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Abstract: In rolling shutter-based optical camera communication (OCC), the camera’s exposure
time limits the achievable reception bandwidth. In long-exposure settings, the image sensor pixels
average the incident received power, producing inter-symbol interference (ISI), which is perceived
in the images as a spatial mixture of the symbol bands. Hence, the shortest possible exposure
configuration should be selected to alleviate ISI. However, in these conditions, the camera
produces dark images with impracticable light conditions for human or machine-supervised
applications. In this paper, a novel convolutional autoencoder-based equalizer is proposed to
alleviate exposure-related ISI and noise. Furthermore, unlike other systems that use artificial
neural networks for equalization and decoding, the training procedure is conducted offline using
synthetic images for which no prior information about the deployment scenario is used. Hence the
training can be performed for a wide range of cameras and signal-to-noise ratio (SNR) conditions,
using a vast number of samples, improving the network fitting and the system decoding robustness.
The results obtained in the experimental validation record the highest ISI mitigation potential
for Manchester encoded on-off keying signals. The system can mitigate the ISI produced by
exposure time windows that are up to seven times longer than the transmission symbol duration,
with bit error rates (BER) lower than 10−5 under optimal SNR conditions. Consequently, the
reception bandwidth improves up to 14 times compared to non-equalized systems. In addition,
under harsh SNRs conditions, the system achieves BERs below the forward error correction limit
for 1dB and 5 dB while operating with exposure times that are 2 and 4 times greater than the
symbol time, respectively.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical camera communication (OCC) is considered an extension of visible light communication
(VLC), which replaces high-bandwidth photodiodes with image sensors (IS) to detect time and
spatial variations in light intensity for enabling data communications. This technology emerges
from the interest of reusing conventional cameras embedded in an increasing number of end-user
devices (such as mobile phones, laptops, vehicle dashcams) to capture intensity-modulated (IM)
light signals from a wide range of lighting sources, ultimately paving the way for VLC to break
the market’s entry barriers imposed by utilizing specific hardware. Furthermore, it has recently
been included in the IEEE 802.15.7 [1] standard, which reveals the interest in this technology.

However, the handicap of IS-based receivers is their relatively low bandwidth inherently
limited by the camera’s frame rate [2–4], which makes them ideal for applications with low data
rates, such as internet of things (IoT) applications, smart farming, indoor location, advertising,
or vehicle-to-vehicle (V2V) communications among others. This restriction affects differently
depending on the camera’s acquisition mechanism. In global shutter (GS) cameras, the whole
IS is exposed simultaneously. Therefore, the light signal is sampled once per acquired frame.
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Consequently, the data rate is upper-bounded by the highest frame rate, restraining the transmission
frequency, ftx. Hence, the switching speed of light sources is constrained, producing, in some
cases, a noticeable flicker that must be mitigated to prevent discomfort and health-related issues
in human users [5]. This flickering can be alleviate by using under-sampled modulation (USM)
schemes, such as under-sampled frequency shift on-off keying (UFSOOK) or under-sampled
phase shift OOK (UPSOOK) [6] at the expense of decreasing the data rate. On the other hand,
rolling shutter (RS) cameras scan the image progressively row by row of pixels. Each row of
pixels is activated sequentially, sampling the light source at different instants during the frame
capture. This acquisition mechanism produces different illuminated bands for the transmitted
symbols within the image [7]. In this case, the sampling period (significantly lower than GS
cameras) coincides with the time that elapses between the activation of two consecutive rows
[8], which is also limited, albeit indirectly, by the camera’s frame rate. Another parameter that
further restricts the signal bandwidth is the exposure time (row exposure time for RS cameras),
the duration in which a pixel remains exposed to light. During this exposition, the pixel integrates
light, acting as a low pass filter, producing significant inter-symbol interference (ISI). This ISI is
perceived as a spatial mixture of the symbol bands within the image, and its effects begin to be
relevant after the exposure time is longer than half the symbol time.

Therefore, from a communications perspective, the exposure must be as short as possible
to prevent ISI on high-speed signals at the cost of reducing the received signal strength. This
trade-off must be addressed in any OCC system design [7,9]. However, improving the receiver
bandwidth by reducing the exposure time will eventually result in impracticable light conditions
for either human or machine-supervised applications. As it can be seen in Fig. 1 short exposure
times would produce dark images, in which objects cannot be acceptably recognized (Mandrill
picture). This energy impairment due to the reduction of the integration window can be mitigated
by increasing the camera’s analog gain, which can significantly improve the signal-to-noise ratio
(SNR), as concluded in previous works [10–12].

Fig. 1. Effects of increasing the exposure time in RS-cameras.

To alleviate this ISI effect, in [13] authors proposed a one-dimensional artificial neural network
(ANN) equalizer with promising results. The neural network performance has been validated
against Manchester encoded on-off Keying (OOK) [13], and constant power 4-PAM symbols
[14]. In [13] this equalization allows to decode data with bit error rates (BER) below the forward
error correction (FEC) limit of 3.8 × 10−3, for exposure times up to 4 times greater than the
symbol time. Translated in terms of bandwidth, it can recover signals whose bandwidth exceeds
up to approximately nine times the low-pass filter’s cutoff frequency that models the effect of
the exposure time. However, the proposed multilayer perceptron (MLP) network performance
was evaluated exclusively under optimal signal-to-noise ratio (SNR) levels. Furthermore, the
network training was conducted online, with the receiver operating under the deployment scenario
conditions. Up to the authors’ knowledge, only these works try to mitigate the exposure-related
ISI in RS cameras by using artificial neural networks.

