

# Iron solubility in mineral dust and aerosol generated from soil samples

Tesis de máster realizada por Vanesa del Pilar Jerez Sarmiento Tutora: María Dolores Gelado Caballero Máster en Oceanografía

19 de Diciembre de 2013

# Index

- 1. Introduction
- 2. Methodology
  - **2.1.** Sampling sites
  - 2.2. Method
  - 2.3. Air mass classification
  - 2.4. Dry Deposition samples characteristics
- 3. Results and discussion
- 4. Preliminary Conclusions



#### Atmospheric dust input → Global Impact

Global iron fluxes to the ocean [Jickells et al., 2005]

| Source                         | Flux<br>(Tg Fe year⁻¹) |
|--------------------------------|------------------------|
| Fluvial particulate total iron | 625 to 962             |
| Fluvial disolved iron          | 1.5                    |
| Glacial sediments              | 34 to 211              |
| Atmospheric                    | 16                     |
| Coastal erosion                | 8                      |
| Hydrotermal                    | 14                     |
| Authigenic                     | 5                      |



The Iron cycle [Raiswell et al., 2012]



Soluble specie  $\rightarrow$  Fe(II): un-stable

Conceptual diagram illustrating the main issues, processes and species relating to the SOLAS EBUSs and OMZs research programmes. Processes are indicated in italic. [Evolving Research Directions in Surface Ocean-Lower Atmosphere (SOLAS) Science by Cliff Law et al. in Environmental Chemistry 2013, 10, 1-16]

#### Mineral aerosol

- generated from soils
- Chemical and mineralogical composition conditioned for place origin Main mineral: quartz, clay, calcilte, gibbsite and Fe oxides
- Size particle conditioned distance transport (mean size 0.1-10µm)



#### Fe solubility (FeS)

FeS in soils <0.1% vs 80% FeS in aerosols over remote ocean

[Baker and Jickells, 2006: Maholwald et al., 2009; Shi et al., 2012]

#### Atmospheric processes →change Fe solubility

- Gravitational settling
- Mixing with anthropogenic and biomass burning aerosols
- Uptake of acidic gases
- Photoreduction

 $\Delta pH \rightarrow Cloud processes$ 



(Shi et al., 2012)

#### Dust particles as cloud condensation nuclei (CNN)



http://fiji.ucsd.edu/~greg/streamwiseCCN.htm

# **Objectives**

- 1. Fe speciation in aerosols collected in the Canary Islands
- 2. Fe speciation in African soils
- 3. Reproduce aerosols "precursors" through a chemical process in soils
- 4. Validate whether these aerosol precursors have the same speciation that aerosols collected in Canary Islands

#### **2.1.** Sampling sites





| Туре                      | Collection site                        | Sampling<br>Method                                     | Sample identification | Weight<br>(g) | <20 µm (%) | Collection date |
|---------------------------|----------------------------------------|--------------------------------------------------------|-----------------------|---------------|------------|-----------------|
|                           |                                        |                                                        | DD1                   | 0.19          | 100        | 2013/02/4-6     |
|                           | Cran Canaria Tafira                    | Plastic trays &<br>buckets<br>(ARS 1000, MTX<br>Italy) | DD2                   | 0.12          | 100        | 2012/08/28      |
| AEROSOL<br>Dry Deposition | Gran Canaria, Tatira<br>15º 27'17.28"W |                                                        | DD3                   | 0.09          | 100        | 2012/03/8-9     |
|                           |                                        |                                                        | DD4                   | 0.08          | 100        | 2013/09/18      |
|                           |                                        |                                                        | DD5                   | 0.08          | 100        | 2010/08/13      |
|                           | 20 04 J2.0 N                           |                                                        | DD6                   | 0.09          | 100        | 2013/09/18      |
|                           |                                        |                                                        | DD7                   | 0.05          | 100        | 2013/04/19-21   |
|                           | Western Sahara                         |                                                        |                       |               |            |                 |
| SOIL                      | 15 <sup>0</sup> 44'05.27"W             | Manual /Dry<br>sieving                                 | L23                   | 510.55        | 0.11       | 08/2013         |
|                           | 23 <sup>0</sup> 47'34.58"N             | G                                                      |                       |               |            |                 |

