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Abstract: Although the Poisson distribution is appropriate for modelling equi-dispersed distributions,
it reflects bimodality less well. In this paper, we propose a distribution which is more suitable for the
latter purpose. It can be fitted to both positively and negatively skewed data and appears to represent
overdispersion phenomena correctly in count data models obtained using a Poisson distribution.
Furthermore, the distribution can be normalised in terms of its mean value, and therefore covariates
can be included. Our empirical results are based on tourists’ length of stay in the Canary Islands
(Spain), a popular holiday destination. The study analyses data supplied by the Canary Islands
Tourist Expenditure Survey. Our findings show that the model presented is valid and that the fit
obtained is reasonably good.
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1. Introduction

Bimodal and multimodal distributions are found in many continuous and discrete data sets;
for example, in aggregate counts of responses to Likert scale questions, as in online ratings of movies or
hotels [1]; in the durations of intervals between the eruptions of certain geysers; in the distributions of
male and female body weights; in student test scores, distinguishing between those who studied for the
test and those who did not; and in tourism analysis, regarding the number of nights that tourists spend
at a given destination [2,3]. However, these distributions have received little attention in theoretical
and empirical literature, with the exceptions of classical distributions based on continuous data, such as
exponential or normal distributions [4]; discrete data frameworks, such as censored count data (where
an additional mode might be used for the highest category; see [5]); latent class models for count data
which account for heterogeneity using a finite mixture of unimodal Poisson distributions (i.e., the latent
class truncated Poisson regression [6]); and flexible models that capture both over and underdispersion,
such as the mixed Conway–Maxwell–Poisson distribution, which can reflect a wide range of truncated
discrete data, and can exhibit either unimodal or bimodal behaviour [1] (the Conway–Maxwell–Poisson
(CMP) distribution is a two-parameter generalisation of the Poisson distribution that allows for either
over or underdispersion.). An important feature of multimodal data sets is that they can reveal when

Symmetry 2020, 12, 442; doi:10.3390/sym12030442 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-5072-7908
http://www.mdpi.com/2073-8994/12/3/442?type=check_update&version=1
http://dx.doi.org/10.3390/sym12030442
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 442 2 of 15

two or more types of individuals are represented in a data set (for example, consumer segments and
preferences). The discrete data observed in the specific case of the length of tourist stay at a major “sun
and sand” destination present not only bimodality but also overdispersion (the variance is greater
than the mean). The length of stay is considered to be multimodal because tourists usually structure
their trips in weekly blocks (for holidays in the Canary Islands, periods of one, two or three weeks
are the most common options). However, there is also some heterogeneity of tourist preferences as
regards shorter or longer stays, which may depend on socioeconomic and demographic characteristics,
the time available to tourists and their prior familiarity with the destination, among other things.
Reflecting on these diverse possibilities, empirical studies in this field have used several types of
count data models, for example, latent class truncated Poisson models, to define different segments
of tourists’ preferences [3] or count data quantile regression models to analyse the quantiles of the
distribution of overall length of tourist stay [7], based on the Poisson distribution. More recently, [2]
two newly proposed statistical distributions with which to explicitly incorporate bimodality, including
a flexible discrete distribution and a mixture model based on the Poisson distribution (discrete choice
models, have also been used, which redefine the variable by taking weekly intervals; see [8–10]).
However, although the latter models are suitable and provide a reasonably good fit, they also present
certain drawbacks. Following [2], we obtain a flexible distribution for modelling bimodal behaviour in
a count data framework based on the Poisson distribution. As an anonymous reviewer pointed out,
a finite mixture (non-latent) of two Poisson distributions could produce bimodality. However, these
models of finite mixtures are known to present some difficulty regarding identifying and estimating
the parameters. Moreover, this problem may be aggravated if covariates are included. This research
contributes to the literature in two main respects. First, we present a discrete distribution characterised
by overdispersion, and also by either unimodality or bimodality, according to the parameter values
selected. This distribution is obtained by means of a shifted version of a classical discrete Poisson
distribution. Our proposal accounts for some of the heterogeneity observed, and moreover, facilitates
the inclusion of covariates; therefore, determinants to explain the bimodal variable can be considered.
Second, the approach described overcomes problems that may arise in estimating the models described
by [2], with respect to the existence of multiple points which maximise the logarithm function of the
likelihood, thus impeding identification of the global maximum. The rest of this paper is organised
as follows. Section 2 presents the model proposed for length of tourist stay, and describes its most
important properties. The estimations of the parameters for the proposed distribution are discussed in
Section 3, after which we present the empirical analysis performed, based on the length of stay. The
results obtained are then discussed. Finally, in Section 6 we summarise the main conclusions drawn.

