
Abstract. Heterogeneous clusters provide an
attractive scalability of low cost in terms of
computation power. However, these systems are
much complicated to program than dedicated
parallel machines due to the perfomance of
nodes and traffic in the network changes
randomly. Execution of a parallel application in
a heterogeneous cluster without keeping in mind
these considerations, it can imply that some
slow nodes can be overhead, while fast nodes
can be in an idle state. Therefore, in order to
avoid this situation, it is necessary to apply
some scheme of load balancing. In this paper we
present an application level load balancing
mechanism for heterogeneous clusters.

Keywords. Heterogeneous Clusters, Load
Balancing, Execution Time.

1. Introduction

In the last years a technological growth related
to high speed netwoks and computers has
happened. Network of workstations provide an
attractive scalability in terms of computation
power and memory size. It is becoming strongly
competitive compared to expensive parallel
machines. Clusters [1] and Grid [2] computing
are new computation ideas that take advantage
of independent resources to build a unified
resource for massive computation, distributed
computation, data storing, etc.

Interest in heterogeneous computing
systems continues to grow in the research

community. However, there are many open
problems [3] that are not solved, such as low
overhead data transmission over heterogeneous
networks, to improve communication latency, to
investigate the best way to scale these
environments, and so on.

Networks of workstations are much
complicated to program than dedicated parallel
machines. It is due to a multi-user environments,
heterogeneous networks and different resources
that can vary performance [4].

If we execute a parallel application in a
network of workstations and we do not keep in
mind communication latency and nodes
performance, then the application execution
time depends on the speed of the slowest node.
This implies that some slow nodes can be
overhead, while fast nodes can be in an idle
state. Therefore, the execution time of each node
must be balanced. For that reason, we need to
apply some scheme of load balancing.

Load balancing implies to assign to each
processor a load proportional to its performance,
and so minimizing the execution time of the
overall program, and preventing that some
processors can be an idle state while others are
in an overhead state. The minimal requirement
in a load distribution scheme is to guarantee
non-idleness during runtime [5].

Load balancing can be static (done at
compile-time) or it may be dynamic (done at
run-time) [4][6]. The distribution of tasks can be
very arduous if processors have different speeds
or memory resources, variable external load due
to multiple users or an heterogeneous physical

An Application Level Load Balancing Mechanism

for Heterogeneous Clusters Programming*

David Sánchez, Elsa Mª. Macías and Álvaro Suárez
Grupo de Arquitectura y Concurrencia (GAC)

Departamento de Ingeniería Telemática (U.L.P.G.C.)
Campus Universitario de Tafira, 35017-Las Palmas de Gran Canaria, Spain

e-mail: {dsanchez,elsa,alvaro@cic.teleco.ulpgc.es}

*Research partially supported by Spanish CICYT under Contract: TIC2001-0956-C04-03.

layer network. Static balancing avoids overhead
at run time. However, a dynamic load balancing
is more appropriate in a network of workstations
because of the performance of nodes and traffic
in the network changes randomly. This kind of
mechanism is crucial in clusters like [7] in
which nodes can be added to share the workload
dynamically. We have implemented a library
named LAMGAC [8] to let the programmers to
expand a network of workstations with wired or
wireless computers (LAN-WLAN cluster) at run
time of parallel applications.

In this paper, we present an application
level load balancing mechanism that deals with
the problem of load balancing in heterogeneous
clusters. In practice, the execution time of the
parallel applications using this mechanism is in
a high degree decreased.

The rest of the paper is organized as
follows. In section 2 we review some aspects
about heterogeneous clusters. In section 3 our
load balancing mechanism is presented. Then, in
section 4 two applications that use this
mechanism of load balancing are presented. In
section 5 we present some experimental results
for the two above applications. Finally we sum
up the conclusions and we present the future
work.

2. Some Considerations about
Heterogeneous Clusters

The set of computers available in a
heterogeneous clusters can include a wide range
of architecture types such as PC-based
machines, high-performance workstations,
shared-memory multiprocessors, etc. Despite
the numerous difficulties caused by
heterogeneity [5] distributed computing offers
many advantages, such as low cost computing.
On the other hand, resources of these
environments take advantange of recent
technologies.

In heterogeneous environments, nodes
performance and data communications among
processes are two dominant factors in the
execution of parallel applications. Perfomance
of a node depends of parameters related to
characteristics of resources [4] such as CPU

speed and memory size, and also, the load on
current time (multi-user environment).
Communication time depends of several factors
[5] such as network bandwidth, network
topology, size of communicated data,
transmission and reception buffer size, etc. We
consider both aspects in order to balance the
load.