## 2. Methodology 2.2. Method

Soluble ions in DD  $\rightarrow$  Ion chromatographer [López-García, 2012]



### 2.2. Method

AFRICAN SOIL  $\rightarrow$  AEROSOL PRECURSOR

Cloud processing simulation

[Spokes et al., 1994]



3 cycles : pH 2 (24h, H<sub>2</sub>SO<sub>4</sub> (3 M)) pH 5-6 (24h, NH<sub>4</sub>OH (3 M))

### 2.2. Method

#### SEQUENTIAL EXTRACTION PROCEDURE

Fe speciation study [Tessier et al., 1970]

+ FeS

Amorphous minerals (e.g. Ferrihydrite ) <u>The most soluble fraction</u> Clays minerals (e.g. Illita, Vermiculita) <u>More soluble than iron oxides</u> Fe bound to carbonates <u>Asociated with paleolakes samples</u> (e.g. siderite, ankerite)

Fe (oxyhydr) oxides (e.g. goetite and Hematite) <u>The most refractory fraction</u> Exchangeable Iron (FeA) A deoxygenated solution Na<sub>3</sub>C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>/ NaHCO<sub>3</sub>/C<sub>6</sub>H<sub>8</sub>O<sub>6</sub> pH 7.5 (24h)

<u>Fe carb (Fe-NaOAc)</u> Acetate buffer solution (1 M) at pH 4.5 (2h)

> <u>Iron oxides</u> (FeD) A solution of  $CH_3CO_2H$ /  $Na_3C_6H_5O_7/Na_2S_2O_4$ buffered at pH 4.8 (2h)

### 2.2. Method



### 2.2. Method

FERROZINE METHOD [Stookey et al., 1970; Violler et al., 2000] <u>Soluble and total Fe</u>



### 2.3. Air mass classification

5 geographic sectors:

- SH sector (Sahel: 0°-20°N, 18°W-20°E)
- WCS (West and Central Sahara: 20-30<sup>0</sup>N, 18<sup>0</sup>W-20<sup>0</sup>E)
- NS (Northern Sahara: 38<sup>0</sup>-30<sup>0</sup>N, 18<sup>0</sup>W-15<sup>0</sup>E, North Morocco, North Algeria and Tunisia)
- EUR (European and maritime aerosol, trajectories that cross the European continent and Atlantic ocean)
- MAR (maritime aerosol, trajectories over the Atlantic ocean)









Air mass identification classification of different back trajectories of the air masses with end point at Gran Canaria. Geographic sectors: (a) SH (Sahel: 0°– 20°N, 18°W–20°E), (b) WCS (West and Central Sahara: 20°N– 30°N, 18°W– 20°E), (c) NS (North of Sahara: 38°N–30°N, 18°W–15°E), (d) EUR (air masses over continental Europe and the Atlantic Ocean) and (e) MAR (trajectories over the Atlantic ocean) [Gelado – Caballero et al., 2012].

### 2.4. Dry Deposition samples characteristics



Percentage of days for each origin of the air masses in the dry deposition samples (African, European and marine)



