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Abstract: Surface texturing has brought significant improvements in the functional properties of parts
and components. Sinker electro discharge machining (SEDM) is one of the processes which generates
great texturing results at different scale. An electrode is needed to reproduce the geometry to be
textured. Some geometries are difficult or impossible to achieve on an electrode using conventional
and even unconventional machining methods. This work sets out the advances made in the manu-
facturing of copper electrodes for electro erosion by additive manufacturing, and their subsequent
application to the functional texturing of Al-Cu UNS A92024-T3 alloy. A combined procedure of digi-
tal light processing (DLP) additive manufacturing, sputtering and micro-electroforming (AMSME),
has been used to produce electrodes. Also, a specific laboratory equipment has been developed to
reproduce details on a microscopic scale. Shells with outgoing spherical geometries pattern have
been manufactured. AMSME process has shown ability to copper electrodes manufacturing. A highly
detailed surface on a micrometric scale have been achieved. Copper shells with minimum thickness
close to 300 µm have been tested in sinker electro discharge machining (SEDM) and have been shown
very good performance in surface finishing operations. The method has shown great potential for
use in surfaces texturing.

Keywords: structured surfaces; texturing; micro-electroforming; additive manufacturing; sinker
electro discharge machining

1. Introduction

One of the biggest technological challenge in modern engineering is trying to reduce
the negative effects caused by the wear phenomenon. This is a problem which is relevant
to the lifetime of metallic parts. Some studies have demonstrated that surface texturing [1]
decreases friction and improves the tribological performance of mechanical components.
This reduces their operating temperatures and increases component life [2]. Hamilton et al.
already proposed in 1966 to reduce the friction of a mechanical seal by applying a texture
pattern to the surface [3]. The scientific community have made many efforts to do research
and evolve in this field [4].

High and low relief geometries can be used to modify the topography of a material.
Engraving shapes usually require top-down processes based on material removal from the
surface (cutting, grinding, etching, laser). Emboss shapes use bottom-up processes based
on the addition of the material on the surface (anodic oxidation of aluminum, self-assembly
of particles, block copolymer, electroforming).

When this modification is made with a defined structure or pattern, structured surfaces
are achieved [5]. For example, by modifying surface roughness levels, super hydrophobic
surfaces can be obtained [6]. These are very interesting for self-cleaning applications

Materials 2021, 14, 2497. https://doi.org/10.3390/ma14102497 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8443-118X
https://orcid.org/0000-0002-9944-9144
https://www.mdpi.com/article/10.3390/ma14102497?type=check_update&version=1
https://doi.org/10.3390/ma14102497
https://doi.org/10.3390/ma14102497
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14102497
https://www.mdpi.com/journal/materials


Materials 2021, 14, 2497 2 of 18

and improving aerodynamic resistance. The improvement of aesthetic, adhesion, heat
dissipation, hydrodynamics and optical behavior of surfaces [7] are more examples of
applications for functional texturing. However, neither the design of the texture nor the
process to obtain it are standardized.

Observation is used to find good functional surface solutions: A lotus leaf (hydropho-
bic); a lizard’s foot (adhesion); a moth eye (antireflective) are some examples of great
texturing designs created by Mother Nature [8].

Conventional machining or chemical machining processes were traditionally used
for surface texturing. At the beginning, drilling, milling, and turning were the most used
ones. Later, numerical control and ultrasound vibration systems increased the accuracy
and precision of these processes. The controlled chemical dissolution of the machined
workpiece material by contact with a strong chemical reagent [9], was already used in the
1950s to remove material from a surface [10]. Today, processes such as jet electrochemical
machining (Jet-ECM) are exponents of flexibility and precision [11].

Micro-structured or micro-texturized surfaces are obtained due to these technological
advances to generate functional patterns. The micro cavities patterns have been particularly
interesting for this work development [12]. In many cases, complex geometries with high
detail reproduction do not allow the use of conventional machining processes in materials
with different harnesses. To do this, at different dimensional levels, it is necessary to use
unconventional machining techniques, such as electro discharge machining (EDM) and
laser techniques. These techniques have a specific application to the micro texturing of
surfaces such as micro-electrical discharge texturing (EDT) or laser surface texturing (LST).
There are several studies of the application of these techniques [13–15].