2. The Bimodal Shifted Poisson Model

According to the standard literature in this field, briefly presented above, the length of tourist
stay, T, like most expressions of the frequency of occurrence of an event, can be described by a
Poisson distribution in which λ > 0. This is the standard distribution for modelling random counts.
In many cases, however, a model based on the Poisson distribution will be inadequate. Thus, in some
situations counts may occur in clusters, giving rise to heterogeneity among individuals and provoking
contagion (i.e., a degree of association between discrete events). When this happens, the count
data may become overdispersed (i.e., the variance is greater than the mean), making the Poisson
assumption very restrictive. On the other hand, if the parameter λ fits a gamma distribution with
shape r > 0 and scale (1− p)/p, 0 < p < 1, the unconditional distribution of T produces a negative
binomial distribution with parameters r (dispersion parameter) and 1− p. Nevertheless, although this
distribution overcomes the problem of overdispersion, it still fails to reflect the bimodality observed in
empirical data, such as that for the length of tourist stay (usually expressed in days). The following
theorem, crucially, obtains a distribution that is appropriate for modelling the length of tourist stay.
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Theorem 1. Let gY(y; µ, σ) be a discrete (or continuous distribution) with finite mean µ and variance σ2. Then,
it is verified that

fY(y) = ω(y; µ, σ, θ)gY(y; µ, σ) (1)

for −∞ < θ < ∞, where

ω(y; µ, σ, θ) =
1

2 + θ2

[
1 +

(
1− θ(y− µ)

σ

)2
]

,

is a genuine probability mass function (density function in the continuous case).

Proof. The result is obtained by taking into account that fY(y) ≥ 0 and summing (integrating in
the continuous case) over the support of the random variable Y in order to have ∑y fY(y) = 1
(
∫

Y fY(y) dy = 1).

Parameter θ controls the unimodality or bimodality of the family given in (1). Here fY(y; µ, σ) is
the parent distribution from which we can construct a distribution that can be unimodal or bimodal.
From the construction established in the previous result, it is apparent that this same result can be
applied to obtain generalisations of classical distributions. The first candidates for this application,
which rely on just a single parameter, would be the exponential distribution, for the continuous case,
and the geometric and Poisson distributions, for the discrete case. In this paper, we consider the latter
case. In other words, our starting point is that of a shifted Poisson distribution with parameter λ > 0.
This situation is illustrated in the following result.

Proposition 1. The expression given by

fT(t) = ωλ,θ(t)
λt−1

(t− 1)!
exp(−λ), (2)

where λ > 0, −∞ < θ < ∞ and

ωλ,θ(t) =
2λ + θ(1 + λ− t)

[
2
√

λ + θ(1 + λ− t)
]

λ(2 + θ2)

is a genuine probability mass function for t = 1, 2, . . . .

Proof. The proposition is an immediate consequence of applying the result provided in Theorem to
the shifted Poisson distribution with the pf given by

gT(t; λ) =
λt−1

(t− 1)!
exp(−λ), t = 1, 2, . . . (3)

Hence the result.