### **3. Results and discussion** FeS

|             | FeT (mg g <sup>-1</sup> ) | FeS (mg g <sup>-1</sup> ) | %FeS       |
|-------------|---------------------------|---------------------------|------------|
| DD1         | 43.59                     | 0.19                      | 0.44       |
| DD2         | 46.74                     | 0.28                      | 0.60       |
| DD3         | 36.77                     | 0.08                      | 0.23       |
| DD4         | 61.01                     | 0.28                      | 0.46       |
| DD5         | 47.81                     | 0.25                      | 0.53       |
| DD6         | 54.80                     | 0.36                      | 0.65       |
| DD7         | 39.90                     | 0.27                      | 0.68       |
| L23'        | 31.57                     | 0.21                      | 0.67       |
| L23         | 31.75                     | 0.06                      | 0.19       |
| Hematite    | 469.14                    | 0.03                      | 0.01       |
| Illite      | 41.67                     | 0.75                      | 1.79       |
| Vermiculite | 48.87                     | 0.23                      | 0.46(n=1)  |
| Muscovite   | 22.42                     | 0.003                     | 0.001(n=1) |

### **3. Results and discussion**





DD → FeS 0.49%(±0.18)

### **3. Results and discussion** Fe speciation

| Sample | FeT<br>(mg Fe/g<br>sample) | FeA<br>(mg Fe/g<br>sample) | Fe – NaOAc<br>(mg Fe/g<br>sample) | FeD<br>(mg Fe/g<br>sample) | FeA/FeT<br>(%)               | Fe-<br>NaOAc/FeT<br>(%)      | FeD/FeT<br>(%)                 | (FeA+FeD)/<br>FeT<br>(Free Fe<br>Ratio) | FeA/(FeA +<br>FeD)<br>(%)    |
|--------|----------------------------|----------------------------|-----------------------------------|----------------------------|------------------------------|------------------------------|--------------------------------|-----------------------------------------|------------------------------|
| DD1    | 43.59<br>(±0.25, n= 3)     | 0.23<br>(±0.03, n= 3)      | 0.15<br>(±0.01, n= 3)             | 35.20<br>(±7.97, n= 3)     | 0.53<br>(±0.06, n=3)         | 0.34<br>(±0.03, n=3)         | 80.75<br>(±18.30,n=3)          | 0.81<br>(±0.18, n=3)                    | 0.65<br>(±0.05, n=3)         |
| [      | FeS 0<br>FeA/F             | .49%(±0.2<br>eT 0.97%      | L8)<br>(±0.50)                    | = 3)                       | 1.20<br>(±0.02, n=3)<br>0.68 | 0.21<br>(±0.04, n=3)<br>0.35 | 31.78<br>(±1.99, n=3)<br>14.30 | 0.33<br>(±0.02, n=3)<br>0.15            | 3.65<br>(±0.29, n=3)<br>4.61 |
|        | (n=1)                      | (±0.03, n= 3)              | (±0.02, n= 3)                     | (±0.81, n= 3)              | (±0.08, n=3)                 | (±0.04, n=3)                 | (±2.20, n=3)                   | (±0.02, n=3)                            | (±0.63 <i>,</i> n=3)         |
| DD4    | 61.01<br>(n=1)             | 0.85<br>(±0.04, n= 3)      | 0.23<br>(±0.02, n= 3)             | 6.64<br>(±0.51, n= 3)      | 1.39<br>(±0.06, n=3)         | 0.37<br>(±0.03, n=3)         | 10.89<br>(±0.83, n=3)          | 0.12<br>(±0.01, n=3)                    | 11.36<br>(±1.09, n=3)        |
| DD5    | 47.81<br>(n=1)             | 0.59<br>(±0.03, n= 3)      | 0.24<br>(±0.04, n= 3)             | 17.90<br>(±2.54, n= 3)     | 1.24<br>(±0.06, n=3)         | 0.51<br>(±0.08, n=3)         | 37.45<br>(±5.32, n=3)          | 0.39<br>(±0.05, n=3)                    | 3.24<br>(±0.54, n=3)         |
| DD6    | 54.80<br>(n=1)             | (±0) (±0) (±0)             | 6(±0.84) ii                       | n DD → si                  | milar res                    | ults in aer                  | osols coll                     | ected in                                | 3.26<br>(±1.40, n=3)         |
| DD7    | 39.90<br>(n=1)             | (n=1)                      | (n=1)                             | (n=1)                      | (n=1)                        | (n=1)                        | (n=1)                          | (n=1)                                   | 2.05<br>(n=1)                |
| L23'   | 31.57<br>(±5.63, n=3)      | 0.59<br>(±0.37, n= 3)      | 0.06<br>(±0.02, n= 3)             | 7.16<br>(±0.31, n= 3)      | 1.88<br>(±1.16, n=3)         | 0.19<br>(±0.05, n=3)         | 22.67<br>(±0.98, n=3)          | 0.25<br>(±0.003,n=3)                    | 7.62<br>(±4.64, n=3)         |
| L23    | 31.75<br>(±6.36, n=3)      | 0.12<br>(±0.02, n= 3)      | 0.08<br>(±0.02, n= 3)             | 11.99<br>(±0.62, n= 3)     | 0.37<br>(±0.05, n=3)         | 0.27<br>(±0.07, n=3)         | 37.77<br>(±1.94,n=3)           | 0.38<br>(±0.02,n=3)                     | 0.97<br>(±0.08,n=3)          |
|        |                            |                            |                                   |                            |                              |                              |                                |                                         |                              |