In micro EDM, material removal is due to electrical discharge between the tool (elec-
trode) and the work piece through a dielectric fluid [16]. These high voltage discharges
create enough thermal energy to cause workpiece erosion. Work piece and electrode are
not in physical contact, so no stress is generated, and tool deformation is avoided. This
allows the use of small tools suitable for micro machining [17]. The EDM process completes
complex geometries with high dimensional accuracy and low roughness surfaces. It does
not affect mechanically the surface of the work piece, and it can be used for both, large and
small surfaces.

Two Russian scientists, Lazarenko and Lazarenko at Moscow University were the
first to develop a controlled process for machining materials [18]. From them, a growing
interest was generated in the novel applications of the process, with special emphasis on
its ability to modify surfaces [19]. In recent decades, its application has been explored,
specifically, to reduce wear. Dong et al. used a micro EDM system with a cylindrical
micro tool to generates a micropatterned insert. They achieved to decreases cutting force
in hard turning machining [20]. Koshy and Tovey used EDM to texturize a finish-ground
cutting tool. They compared a linear texture with grooves 100 µm depth and with and an
areal texture on tool surface. They stablished that such textures are effective in reducing
friction, due to significant reduction in machining force. The result was better for areal
one, however they proposed to developed a hybrid texture that integrates linear and areal
textures to further improve lubricant’s performance [21]. However, surface functional
texturing remains poorly studied for other applications.

They use different geometries such as groove, dimple, or channel. The use of dimples
on the surface of golf balls is well known. Its application modifies the aerodynamics of
the surface and improves its flight. Examples of used dimple geometries are: circular [22],
elliptical [23], square [24], triangle [25], rectilinear or diamond shaped [26].

Geometries forming depends on the abilities of the manufacturing process. For
example, conventional machining processes cannot create negative semi spheres without
altering the surface. Also, they cannot create electrodes with positive semi spheres, except
by electro-deposition. The sinker electro discharge machining process (SEDM) can generate
some of these geometries on a micrometric scale.
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A combined process with DLP Additive Manufacturing, Sputtering and Micro Elec-
troforming (AMSME) has been tried to manufacture SEDM tools.

DLP and micro-electroforming are two additive manufacturing processes with proven
results in detail reproductions. In addition, an intermediate process was added as a link
between both technologies. Sputtering transforms the polymeric parts manufactured by
DLP into conductive parts of the electric current. Therefore, they can be used as a cathode
in the electroforming process.

Electroforming is an electrochemical process that is defined as “the production or
reproduction of articles by electrodeposition upon a mandrel or mold that it is subsequently
separated from the deposit” [27]. Figure 1 schematically shows the process.
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Figure 1. Schematic illustration of electroforming process.

Electroforming requires: an anode (material to be deposited); a cathode (element which
receives the deposition and has the geometry to be reproduced); a tank with an electrolytic
solution (ion transmission element); and an electric current that is responsible for triggering
the electrochemical process. The anode (+) and cathode (−) must be submerged in the
solution and must be conductive. Metal deposition generates a shell which forms a piece by
itself as a copy of the model. The model can be defined as the negative form to be generated
and the electrodeposition shell the positive form. Electroforming is an accumulation
process atom by atom theoretically, so it accuracy depends of model design [28].

Deposition takes place over time and depends on bath conditions and process param-
eters. The thickness of pieces increases with the length of the process. It is able to reach
values of up to 25 mm in good reproduction conditions [29]. It has the ability to reproduce
great dimensional accuracy in three-dimensional geometries, so it has experienced renewed
interest given the existing demand for new working procedures [30]. A specialization of
the process called micro-electroforming has emerged [31]. It uses special systems such
as sources of pulsating energy with polarity inversion [32] or magnetic or ultrasonic elec-
trolytic bath agitation systems [33]. The Integrated and Advanced Manufacturing research
Group of the University of Las Palmas de Gran Canaria (ULPGC) has extensive previous
experience in the use of special parameters and conditions for electroforming [34,35].