In order to achieve a more elegant expression for the above probability function (pf), it is
convenient to take λ = α2 and θ(1 + α2 − t) = γα,θ(t). The expression given in (2) can then be
rewritten as

fT(t) = ωα,θ(t)
α2(t−1) exp(−α2)

(t− 1)!
, t = 1, 2, . . . , (4)
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where ωα,θ(t)

ωα,θ(t) = κ(θ)

[
2 +

γα,θ(t)
α2 (2α + γα,θ(t))

]
,

with κ(θ) = (2 + θ2)−1. Figure 1 shows that the proposed distribution properly represents the
unimodal or bimodal nature of empirical data. In this situation, the shifted Poisson distribution is
a special case for θ = 0. Furthermore, it seems that as α tends to infinity and θ → 0, the normal
distribution is an excellent approximation of the pf (4). Some tedious but simple computations then
provide the probability generating function of the distribution, which is given by

GT(z) = κ(θ)
[
2(1 + (1− z)αθ) + (z + (1− z)2α2)θ2

]
z exp[−α2(1− z)], (5)

for |z| ≤ 1. From (5) the moments of the distribution can be obtained. In particular, the mean and the
variance are given by

E(T) = 2 [1− κ(θ)(1 + αθ)] + α2,

var(T) = κ(θ)2
[
2(θ2 − αθ(2− θ2)) + α2(4(1 + θ2) + 3θ4

]
,

respectively.

1 2 3 4 5 6

0.1

0.2

0.3

0.4

t

f T
(t
)

= 1, = 0.25

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

t

f T
(t
)

= 1.5, = 5

1 5 9 13 17 21 25 29 33 37 41 45 49

0.01

0.035

0.06

t

f T
(t
)

= 5, = 0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.01

0.035

0.06

0.085

0.11

0.135

0.16

t

f T
(t
)

= 2, = -5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.01

0.035

0.06

0.085

0.11

0.135

t

f T
(t
)

= 2, = -15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.01

0.035

0.06

0.085

0.11

0.135

0.16

0.185

0.21

t

f T
(t
)

= 2, = 5

Figure 1. Graphs of the pf given in (4) for special cases of parameters α and θ.

By determining the index of dispersion (ID) of a probability distribution, we can quantify the
extent to which a set of occurrences is dispersed, compared to a standard pattern such as the Poisson
distribution. The ID is defined as the variance of a distribution divided by its mean. If the ID is
greater than one, the corresponding distribution is said to be overdispersed, and if it is less than
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one, the distribution is underdispersed. Figure 2 represents the ID plot of the proposed bimodal
distribution for some supports of the two parameters of the distribution. The ID can take values greater
or less than 1, and so the distribution is appropriate for fitting empirical data which present over or
underdispersion. The probabilities can be computed by using the recursive formula

fT(t)
fT(t− 1)

=
α2

t− 1
ωα,θ(t)

ωα,θ(t− 1)
, t = 2, 3, . . . , (6)

where fT(1) = [2 + αθ(2 + αθ)]κ(θ). Furthermore, the expression given in (6) can be used to obtain the
mode or modes of the distribution, by solving, for [t], the third-degree polynomial equation given by

α2[2α2 + γα,θ(t)(2α + γα,θ(t))]

−[2α2 + γα,θ(t− 1)(2α + γα,θ(t− 1))](t− 1) = 0, (7)

where [·] represents the integer part. Equation (7) supplies either one real solution (the unimodal case)
or three such solutions (two modes and the corresponding anti-mode). The cumulative distribution
function, which is not reproduced here, can also be obtained in closed form.

Figure 2. Index of dispersion of the proposed distribution.

3. Model Estimation

Consider a sample with n observations t̃ = (t1, t2, . . . , tn), taken from the pf (2). As a first
approximation, the parameters α and θ can be estimated by the method of moments, assuming µ̂ = t̄,
where t̄ = (1/n)∑n

i=1 ti is the sample mean. The estimation is then obtained by the maximum
likelihood method. To do so, we first consider the model without covariates. Here, the log-likelihood
function is proportional to

`(t̃; α, θ) ∝
n

∑
i=1

log ωα,θ(ti) + 2n(t̄− 1)− nα2. (8)

The normal equations for estimating the parameters θ and α are given by

−θκ(θ) +
1
n

n

∑
i=1

(1 + α2 − ti)(α + γα,θ(ti))

2α2 + γα,θ(ti)(2α + γα,θ(ti))
= 0, (9)

−α +
t̄− 2

α
+

1
n

n

∑
i=1

2αθ(α + γα,θ(ti)) + 2α + γα,θ(ti))

2α2 + γα,θ(ti)(2α + γα,θ(ti))
= 0. (10)
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Equations (9) and (10) can be solved numerically for θ and µ using the Newton–Raphson iteration;
for example, starting from the seed point θ near to zero, with µ = t̄ + 1.