However, artificial networks are acquiring a relevant role in solving other OCC technology
challenges. In [15] the use of a Logistic Regression Machine Learning (LRML) algorithm is
proposed for decoding signals transmitted with the backlight of advertising panels. In [16] a
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1D-ANN architecture is proposed for the same purpose. Both works aim to decode signals affected
exclusively by the interference produced by the frontal image content of the panel. Therefore,
the camera is configured with short exposure times for the optimal reception of the transmitted
symbols. In [17], a convolutional neural network (CNN), which combines convolutional layers
with a fully connected classification network, is used for source detection and pattern recognition
of LED-based sources in V2V communications. This network decodes spatially multiplexed
streams under partial occlusion and/or harsh weather conditions. However, in this case, the RS
acquisition mechanism is not exploited to increase the data rate, and hence the signal does not
need prior equalization of the exposure-related effects. Instead, the transmitted symbol time is
longer than the frame acquisition duration, so it can be considered that the system operates under
GS conditions. In contrast, [18], uses a CNN for pattern detection and classification in V2V
relying on the RS mechanism, recovering data from car rear taillights. Moreover, in [19], the use
of CNNs is proposed for RS-symbol decoding. However, in previous works, the receiver operates
on the premise that the exposure-related ISI is negligible since the cameras are configured with
exposure times much shorter than the transmission symbol time.

This work proposes a novel two-dimensional convolutional autoencoder (CAE) for simultaneous
exposure-related ISI equalization and noise mitigation, in which the training is conducted offline
using synthetically generated images. These images are produced using exclusively time-related
parameters from any chosen camera and transmitter: the configurable exposure time, the sampling
period, and the transmission symbol time. These three parameters produce relevant training
samples that, after prior standardization, enable the network to decode real captured images. This
standardization makes the synthetic and real signals comparable from the point of view of the
artificial network, regardless of the temporal average power received, as long as the camera’s
gamma transformation is precisely compensated. Hence, the training of the network becomes
independent of the deployment scenario. These training samples can also be synthetically
corrupted by a zero-mean additive white Gaussian noise (AWGN) to train the system for its
operation under harsh SNR conditions. Therefore, the training can be carried using different
synthetic noise levels and with a significant amount of samples stored in large databases, which
considerably increases the robustness of the network.

Moreover, the use of CAE is justified since it has proven particularly useful in image denoising
[20–22] presenting outcomes that outperform the capabilities of MLP architectures in this task
[23], either in terms of efficiency and performance. This is, in part, because of the use of
convolutional layers, but also because of the operation’s nature of a CAE, which consists in
extracting a latent representation or feature maps (generally of lower dimensionality) from the
input (encoding part), and reconstructing it at the output using this representation (decoding
part). In this encoding-decoding paradigm, noise-corrupted inputs might even be beneficial since
they allow the network to deinterlace hidden useful features from the input. Furthermore, the use
of two-dimensional inputs helps noise mitigation in RS acquired signals. Since the IS columns
sample the light at the same sampling instants, the received signal is replicated across all the
columns. This redundancy can be exploited to increase the SNR, thus facilitating the network
task of noise mitigation.

The remainder of the paper is organized as follows. Section 2 introduces the RS theoretical
modeling used for the synthetic image generation. Section 3 presents and describe the CAE-based
proposed receiver system. Section 4 details, in the first place, the network training, including the
synthetic image generation routines and the metrics used to assess the synthetic image similarity
with real images and the network goodness of fit. In the second place, this section presents
the procedures and metrics to evaluate the system’s communication performance, including a
detailed description of the experimental setup. Section 5 presents the results, to be compared
in section 6 with those reported in recent literature. Finally, the conclusions of this work are
summarized in section 7.
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2. Rolling-shutter modelling

RS cameras scan the scene by progressively triggering each row of pixels rather than exposing
the whole IS at once, as GS cameras do. Hence, light variations can be sampled up to H times
per frame, where H is the IS’s vertical resolution (height). This sampling produces different
illuminated bands within the image that corresponds to the transmitted symbols. Figure 2(a)
shows the temporal scheme of this acquisition mechanism. The IS starts exposing the first row of
pixels to light during a configurable exposure time, texp. Then, the subsequent rows are activated
sequentially every Ts seconds, which is the row sampling period. This acquisition can be modeled
using a system with two separable stages: a filtering and a sampling stage, as shown in Fig. 2(c).
The filtering part models the effects of the exposure time on the received signal for each pixel. The
following stage manages the sampling instants for each pixel based on its position within the IS.
Figures 2(b,d) illustrates how the incident light is converted into the final discrete values for each
pixel (for a given column). Figure 2(b) represents the incident power reaching the j-th pixel over
time, t, P(t, j). On the one hand, Fig. 2(d) shows the pixel signals after the filtering stage, v(t, j)
(colored dashed lines). On the other hand, it depicts the one-dimensional discrete pixel values
obtained after the sampling stage, v[n] (black dotted vertical lines). It should be highlighted that,
as it is shown in Fig. 2(b), the temporal evolution of the incident power follows the same shape
for all the pixels. Nonetheless, the received signals are affected by different factor depending
on several link parameters, such as the source’s radiation pattern, the relative configuration
between the transmitter and the camera, the camera lenses, the channel losses, and the scenario’s
reflections, among others. In this figure example (Fig. 2(b)), the average incident power gradually
decreases from top to bottom. Moreover, the signal power is not enough to provide a suitable
SNR for decoding in some cases. For this reason, in OCC, the light source projection within the
image is generally considered as the ROI because it corresponds to the image area where the
SNR is significantly higher. However, data can also be recovered from reflections as examined in
[24–26]. Finally, it is important to mention that the following modeling is presented for a generic
IS column. Therefore if the incident power for the pixel located at the i-th column and the j-th
row is expressed with P(t, i, j), P(t, j) satisfies the relation P(t, j) = P(t, m, j) = P(m)(t, j), where
m ∈ [0, W) (the selected m column), and W is the IS’s horizontal resolution (width).

