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Abstract

This paper provides a unified framework for the analysis of the stochastic and deterministic

constrained estimation. In a general framework it is show that stochastic restrictions method

estimates can be asymptotically more efficient than estimates ignoring prior information, and

can achieve efficiency of the restricted estimate if prior information grows faster than the sample

information in the asymptotics. As an example of the applicability of the previous result, the

maximum likelihood stochastically restricted criterion is provided.
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1 Introduction

Economic theory provides parameters restrictions for some models, which generates more efficient

estimates if restrictions are taken into account within the estimation process. A different type of

information can also be available, coming from experience, that is, previous estimations of similar

models or different samples. This is called prior information, and can be seen as an approximation

to the value of the parameter. Including prior information as deterministic restrictions will bring

non-consistent estimators, but ignoring it is wasting the possibility of disposing efficiency gains if

the priors informs about the true values of parameters. An intermediate solution between ignoring

prior information and including it as deterministic, is taking it into account with uncertainty, given

by the perception of the quality of priors, i.e., the perception that the researches has about its

likelihood of being true. This is the idea behind stochastic restrictions approach, which formally

consists on a set of equations that contain restrictions on parameters and an error term whose

variance captures uncertainty about priors. In other words, if the quality of priors is poor (high),

the researcher could include a stochastic restrictions with a high (low) variance error term.

For finite samples, taking into account stochastic restrictions bring efficiency gains, as show Theil

and Goldberger (1961) and Shiller (1973) for a linear model and normal errors, depending inversely

on the variance of the error term of the stochastic restriction. Nevertheless, stochastic restrictions

seem not to have much impact in the classic econometric literature, possibly due to its asymptotic

irrelevance. As sample size increases, stochastic restriction weights decreases and efficiency gains

disappears in the limit. Some question of interest derives from this result as can be seen. The

main goal of asymptotic theory is to provide finite sample approximated distributions of estimators.

If available prior information is correct, finite sample results show that stochastic restrictions are
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useful, then it follows that asymptotic result about it are not! Therefore, although theoretically

correct, the resulting asymptotic irrelevance of stochastic restrictions is not satisfactory, since it

says very little about the finite sample distribution of the restricted estimator. Also it would be

interesting to provide a more satisfactory asymptotic result, according with expected relevance of

the asymptotic restrictions. The aim of this paper is to answer yes to that question by providing

a unified framework to analyze the asymptotic properties of the general restricted estimator. In

a general set up it is show that stochastic restrictions method estimates can be asymptotically

more efficient than estimates ignoring prior information, and can achieve efficiency of the restricted

estimate if prior information grows faster than the sample information in the asymptotics. As an

example of the applicability of the previous result, the maximum likelihood stochastically restricted

criterion is provided. The relevance of the application lies on the fact that the maximum likelihood

estimator properties are asymptotics by construction, and standard asymptotic theory reject the

usefulness of the stochastic restrictions.

The structure of the paper is the following: In section 2, the main assumption of the paper is

introduced and motivated. Section 3 proposes the general restricted estimator and shows the theo-

retical results. Finally, section 4 provides an example of applicability of the previous section results

through the maximum likelihood estimator.

2 Priors’s quality improves asymptotically

In this section the stochastic restriction approach is described in the framework of a standard general

linear model (GLM) for a T periods sample size. This familiar framework makes the presentation
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easier to understand, though not required for the purposes. The considered model is given by:

Y = Xβ + u (1)

where β, is a k−dimension parameter vector, X is a Txk matrix of regressors, Y, u are respectively

T− dimension endogenous variable vector and random disturbance, where u ∼ i.i.d.(0, σ2uIT ) -a

more complex structure for u is also allowed, but omitted to simply the analysis. Available prior

information about β, modelled through the stochastic restriction approach, leads to the equation:

r = Rβ + v (2)

where r is a qx1 vector (q < k) of values that prior information allocates to a linear combination of β’s

andR is a qxk matrix of coefficients. The term v is a random vector assumed to be v ∼ i.i.d.(0, σ2vIq),

where σ2v is chosen according with the uncertainty about the prior information. Since v is random,

also r is. It is also assumed that v is independent of u. Although it is not necessarily, neither

realistic assuming that stochastic restrictions are independent and homoscedastic, it makes more

direct the understanding the effects of stochastic restrictions on efficiency gains.

