Piattaforma Low Cost per la simulazione Scale Electric Vehicle Intelligente

Moises Diaz-Cabrera Javier J. Sanchez-Medina

Centro di Innovazione per la Società dell'Informazione Università di Las Palmas de Gran Canaria (Spain)

16 aprile 2012

http://cicei.ulpgc.es/aseimov

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control
- 5 Conclusions and future work ideas

Introduction	State of the art	Vehicle	Demonstration and test	Conclusions and future work ideas
		0000000		

Context

- Energy Crisis
- Environmental Crisis
- Economic Crisis

Key elements

- Mobility
- Road Safety

Introduction State of the art Vehicle Demonstration and test

Conclusions and future work ideas

Doble target: Sustainability and Efficiency

Optimization of Current Traffic Infrastructure

- More efficient Networks: The Maximum load on the network, the average time for trajectories, etc..
- Environmental Impact Reduction: Reducing Emission, Noise Pollution, ...
- Security Traffic Networks

Electric and Intelligent Mobility

- More Efficient and safer Vehicles (Energy Consumption, Emissions Reduction, Noise Pollution)
- More Efficient Use of Traffic Network (Platoon Driving, ...)
- Robotic platform for testing vehicle behaviours in the laboratory
- Intermediate stage between virtual simulation and real simulation

Autonomous Scaled Electric Intelligent MOnitored Vehicle

- ASEIMOV: RC car 1:10, Linux/PC and robotic devices.
- Low Cost. More researchers can join in this area.
- Free Software. GPL Licence. http://cicei.ulpgc.es/aseimov/
- OFF-THE-SHELF devices.
- An accurate scale model (Mass balance, Adaptative Control longitudinal and lateral) ⇒ we would test smart vehicle solutions. Research in ITS.
- Future step: To implement the best solutions in real intelligent car

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

General Restrictions

Space

- Scale 1:10
- Phisical size is limited
- Budget
 - Other research groups can build this model
 - Low Cost VS technological limitation - flexibility
- Autonomy
 - All devices should work at the same time.
 - low-power devices.

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- 4 Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control
- Conclusions and future work ideas

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

- Experimental Platform
- PC standar
- Software Linux
- Scale 1:10
- Proximity sensors and cameras

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

- Summer 2009 by Japanese Company
- Scaled Vehicle to test Intelligent Driver Solutions
- 8 IR, 3 accelerometers, 1 gyroscope, 1 laser, 2 VGA cameras (optional).
- Useful for research and modern technologies
- 5000€: no cameras or bodywork

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

Model from University of Michigan

- Experimental Model
- PC standar
- Software Linux.
- Scaled 1:12
- sensors Off-the-shelf

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control
- Conclusions and future work ideas

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- 4 Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control
- Conclusions and future work ideas

Introduction								
		÷,,	\sim	а	 0	÷ :	\sim	n
			0			υı	U	

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

Chassis

• Requirements

• We need free space in order to add whatever we would like.

- Solution
 - We have installed 2 shelves. We have got 3 free levels.

State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- 4 Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control
- Conclusions and future work ideas

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

locomotion

• DC Motor

- Torque and speed
- Size motor adaptable to chassis size
- Controller board
 - It limits the power to the motor.
 - Speed, acceleration and direction control.

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

locomotion

• Controller board

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- 4 Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control
- Conclusions and future work ideas

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

Odometry (positioning)

Accelerometer, Gyroscope, Compass

- Acceleration, gyro and compass data in the three orthogonal axes
- Integrated acceleration: speed and position

Speed encoder

- Low Cost: we have taken advantage of an old ball mouse
- It has been installed in rear axle

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control
- Conclusions and future work ideas

- 7 sonars sensor, 9 IR sensor and 2 data acquisition boards
- Introduce the concept of safety bubble

• 4 webcams: two in the front and two in the rear of the car.

- 352 x 288 px. 6-7 FPS
- Target: to get stereoscopic vision for future applications

Vehicle Demonstration and test

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

Vehicle Demonstration and test

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

20 / 34

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control
- Conclusions and future work ideas

 We have designed a Free Software with GPL licence in order to control and monitor the vehicle, Java application.

• Distribution: Linux – Debian.

Introduction	State of the art	Conclusions and future work ideas

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control

Conclusions and future work ideas

Introduction	State of the art	Conclusions and future work ideas

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System

4 Demonstration and test

- Preliminary test
- Adaptative Longitudinal Control

Conclusions and future work ideas

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

Autonomy

50 min \pm 5 min

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

25 / 34

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

Demonstration and Automatic detection

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

Introduction	State of the art	Vehicle 00000000	Demonstration and test	Conclusions and future work ideas

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System

Demonstration and test

- Preliminary test
- Adaptative Longitudinal Control
- Conclusions and future work ideas

Acceleration and Deceleration Reference Curves

Figure: Reference Longitudinal Curve from Real Electric Car

Figure: Acceleration and Deceleration Reference Curves

Conclusions and future work ideas

Result from Adaptative longitudinal Control

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

State of the art

Vehicle Demonstration and test

Conclusions and future work ideas

Adaptative longitudinal Control

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina

Introduction	State of the art	Vehicle 0000000000	Demonstration and test	Conclusions and future work ideas

2 State of the art

3 Vehicle

- Chassis
- Locomotion
- Odometry
- Safety Bubble
- Computer System
- 4 Demonstration and test
 - Preliminary test
 - Adaptative Longitudinal Control

5 Conclusions and future work ideas

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units

Introduction	State of the art	Vehicle	Demonstration and test	Conclusions and future work ideas

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units

Introduction	State of the art	Vehicle	Demonstration and test	Conclusions and future work ideas

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.

• Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units

Introduction	State of the art	Vehicle	Demonstration and test	Conclusions and future work ideas

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units

Introduction	State of the art	Vehicle	Demonstration and test	Conclusions and future work ideas

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units

Introduction	State of the art	Vehicle	Demonstration and test	Conclusions and future work ideas

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units.

Introduction	State of the art	Vehicle	Demonstration and test	Conclusions and future work ideas

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units.

Introduction	State of the art	Vehicle	Demonstration and test	Conclusions and future work ideas

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

Future Plans

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.

• Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units.

- New model of experimentation platform on Intelligent Vehicles: ASEIMOV
- We could test ITS solutions without high cost and risk.
- To test the best solutions in real intelligent cars.
- Low cost model, easily reproduce without huge budgets.
- Flexible model controlled by Linux. Other devices can be installed.

- There is much work to do.
- Define the safety bubble we can use.
- Study the vehicle positioning by combination of speed encoder and the accelerometer.
- Explore intelligent vehicle applications, i.e. a cluster of ASEIMOV units.

Introduction State of the art Vehicle Demonstration and test Conclusions and future work ideas

Piattaforma Low Cost per la simulazione Scale Electric Vehicle intelligente

The End

Grazie Mille

ITS Experimentation Platform

M. Diaz-Cabrera, J.J. Sanchez-Medina 33 / 34

Piattaforma Low Cost per la simulazione Scale Electric Vehicle Intelligente

Moises Diaz-Cabrera Javier J. Sanchez-Medina

Centro di Innovazione per la Società dell'Informazione Università di Las Palmas de Gran Canaria (Spain)

16 aprile 2012

http://cicei.ulpgc.es/aseimov