3.1. Simulation Study

The accept-reject sampling method can be used to generate random values of a variable following
the pf (4) (see, for instance, [11]). Table 1 shows the results of simulation studies performed to illustrate
the behaviour of the maximum likelihood (ML) estimators for 1000 samples, with n = 50, 100, 150 and
200, from a population distributed as in (4). For each of these samples, ML estimators are computed
numerically according to the Newton–Raphson method. Means, standard deviations (SD) and coverage
(C) are reported, and as expected, the bias decreases in inverse proportion to the sample size n.

Table 1. Empirical mean, standard deviation (SD) and coverage (C) values for different values of
parameters θ and λ.

n θ α θ̂ sd(θ̂) c(θ̂) α̂ sd(α̂) c(α̂)

50 2 2 2.0678 0.5261 93.6 1.9961 0.0727 93.0
100 2 2 2.0364 0.3474 94.4 1.9974 0.0504 94.5
150 2 2 2.0270 0.2783 95.8 1.9988 0.0410 94.4
200 2 2 2.0177 0.2384 95.4 1.9987 0.0355 95.3

50 2 3 2.0634 0.5358 94.3 2.9946 0.0730 93.1
100 2 3 2.0377 0.3544 95.2 2.9974 0.0501 94.5
150 2 3 2.0254 0.2836 95.5 2.9984 0.0408 95.3
200 2 3 2.0169 0.2433 95.8 2.9981 0.0353 95.6

50 2 4 2.0548 0.5370 93.7 3.9928 0.0715 94.1
100 2 4 2.0359 0.3582 94.4 3.9957 0.0500 94.6
150 2 4 2.0233 0.2865 95.8 3.9967 0.0407 95.2
200 2 4 2.0140 0.2455 95.6 3.9965 0.0352 95.4

50 3 2 3.2750 1.1502 92.8 1.9999 0.0626 94.5
100 3 2 3.0860 0.6542 92.7 2.0007 0.0437 94.5
150 3 2 3.0693 0.5187 94.2 2.0008 0.0355 94.6
200 3 2 3.0428 0.4397 95.1 2.0004 0.0307 95.5

50 3 3 3.3158 1.2529 93.3 2.9985 0.0621 93.4
100 3 3 3.1165 0.6746 93.9 2.9996 0.0437 95.4
150 3 3 3.0896 0.5302 95.5 2.9996 0.0355 95.1
200 3 3 3.0594 0.4479 94.7 2.9996 0.0308 94.9

50 3 4 3.4002 2.2907 93.4 3.9967 0.0622 94.0
100 3 4 3.1205 0.6852 94.0 3.9974 0.0437 96.1
150 3 4 3.0886 0.5346 96.2 3.9977 0.0355 95.2
200 3 4 3.0594 0.4520 95.8 3.9976 0.0307 95.0

50 −2 2 −2.1168 0.6585 96.1 2.0050 0.0742 94.4
100 −2 2 −2.0606 0.4220 95.4 2.0004 0.0508 94.1
150 −2 2 −2.0405 0.3339 95.3 2.0009 0.0412 94.6
200 −2 2 −2.0265 0.2847 95.9 2.0002 0.0356 95.6

50 −2 3 −2.0988 0.6171 95.6 3.0047 0.0729 93.9
100 −2 3 −2.0468 0.4012 95.4 3.0010 0.0503 94.0
150 −2 3 −2.0335 0.3196 95.7 3.0011 0.0408 95.0
200 −2 3 −2.0209 0.2730 96.3 3.0005 0.0353 95.9

50 −2 4 −2.0935 0.6023 95.1 4.0026 0.0724 94.0
100 −2 4 −2.0480 0.3933 95.3 3.9986 0.0500 94.3
150 −2 4 −2.0367 0.3140 95.7 3.9987 0.0406 94.7
200 −2 4 −2.0255 0.2686 95.6 3.9982 0.0351 95.3

4. Including Covariates

Let us now assume that covariates are to be included in the model. First, consider that