In order to shed some light in the understanding of what a stochastic restriction is, consider a

Cobb-Douglas production function Y = AKαLβ using standard macroeconomics notation. Assume

that prior information is available about parameters, consisting in the believe that "Returns to scale

are probably constant". It means that it is expected that α + β were close to one. In terms of a

stochastic restriction, prior information can be put forward as 1 = (α+ β) + v, where v is the error

term capturing that information need not to be exactly true.

4
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The main contribution of this paper relies on assumptions about the asymptotics of σ2v. More

precisely, it is considered an asymptotically decreasing variance of the stochastic restrictions, or,

in terms of Bekker (1994), a parameter sequence. As a result, the relative weights of prior and

sample information are preserved in asymptotic terms, and as opposed to the standard approach,

this explains efficiency gains.

This kind of assumption might be considered too strong and, as mentioned in Kadane (1971),

difficult to justify. However, in the context of IV estimation with weak instruments, in Bekker (1994)

and Staiger and Stock (1997) we find a similar assumption, justified by the goal of finding better

approximations to the finite sample distribution of the estimator of interest. The approximation is

derived mainly from standard asymptotic theory, but also, taking into account the extra assumption

of a parameter sequence, designed to improve the properties of the considered estimator. Despite of

the objection of Kadane (1971), Bekker (1994) claims that there is no need to make such “realistic”

assumption and that "...the quality of the approximation is the only criterion for justifiability”. In

our context it could also be argued that the goal of the assumption is providing a distribution that

fits the finite sample distribution better. But added to that, there is a realistic motivation for it.

Considering that the priors are obtained from a sample whose size also increases asymptotically can

be interpreted as the idea that experience can be improved, and this could be viewed as natural

fact. Hence, informative priors in static terms, leads to improved quality priors with additional

sampling.

5
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3 A general approach to restricted estimation

A general restricted estimator is described in this section as the outcome of the estimation of

a GLM model where priors are taken into account through the stochastic restrictions approach.

The resulting estimator variance covariance matrix converges to the non-restricted or the exactly

restricted estimators depending on the relative asymptotics of T and T ∗.

Consider the standard GLM given in (1) and the stochastic restrictions in (2). The complete model

can be seen as the system ⎡⎢⎢⎣ Y

r

⎤⎥⎥⎦ =
⎡⎢⎢⎣ X

R

⎤⎥⎥⎦β +
⎡⎢⎢⎣ u

v

⎤⎥⎥⎦ (3)

Calling Ȳ 0 = [Y 0, r0], X̄ 0 = [X 0, R0] and ū0 = [u0, v0]. Since model (3) is heteroscedastic, to be

efficiently estimated, it should be premultiplied by the transformation matrix P, with elements

IT/σu and Iq/σv in the main diagonal. The resulting transformed model is

y = xβ + w (4)

where y = PȲ , x = PX̄, and w = Pū, with E(w) = 0, and V (w) = IT+q.

Definition. The general restricted estimator of β, β̂GR is the OLS estimator of model (4). That is,

β̂GR = (x
0x)−1x0y

It is immediate to check that β̂GR is unbiased and that its variance is

V (β̂GR) =

∙
X 0X
σ2u

+
R0R
σ2v

¸−1
(5)

6
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which is smaller than V (β̂OLS).

Although, β̂GR is not asymptotically more efficient than β̂OLS . Under standard assumptions (say

SAA) of the GLM1, asymptotic distribution of β̂GR is

√
T (β̂GR − β)

d→ N

Ã
0, p lim

µ
1

T

X 0X
σ2u

+
1

T

R0R
σ2v

¶−1!

and then, asymptotic variance is

AV (β̂GR) = p lim

µ
1

T

X 0X
σ2u

+
1

T

R0R
σ2v

¶−1
(6)

Since p lim
³
1
T
R0R
σ2v

´
= 0, equation (6) implies that AV (β̂GR) = AV (β̂OLS), which is not a very

satisfactory result in empirical terms, as Lütkepohl (1991) points out. Far from it, it is reasonable to

consider that if good quality priors are available, should be used, although they are established to be

asymptotically irrelevant by the standard asymptotic setting. How to overcome this contradiction?.

What follows is intended to find compatibility between theory and practice by providing a more

general setting for the constrained estimation analysis.

Assumption A1. V (v) ≡ σ∗2v = σ2v
T∗ , i.e., the variance of the stochastic restriction decreases with T

∗,

the sample size of the sample that provides prior information.