Additive manufacturing is the general term for technologies that create three-dimen-
sional objects by successively adding material based on CAD modelling [36]. Some authors
have explored different technologies for the direct electrode manufacturing [37,38]. Tank
photopolymerization is one of the oldest techniques. In this process, a liquid photopolymer
located in a tank is selectively cured by the action of light [39]. The most common way to
work is using an ultraviolet light (UV) system for curing surfaces. The UV light source
distinguishes both variants of this process: stereolithography (stereolithography, SLA) and
digital light processing (DLP). In DLP technology, a digital micro mirror (DMD) device
can be used to project ultraviolet light [40] or a liquid crystal display (LCD), which lights
up the geometry to be reproduced [41]. In both modes, the photo reactive materials are
polymerized layer by layer.
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Sputtering is the erosion of solid surfaces during the bombardment with energy
ions [42,43]. One of its applications, cathodic spraying, is the deposition of thin films on
the material surface with ion beam and plasma (PSD and IBSD respectively) [44,45].

Recently Radziejewska et al. have used sputtering (magnetron sputtering) to apply
wear-resistance coatings to WC-Co insert of commercial cutting tools. They applied WB2
and (W, Ti) B2 borides. Their study determined that coatings deposited on WC–Co substrate
are smooth and very hard. In one of their tests (turning of difficult-to-cut 304 stainless
steel), the W–B coated tool showed better wear resistance than the uncoated tool. Flank
wear was smaller by 30% [46].

This work shows the first results of the combined technology AMSME, in application
to manufacture copper electrodes for electrical discharge machining processes. Also, is used
to texturing aluminium alloys for aeronautical use. An experimental methodology applied
to Al-Cu UNS A92024-T3 aluminium alloy test parts, using the SEDM process is proposed.
Aluminium alloys have been used in the aeronautical industry, because of their lightness
and good relationship between cost and physicochemical properties. Although composites’
use is increasing, it is still used for the manufacture of many parts and components in
aeronautical applications. Also, unlimited recycling capacity of aluminium is important
to preserve environment. The mechanical properties of these alloys can be improve by
applying precipitation hardening treatments [47,48].

Copper electrodes with a functional texture based on a high relief matrix of semi
spheres of 2 mm diameter, distributed throughout its surface were used. These shapes cause
difficulties in thickness uniformity during electroforming manufacturing. To achieve good
results, a laboratory equipment was developed that could be adapted to the combination
of DLP additive manufacturing and electroforming.

To advance in the study of surface texturing, it is necessary not to have limitations in
design and manufacturing of new geometries. These limitations have been imposed by
costs or by the technological limits of both conventional and unconventional machining
processes. A new way to work is needed, AMSME method could be an alternative. The
goal is to obtain the electrodes and ensure that they are effective for the use in the SEDM
process. A positive result raises a new way of approaching functional texturing. The
limitations of geometries and shapes for machining electrodes would be left behind thanks
to the use of 3D print. High-quality functionals models in detail reproduction could be
obtained with low-cost technology, and not just for texturing. It could be a real alternative
to manufacturing commercial electrodes for SEDM. In addition, this work could show
accessible manufacturing without large factories or machinery. Impossible parts even on a
micro scale can be achieved with few errors.

Morkovkin et al. established that the most important factor that limits the growth
of industrial production are associated with the lack of resources and the lack of new
technologies. The approach of these technologies generates competitive improvement in
companies and goods [49].

2. Materials and Methods

The work methodology, including texturing, is done in four stages. The last stage is
the one in which the work is carried out on the surfaces. To be successfully, the first three
must be able to make a tool that works.

2.1. Functional Model Manufacturing

Additive manufacturing allows facing the design of geometries until now unreachable.
It frees the designer and allows design for manufacturing and assembly (DFMA) to be
approached in a different way. However, it is important to master the technology to know
its limitations. In this work, this first stage will establish technological limit to geometries
to be reproduced.