α(θ, µ) = θκ(θ) +
√

µ− ϕ(θ)κ(θ)2, (11)
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where ϕ(θ) = 4 + θ2(5 + 2θ2) and where µ > ϕ(θ)κ(θ)2. Under this assumption, the mean of the pf
given in (4) is just the parameter µ, as is usually assumed when covariates must be included in the
model. Now, let x′ix′ix′i = [x1i, x2i, . . . , xki] be a vector of k× 1 covariates or factors associated with the
length of stay of the i-th tourist and where xji is the j-th factor for the i-th observation, j = 1, 2, . . . , k.
This vector of linearly independent regressors will determine ti. The model provides great simplicity
and the mean is straightforwardly expressed in terms of µ. Therefore, in order to introduce the
covariates, we need only assume a translated one unit logit link, defined by

µ(xixixi, βββ) = 1 + exp(x′ix′ix′iβββ), (12)

where βββ = (β1, . . . , βk)
′ denotes the corresponding vector of regression coefficients. Furthermore,

this logit link ensures that µi = µ(xixixi, βββ) lies within the interval [1, ∞). The log-likelihood of the
model with covariates is similar to that given in (8) except that α is replaced by α(θ, µ), given in (11).
Thus we have

`(t̃; θ, βββ) ∝
n

∑
i=1

log ωα(θ,µi)
(ti) + 2

n

∑
i=1

(ti − 1) log α(θ, µi)−
n

∑
i=1

[α(θ, µi)]
2.

The normal equations are now given by

n

∑
i=1

1
ωα(θ,µi)

(ti)

∂ωα(θ,µi)
(ti)

∂θ
+ 2κ(θ)

n

∑
i=1

[
ti − 1

α(θ, µi)
− α(θ, µi)

]
[1−

2θ2κ(θ)− θ(2 + 3θ2)κ(θ)2√
µi − φ(θ)κ(θ)2

]
= 0,

n

∑
i=1

1
ωα(θ,µi)

(ti)

∂ωα(θ,µi)
(ti)

∂α(θ, µi)
+

n

∑
i=1

[
ti − 1

α(θ, µi)

−α(θ, µi)]
(µi − 1)xj√

µi − ϕ(θ)κ(θ)2
= 0,

for j = 1, . . . , k, where,

∂ωα(θ,µi)
(ti)

∂α(θ, µi)
=

2α(θ, µi) + γα(θ,µi),θ(ti)

α(θ, µi)2

[
2α(θ, µi)θ −

γα(θ,µi),θ(ti)

α(θ, µi)

]
.

Finally, ∂ωα(θ,µi)
(ti)/∂θ can easily be computed by means of the chain rule.

4.1. Marginal Effects

The marginal effect can be defined as the variation in the conditional mean of T caused by
a one-unit change in the j-th covariate. It is calculated as

∂µi
∂xj

= β j(µi − 1),

for i = 1, . . . , n and j = 1, . . . , k. The marginal effect indicates that a one-unit change in the j-th
regressor will increase or decrease the expectation of the length of stay. The effect is determined by the
sign, positive or negative, of the regressor for each mean. For indicator variables such as xk, which only
take the value 0 or 1, the marginal effect in terms of the odds ratio is approximately exp(β j). Therefore,
when the indicator variable is one, the conditional mean is approximately exp(β j) times greater than
when the indicator is zero.
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5. Empirical Analysis

