
Hardware/Software Partitioning based on 
Simulated Annealing 

David Sánchez\ Juan P. Castellano\ Alvaro Suárez' 

Abstract 

A software implementation often can not satisfy embedded systems timing 
constraints. This problem can be solved by adding specifíc hardware to the 
system. Lately, it has been developed some design methodologies for this type of 
hardware/software systems. Our research group is developing a hardware/ 
software codesign environment for designing this type of systems. In this paper, 
we present our Hw/Sw partitioning algorithm that is based on simulated 
annealing. Main contribution is the foUowing: it supports process-level 
pipelining and estimates system power consumption. Thus, system designer can 
explore the design space to make latency, área and power trade-offs. 

Introduction 

In the last years, embedded systems are present in an ever increasing number of 
applications. In general, a software implementation does not satisfy the timing constraints 
of these systems. This problem can be solved by adding specific hardware to speed up 
system execution time. Lately, it has been developed some design methodologies for this 
type of hardware/software systems. They are named as hardware/software codesign 
methodologies [1][9]. 

Our research group is developing a codesign environment named GACSYS {GAC's 
Codesign System) [4] [5] (Figure 1). At present, we have mainly developed the foliowing 
work: a) we have designed a new system specification language named VSS {VHDL-based 
System Specification). Our language supports high level statements to make easy system 
specification. VSS allows a designer to decrease system specification time. We have also 
developed a compiler to transíate from VSS code to VHDL one. b) We have designed an 
intermedíate representation to support VHDL specifications. It is based on the ASCIS 
{Architectural Synthesis of Complex Integrated Systems) data flow graph. We have also 
developed a compiler to genérate the intermedíate representation from VHDL code. c) We 
have developed a hardware/software partitioning tool that allows a better design space 
exploration. 

In this paper, we present our hardware/software partitioning tool. Partitioning is one of 
the most important phases of a codesign environment. It assigns a hardware or software 

115 



Functional Units 
Processors 
Memories 

process_l 

Software estimations 

T (seg) A (mm^) 

6.82e-7 2.96e+2 

Memory : RAM_3 

Hardware estimations 

Memory : RAM_1 

/* Pentium */ 

E{mj) 

1.09e-2 

3 /* Number of VHDL operators • / 

Functional Unit Configurations 

N° Cede 

* + > * + + < 

1 1 1 3 1 5 

1 1 1 3 2 5 

1 2 1 3 1 1 5 

1 2 1 3 1 2 5 

1 2 1 3 2 1 5 

1 2 1 3 2 2 5 

T (seg) 

1.5e-6 

1.6e-6 

1.9e-5 

2.0e-5 

2.0e-5 

2.1e-5 

A (mm ) E (mj) 

7.1e-l 1.9e-5 

7.4e-l 1.3e-5 

8.6e-l 1.9e-5 

8.6e-l 1.6e-5 

8.6e-l 1.6e-5 

8.6e-l 1.3e-5 

Figure 1. GACSYS codesign environment. Figure 2. Estimation phase data. 

implementation to each process of the system. Partitioning goal is to optímize design goals 
and satisfy design constraints. Main contribution of our partitioning tool is the following: a) 
it supports process-level pipelining, b) it estimates design power consumption. These 
features allows a better design space exploration. Previous tools do not support these 
features. We have developed a partitioning algorithm that is based on simulated annealing. 

The structure of this paper is the following: in the second section, we present related 
work. In the third section, we describe our hardware/software partitioning tool. In the fourth 
section, we show some experimental results. Finally, we present some conclusions. 

Related work 

We can classify partitioning tools according to representation model: a) process DAG 
{Directed Acyclic Graph) [17], b) control and data flow graph (CDFG) [11], c) other types 

116 



of graphs [16]. Partitioning tools can be grouped into three classes according to grain (node) 
size: a) process [6][17], b) subprogram [14], ande) basic block [11]. 