A DLP/LCD 3D printer machine was used to manufacture the functional model
(Wanhao Duplicator 7 (D7), Wanhao 3D printer, Jinhua, China) which emits UV light
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through an LCD display with a wavelength of 405 µm. This machine projects successive
masks in bottom-up mode on the resin found in the tank. It has a pixel resolution of
47 × 47 nm and allows a minimum layer thickness of 30 µm. A polymeric material is used
for printing (Monocure 3D Rapid, Monocure Pty Ltd., Sydney, Australia). Table 1 shows
the most important parameters of the process.

Table 1. Process parameters.

Resin Exposure Time Cure Time Resin Usage Layers Print Time

Monocure 3d Clear 10.5 s 4.0 s 10.13 mL 267 1 h 17′23”

Figure 2 shows the functional model used. It is a square geometry element of
38 × 38 mm with a functional surface composed by 25 semi spherical cavities with di-
ameter of 2 mm, with rounding of the radius edge 0.5 mm and pitch 4 mm.
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2.2. Sputtering

One of the characteristics which define the electroforming process is the need of
active surfaces. These surfaces must be conductive where we want metal deposition.
The non-conductive nature of the photosensitive resin of the manufactured model needs
to add an intermediate procedure to metallize it. A gold-palladium spraying process
(sputtering) with luminescent discharge in the presence of argon is used to do the surface
treatment. Figure 3a shows the used equipment (SC7620 Mini Sputter Coater, Quorum
Technologies Ltd., Kent, UK), and Figure 3b shows its discharge chamber. Based on the
manufacturer’s recommendations, the used parameters were: Process current: 18 mA;
Exposed time: 120 s; Voltage: 1 kV. Using these parameters, a layer thickness of 367 Å is
achieved. Three depositions were made with a thickness of approximately 1 nanometre to
ensure the coating of all functional geometry. Figure 3c shows that the coating reproduces
all model surface details. Perpendicular faces need to be masked to avoid particle cloud
effect. They could coat these areas and turn them into active surfaces. This creates the
possibility of electrodeposition on non-functional surfaces and lower quality deposition.

To verify model results, visual inspections were made with a microscope (MitutoyoTM-
1005B, Mitutoyo Corporation, Kanagawa, Japan), and electrical conductivity was checked
at different points on the functional surface. It was intended to confirm the entire surface
was coated, the deposition has not affected the geometry to be reproduced and the surface
was active. The electrical resistance was quantified and values between 160 and 230 Ω
were obtained.
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Figure 4 shows the result of the microscopic view during the inspection process. It can
be observed that the sputtering process reproduces both the surface texture and geometric
details of the model. The images correspond to a piece with manufacturing defects. It has
been used to show how metallizing covers imperfections. Even slight scratches caused by
handling (yellow arrow) have been reproduced in detail. Figure 4c shows the coating of
the defects in more detail. Sputtering does not modify the geometry, due to the deposited
layer works on a smaller scale than the details to be reproduced.
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2.3. Electroforming

The metallized resin model was already showed the proposed geometry, then we
needed the electroforming to be able to reproduce it. To made it possible an own man-
ufacturing equipment was developed. Figure 5 shows the electroforming equipment in
working conditions. It is composed of several elements which manage the different pro-
cess parameters. Its main components are: Power supply; Model part support system;
Electrolytic bath agitation system; Automatic electrolytic bath agitation control device;
Monitoring system. These are detailed below.

1. The power supply is the KEITHLEY 2460 SuourceMeter® (Keithley Instruments,
Cleveland, OH, USA). This instrument can make real-time measurements of amperage,
voltage, and resistance. At the same time, it can provide power with configurable
output in voltage or amperage, according to the process needs. It can program
electrical cycles and stores readings of the process electrical parameters. These can be
used for further analysis.

2. A model holder system is responsible for place and support of the functional model.
It has a three-axis movement to allow the adjustment of the distance between anode
and cathode, and its orientation.

3. The agitation system consists of a submersible centrifugal pump with a maximum
drive flow rate of 2.88 L/min. It has a collector for the distribution of flow with
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5 outlet points. This collector is detachable, allows experiments to be conducted
under laminar flow or turbulent flow conditions, according to research needs.