Fig. 2. RS acquisition mechanism. (a) RS Temporal scheme. (b) Normalized optical power
P(t, j) reaching each pixel of the i-th IS column. (c) RS system modeling (impulse response,
hexp and sampling function, δΣ). (d) Filtered curves, v(t, j), and the discrete signal, v[n] after
sampling.

2.1. Filtering stage

The output value for the j-th pixel in the i-th column, v(t, j), depends on the accumulated charge
on the photodiode during the time it is exposed to light, the exposure time, texp (direct integration)
[4]. This time extends from reset, in which the pixel’s photodiode is biased with reverse voltage,
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until its readout. During readout, in passive pixel sensors (PSS), the charge is transferred to a
floating diffusion amplifier (FDA) (shared for all the IS columns), where the charge is converted
to voltage with a conversion gain of Gconv. Finally, this voltage is amplified at the general output
amplifier and quantized by the analog-to-digital converter (ADC). In active pixel sensors (APS),
the charge-to-voltage conversion occurs at the pixel level, and the voltage is transferred to the
output amplifier using source follower amplifiers. In short, the output voltage of the pixel at the
ADC input is given by Eq. (1).

v(t, j) =
G
Cf

∫ t+texp

t
P(t, j) · R(j)dt (1)

where P(t, j) is the incident optical power, R(j) and Cf, the equivalent photodiode’s responsivity
and capacity, respectively. The latter is approximately equal to the FDA’s capacitor, and G the
output amplifier’s gain. This windowed integration of the input signal over the exposure time,
can be modeled with a finite impulse response (FIR) low pass filter, hexp given by Eq. (2), with
its corresponding transfer function (Eq. (3)) [27].

v(t, j) = P(t, j)⊛ hexp(t, j) where: hexp(t, j) = h(t) =
G
Cf

·

(︂
u(t + texp) − u(t)

)︂
(2)

H(w) = F {h(t)} = texp
G
Cf

sin(w · texp/2)
w · texp/2

ejwtexp (3)

where u(t) is the unit step function. From Eq. (3) it follows that the filter DC gain is proportional
to the exposure time. Regarding the available reception bandwidth, to compute the cutoff
frequency, it is necessary to rely on numerical methods such as Newton-Raphson’s algorithm.
However, to get an approximate idea of how the reception bandwidth is related to the exposure
time, the first null frequency can be examined, which is inversely proportional to the exposure
time. Therefore, a trade-off between the gain and the available bandwidth must be considered for
the configuration of the camera’s exposure settings. Light signals captured with shorter exposure
times are affected by lower ISI, but also the received power decreases, as shown in Fig. 1. In
those cases, it is still possible to improve the received signal quality by increasing the analog gain
G [10,11].

2.2. Sampling stage

The family of curves obtained after the filtering stage, v(t, j), shown in Fig. 2(d), is ideally sampled
using a two-dimensional Dirac delta train function, δ∑︁ (Eq. (4)), generating a one-dimensional
discrete signal, v[n].

v[n] = v(t, j) · δ∑︁(t, j) where:

δ∑︁(t, j) = ∞∑︂
n=0

δ
(︂
t −

⌊︂ n
H

⌋︂
· tFrame − mod(n, H) · Ts, mod(n, H)

)︂ (4)

where ⌊·⌋ is the floor function, mod(a, b), the modulo operation that returns the remainder of
the division a/b. The floor division (

⌊︂
n
H

⌋︂
) returns the number of generated frames from the

start. The modulo division (mod(n, H)) returns the pixel index (j-th) that contributes to the n-th
sample of the discrete signal v[n]. This equation can be further simplified in Eq. (5) under the
assumption that tinter is zero and the scanning operation is continuous. In other words, there are
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no periods in which the sensor becomes blind to transmission [7].

δ∑︁(t, j) = ∞∑︂
n=0

δ
(︂
t − n · Ts, mod(n, H)

)︂
(5)

Furthermore, the Eq. (6) introduced in [27] can be derived from Eq. (5) under the condition
that the IS pixels are affected by the same signal power. Therefore, the discrete signal, veq[n] (Eq.
(6)) can be interpreted as the signal that would be acquired from a single equivalent pixel.

veq[n] = v(t) ·
∞∑︂

i=0
δ(t − n · Ts) (6)

The equations Eq. (4) and Eq. (5) indicate that each sample, v[n], depends on the signal for
the j-th pixel activated at the sampling instant and, consequently, the pixel position within the
IS. Therefore, the sampling function relates the evolution of the signal over time with different
image locations. In other words, this function express mathematically the space-time duality of
OCC systems.

Finally, following the ideal sampling theory, the number of pixels (samples) per transmitted
symbol (using the nomenclature introduced in [14]), Npps, can be computed knowing the symbol
time, tsym and the sampling period, Ts (Npps = tsym/Ts).