When we want to do load balancing, we
can not act on nodes performance, because it is
inherent to the programmer. However, if
messages size are high, we can keep it on mind
to control the communication time.

A message sent to another node may cause
the initiating process to hang the send routine
although a non blocking send mechanism is
implemented. The reason can be found in the
message buffer size on the receiving node.
Dependent on the message size, network
bandwidth and other user processes the routine
delays the further execution more or less likely
[5]. In a low performance systems and in
applications which need high data transmission,
communication time is dependent on the size of
message being sent.

If we define parameter r as the
relationship between the calculation time and
the message size sent, then, applications can be
classified in two ways:

a. Low size data communication and high
calculation time → High ratio (r)
b. High size data communication and low
calculation time → Low ratio (r)

In applications where the size of
communicated data is high (r is low), it is
necessary to consider the message size, because
it can influence negatively in the
communication time, and therefore, in the load
balancing. However, in applications where r is
high we can consider communication time
constant because it has minimum influence due
to the message size.

r
calcula t ion_ t ime m s()

message _s i ze KB()
---=

3. Load Balancing Mechanism

In this section we present a mechanism to
balance the load in heterogeneous clusters. This
scheme is divided in four phases and it is
repeated periodically until there are not data to
distribute (figure 1).

• Estimation phase. The program
instance that executes the balancing
mechanism (in master process in the
parallel program) predicts the future
performance for each process (slave
processes) based on the very last
previous information, this is, it
calculates next data distribution to be
sent to each slave process. Initially, it
distributes the same amount of data
among the processes.

• Communication phase. The
estimated data distribution calculated
in the previous phase is
communicated to slave processes.

• Calculation phase. Each slave
process makes computations with the
data sent by the master process.

• Synchronization phase. Load
balancing mechanism waits for all
processes, this is, it receives of each
process the results computed during
the calculation phase.

For every parallel algorithm iteration, are
mesaured the execution and computation times
for each slave. Then, the master process makes

estimations with these values and computes the
next data distribution. Next, these measurements
and estimations are presented:

• Execution time of process i during
the iteration j (t_exej (pi)). Total time
it takes for a slave process i to
receives data, to carry out the
calculations and return the results. It
is measured by load balancing
mechanism.

• Calculation time of process i during
the iteration j (t_calc j (pi)). Time it
takes for a slave process i to carry out
the calculations. It is measured by
own process and it is communicated
to the program instance that executes
the balancing mechanism at the
synchronization phase.

• Communication time of process i
during the iteration j (t_com j (pi)).
Time elapsed to send data and receive
results, this is,

t_com j (pi) = t_exej (pi) - t_calc j (pi)

• Information unit sent to process i
during the iteration j (unitj (pi)).
Minimum amount of data sent to
compute a unit result. For example,
for matrix multiplication, the
information unit is equal to one row if
master process distributes rows
among slave processes.

• Information unit time of process i
during the iteration j (t_unitj (pi)).

Fig. 1. Phases of the Load Balancing Mechanism

calculate distribution

data distribution

p1 p3p2 pn

wait for results

master process

master process

slave processes

master process

Estimation

Communication

Calculation

Synchronization

iteration j+1

iteration j
Phases

Average time spent on calculation
phase by information unit.

For applications with high r, the load
balancing mechanism estimates, in each
iteration of the parallel application, the number
of information units to be communicated to each
process as:

where:

Due to r is high, then message size is
similar among iterations and we can consider
constant communication time from an iteration
to another. In this way, we are balancing
calculation time to the maximum one of each
iteration.

For applications with low r, it can not be
applied expression (Eq.1) because if the
mechanism of load balancing sends different
data size from an iteration to another, it causes
different communication times. For that reason,
we modify (Eq.1) such that information units
number communicated to each process:

In this formula, t_com_sj (pk) is the time
to send a message from program instance that
executes the balancing mechanism to process k,
and we are considering the communication time
spent to send data to the slave processes minor
to process i. In order to measure in a precise way

t_com_sj (pk), the program that executes the
load balancing mechanism has to implement
blocking send routines in the distribution phase.
The load balancing program instance
communicates data of the slave process with
more execution time, measured in the previous
iteration of the parallel application, to the slave
process with smaller execution time.

4. Application Examples

Our dynamic load balancing strategy has been
tested for Master-Worker parallel applications.
This is, there is one load balancing program
instance (master process), and there are multiple
slave processes. The objetive of the load
balancing mechanism is to balance the load of
each slave process to finish all of them at the
same time. Slave process performs the
computation task.