5.1. Literature Review on Length of Tourist Stay

Previous analyses of the length of tourist stay at a given destination have mainly focused on the
factors which may determine or influence this duration. Two types of econometric method have been
proposed to address this question. On the one hand, the survival analysis method, which has been
discussed by [12–19], among others. However, this technique has been criticised by [20], who observed
that various justifications for survival models as an alternative to traditional OLS regression do not bear
close scrutiny. According to this critic, the OLS regression model describes the association between a
set of independent variables and length of stay at least as effectively as the various survival models
that have been proposed. In the second approach, an empirical statistical property is addressed, such
as the presence of various modes in the distribution of the length of stay. Thus, [8–10] have proposed
estimating binary and/or multinomial logit models for various time periods: up to seven days, 7 to
14 days and so on. However, a drawback of this type of modelling is that segmentation into weekly
categories is rather arbitrary [3]. To overcome this objection, [3] proposed estimating a latent class
Poisson regression model for the length of stay. This model assigns individuals endogenously to
categories presenting homogeneous preferences, such that each latent class corresponds to a segment
of the sample with a unique set of preferences. For each class, the model estimates the impacts of
other variables relevant to the final length of stay. Finally, [7] used a count data quantile regression to
analyse the multimodality of tourists’ length of stay. In this paper, the authors used micro-level data
to calculate price and income elasticities for the length of tourist stay at various holiday destinations
in Italy. In a related study, [2] examined two distributions which may incorporate bimodality. The
first was a flexible discrete distribution that can be applied to bimodal or unimodal data sets, while
the second was an infinite mixture model that explained the unobserved heterogeneity in the main
parameter, reflecting the heterogeneity of tourists’ preferences. Covariates may be included in either of
these models.

5.2. Data

In the present study, the data were obtained from the Canary Islands Tourist Expenditure
Survey (Encuesta de Gasto Turístico), carried out by the Canary Islands Institute of Statistics (ISTAC).
This survey was based on interviews conducted with tourists on the day of their departure and provides
quarterly information on total tourist expenditure in the Canary Islands. The survey population
comprises Spanish and foreign tourists who enter the Canary Islands by air. The study excludes
tourists whose expenditure in their country of origin (i.e., flights and accommodation paid in advance)
is zero. It includes both those who booked a package holiday and those who travelled independently.
The tourists comprising the study population were from Germany, Austria, Belgium, Denmark,
mainland Spain, Finland, France, the Netherlands, Ireland, Italy, Norway, Poland, Portugal, the
United Kingdom, Czech Republic, Russia, Sweden, Switzerland and Luxembourg. They stayed for
at least one night and for no more than 30 consecutive nights. The study variables considered were
household income expenditure at origin concerning the vacation and other characteristics regarding
Spanish and foreign tourists who visited the Canary Islands during 2011 (17,923 observations) (see
Appendix A Annex for definitions of variables). Table 2, with the descriptive statistics obtained for the
dependent and explanatory variables used, shows that the average tourist spent 1473 euros at origin,
preferred a “sun and beach” type holiday and was travelling in an average group size of two persons.
On average, these tourists had visited the Canary Islands three times, had a household income of
36,000 to 48,000 euros, were 42 years old and had booked the trip through a tour operator. Almost half
(47%) stayed in a 4 or 5 star hotel, and 36% had booked their flight with a low cost carrier.
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Table 2. Descriptive statistics for all tourists. Filtered database.

Variables Mean Standard Deviation

Length of stay 8 nights 3 nights
Expenditure at origin 1473 euro 1038 euro
Household income (categorical variable) 3 2
Job 84% –
Nationality 17%
Sun & beach 94%
Low cost 36%
Travel party size 2 persons 1 persons
Repetition 3 times 3 times
4–5 star hotel or other accommodation 47%
1, 2, 3 star hotel or other accommodation 16%
Transport booked by tour operator 56%
Accommodation booked by tour operator 48%
Age of the respondent (years) 42 13

Number of tourists after data cleansing 17,923

As can be seen in Figure 3, the statistical distribution for the variable length of stay, in all cases,
is distinctly bimodal, with the vast majority of stays being for seven or fourteen days, the typical
duration of package holidays in the Canary Islands. The mean length of stay was around eight
nights. This bimodality was tested by the Pearson coefficient for unimodal versus bimodal distribution,
which is calculated as skewness2-kurtosis. The value obtained, 15.72, confirmed the bimodality of the
distribution. In addition, Hartigan’s dip test was conducted to determine whether the distribution was
other than unimodal. The test result of 0.07 (p-value = 0.00) indicated significant multimodality.