3. Communications scheme

The proposed system architecture, and the functional blocks, are shown in Fig. 3. Regarding the
transmitter, it emits non-return to zero (NRZ) Manchester encoded pulses to avoid flickering.
Pseudo-random data sequences are grouped into packets with a header consisting of five
consecutive ones and a zero-bit trailer. A redundant bit is inserted every three bits to prevent a
header sequence from appearing within the payload. This stuffed bit is set to one if the preceding
bit is zero and zero otherwise. This coding strategy eliminates the use of forbidden codes for
synchronization, reducing the system’s complexity and easing error detection at reception. The
symbol time, tsym is selected according to the camera’s row sampling period Ts, to generate
the desired Npps (Npps = 5). The transmitting source consists of a 20x20cm RGB LED flat
panel that uniformly distributes the light across its surface. The operating link distance will
depend exclusively on the lamp’s size in the image and not on the optical emitted power (as
long as the projection of the lamp occupies more than one pixel). As detailed in [28] the use
of image-forming optics compensates the power losses due to spherical propagation with the
projected size of the optical source on the IS. The receiving side consists of a RS-camera attached
to a computing unit that performs the following routines for data acquisition as shown in Fig. 3.
First, it selects M columns from the image’s central region where the source is expected to be
located (M equals 16). Next, it performs an equalization procedure to adjust the pixel values
along the vertical dimension. In this work, no prior equalization is conducted. Then, the ROI
is segmented into s overlapping windows according to the CAE’s input dimensions (256x16
pixels) (with s equals 6). These image segments are standardized using the z-score function,
which subtracts the image’s mean µ to each sample xi and divides the difference by the image’s
standard deviation, σ. This standardization is essential since it allows the images captured with
the camera to be comparable with the synthetic training images, as will be discussed in section
4.1. The outputs generated by the CAE (with the exact dimensions of the input) for each segment
are merged using a linear combination at the edges where overlap occurs. This linear merging
helps mitigate the slight edge imperfections that appear near the top and the bottom of the output
images. The size of this overlap depends on the number of selected segments. Increasing the
number of segments will lightly improve the system’s performance, but it will increase the
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computational load. Experimentally, it has been concluded that the imperfections affect a small
area with 10 pixels height under the worst conditions (long exposure settings). Hence splitting a
1080-pixel image into six segments, generating 38-pixel overlaps for 256-pixel windows, is a
reasonably conservative solution. Finally, the packet synchronization within the reconstructed
image is conducted using the Pearson correlation with a header searching template.

The fundamental element of the proposed system is the CAE that performs both the equalization
and denoising of the ROI. An autoencoder is a neural network that attempts to reconstruct the
original input using a lower-dimensional latent representation [29]. It consists of a trained encoding
network (encoder) that extracts relevant features from the input whilst its counterpart (decoder)
is tuned to reconstruct the original input from this representation through the minimization of a
loss function and a back-propagation algorithm for updating the weights of the architecture. This
process is mathematically described in Eq. (7).

x̄ = D (E (x)) (7)

where x is the input signal, which can be multi-dimensional, x̄ is the autoencoded version of x,
E(·) is the encoding operation, and finally D(·) is the decoding procedure. In this work, the
loss training function L(x, x̄) is the L2-norm (mean squared error) with a regularization term to
prevent over-fitting (Eq. (8)).

L(x, x̄) = E
[︁
(x − x̄)2

]︁
+ λR (E,D) (8)

where E [·] denotes expected value, λ is the regularization coefficient, and R(·) is the regularization
function, which in this work corresponds to a combination of the L1 and the L2 weights
regularization penalties. On the other hand, a denoising autoencoder (DAE) is a specific type
of AE that exploits the presence of noise in inputs to de-interlace useful properties, eventually
mitigating the noise corruption in the output. In this case, it minimizes Eq. (9).

L (x,D (E (x̃))) (9)

where x̃ is a copy of x that has been corrupted, in this case, by an a zero-mean additive white
Gaussian noise (AWGN). Finally, a CAE uses convolutional layers (Conv) and transposed
convolutional layers (TConv) [23] to encode and decode the input, respectively.

Fig. 3. Proposed system based on 2D convolutional autoencoder (CAE).
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The Conv layers utilize a set of convolutional filters, which generates feature maps, F (one per
filter), or activation maps by applying the discrete convolution operation. Considering the case in
which the input consists of 2-dimensional gray-scale images, I, the discrete convolution uses
two-dimensional kernels, K. The convolution result, Z[i, j], at the i, j position for each filter is
computed using Eq. (10).

Z[i, j] = (I ⊛ K)[i, j] =
kw−1∑︂
m=0

kh−1∑︂
n=0

I[m, n] · K[i − m, j − n] (10)

However, when working with RGB images, the input to the Conv layer consists of a three-
dimensional tensor, where two dimensions are used for pixel position (width and height) and the
last dimension for the three RGB color channels (depth). In this case, the convolution kernel is
three-dimensional. Hence, generalizing for a number of D channels, the kernel’s depth, kd will
match the number of channels of the input tensor, and the convolution result for each filter at the
i, j position is computed using Eq. (11).

Z[i, j] = (I ⊛ K)[i, j] =
kw−1∑︂
m=0

kh−1∑︂
n=0

kd−1∑︂
l=0

I[m, n, l] · K[i − m, j − n, l] (11)

It should be highlighted that the filter translation over the image happens exclusively on the
vertical and horizontal dimensions, summing up all the weighted contributions for all the channels
to generate a two-dimensional tensor. The number of trainable weights per kernel will depend on
its vertical and horizontal size and the input tensor channels. The result of the convolution, Z[i, j],
is then biased (B[i, j]) and transformed using a non-linear activation function, ψ, generating the
corresponding features map, F[i, j] (Eq. (12)).