Log scale graphical representation of the various Fe species in the samples

### 3. Results and discussion

Table . Summary of results of the speciation of Fe in this study and compared with others compiled in the review of Shi et al., 2012(NM is not measured)

| Collected in Shi et al.,<br>2012                               | Number of<br>samples | Sources                                                                                                    | FeA/FeT (%)     | FeD/FeT (%)       | (FeA+FeD)/Fe<br>T | FeT (%)         | FeA/(FeA+FeD)<br>(%) | References           |
|----------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|-----------------|----------------------|----------------------|
| Sahara: dust precursors                                        | 2                    | Tibest Mountains,<br>South Libya:<br>Western Sahara                                                        | 0.5 (± 0.2)     | 35.3(±3.4)        | 0.36(±0.04)       | 4.7(±0.1)       | 1.4                  |                      |
| Paleolakes: dust<br>precursors or potential<br>dust precursors | 4                    | Bodele Depression,<br>Chad; Chott el<br>Djerid, Tunisia;<br>Wadi al Hyatt, Libya;<br>Wadi Ash Satti, Libya | 1.5( ± 1.1)     | 18.8(±10.1)       | 0.2(±0.11)        | 1.6(± 1.3)      | 7.4                  | Shi et al.,<br>2011b |
| Bejjing: dry deposition<br>dust                                | 1                    | Not Known                                                                                                  | 1.7             | 22.3              | 0.24              | 3.5             | 7.1                  | Shi et al.,<br>2011a |
| E. Mediterranean: dry<br>deposition dust                       | 1                    | Not Known                                                                                                  | 0.9             | 35.1              | 0.36              | 2.81            | 2.5                  | Shi et al.,          |
| W. Mediterranean: wet<br>deposition dust                       | 1                    | Not Known                                                                                                  | 2.4             | 35.6              | 0.38              | 3.58            | 6.3                  | 2009                 |
| Canary Island:<br>aerosol                                      | 12                   | Saharan origin<br>by back<br>trajectory                                                                    | NM              | NM                | 0.35<br>(±0.07)   | NM              | NM                   | Lazaro et            |
|                                                                | 2                    | Sahel origin by<br>back trajectory                                                                         | NM              | NM                | 0.58<br>(±0.03)   | NM              | NM                   | al., 2008            |
| This study                                                     |                      |                                                                                                            |                 |                   |                   |                 |                      |                      |
| L23 (african soil,<br>potential dust<br>precursors)            | 3                    | Western Sahara                                                                                             | 0.37<br>(±0.05) | 37.77<br>(±1.94)  | 0.38<br>(±0.02)   | 3.17<br>(±0.01) | 0.97(±0.08)          |                      |
| L23' (dust<br>precursors)                                      | 3                    | Western Sahara                                                                                             | 1.88<br>(±1.16) | 22.67<br>(±0.98)  | 0.25<br>(±0.03)   | 3.17<br>(±0.01) | 7.62(±4.64)          |                      |
| DD, Gran Canaria                                               | 7                    | Sahara NS/WSC                                                                                              | 0.93<br>(±0.36) | 32.70<br>(±23.18) | 0.34<br>(±0.23)   | 4.72<br>(±0.84) | 4.08(±3.42)          |                      |