We have used two different applications
for testing our scheme: a Hw/Sw Codesign Tool
and a Matrix by Vector Multiplication.

4.1 Hw/Sw Codesign Application

Our research group has developed a Hw/Sw
Codesign Tool named GACSYS [9][10]. The
objetive of this tool is to optimize and satisfy a
given set of design constraints. This tool is
divided in two phases:

• Parameter Estimation. Hw/Sw
parameter estimations are obtained
for each process of the input data
specification written in VHDL
language such as execution time,
power consumption and area.
Depending of the used functional
units number, this phase can be heavy
computationally.

• Partitioning. An optimization
algorithm based on Simulated
Annealing finds a partition that
satisfies the design constraints.

For testing our load balancing mechanism
we have used the parameter estimation phase.

In the solution of this problem, the data
distribution consists of sending to each slave
process the number of combinations of
functional units. The slave proceses will carry

t_ uni tj pi()
t_c a l cj pi()

n ° unit j p i()
-------------------------------=

n ºuni tj 1+ pi()
t_exemax j t_ com j pi()–

t_uni tj pi()
-- (Eq. 1)=

t_e x e m a xj m a x t _e x ej p1() … t_ exej pn(),,{ }=

n °uni tj 1+ p i()

t_exemax j t_com_ sj pk()

k 1=

i 1–

∑–

t_exej pi()
--- unit j p i()×=

out both parameters set calculation and number
of combinations sent. During the
synchronization phase of this application, the
master process waits for the parameter
estimation calculated in the slave processes.

4.2 Matriz by Vector Multiplication
Application

Initially, the vector is broacasted to all slave
processes. In the data distribution the load
balancing mechanism sends a given number of
rows of the matrix. Calculation phase consists of
computing the row by vector multiplication as
many times as rows have been communicated.
The results of these multiplications are sent to
the program instance process in the
synchronization phase.

5. Experimental Results

In this section, we present performance results
for our application level load balancing
mechanism described in this paper. We have
realized the experiments in a network of
workstations with the specifications of table 1.
The network bandwidth is 10 Mbps.

We used C language and MPI library [11]
to implement the applications described above.
In order to obtain performance results we have
implemented several experiments:

• Experiment one (E1) that consists of
the sequential execution of the
applications on the fastest processor

(PC1).

• Experiment two (E2). The program
that implements the load balancing
runs on PC4 and slaves processes on
the remainder computers.

• Experiment three (E3). Load
balancing mechanism runs on PC1
and slaves processes on the remainder
computers.

• Experiment four (E4). Load
balancing program instance on PC4,
but information unit is always equally
distributed among slave processes (no
load balancing).

• Experiment five (E5). Load
balancing mechanism on PC1, but
information unit is equally distributes
among slave processes (no load
balancing).

5.1 Hw/Sw Codesign

This application is appropriate to apply Eq.1,
because communicated message size is similar
from an iteration to another, and therefore,
variations in the communication time does not
depend of the bytes sent. Experiments realized
for E2 to E5 have been executed for a initial
distribution of information units equal to one,
ten and twenty.

Figure 2 shows performance results for the
differents experiments realized. Axis X
represents initially distributed information units
number, and the axis Y represents execution
time in seconds.

We clearly observe that the execution time
using our load balancing mechanism is better
than the obtained results without load balancing
strategies (about six times lower). However, the
execution time without balancing is worse than
sequential execution time due to
synchronization phase in the parallel program is
dominated by slow node.

Increasing initial data size, load balancing
strategies spend a little more execution time due
to the wait time on synchronization phase until
achieve homogeneous execution time.
Therefore, it is important initially to send few
data in order to achieve balance time before.

Usually, an homogeneous execution time
is obtained on third iteration of the parallel

Table 1: Computing Resources Characteristics

Computer Processor and Memory Size

PC1 Pentium III 733 Mhz
256 MBytes

PC2 Pentium III 733 Mhz
64 MBytes

PC3 Pentium 200 Mhz
64 MBytes

PC4 Pentium 133 Mhz
32 MBytes

algorithm.

5.2 MxV Multiplication

We have used for testing a matrix with 5000
rows by 1000 columns of integers. Due to little
varations of execution time among iterations it
can imply that the mechanism of the load
balancing sends different rows number
(different message size), therefore, for this
application is suitable to apply the modified
Eq.1.