F[i, j] = ψ(Z[i, j] + B[i, j]) (12)

The nonlinear activation functions used in this work are the Sigmoid and the Rectified
Linear Unit (ReLU) functions that work optimally in this type of architecture as demonstrated
experimentally in [30].

The total trainable parameters of the l-th layer is the sum of the kernel’s weights and biases
considering all the filters. The latter coincides with the number of this layer’s outputs, which can
be computed knowing the horizontal and vertical dimensions of the output matrix, O[i, j, l] using
the Eq. (13).

dim(O[i, j, l]) =
(︂ ⌊︂nH + 2pH − kH

sH

⌋︂
+ 1,

⌊︂nW + 2pW − kW
sW

⌋︂
+ 1, D

)︂
(13)

where nH, nW are the vertical and horizontal lengths of the input, p is the number of padding
values added at boundaries (to control the output size), kH, kW are the vertical and horizontal
lengths of the filter’s kernel, and s the stride, the step translation of the kernel when traversing
the input, and D, the number of filters.

In this CAE architecture, Conv layers are usually followed by a pooling layer, which replaces
the layers’ outputs in specific locations with a statistical summary of the outputs at the vicinity.
In this model, max-pooling layers (MaxPool) are used, which return the maximum output of a
rectangular group of outputs. This ultimately contributes to increasing the non-linearity of the
output (in addition to the nonlinear activation functions) and reduces the total number of network
parameters.

Conv layers have proven especially effective for extracting useful features from images, and
they are widely used in object detection and classification as well as image segmentation and
denoising. This convolution operation can help improve the efficiency of deep learning systems.
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Furthermore, it allows reducing the number of network parameters by making better use of the
spatial similarities in the vicinity of an input sample (sparse connectivity). In addition, in this
type of network, the same filer kernel’s weights would be applied across all the inputs (parameter
sharing), tying the weights for different samples. This is contrary to what would happen in a
dense network, in which each neuron assigns a specific weight for each input, and consequently,
a separate set of parameters for every location is generated. Instead, in Conv layers, just a single
set of parameters is learned (those concerning the filters). In this way, trained kernels would
search for shared activation patterns across the image. Conv networks are thus dramatically more
efficient than dense networks, reducing the total trainable parameters significantly.

On the other hand, the TConv layer reverses the spatial transformation produced by a Conv
layer. Even though it is also (wrongfully) known as a deconvolutional layer, it does not perform
the deconvolution operation. Instead, it carries out a regular convolution on an upsampled version
of the input tensor to obtain an output tensor with the dimensions of the expected input of its
reverse Conv layer. In this CAE architecture, these layers are usually followed by two-dimensional
upsampling layers (UpSampling) that expand the input tensor by repeating samples at each
position. This ensures that the output tensor has the exact dimensions of the input.

4. Methodology

This section starts by describing the CAE training procedures, including the generation of training
synthetic image datasets. Next, the algorithm utilized for optimizing the network’s hyperpa-
rameters and the selected search space is detailed. Finally, the communications performance
evaluation procedure and metrics are introduced alongside the details of the experimental setup.
This evaluation aims to demonstrate the ability of the system as a whole to equalize and decode
overexposed signals with robustness in low to moderate SNR conditions, allowing simultaneous
data acquisition and image visualization. Furthermore, that the network can, once it has been
trained for a specific exposure time, adapt to slightly longer or shorter exposures. Finally, it aims
to validate the use of synthetic (scenario-independent) images for network training.

4.1. Network training

The supervised training of the CAE is performed offline only once, using synthetically generated
images. The four parameters considered for the generation are the exposure time, the sampling
period, the symbol time, and the SNR. The procedure for generating a synthetic image, shown in
Fig. 4, is described below.

Fig. 4. Synthetic image generation.(a) Training input (X). (b) Training output (Y).

First, pseudo-random, one-dimensional bit sequences are encoded using the NRZ-Manchester
line code. Then, they are upsampled by two factors: the number of row pixel samples (Npps)
expected per symbol and the number of ticks per sampling period Ts. The number of ticks depends
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on the selected resolution time. In this work, the selected time equals the clock period, which is
approximately 100 nanoseconds. Hence since the sampling period is 18.9µs, its corresponding
number of ticks is T ticks

s = 189. Then, a section of the signal is extracted following a random
starting offset to simulate non-perfect synchronization between the transmitter and the camera.
This offset varies uniformly between zero (perfect synchronization) and one symbol time. Next, a
moving average window is applied to model the effect of the camera’s exposure time. The length
of this window would depend on the requested exposure time. Particularly is equal to the number
of ticks of the exposure time (for texp = 444µs, tticks

exp = 4440). The output is then normalized
using the min-max normalization, resulting in a signal with values between zero and one. Then,
it is compressed with a constant factor (0.5) to prevent clipping effects after adding the noise.
The obtained one-dimensional signal is repeated along the horizontal dimension to generate a
two-dimensional image. The resulting image has the dimensions of the CAE’s input layer (256
rows and 16 columns). Finally, a zero-mean additive white Gaussian noise (AWGN) is added.

The training dataset collects sets of two synthetic images for a given random binary sequence:
the input (X) and output (Y) images. The input image is made using the selected training exposure
time. Figure 4(a) shows the procedure for generating the input image. The output image, that
represents the ground truth, is generated similarly but selecting the shortest possible exposure
time according to the time resolution (this time must be at least shorter than half of the symbol
time). In this procedure, the min-max normalization, the compression, and the noise addition
routines are discarded. Figure 4(b) shows the generation of the output image. The datasets
generated in this work contain 35500 sets per exposure time (71000 images). From these datasets,
10% of the images are reserved for validation, while the remaining 90% are used for training.