5.3. Model Results

The proposed model was evaluated by ML, the BFGS algorithm and Poisson regression,
incorporating the survey information obtained for all tourists. Table 3 shows the results obtained for
the model without covariates, the corresponding p-values (in brackets), the maximum value of the
log-likelihood function for distribution (4) and the number of observations. Comparisons were made
with the zero truncated Poisson (ZTP) and zero truncated negative binomial (ZTNB) distributions and
the following probability functions:

g(t) =
αt exp(−α)

(1− exp(−α))t!
, t = 1, 2, . . . ,

g(t) =
1

1− pr

(
r + n− 1

t

)
pr(1− p)t, t = 1, 2, . . . ,

where r = α/θ and p = 1/(1 + θ), with α > 0 and θ > 0.
Table 3 shows that all these parameters are statistically significant at 5%. This table also includes

the maximum value of the log-likelihood function (`max), the number of observations actually used
and some measures of goodness-of-fit evaluated at the maximum likelihood estimates and based
on the information-criterion approach. These measures are the Akaike information criterion (AIC),
the Bayesian information criterion (BIC) and the consistent Akaike information criterion (CAIC) [21].
The latter overcomes the tendency of the AIC to overestimate the complexity of the underlying model,
since it lacks certain properties of asymptotic consistency and does not directly depend on the sample
size. The expressions for these measures are as follows:



Symmetry 2020, 12, 442 10 of 15

AIC =
−2`max

n
+

2k
n

,

BIC =
−2`max

n
+

k log(n)
n

,

CAIC =
−2`max

n
+

k(1 + log(n))
n

,

where k is the number of parameters and n is the sample size. The lower the value of these measures,
the better. Figure 3 shows a smooth kernel distribution based on empirical data and on the fitted pf.
The pattern of empirical data is clearly captured by the proposed distribution.

Table 3. Maximum likelihood estimates for models without covariates: Zero truncated Poisson (ZTP),
zero truncated negative binomial (ZTNB) and bimodal shifted Poisson. The p-values are shown
in parentheses.

ZTP ZTNB Bimodal Shifted Poisson

θ̂ 0.336 1.643
[0.00] [0.00]

α̂ 8.454 8.450 2.978
[0.00] [0.00] [0.00]

`max −46,519.40 −46,003.90 −44,386.10
AIC 93,040.90 92,011.80 88,776.20
BIC 93,048.70 92,027.40 88,791.80

CAIC 93,049.70 92,029.40 88,793.80

Observations 17,923 17,923 17,923
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Figure 3. Observed and expected counts under the basic model without covariates.
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Table 4 shows the results obtained with covariates, with ordinary least squares (OLS) estimates
and also the ML estimation for TP, TNB and Bimodal Shifted Poisson regressions. The table includes
the corresponding coefficients and p-values. The coefficients for covariates in the non-linear models
should be interpreted with caution, because the estimated coefficients are not the marginal effects,
and so the marginal effects are computed using the formula: β̂k exp(X′ β̂), where k represents the k-th
covariate, X′ is a vector of covariates included in the mean equation and β̂ is a vector of estimated
parameters. These effects can be evaluated at the mean or at each observation. For this reason, Table 4
includes the marginal effects evaluated at the mean (ME).

A notable aspect of the ML results is that the parameter θ̂ in Table 4 is statistically significant
at 5%. Some coefficients in the zero-truncated Poisson and negative binomial models present
important changes in magnitude and sign. Moreover, in terms of information criteria (AIC, BIC
and CAIC), the shifted Poisson model outperforms the TP and TNB models. In the following, therefore,
we comment on the results obtained for the Shifted Poisson model. The constant term represents
a tourist with the following characteristics: someone who visits the Canary Islands in the spring,
who is staying in their own home or with family/friends or who has other non-hotel accommodation,
whose trip is for reasons other than a “sun and beach” holiday, whose transport and accommodation
were not booked via a tour operator and who did not book in advance. Most of the parameters
observed are statistically significant at 5%. Only one coefficient is significant at 10%. The proxy
for cost of travel and accommodation in the country of origin, described as “expenditure at origin”,
has a positive coefficient. In other words, the greater the expenditure, the longer the stay. However,
contrasting results have been reported in previous research. For example, [17] obtained negative
coefficients for tourism in Madeira. Reference [22] reported positive results in their study of Chinese
tourism, but the coefficients for the income variables, although close to zero, were negative, and
thus contrary to expectations. Our review of the literature revealed varying signs in this respect.
For example, [23] obtained a negative value, although it was not statistically significant; this finding
contrasts with those of [22], who obtained positive results. Regarding the influences of individual
characteristics, such as the nature of the vacation, positive effects were found for the dummy variable
“sun and beach” (motivation for the trip), but also for accommodation-related variables (i.e., whether
the tourist stayed in a 4 or 5 star or a 1–3 star hotel). According to our analysis, repetition of the trip was
positively associated with length of stay, although [20] measured a negative effect for this parameter.
Statistically negative effects were found for the coefficients low-cost carrier, nationality and prebooked
transport and accommodation. In addition, there was a significant positive association between the
respondent’s age and the length of stay. Finally, with regard to seasonal effects, the summer season
(Q4) is positively associated with the length of stay, while the winter (Q1) and autumn (Q3) have a
negative effect.
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Table 4. Ordinary least squares (OLS) and maximum likelihood (ML) estimates for TP, TNB and the bimodal shifted Poisson models with the inclusion of covariates.