4. The automatic electrolytic bath agitation control device (DCAB) is an own design
and development device. It manages the electrolytic bath system. It has a manual
operation mode and a programmable automatic mode. In automatic mode the system
compares the value of current intensity, which circulates through the circuit and
the current intensity of setpoint. Based on this comparison, it adjusts the power
value of the submerged pump to increase or decrease the recirculation flow of the
electrolytic bath.
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cavity backgrounds. As the process progresses you can see which zones are preferred dur-
ing deposition. This is very interesting to understand the way the part is constructed. Fi-
nally, the absence of bright points indicates that the surface has been coated. The record-
ing review allows to set the time interval in which this occurred, providing information 
relevant to the process optimization. 

Figure 5. Electroforming equipment.

The equipment has a monitoring system, which allows to track the electrodeposition
in real time. It has continuous recording mode and the possibility to obtain images at any
time of the process. It includes a led backlight system that improves the display of the
deposition process. The process progress can be tracked at any time and everywhere by
a smartphone application. Figure 6a shows the image quality before the dive. Figure 6b
shows a images sequence of the electroforming process.
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The deposition evolution can be observed until the complete geometry definition. LED
backlighting use allows one to identify bright points, which indicates uncompleted cavity
backgrounds. As the process progresses you can see which zones are preferred during
deposition. This is very interesting to understand the way the part is constructed. Finally,
the absence of bright points indicates that the surface has been coated. The recording review
allows to set the time interval in which this occurred, providing information relevant to the
process optimization.
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Test procedure is designed to run in four stages, under controlled laboratory ambient
conditions with a temperature of 21 ◦C and relative humidity below 70%. Work sequences
are performed in different times, by setting the current intensity and voltage values accord-
ing to process needs. These needs were understood after the analysis of electrical data from
many experiments. The first stage made a fine deposition which serves as a support and
generated uniformity. A low intensity value was set to control growth in more receptive
areas. Stages 2 and 3 were performed with a constant voltage to allow progressive details’
formation. In this way, the process spontaneously used the amperage it needed. The last
stage was for growth. High amperage was applied to achieve thickness build-up. The
operational parameters control of the process is executed by the programmable power
supply, and the agitation control of the electrolytic bath by the DCAB. A monolithic piece
of 100 mm × 50 mm × 10 mm Cu-P alloy is used as an anode. The anode is immersed in an
electrolytic bath composed by a copper sulphate acid solution (Bright copper plating bath
CU 501, Heimerle-Meule Group, Pforzheim, Germany). The test setup was done under the
following conditions: Agitation system turned on under laminar flow conditions, DCAB
in automatic mode, 1.1 L solution volume, 1.09 solution PH, Distance between anode and
cathode 100 mm and model orientation 0◦. Table 2 shows the duty cycle parameters.

Table 2. Process stages.

Stage Current Voltage Time

1 100 mA variable 600 s
2 variable 0.5 V 3600 s
3 variable 1.5 V 3600 s
4 900 mA variable 64,800 s

2.4. Tooling Design for Adapting the Electrode to a Commercial EDM Electrode Holder

The SEDM test equipment has an electrode holder called EROWA ER-009222 (UCA,
Puerto Real, Cádiz, Spain). It was designed to house a graphite electrode as a wear
tool (Figure 7a).
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Figure 7. (a) EROWA ER-009222 electrode holder. (b) Electrode dimensions.

A shell holder was developed to perform the tests with the electroformed copper shell.
It can be attached to the EROWA ER-009222, with the shape and dimensions shown in
Figure 7b. A detachable element consisting of 4 pieces was designed. These pieces are joined
together by bolted mechanical fixation, as shown in Figure 8a. All elements of the assembly
were manufactured in EN-AW5083 H111 aluminium to ensure electrical conductivity.
Figure 9 shows the electrode mounted on the machine under service conditions.
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Figure 9. (a) Electrode and test piece. (b) Shell, Shell holder, and Electrode holder.