Optimizatíon algorithm can also be used to group partitioning tools. On ene hand, there 
are tools that genérate an optimal hardware/software partition by using algorithms such as 
ILP {Integer Linear Programming) [13], branch & bound [6], and dynamic programming 
[11]. However, these algorithms are not suitable for complex systems because they need an 
excessive computation time. On the other hand, there are tools based on heuristic 
techniques such as clustering [15][17], group migration [3], and simulated annealing [2]. 
Partitioning tools define a cost function to optimize the partitioning task. We can identify 
two groups according to fcost function parameters: a) some tools only use system execution 
time [2][14], and b) other tools also consider design área [3][17]. Anyway, previous tools do 
not consider system power consumption during partitioning process. 

Main features of our tool are the foUowing: a) representation model: process DAG, b) 
granularity: process-level, c) optimization algorithm: simulated annealing, d) cost function 
parameters: design execution time, área and power. 

Hardware/software partitioning 

Our partitioning tool assigns a hardware or software implementation to each process of the 
input specification. Partitioning goal is to optimize design goals and satisfy design 
constraints. Partitioning input data are the following: a) system process graph (a node 
represents a process and an edge specifies process data flow), b) hardware and software 
parameter estimation such as system execution time, área and power, c) design goals and 
constraints (Figure 1). 

Hardware and software parameter estimation is generated by using a tool that we have 
developed [4]. This tool gives us the following Information (Figure 2): 1) process ñame: 
next Information corresponds to this process. 2) Software parameter estimation: estimated 
execution time (T), área (A) and energy (E). 3) Memories that have been used. 4) Number 
of different VHDL operators. 5) Functional unit configurations that can be used to 
implement the process in hardware. Configuration data is the following: a) number of 
functional units to implement VHDL operators, b) functional unit code, c) estimated system 
execution time (T), área (A) and energy (E). 

Designer has to specify the following input parameters (Figure 3): a) máximum time to 
compute the process graph {J¡i), b) number of pipeline phases (latency), and c) design área 
or power upper bound. Given these parameters, design goals and constraints are the 
following: Goals: a) execution time of a pipeline phase must be as cióse as possible to 
máximum execution time. In this way, we avoid designs with unnecessary extra cost. b) We 
must optimize design área or power. Constraints: a) execution time of a pipeline phase can 
not be greater than máximum execution time, b) Design área or power upper bound must be 
satisfied. 

,17 



Figure 3. (a) Graph withoutpipelining, (b) 
graph with 2-phase pipelining. 

Phases 

Expression 1. Execution time that 
is not used in pipeline phases. 

Expression 2. Execution time of a 
pipeline phase. 

Main contribution of our partitíoning tool is the following: a) it supports process-level 
pipelining (Figure 3). Previous work on partitioning does not consider this feature. We 
allow a designer to make a larger number of design cost (área or power) and latency 
tradeoffs. b) It estimates design power consumption: this parameter has not been considerad 
in previous codesign environments. We have supposed an implementation with CMOS 
technology. Thus, main power consumption is due to switching power. We have also 
supposed power-down techniques (clock signal of some latches are disabled to avoid power 
consumption when a functional unit does not genérate a useful result in a given cycle) [12]. 

Cost function of our partitioning tool makes use of the following parameters: a) design 
área (A) and power consumption (P). b) Design execution time (T) that is not useful in each 
pipeline phase (Expression 1). This valué is obtained by substractíng máximum execution 
time {T¿) and pipeline phase execution time {Tp). Given a pipeline schedule and a hardware 
or software process configuration, execution time of a pipeline phase depends on process 
schedule. We have named this scheduling process as virtual scheduling (Figure 4). 

Given a virtual schedule, Expression 2 shows how to evalúate execution time of a 
pipeline phase (7^,) {Pi represents one step of the virtual schedule). In general, a virtual 
schedule step can have hardware and software processes. Thus, execution time of a virtual 
step is the máximum valué among the following ones: 1) slowest execution time among 
hardware processes {maxfTfj^}). 2) Software execution time. It is evaluated by adding each 

process execution time because we only have one processor (l,Tsw). 

Expression 3 shows the cost function that our partitioning algorithm uses. P^¡„ and 

^min represent mínimum design power and área, respectively. Parameters are normalized by 

dividing them with corresponding valué ranges. a weight allows a designer to give priority 
to design área or power. 