Regarding the network training, the standardization of the input images is important. The
z-score standardization applied to both the training and the real images makes them comparable
from the point of view of the CAE. This eliminates the necessity to consider the expected average
received power (and some camera parameters such as the analog and the digital gains) for the
generation of the synthetic images. Therefore, the training is independent of the deployment
scenario. However, it is mandatory to perform a prior compensation of the spatial power
differences and the camera’s gamma transformation. The similarity between synthetic and real
images is measured using the Pearson’s correlation coefficient. The training goodness-of-fit is
quantified with the mean square error cost obtained for the training and the validation datasets.

Finally, regarding the network model, two different topologies are used in this work. The first
topology has two stages composed of one Conv and one pool layer for the encoder part, and one
UpSampling and TConv layer for the decoder part. The second topology adds another stage (with
a total of three stages). For both topologies, efficient optimization of the network hyperparameters
is conducted, following the hyperband algorithm detailed in [31] using the training exposure
time of 444 µs. The considered parameters that constitute the search space are summarized in
Table 1. The best architecture for each topology is used later for the system evaluation.

Table 1. Hyperparameter’s search space

Hyperparameter Value

Number of stages (Conv/MaxPool or UpSampling/TConv) 2, 3

Number of Conv (or TConv) filters 8, 16, 24, 32, 40, 48, 56, 64

Conv (or TConv) kernel’s width and/or height 2, 3, 4, 5

MaxPool (or UpSampling) kernel’s width and/or height 1, 2, 4

Learning rate 0.01, 0.001
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4.2. Performance evaluation

Regarding communications, the CAE’s performance is evaluated using real images captured with
a conventional camera. The evaluation under different SNRs is performed by adjusting the light
transmitted power through the control of the voltage source. Images taken under these conditions
are used to estimate the SNR. It should be highlighted that since the received signal is affected
by the camera’s exposure time, it is not feasible to estimate the SNR by analyzing the image
mean and variance. Hence, the following procedure is used. First, the pixel rows are averaged
across all the image columns (1920 columns). This averaging increases the SNR by a factor of
N = 1920 [14] (assuming that images are corrupted with AWGN). Next, the obtained averaged
signal, s̄, affected by a significantly low noise power, is subtracted from the signal at the desired
decoding column, s, resulting in a noise signal, n. Finally, the signal power, S, is estimated using
the maximum value of the autocorrelation of s (the same procedure is used for estimating the
noise power N).

The selected metric to evaluate the communications’ performance is the BER. In addition,
to quantify the degree to which the signal is affected by exposure-related ISI, a new metric is
introduced, the exposure-to-symbol ratio (ESR), the ratio between the cameras’ exposure time,
and the symbol time. For example, an ESR of 7 indicates that the exposure time exceeds seven
times the symbol duration.

Figure 5 depicts the experimental setup used to capture the real images. It consists of an RGB
flat panel pointing towards an RS-Camera separated by a distance of 50 cm. At this distance, the
transmitter occupies approximately 3/4 of the image’s vertical size. The transmitter signal is
generated using an arbitrary signal generator and a power supply to control the voltage level of
the light source.

Fig. 5. Experimental setup

Table 2 summarizes the key parameters of the experiment setup.
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Table 2. Experiment’s key parameters

Parameter Value

Camera

Hardware PiCamera version 2 (Sony IMX586) [32]

Aperture lens | Focal length (equivalent) f/2 | 3 mm

Image resolution 1920x1080 pixels (Video mode - 3)

Clock time, tclk 10 MHz

Sampling period, Ts 18.904 µs (Measured)

Exposure times, texp from 85 µs to 1500 µs in steps of 19 µs

Transmitter

Color channel used Green channel

Voltage from 25V to 36V in steps of 0,5V

Symbol time, tsym (Npps) 94, 5 µs (5 pixels per symbol)

Packet’s header, payload and trailer lengths 5, 42, 1 bits

Random seed 31415

5. Results

This section presents the results obtained for the training and the generation of synthetic images
and the communications performance.

5.1. Network training

Figure 6 shows synthetic and real images for different exposure times to provide a visual
comparison between them. Despite being placed horizontally, each segment corresponds to a
vertical rectangle extracted from the image. The 24 examples are arranged into four groups
based on the selected exposure time (161, 312, 444, or 520 µs). In each group, the reference
template corresponds to the ground truth, the expected theoretical signal if the exposure time were
infinitely short, and the incident power for all pixels, the same. The filtered template is generated
for each exposure time using the reference template and normalized with the min-max function.
This template is used to quantify the degree of similarity between the synthetic and real images.
The following two examples correspond to the synthetic and real images without preprocessing
as captured by the camera. As it can be seen, in those images, it is hard to distinguish light
variations. This occurs because as the exposure time increases the dynamic range for the pixel
values decays abruptly, reducing the ratio between the largest and smallest values. The last two
images correspond to the standardized version (z-score) of synthetic and real images used as
inputs for the network. As it was aforementioned in section 4, under the right conditions, both
standardized images are comparable. Differences in the averaged received light in real images
will minimally affect the standardization. Nevertheless, the camera’s gamma transformation
must be precisely compensated.

