.2.2 Performance of the proposed method for hyperspectral unmixing and abundance calculation

	A.5 Classification
	A.5.1 Description of the proposed methodology for the classification of the HSIs
	A.5.1.1 Abundance Estimation
	A.5.1.2 Classification using abundance maps

	A.5.2 Experimental Results
	A.5.2.1 Reference Hyperspectral Data
	A.5.2.2 Performance of the proposed method for the classification of HSIs

	A.6 Conclusions

	B Sinopsis en español
	B.1 Introducción
	B.2 Objetivos y metodología de trabajo
	B.3 Contribuciones generales y principales concluciones extraídas

	C Publications
	C.1 Journals
	C.2 International Conferences

	References