\U 



Pipeline schedule 

\^rtual step 1 ® Virtual step 1 

Virtual step 2 (p2} Virtual step 2 

virtual schedule 1 virtual schedule 2 

Figure 4. Example ofdijferent virtual schedules. 

p ~ p 
min , , T 

COST„ = a — + (l - a) ^ Range(P) Range (T) 

A - A 

Range (A) 

min , ^ T 
+ ( 1 - a ) Range (r) 

Expression 3. Cost function to optimize 
power (COSTp) or área (COST^). 

Hardware/software partitioning Ls a NP-complete combinatorial optímization problem 
[8]. In general, we can not use methods that give us an optimal solution because they need 
an excessive computation time. Heuristic methods are an alternative to solve this problem. 
Our partitioning algorithm is based on simulated annealing [7] [10]. We select this method 
following experimental results published in [16], where it is concluded that simulated 
annealing gives better results than other heuristic techniques do such as clustering or group 
migration. 

Now, we describe main steps of our algorithm. First, algorithm generates an initial 
solution that has two components: a) initial pipeline schedule, b) hardware/software process 
configuration. Initial schedule is obtained by using an ASAP-based algorithm (As Soon As 
Possible). Initial configuration is randomly generated. Once we have an initial (current) 
solution, annealing process is started. Algorithm selects a neighbour solution of the current 

119 



one. It is randomly generated by selecüng a process. Then, selected process is randomly 
changed from current pipeline phase to a new one. However, process phase change is not 
carried oui each annealing process iteration. In this way, pipeline schedule remains stablc 
various iterations. It allows remaining processes to adapt itself to process phase change. 
Finally, if neighbour solution cost is lower than current solution is, then first one is accepted 
as new current solution. On the other case, there is still a possibility to accept it that depends 
on both solution cost and annealing process temperature. 

Experimental results 

In this section, we present some experimental results. We have used a voice recognition 
system as example. This system generates a set of coefficients from a voice signal that is 
sampled at 8 KHz and packed in frames of 128 bytes. Thus, máximum graph execution time 

is 1.6E-2 seconds (128 • 8000 ). System specification has eight processes (process graph is 
illustrated in Figure 5) and 2670 Unes of VHDL code. 

Now, we show some results to illustrate design space exploration. On the one hand, 
designer can make área and power tradeoffs. Figure 6 shows different design space 
Solutions. It can be observed that designs with higher latency have a lower power 
consumption. However, it is not always a good tradeoff to increase design latency. Figure 7 
shows that designs with a 3-phase pipeline have equal power consumption than a 2-phase 
ones have. In short, designer can select a hardware/software partition among a set of 
Solutions with different área, power and latency tradeoffs. Por instance, designer could 
select a mínimum power consumption partition if system under design is to be integrated in 
a portable equipmeni. 

Finally, we have evaluated results quality. Our results are cióse to the optimal ones 
(Figure 8). In particular, there is only a difference from 5% to 10%. 

5 

4.5 

4 

£ 3.5 

í 3 

^ 2.5 

2 

1.5 

V 
• ^ . 

Latency 1 •— 
Latency 2 ^" 

\ 

^^-.. ~"--

Figure 5. Process graph. 

95 300 305 310 315 320 325 330 335 340 
Área (mm2) 

Figure 6. Power and área tradeojfs. 

120 



5.5 

5 

4.5 

4 

t- 3.5 

í 3 o 
•̂  2.5 

2 

1.5 

Í95 300 305 

"N^ 
Latency 2 +-
IÍ/atenc5t.3.*T, 

: r - ' ' ^ ;: 
: I ^ -

310 315 320 325 330 335 340 
Área {mm2) 

Pur al^orithm • 
.pptiroslrssiülts,! 

0.21 ; ; 
295 300 305 310 315 320 325 330 335 340 

Área (mm2) 

Figure 7. Power and área tradeojfs. Figure 8. Results quality. 

Conclusions 

Our research group is developing a hardware/software codesign environment named 
GACSYS. In this paper, we have presented GACSYS's hardware/software partitioning tool. 
Main contribution of our tool is the following: a) it supports process-level pipelining. b) It 
estimates design power consumption. This features allow a designer to make new design 
cost (área or power) and latency tradeoffs. We have developed a partitioning algorithm 
based on simulated annealing. Our results are cióse to the optimal ones. In particular, there 
is only a difference from 5% to 10% 

Acknowledgements 

This work has been partially supported by Spanish Government by means of CICYT 
research project TIC98-1115-C02-02. 