SEDM texturing tests were performed on an Al-Cu UNS A92024-T3 aluminium alloy
sheet. The A92xxx series aluminium alloys account with a high copper content. Copper
improves aging hardening behavior. The alloys also have good mechanical strength. The
UNS A92024-T3 alloy has specific applications in the aeronautical industry. It is used in
areas under fatigue efforts, such as the fuselage of pressurized cabs and the coating lining
of the lower part of the wing, among others [50]. An example of its application is found on
the fuselage panels of the mythical Lockheed C-130 Hercules transport aircraft [51].

The sample texturing process was performed at the same erosion depth, which was
set at 0.25 mm. Three tests were made with three different surface qualities. Determine the
electrode abilities for different finishing is needed. Erosion technology was selected with
minimum wear criteria to increases the copper electrode’s life. The used parameters are
detailed in Table 3.

Table 3. SEDM settings.

VDI Ra Current Voltage Pulse T. Pause T. Reverse T. Work T. Erosion T.

(Norma VDI 3402) (µm) (A) (V) (µs) (µs) (s) (s) (s)

0 0.10 1 −200 3.2 6.4 0.3 0.3 10,800
27 2.2 5 200 13 6.4 0.3 0.4 2700
40 10 10 80 400 50 0.3 1.5 15
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2.5. Validation Method

We review three aspects to establish the success level of the procedure: electroformed
part mass; geometric and surface quality; Shell thickness at edges, functional area, and
backgrounds of semi-spherical cavities.

The mass measurement of the electroformed part is performed with an analytical
balance (Mettler-Toledo AB204-S, Mettler-Toledo LLC, Columbus, OH, USA).

A microscopic inspection of the copper shell is performed to evaluate the replicate
detail’s ability. We used a measuring electron microscope (Olympus BX51, Olympus
Corporation, Tokyo, Japan) with a magnification of 20× (Figure 10).
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Figure 10. Microscope inspection process.

A measurement process has been performed at different points to check the thick-
nesses of the parts. The measurements were made with a branded mechanical comparator
(Mitutoyo ID-C112B, Mitutoyo Corporation, Kanagawa Prefecture, Japan) mounted on
a comparator verification bench. This equipment was calibrated and has a calibration
certificate (No862), issued by the Metrology and Calibration Service (SMC) of the Univer-
sity of Las Palmas de Gran Canaria. Figure 11a shows the set under service conditions.
Figure 11b,c show the positions of these measurement points.
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3. Results and Discussion
3.1. Electroforming Results

The mass of the electroformed shell allows us to establish an economic reference
with respect to electrodes manufactured by conventional methods. These, usually use
monolithic pieces of material from which geometry is then extracted, therefore they need
more material. The measurement result was 11.9775 gr. This value was lower than any
other electrode manufactured by conventional methods.

Figure 12 shows several views of the finished part. The geometry has been completed
and presented an excellent finish on the functional face. The finish on the non-functional
surface is not relevant, because it will be filled with a 10 mm thick layer of epoxy resin.
This will give it enough volume and rigidity to fit into the tool holder and to withstand the
stresses of the SEDM process.
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Figure 12. Finished shell (a) Non-functional face. (b) Functional face. (c) Thickness view.

The inspection with the measuring electron microscope confirms good results. Figure 13
shows the surface part appearance in different areas. The whole geometry has been com-
pleted successfully, including the bottom and the surface of the semi-spherical cavities.
Several details on a microscopic scale were reproduced, such as the pixels of the LCD
screen (Figure 13a) or the steps of the resin layers (Figure 13c), whose values were already
indicated in sections before. Although the geometry exposed in this work was used for the
set-up and evaluation of the abilities of the equipment, the results showed the potential for
manufacturing microdetails.
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Table 4 shows the average values resulting from measuring thicknesses on the parts’
surfaces. Table 5 shows the average values resulting from measuring thicknesses at the
bottoms of semi-spherical cavities. The average value for the full functional area is 991.6 µm
and the minimum value is 383 µm. The average value for the bottoms of the semi-spherical
cavities is 406 µm and the minimum value is 328 µm. The average deposition in the back-
grounds has lower values, due to the difficulty of deposition in the incoming geometries.
In shaded areas, the current decreases, due to an increase in resistance.
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Table 4. Surface thickness.