Fig. 6. Visual comparison of synthetic generated images versus real captured images
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The degree of similarity between the synthetic and real samples is quantified by the maximum
Pearson’s correlation coefficient between the filtered template and the real images. Figure 7(a)
presents the results obtained after matching the synthetic templates (shown in the legend) with
images taken with a wide range of exposures. It should be mentioned that since unavoidable
noise in the real images, the Pearson correlation coefficient does not reach its maximum value
(1.0). However, it exceeds 0.85 in all cases in which both the synthetic and real exposures times
are the same. As shown in this graph, as the exposure time slightly increases or decreases, the
correlation coefficient rapidly decays to values around 0.4. The apparent symmetry of these
curves reveals that non-similarities in the vicinity have a similar impact on the correlation. This
could imply that the CAE could face approximately similar challenges when equalizing longer
and shorter exposure times than the selected for the training.

Fig. 7. (a) Pearson correlation coefficient between the filtered templates and the real images.
(b) Training and validation losses for different training exposure times.

Table 3 summarizes the best model’s parameters for both topologies as described in section
4. It details the number and type of layers (with their corresponding activation functions), the
number of filters and kernel sizes, and, finally, the shape of the outputs and the total trainable
parameters for each layer. In all cases, the learning rate that performed best was 0.001.

Figure 7(b) shows the training and validation losses for both topologies for different training
exposure times. The use of a three-stage topology reduces losses for higher training exposures by
an improvement factor of approximately 25%.

5.2. Performance evaluation

Figure 8 presents the BER results obtained after training the CAE with different exposure times
of 161, 312, 444, 520, 633 µs. The x-axis shows the exposure time set by the camera (in
microseconds) when taking images. In addition, the ESR (section 4.2), the ratio between the
exposure time and the symbol time (94, 5 µs) is shown between brackets below its corresponding
exposure. From these results, it can be extracted that the CAE can easily adapt to exposure times
that are up to 10% higher or lower than the selected one for training, maintaining the BER below
10−5. However, after this margin, the BER increases steeply. An exceptional case occurs when
the training time is almost twice the symbol time (TTRAIN

exp = 161 ≈ 1.8 · 94.5µs), as it can be
seen in Fig. 8. In this particular case, the system can decode signals for all the exposures that
are lower than the selected for training, maintaining the BER below 10−5. The graph shown
in Fig. 7(a) helps to explain this result. In this graph, it is observed that the correlation of the
training template (161 µs) with images exposed with shorter exposure times remains relatively
high. Hence, the neural network can extract from the training images a set of features that differ
minimally from those of the images affected by lower ISI. Finally, the comparison between both
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Table 3. Optimized model’s summaries for the training dataset of 444 µs.

Two stages topology Three stages topology

Layer (activ.) Kernel Filters Out.shape Params. Kernel Filters Out.shape Params.

Encoder

Conv (ReLU) (4,5) 16 (256,16,16) 336 (5,5) 24 (256,16,24) 624

Maxpool (2,2) 16 (128,8,16) 0 (2,2) 16 (128,8,24) 0

Conv (ReLU) (5,3) 56 (128,8,56) 13496 (5,4) 48 (128,8,48) 23088

Maxpool (2,2) 56 (64,4,56) 0 (1,2) 48 (128,4,48) 0

Conv (ReLU) Not applicable (4,3) 32 (128,4,32) 18464

Maxpool Not applicable (2,2) 56 (64,2,32) 0

Decoder

TConv (ReLU) (5,3) 56 (64,4,56) 47096 (5,3) 32 (64,2,32) 12320

Upsamling (2,2) 56 (128,8,56) 0 (2,2) 32 (128,4,32) 0

TConv (ReLU) (4,5) 16 (128,8,16) 17936 (4,5) 48 (128,4,48) 30768

Upsamling (2,2) 56 (256,16,16) 0 (2,2) 48 (256,8,48) 0

TConv (ReLU) Not applicable (4,5) 24 (128,8,24) 28824

Upsamling Not applicable (2,2) 56 (256,16,24) 0

Conv (Sigm.) (5,3) 1 (256,16,1) 321 (5,3) 1 (256,16,1) 601

Total trainable parameters 79185 Total trainable parameters 114689

topologies agrees with the results shown in Fig. 7(b). The BER decreases less steeply for the
three-stage topology, especially for the high exposures.

Fig. 8. BER results for training exposures, TTRAIN
exp , under high SNR conditions.

Figure 9 shows the results obtained under harsh SNR conditions (between 12 and 18 dB). In
this case, using a 3-stage topology is justified for cases where the ESR is greater than 3. Under
these conditions, it is possible to decode signals with BER below the FEC limit for ESR values
up to 7. Fig. 10 shows the behavior of the system under different SNR conditions. As it can
be seen, the BER decreases approximately linearly with the SNR (in dB), with a comparable
slope for all cases (except for the blue curve). This slope is approximately 200 dB−1. In addition,
it indicates that as the training is conducted longer exposure times, the CAE cannot correctly
minimize the error at the output, regardless of the noise level. The exceptional case occurs when
the ESR is approximately equal to 2. In this case, the network has succeeded at deinterlacing the
hidden features of the training signal from the added noise, enabling the system to achieve BERs
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below 10−5 for SNR greater than 3 dB. Figure 11 shows a visual representation of the received
signals for exposures of 444 and 520 µs, under the maximum (yellow curve) and minimum SNR
(purple curve) conditions, with different average incident power. The estimated SNR is shown
within the legend for each curve. To help the accurate visualization of the estimated SNR, a
non-scaled version of the filtered template (black dashed curve) is included within the graph. It
corresponds to the expected signal to be received in the absence of noise. Clarify that the average
power level of the signal changes since it is being adjusted through the voltage source of the light
to vary the SNR.

Fig. 9. BER results for training exposures, TTRAIN
exp , under moderate SNR (12 to 18 dB).