The asymptotics is analyzed as T and T ∗ goes to infinite, and different growing rates are allowed for

T and T ∗. It should be noted that A1 implies that the term r depends on T ∗ and hence denoted as

r∗. Since A1 states that prior information improves with the sample size T ∗, in the limit r∗ should

1SAA are p lim(x
0x
T
) is a finite and inversible matrix, and x0w√

T
→ N(0,Ω)

7
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equal Rβ and be true. The following assumptions are in order for the theoretical discussion.

Assumption A2. p lim(T/T ∗) =∞.

Assumption A3. p lim(T/T ∗) = 1.

Assumption A4. p lim(T/T ∗) = 0.

Next it is discussed the efficiency of β̂GR in terms on the preceding alternatives assumptions, that

is, on the dominating sample size, as shown in the following propositions.

Proposition 1 . Under SAA, A1 and A2, AV (β̂GR) = AV (β̂OLS).

In this case, there are no efficiency gain, —as for the case were no increasing informative priors are

considered— since T dominates T ∗.

Proposition 2 . Under SAA, A1 and A3, AV (β̂GR) < AV (β̂OLS).

Hence, if T and T ∗ increases at the same rate, general restricted estimation brings asymptotic

efficiency gains, as opposed to standard asymptotic theory.

Proposition 3 . Under SAA, A1, and A4, AV (β̂GR) = AV (β̂R), where β̂R is the constrained estima-

tor of the model

Y = Xβ + u

r = Rβ

Hence, if prior information increases more rapidly than variables information, priors are as relevant

as if they were deterministic in the limit.

8
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Proposition 4 . Under A1, if lim(T/T ∗) =M, 0 < M <∞, then,

i) AV (β̂GR) < (AV (β̂OLS)

ii) d(AV (β̂GR))
dM > 0

iii) limM→0AV (β̂GR) = AV (β̂R)

iv) limM→∞AV (β̂GR) = AV (β̂OLS)

This proposition states that AV (β̂GR) increases continuously from the variance of the unrestricted

estimator to the variance of the deterministic restricted estimator as prior’s quality decreases.

4 Example: maximum likelihood and prior information

In this section it is described an application of the main result of the previous section through the

maximum likelihood (ML) estimation method. Since ML estimator properties are defined asymp-

totically, under standard approach there is no place for stochastic restrictions. Nevertheless, under

assumptions A1 and A3 or A4 introduced in Section 3 it is possible to support efficiency gains into

the ML estimation method.

First, the extension of the ML method to the stochastic restrictions approach is defined. Then, its

distribution and the resulting efficiency gain is shown for the cases in which prior information is not

dominated asymptoticaly by sample information.

It is considered a parametric model in which yt, for t = 1, ...T, is the endogenous variable and

xt, t = 1, ...T is the set of exogenous variables of the model. Let f0(y1, ..., yT/x1, ..., xT ) be the

conditioned distribution function of y1, ..., yT given x1, ..., xT . If observations are independent, then

the conditioned distribution function can be decomposed as
TQ
t=1

f0(yt/x1, ..., xT ). It is also assumed

9
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strong exogeneity on variable x, that is, f0(yt/x1, ..., xT ) = f0(yt/x1, ..., xt) and that there is a

p−dimension parameter vector β0 such that f0(yt/xt) = f(yt/xt;β0). The likelihood function

is defined as the conditional distribution of sample, which for independent variables equals the

marginal densities of the sample. That is,

L1(y, x;β0) =
TY
t=1

f(yt/xt;β0) (7)

The maximum likelihood estimator of β0 is defined as

β̂ML = argmax
β
{log(L1(y, x;β0))} (8)

The asymptotic distribution of β̂ML can be easily derived as

√
T (β̂ML − β0)

d→ N

Ã
0,

½
−E

∙
1

T
H1(β0)

¸¾−1!
(9)

where H1(β0) is the Hessian of the log-likelihood, i.e.,

H1(β0) =
∂2 ln(L1(y, x;β0)

∂β∂β0

For simplifying porposes, call standard assumptions (SA) (see for instance Amemiya (1985) for

details) the set of assumptions that are required on the previous model to derive the asymptotic

properties of the ML estimator.

Now, available prior information on parameter β is considered in the form of q stochastic restrictions,

given by the equation:

10

©
 D

el
 d

oc
um

en
to

, l
os

 a
ut

or
es

. D
ig

ita
liz

ac
ió

n 
re

al
iz

ad
a 

po
r U

LP
G

C
. B

ib
lio

te
ca

 U
ni

ve
rs

ita
ria

, 2
00

9



r∗ = Rβ + v (10)

where v ∼ iid(0, σ∗vIq), independent of u, σ∗v choosen according with the quality of priors, r∗ is a q

dimension vector containing the expected values of the restrictions describing priors and matrix R

of dimension qxk describes the set of linear restrictions about parameters.