Figure 3 shows performance results for the
differents experiments realized, and these are
the same implemented in the above application.
We clearly observe that sequential execution is
faster than execution of parallel application. It is
due to in the parallel application the
communication time is higher than calculation
time. However, we can see that the execution

time of the parallel application with load
balancing mechanism is lightly smaller than
execution time without load balancing
mechanism.

Also, we can observe the influence of
message size in the time used in the parallel
application. Experiments E2 and E4 spend more
execution time than the time for experiments E3
and E5, because the load balancing mechanism
is running in a low performance node (PC4).

6. Conclusions and Future
Work

In this paper, we present an application level
load balancing mechanism for heteregeneous
clusters. Such clusters can have different
network topologies and computers with variable
performance. In order to avoid this roughness,

0

500

1000

1500

1 10 20

Initial Information Unit

E
xe

cu
tio

n
Ti

m
e

(s
)

E1

E2

E3

E4

E5

Fig. 2. Execution Time: GACSYS Hw/Sw Codesign Parallel Algorithm

Fig. 3. Execution Time: MxV Multiplication Parallel Algorithm

0

5

10

15
20

25

30

35

1 10 20

Initial Information Unit

E
xe

cu
ti

o
n

 T
im

e
(s

)

E1

E2

E3

E4

E5

we have propose two formules that we apply in
accordance with calculation time and message
size ratio. From the experiments, one can see
clearly that load balancing is essential in parallel
applications, resulting in optimal execution
time, overalls in applications with low size data
communication and high calculation time.

In our ongoing work we want to evaluate
our load balancing mechanism in a hybrid
network with wired and wireless links (LAN-
WLAN cluster) using LAMGAC library. In the
LAN-WLAN cluster, the application level load
balancing mechanism not only has to deal with
heterogeneous proccessing speeds but also with
heterogeneous communication links and a
dynamic number of computational resources.
On the other hand, we want to modify the
application level load balancing mechanism to
consider one load balancing program instance
on each process of the parallel program. It
would be also interesting to ease the
programming of the applications in this
heterogeneous clusters, for which a middleware
must be implemented. A comparison of both
mechanisms must be done in order to decide
what load balancing mechanism is more
suitable.

References

[1] Mark, B. Cluster Computing White Paper.
Final release. Version 2.0, 28th December
2000.

[2] I. Foster and C. Kesselman. The Grid:
Blueprint for a New Computing
Infrastructure. Morgan Kaufmann. 1999.

[3] T.D. Braun, H.J. Siegel, A.A. Maciejewski.
Heterogeneous Computing: Goals,
Methods, and Open Problems. Parallel and
Distributed Processing, Techniques and
Applications, vol I, pp. 7-18. Las Vegas,
USA. June 2001.

[4] M. Zaki, W. Li, S. Parthasarathy.
Customized Dynamic Load Balancing for a
Network of Workstation. Proceedings of
5th High Performance Distributed
Computing. Syracuse, NY, August 1996.

[5] Markus Fisher. Dynamic Load Balancing for

Heterogeneous Parallel Enviroments.
Paderborn, Germany. April 1997.

[6] Shahzad Malik. Dynamic Load Balancing
in a Network of Workstations. 95.515F
Research Report. November 2000.

[7] E. Macías, A. Suárez, C.N. Ojeda-Guerra, E.
Robayna. Experimenting with the
Implementation of Parallel Programs on a
Communication Heterogeneous Cluster.
Parallel and Distributed Processing,
Techniques and Applications, vol II, pp.
829-835. Las Vegas, USA. June 2001.

[8] E. Macías, A. Suárez, C.N. Ojeda-Guerra, E.
Robayna. Programming Parallel
Applications with LAMGAC in a LAN-

WLAN Environment. 8th European PVM/
MPI. LNCS 2131. Springer Verlag, pp
158-165. September 2001.

[9] J.P. Castellano, D. Sánchez, O. Cazorla, J.
Bordón, A. Suárez. GACSYS: a VHDL-
based Hw/Sw Codesign Tool. Design and
Diagnostics of Electronic Circuits and
Systems, pp 293-299. Szcyrk, Poland.
September 1998.

[10] D. Sánchez, J.P. Castellano, A. Suárez.
Hardware/Software Partitioning based on
Simulated Annealing. Modeling and
Simulation, pp 115-122. Las Palmas de
Gran Canaria, Spain. September 2000.

[11] Information available in: http://www.mpi-
forum.org

View publication statsView publication stats

https://www.researchgate.net/publication/221134262