References 

[1] F. Balarin, et al. Hardware-Software Codesign of Embedded Systems: The POLIS 
Approach. Kluwer Academic Publishers, 1997. 

[2] J. Becker, R. W. Hartenstein, R. Kress. Two-level Partitioning of Image Processing 
Algorithms for the Parallel Map-oriented Machine. Proc. of the Intl. Workshop on 
Hw/Sw Codesign, 1996, pp. 77-84. 

[3] C. Carreras, J. C. López, M. L. López, C. Delgado-Kloos, N. Martínez, L. Sánchez. A 
Co-Design Methodology Based on Formal Specification and High-level Estimation. 
Proc. of the Intl. Workshop on Hw/Sw Codesign, 1996, pp. 28-35. 

[4] Juan P. Castellano, David Sánchez, Onassis Cazorla, Juan Bordón, Alvaro Suárez. 

GACSYS: a VHDL-based Hw/Sw Codesign Tool. Proc. 2"'̂  Intl. Workshop on Design 

and Diagnostics of Electronic Circuits and Systems, September 1998, pp. 293-299. 

121 



[5] J. Castellano, D. Sánchez, O. Cazorla, A. Suárez. Pipelining-based Tradeoffs for 

Hardware/Software Codesign of Multimedia Systems. Proc. 8* Euromicro Workshop 
on Parallel and Distributed Processing, January 2000, pp. 383-390. 

[6] J. G. D'Ambrosio, X. Hu. Configuration-Level Hardware/Software Partitioning for 
Real-Time Embedded Systems. Proc. of the Inü. Work, on Hw/Sw Codesign, 1994, pp. 
34-41. 

[7] K. A. Dowsland. Modern Heuristic Techniques for Combinatorial Problems. Ed. by C. 
R. Reevcs, McGraw-Hill, 1995. 

[8] D. S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing 
Company, 1997. 

[9] T.B. Ismail, A,A. Jerraya. Synthesis Steps and Design Models for Codesign. IEEE 
Computer Magazine, February 1995, pp. 44-52. 

[10] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Annealing. 
Science, Vol. 220, N" 4598, May 1983, pp. 671-680. 

[11] P. V. Knudsen, J. Madsen. PACE: A Dynamic Programming Algorithmfor Hardware/ 
Software Partitioning. Proc. of the Intl. Work, on Hw/Sw Codesign, 1996, pp. 85-92. 

[12] E. Macii, M. Pedram, F. Somenzi. High-Level Power Modeling, Estimation and 
Optimization. Proc. of the 34th Design Automation Confercnce, 1997, pp. 504-511. 

[13] R. Niemann, P. Marwedel. Hardware/Software Partitioning using Integer 
Programming. Proc. of the European Design and Test Conference, 1996, pp. 473-479. 

[14] M. Theibinger, P. Stravers, H. Veit. Castle: An Interactive Environment for HW/SW 
Co-Design.PToc. of the Intl. Workshop on Hw/Sw Codesign, 1994, pp. 203-209. 

[15] F. Vahid, D. Gajski. Clustering for improved system-level functional partitioning. 
Proc. of the 8th Intl. Symposium on System Synthesis, Franco, 1995, pp. 28-33. 

[16] F. Vahid, T. dm Le. Towards a model for hardware and software functional 
partitioning. Proc. of the Fourth Intl. Work, on Hw/Sw Codesign, 1996, pp. 116-123. 

[17] W Wolf, J. Hou. Process Partitioning for Distributed Embedded Systems. Proc. of the 
Intl. Workshop on Hw/Sw Codesign, March 1996, pp. 70-76. 

1. GAC (Architecture and Concurrency Group). Departamento de Ingeniería Telemática. 
Universidad de Las Palmas de G.C. Campus Universitario de Tafira s/n - 35017- Las 
Palmas de G.C. e-mail: {francis, dcsr, alvaro}@cic.teleco.ulpgc.es 

122 

cic.teleco.ulpgc.es