In order to support asymptotic efficiency gains, A1 is assumed, - that is, V (v) = σ∗v = σv/T
∗−,

and also A3 or A4 — say A3 without loss of generality. Since vi are independent, by applying the

Lindberg Levy Central Limit Theorem on (10), it is easy to check that

r∗ ∼ N(Rβ, σ∗vIq) (11)

and the density of the above distribution (11) can be added to the conditional distributions of the

sample information. The marginal density of each one of q terms on the stochastic restrictions is

h(r∗i ) =
1

σ∗v
√
2π

e
− v2i
2σ∗2v (12)

where vi = ri − R
0
iβ, i = 1, ..., q, and R

0
i is the ith row of R. The likelihood function related to

stochastic restrictions is derived as considering priors as independent sample information, which

equals the marginal densities of the sample. That is,

L2(y, x;β0) =

qY
i=1

h(r∗i ;β0) (13)

This amounts to writing the whole likelihood for all observations, including that on the prior values

11
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of β, as

L̄(y, x, r;β0) = L1.L2 =

Ã
TY
t=1

f(yt/xt;β0)

!Ã
qY

i=1

h(ri, β0)

!

and the criterion for the restricted ML estimator is fully defined.

Definition. The stocastically restricted maximum likelihood (RML) estimator of β is

β̂RML = argmax
β

©
log L̄

ª
(14)

Next, it is a matter of interest deriving the properties of the defined β̂RML estimator in order

to discuss the efficiency gains with respect to the unrestricted ML estimator. Assuming A3, v

independent of y and SA, the asymptotic distribution of β̂RML is given by

√
T (β̂RML − β0)

d−→ N (0,W ) (15)

where W =
©−E £ 1TH(β0)¤ª−1 and H(β0) =

∂2 log(L̄(β0))
∂β∂β0

Proposition 5 Under SA, A1 and A3, β̂RML is asymptotically more efficient than β̂ML

As shown, Proposition 5 provides an example of applicability of the result suggested in Proposition

2 where the asymptotic relevance of the stochastic restrictions is sustained on the bases of the

asymptotic informative requirement for priors. By taking into account priors on the maximum

likelihood estimation in the form of stochastic restrictions, it is shown the existence of asymptotic

efficiency gains, which is intended to bring more accurate estimates of the considered model. This

result illustrate the applicability of the theoretical results described in section 3 and provides an

empirical motivation for them in the setting of a familiar econometrics method.
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5 Conclusions

This paper shows that prior information, modelled through stochastic restrictions could bring ef-

ficiency gains asymptotically. This result is found by assuming that sample information does not

grows faster than prior information asymptotically. Moreover, a general setting is provided in which

the variance covariance matrix of the stochastically restricted estimator converges asymptotically

to the efficient restricted estimator if prior information grows faster than sample information.

As a corollary of the previous result about the asymptotic relevance of prior information, the main

result is implemented over the Maximum Likelihood (ML) estimator. The proposed Restricted

Maximum Likelihood estimator is shown to be more efficient than the basic ML estimator. Hence it

is suggested as a solution to incorporate prior information into the general and useful ML procedure

to improve efficiency, as opposed to the standard asymptotic analysis concludes. This example of

the theoretical result that supports the relevance of the stochastic restrictions approach on the ML

method, suggest an analytical framework to be considered for empirical applications.

13
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Appendix

The proofs of the propositions are provided next.

Proposition 1 . Under SAA, A1 and A2, AV (β̂GR) = AV (β̂OLS).

Proof .

AV (β̂GR) = p lim

µ
X 0X
T

1

σ2u
+

T ∗

T

R0R
σ2v

¶−1
= E

µ
X 0X
σ2u

¶−1
= AV (β̂OLS)

¥

Proposition 2 . Under SAA, A1 and A3, AV (β̂GR) < AV (β̂OLS).