Position (mm) 5 10 15 20 25 30 35 40

5 1884 µm 1397 µm 1058 µm 1047 µm 1195 µm 1121 µm 1312 µm 1223 µm
10 1607 µm 737 µm 432 µm 430 µm 414 µm 383 µm 452 µm 1396 µm
15 1534 µm 534 µm 481 µm 461 µm 521 µm 414 µm 512 µm 1566 µm
20 1654 µm 542 µm 496 µm 517 µm 495 µm 411 µm 557 µm 1730 µm
25 1776 µm 583 µm 528 µm 567 µm 589 µm 440 µm 514 µm 1682 µm
30 1758 µm 558 µm 627 µm 584 µm 539 µm 455 µm 555 µm 1718 µm
35 1881 µm 557 µm 594 µm 650 µm 578 µm 465 µm 527 µm 1586 µm
40 1964 µm 1738 µm 1616 µm 1712 µm 1430 µm 2522 µm 1642 µm 2013 µm

Table 5. Cavity bottom thickness.

Position 1 2 3 4 5

1 365 µm 363 µm 488 µm 391 µm 445 µm
2 428 µm 374 µm 328 µm 388 µm 369 µm
3 392 µm 414 µm 364 µm 481 µm 488 µm
4 373 µm 437 µm 463 µm 335 µm 535 µm
5 384 µm 378 µm 427 µm 396 µm 358 µm

Figure 14 shows the results graphically. It is observed that the thickness increases at
the borders, due to current concentration. Also produces a smaller thickness at the bottom
of the spherical cavities.
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3.2. SEDM Results

We did a visual inspection and weighing of shells and electro-eroded test parts to
verify the ability of the electroformed micro tool to do machining operations under work-
ing conditions.

From a geometric point of view, the electrode wear and the quality of the eroded
surface was inspected. To do this, a stereoscopic microscope (Nikon SMZ800, Nikon
Corporation, Tokyo, Japan) equipped with CCD camera with a 20×magnification was used.

We studied the three semi-spheres of the shell located in the first row (1.1, 1.2 and
1.3), and their corresponding eroded prints. Figure 15 shows theoretical erosion geometry
and its geometric parameters. Figure 16b shows erosion effects for VDI 0 test. Good shell
ending is observed. Semi-spherical geometry keeps its shape after this first process.
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Figure 16. Semi sphere 1.1. (a) Before erosion process (b) After first erosion process.

Figure 17a shows second test erosion effects with VDI 27. Good shell outcome is also
observed. Semi-spherical geometry loses some uniformity, but still preserves integrity
after this second process. The eroded area reaches approximately one third of semi sphere
height, which coincides with the depth value used as a setpoint (0.25 mm)

Figure 17b shows third test erosion effects with VDI 40. Significant degradation under
roughing conditions is observed. Semi-spherical geometry loses its integrity after this third
process and the eroded area reaches the surface of the part.
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Figure 18 shows the effects of electro erosion on the aluminium parts from the three
tests. The shell’s geometry shows a good definition, and a good cavity edges finish. Less
quality shell’s geometry is produced when SEDM process is more demanding.
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At the end of the analysis, we weigh test pieces and shells to verify the wear level.
This process was made with a precision balance (OHAUS Pioneer, OHAUS Europe GmbH,
Nänikon, Switzerland) with a resolution of 0.0001 g. Table 6 shows the result of the
weighing process average values. Data collection was performed before and after each test.
Mass decrease is a reference to show the wear level. The aluminium particles adhesion to
electrode and dielectric fluid absorption on the copper shell suggest complementary mass
increases, which are very difficult to evaluate, and therefore to compensate.

Table 6. Difference between test parts and shell masses. Average values.

Mass Comparison
Test 1 Test 2 Test 3

Electrode Test Part Electrode Test Part Electrode Test Part

Before 30.9338 g 33.4904 g 30.9556 g 33.2745 g 30.9557 g 33.4302 g
After 30.9556 g 33.4763 g 30.9557 g 33.2461 g 30.9558 g 33.4164 g

Difference 0.0218 g −0.0141 g 0.0001 g −0.0284 g 0.0001 g −0.0138 g

After the first test, the electroformed shell exhibits a mass increase. Due to the porosity
of copper, the absorption of dielectric liquid after the electro erosion process is higher than
material loses from wear. So, the success of the process cannot be estimated from shell
mass measure. However, the results of visual inspection show a very little wear. Therefore,
the electrode shows good behavior to work with low VDIs.