Fig. 10. BER results for different training exposures, TTRAIN
exp under SNR conditions.
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Fig. 11. Real signal examples obtained under different SNR conditions.

6. Discussion

In this section, the experimental results shown before are discussed. The proposed system is
evaluated in the context of the available literature up to the authors’ knowledge. Finally, a method
to estimate the theoretical achievable data rate of the state-of-the-art systems reported is detailed
and used to compare their performance based on the parameters of their experimental setups.

Table 4 shows the results comparison against the state-of-the-art. In this table, the fairest
comparison results are the ESR (section 4.2) and the bandwidth improvement ratio. The latter
refers to the ratio between the signal bandwidth and the cut-off frequency restriction imposed by
the camera’s exposure time. The proposed system improves the results in both cases.

Table 4. Comparison with the state-of-the-art.

Architecture Output Training Max. ESR
a

Max. BW
ratioa

Min. SNR
(ESR ≈ 4)a

Trainable
params.

Theor.
data ratea

1D-MLPb 1 Real ≈ 5 times ≈ 9 times > 30 dB 100200c 2.584 kbps

2D-CAE 256x16 Synthetic ≈ 7 times ≈ 14 times ≥ 5 dB 79185 3.072 kbps

aWith BER below the FEC limit.
bYounous et al. [13]
cConsidering 500 input, 200 hidden and 1 output neurons (non-biased). [14]

Regarding the SNR conditions, this system can decode data with BER below the FEC, with
ESR around 4, under SNR as low as 5 dB. However, it can also decode signals with ESR equals 2,
under SNR as low as 2 dB, with BER below 10−5. Regarding the number of training parameters,
a notable reduction is also observed, which improves network efficiency by up to 20%.

The last column detail the achievable theoretical data rate. To conduct a fair comparison,
both systems must meet the following requirements: the number of frames per second, fps is
30 fps, and the vertical resolution of the sensor, H, 1024 pixels. The assumptions considered
for estimating the theoretical achievable data rate are detailed below. First, the whole vertical
resolution of the IS is utilized for data recovery. Second, perfect synchronization between the
transmitter and the receiver is assumed, without blind times at the reception, which means that
the camera is operating continuously without stopping between frames. Finally, preamble or
postamble bits are not considered. Under these assumptions, a fair comparison of the achievable
data rate is computed using Eq. (14) (notice the factor of two since the signal is encoded using
Manchester). In the case of 1D-MLDP, the data rate has been computed based on the sampling
frequency of the Thorlabs CMOS camera model DCC1645C (detailed in the datasheet [33])
(13,315 kHz), and the maximum transmission frequency reported in [13] (2,240 kHz), resulting
in Npps = 5.94 ≈ 6.
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Under these conditions, the proposed CAE reaches a binary rate that is up to 500 bps higher
than the achieved by the 1DMLP. Furthermore, the camera used in this work has a higher vertical
resolution (1080 instead of 1024) and can be configured with 60 fps, so the maximum achievable
rate is 6,480 kbps.

Rb =
H

2Npps
· fps = H ·

Ts
2tsym

· fps = H ·
ftx
2fs

· fps (14)

However, if previous requirements are not fulfilled, to ensure the successful packet detection
within a frame, it is necessary to send the packet repeatedly, at least during the acquisition of two
consecutive frames, and to restrict the packet length (in pixels) to at most half of the vertical size
of the ROI [34]. Thus, the theoretical data rate must be divided by a factor of 4. In addition,
preambles and postambles must be included in experiments, and the ROI is generally a fraction
of the IS vertical resolution and might be considered in the computation of the data rate.

Finally, a series of comments should be added concerning the output size. Since the MLP
network has a single output neuron, it is necessary to sweep the image from top to bottom pixel
by pixel, which is computationally expensive. Besides, it is necessary to reserve m samples
before (or after) with respect to the output sample, depending on whether the equalization weights
the inputs backward or forwards (or a mixture of both). This would affect the equalization
at the edges, introducing some artificial errors that further reduces the exploitable region for
recovering data. In this work, the CAE’s output has the same dimensions as the input, allowing
equalizing the image by segments (not by pixels). Furthermore, the undesirable effects on the
edges are effectively mitigated by the neural network that conveniently evaluates both backward
and forward pixel values.

7. Conclusions

This work demonstrated that using a 2D CAE for exposure-related ISI mitigation outperforms
the state-of-the-art one-dimensional MLP networks. The proposed system could decode signals
with BER below 10−5 for exposure times that exceed seven times the transmission symbol time
(ESR≥ 7) in optimal SNR conditions. This implies a bandwidth improvement at the reception
of approximately 14 times compared to a non-equalized receiver. Moreover, the system can
decode signals under low SNR conditions. For example, BER values lower than the FEC limit
can be obtained for SNR greater than 9, 5, or 1 dB for ESR of 7, 4, or 2, respectively. In addition,
the network is capable of decoding signals with exposure times 10% longer or shorter than the
selected one for training, which favors its flexibility to operate with different camera devices.
On the other hand, the proposed architecture reduces up to 20% the total trainable network
parameters. Finally, the procedure for generating synthetic RS training images was validated. The
network’s input standardization allows the synthetic procedure to rely exclusively on time-related
parameters independent of the deployment scenario: the camera’s exposure time, the sampling
period, and the transmitted symbol time. These images can also be distorted with artificial noise.
Therefore the network training can be conducted offline, for an endless number of cameras and
SNR conditions, using vast training databases, ultimately improving the network fitting and the
overall decoding robustness.
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