Proof . Under A1, AV (β̂GR) is now

AV (β̂GR) = p lim

µ
1

T

X 0X
σ2u

+
T ∗

T

R0R
σ2v

¶−1
< E

µ
X 0X
σ2u

¶−1
= AV (β̂OLS)

¥

Proposition 3 . Under SAA, A1, and A4, AV (β̂GR) = AV (β̂R) < AV (β̂OLS), where β̂R is the

constrained estimator of the model

Y = Xβ + u

r = Rβ

14
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Proof . First I use a matrix algebra result. Let A, kxk, B kxq and C qxq, be matrixes such that ∃

A−1, C−1. Then,2

(A+BCB0)−1 = A−1 −A−1B(C−1 +B0A−1B)−1B0A−1 (E1)

Now, taking

A =
1

σ2u

X 0X
T

,

B = R0,

C = Iq
1

T

1

σ∗2v
(A1)
= Iq

T ∗

T

1

σ2v

from (6) and (E1), AV (β̂GR) can be rewritten as

p lim

⎡⎣µX 0X
T

1

σ2u

¶−1
−
µ
X 0X
T

1

σ2u

¶−1
R0
"
Iqσ

2
v

T

T ∗
+R

µ
X 0X
T

1

σ2u

¶−1
R0
#−1

R

µ
X 0X
T

1

σ2u

¶−1⎤⎦
(A4)
=

"
E

µ
X 0X
σ2u

¶−1
−E

µ
X 0X
σ2u

¶−1
R0
h
RE

¡
X 0X

¢−1
R0
i−1

RE
¡
X 0X

¢−1# (E2)

since by A4, p limT/T ∗ = 0. It can be easily checked that the last term of the above equation is

AV (β̂R) < AV (β̂OLS) shown in Proposition 2.

¥

Proposition 4 . Under (A01), if lim(T/T ∗) =M, 0 < M <∞, then,

2See Greene (1997), for instance.

15
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a) d(AV (β̂GR))
dM > 0

b) limM→0AV (β̂GR) = AV (β̂R)

c) limM→∞AV (β̂GR) = AV (β̂OLS)

Proof . Calling H(M)

H(M) =

"
Iqσ

2
vM +Rp lim

µ
X 0X
Tσ2u

¶−1
R0
#−1

(E3)

and back to equation (16),

AV (β̂GR) = E

µ
X 0X
σ2u

¶−1
−E

µ
X 0X
σ2u

¶−1
R0H(M)R0−1RE

µ
X 0X
σ2u

¶−1

Since dAV (β̂GR)
dH < 0 and dH(M)

dM < 0, then dAV (β̂GR)
dM > 0, what proves a).

From (E3),

lim
M→0

H(M) =

"
RE

µ
X 0X
σ2u

¶−1
R0
#−1

lim
M→∞

H(M) = 0

By substituting these last terms into (16), it is obtained: limM→0AV (β̂GR) = AV (β̂R), and

limM→∞AV (β̂GR) = AV (β̂OLS), what proves b) and c).

¥

Proposition 5 Under SA, A1 and A3, β̂RML is asymptotically more efficient than β̂ML.

Proof .
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The asymptotic distributions of β̂RML and β̂ML are respectively

√
T (β̂RML − β0)

d−→ N
¡
0, (−A)−1¢

√
T (β̂ML − β0)

d−→ N
¡
0, (−B)−1¢

where A = E
h
1
T
∂2 log(L̄)

∂β∂β
0

i
and B = E

h
1
T
∂2 log(L1)

∂β∂β
0

i
.

Statemente to be proved is −A−.1 < −B−1, which holds if and only if

A−1 > B−1

A < B

By construction, L̄ = L1.L2 and by operating adequately,

E

∙
1

T

∂2 log(L̄)

∂β∂β
0

¸
= E

∙
1

T

∂2 log(L1)

∂β∂β
0

¸
+E

∙
1

T

∂2 log(L2)

∂β∂β
0

¸

that is,

A = B + C (say)

Since second order condition holds for the likelihood criterion, it follows from equation that A < B,

if C 6= 0, which have to be proved.

By equation (13)

∂2 log(L2)

∂β∂β
0 =

∂2
µ

qP
i=1
log h(r∗i ;β0)

¶
∂β∂β

0

17
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and by (12), A1 and A3,

p lim

µ
1

T

∂2 log h(r∗i )
∂β∂β

0

¶
= −p lim

µ
1

T

R0iRi

σ∗v

¶
= −E

µ
R0iRi

σv

¶
6= 0

Hence

E

∙
1

T

∂2 log(L2)

∂β∂β
0

¸
= −E

∙
R0R
σv

¸
= C 6= 0

what ends the proof.

¥
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