### 3. Results and discussion

#### **Dry Deposition Fluxes for major elements from IC**

Table. Dry deposition Fluxes for major elements in this study and compare with estimated fluxes from Johansen et al., 2000 dates.

| Fluxes for elements (μg m <sup>-2</sup> d <sup>-1</sup> ) |       |       |       |       |       | Ca <sup>2+</sup> are in   | agreeme | nt with the |  |
|-----------------------------------------------------------|-------|-------|-------|-------|-------|---------------------------|---------|-------------|--|
| This study                                                |       |       |       |       |       | African origin of samples |         |             |  |
| Samples                                                   | DD1   | DD2   | DD3   | DD5   | DD6   | Coarse                    | Fine    | Averange    |  |
| F                                                         | 0.13  | 0.04  | 0.04  | 0.03  | 0.02  | 0.27                      | 0.01    | 0.22        |  |
| Cl -                                                      | 29.33 | 2.73  | 4.13  | 5.98  | 3.92  | 90.43                     | 2.39    | 62.21       |  |
| Br                                                        | <0.01 | <0.01 | <0.01 | 0.01  | <0.01 | 0.14                      | 0.004   | 0.10        |  |
| NO <sub>3</sub> -                                         | 1.27  | 0.15  | 0.44  | 0.24  | 0.45  | 9.22                      | 0.52    | 8.16        |  |
| SO <sub>4</sub> <sup>2-</sup>                             | 38.07 | 11.51 | 9.73  | 19.32 | 11.83 | 18.72                     | 1.73    | 23.59       |  |
| C <sub>2</sub> O <sub>4</sub> <sup>2-</sup>               | 2.58  | 0.84  | 0.86  | 0.31  | 0.59  | 0.54                      | 0.05    | 0.68        |  |
| Na⁺                                                       | 17.46 | 1.85  | 2.92  | 3.84  | 2.21  | 57.60                     | 1.79    | 41.99       |  |
| $NH_4^+$                                                  | 2.73  | 0.05  | 0.50  | 0.06  | 0.06  | 0.99                      | 0.20    | 2.27        |  |
| K+                                                        | <0.01 | <0.01 | 1.62  | 0.76  | 0.53  | 2.61                      | 0.13    | 2.36        |  |
| Mg <sup>2+</sup>                                          | 4.47  | 0.59  | 1.11  | 1.08  | 1.05  | 7.11                      | 0.23    | 5.21        |  |
| Ca <sup>2+</sup>                                          | 77.29 | 9.92  | 24.48 | 9.32  | 6.27  | 10.97                     | 0.32    | 7.84        |  |

# 4. Preliminary Conclusions

- 1. The amounts of aerosol collected by deposition systems are very low. For this reason, " prepared aerosols " from soils, to mimics the chemical properties of mineral aerosol, is so important.
- 2. Sequential extraction process results have demonstrated that the Fe speciation in dry deposition samples is similar to aerosol precursors from African soils collected in the source regions.
- 3. The solubility of the more labile Fe fractions is on average 0.97% (±0.49) of the total Fe content in the samples. The highly reactive Fe (FeA+FeD) corresponds to a significant fraction of the FeT in the samples, an average of 33.10% (±20.27). This Fe can be readily dissolved at low pH.
- 4. The high variability in the speciation of Fe in dry deposition samples suggest that atmospheric transport may be an important factor controlling aerosol solubility.