After the second and third test, there is no relevant variation in mass, which does
not correspond to what is observed in the visual inspection. The mass increase produced
by the adhesion of aluminium particles which comes from the machined surface during
the SEDM process, explained this difference. Also, there is a dielectric fluid absorption
from a greater porosity of the electrode surface. This phenomenon increases as it receives
more discharges.

The Al-Cu alloy part surface has suffered a mass decrease of 0.0141 g in the first test,
and a decrease of 0.0284 g in the second. Its shows a logical evolution, due to more severe
conditions of the second SEDM process. However, this evolution is reversed in test 3. The
excessive tool wear results in reduced machinability. We selected the mass as reference
parameter of the test parts to make a comparison between the theoretical and the real
wear, because it is easy to measure. This method requires the calculation of the theoretical
volume of the wear geometry. As shown in Figure 15, we used a CAD tool to do this.
Considering the erosion depth at 0.25 mm, the theoretical volume of the wear geometry
results in 0.18 mm3.

Theoretical wear masses were calculated from the 25 semi spherical erosion geometries,
which form the functional surface. Real wear masses were obtained from measurement
processes. Table 7 shows the comparison. Figure 19 graphically represents this comparison.
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Table 7. Wear mass comparative.

Mass Comparison Test 1 Test 2 Test 3

Theorical wear mass 0.0125 g 0.0125 g 0.0125 g
Real wear mass 0.0141 g 0.0284 g 0.0138 g

Difference −0.0016 −0.0159 −0.0013
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As a result of test 1, wear values are very similar to those theoretically expected. As
shown in Figure 20a a good reproduction of geometry supports this result. The electro-
erode trace diameter (Ø1.32 mm) is very similar to the theorical diameter (Ø1.37 mm). The
difference is about 50 µm. Test 2 shows important differences. The wear mass is more
than twice as high as the theoretical mass. The erosion exceeds the limits of the predicted
geometry under these conditions. The shell maintains its integrity but loses dimensional
accuracy in its ability to reproduce. Figure 20b shows the comparison between the predicted
diameter and the achieved diameter. The difference is about 440 µm. In test 3 the comparison
between theoretical wear mass and real wear mass is approaching again. However, this
result does not add value, because the rapid degradation of the electrode does not allow to
obtain high quality erosion. Therefore, the match of the mass values is anecdotal.
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4. Conclusions

We did the texturing of Al-Cu UNS A92024-T3 aeronautical aluminium alloy using a
penetration electro erosion process (SEDM) with copper electrode. A combined process
(AMSME) was used for electrode manufacturing. Furthermore, it was necessary to develop
a laboratory equipment to manufacture this electroformed part with microscopic scale
details. The following conclusions can be drawn from the conducted research:
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- The AMSME process has demonstrated great potential in shaping functional surfaces
for its/the use as SEDM electrodes.

- The SLA/DLP process obtains high-quality functional models in the reproduction of
details with low-cost technology. In this way, its cost, one of the main limitations of
the manufacture of these electrodes, can be overcome.

- The sputtering process ensures the correct coating of the entire surface and generates
conductivity in the active zones.

- The developed equipment for micro-electroforming operations shows to be effective
in generating copper shells with high level details. The use of different power stages
has been decisive in its manufacture.

- Micro-electroformed shell shows good reproduction abilities in its application to
SEDM. For high VDIs the finish of the test surfaces is not acceptable, and the electrode
deteriorates rapidly. However, its performance for finishing processes with medium-
low VDI, has been very good based on criteria of minimum wear. Its shows great
potential to do texturing works at an industrial level.

- The surface texturing with electroformed copper electrode could be a great alternative
to electrodes of other materials for microscopic-scale work. The machining with the
latter is difficult or impossible at this scale.
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