OLS ZTP ZTNB Bimodal Shifted Poisson

Coeff p-Value Coeff p-Value ME Coeff p-Value ME Coeff p-Value ME

Expenditure at origin (in logs) 2.255 <0.01 0.165 <0.01 1.26 0.168 <0.01 1.28 0.200 <0.01 1.53
Medium income −0.398 <0.01 −0.042 <0.01 −0.32 −0.041 <0.01 −0.32 −0.043 <0.01 −0.33
High income −0.870 <0.01 −0.093 <0.01 −0.71 −0.092 <0.01 −0.70 −0.102 <0.01 −0.78
Repetition 0.128 <0.01 0.017 <0.01 0.13 0.017 <0.01 0.13 0.016 <0.01 0.13
Sun and beach −0.014 0.876 −0.005 0.592 −0.04 −0.002 0.855 −0.02 0.019 0.102 0.15
Age 0.036 <0.01 0.004 <0.01 0.04 0.004 <0.01 0.04 0.004 <0.01 0.04
Nationality −0.861 <0.01 −0.199 <0.01 −1.51 −0.198 <0.01 −1.51 −0.193 <0.01 −1.47
Pre-booked transport and accommodation −0.475 <0.01 −0.071 <0.01 −0.54 −0.069 <0.01 −0.53 −0.065 <0.01 −0.50
Low cost −0.177 <0.01 −0.030 <0.01 −0.23 −0.030 <0.01 −0.23 −0.033 <0.01 −0.26
4–5 star hotels −2.785 <0.01 0.165 <0.01 1.26 0.168 <0.01 1.28 0.200 <0.01 1.53
1, 2 or 3 star hotels −2.017 <0.01 0.194 <0.01 1.47 0.197 <0.01 1.50 0.237 <0.01 1.80
Non-hotel accommodation −1.269 <0.01 0.265 <0.01 2.01 0.268 <0.01 2.04 0.312 <0.01 2.37
Travel party size −0.665 <0.01 −0.043 <0.01 −0.33 −0.043 <0.01 −0.33 −0.050 <0.01 −0.38
Q1 −0.205 0.002 −0.019 0.004 −0.15 −0.020 0.035 −0.16 −0.032 <0.01 −0.25
Q3 0.918 <0.01 0.129 <0.01 0.98 0.128 <0.01 0.98 0.138 <0.01 1.06
Q4 −0.150 0.023 −0.017 0.009 −0.13 −0.017 0.052 −0.13 −0.019 0.019 −0.14
Constant −4.982 <0.01 0.700 <0.01 5.32 0.679 <0.01 5.16 0.295 <0.01 2.24
θ 0.091 <0.01 0.890 0.000
`max −45,212.191 −43,962.17 −43,914.45 −42,937.100
AIC 87,958.30 87,864.90 85,910.20
BIC 88,090.80 88,005.20 86,050.50
CAIC 88,107.80 88,023.20 86,068.50

Observations 17,923 17,923 17,923 17,923
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6. Conclusions

This paper proposes a count data model based on the Poisson distribution, taking into account
both bimodality and overdispersion. The model proposed is the shifted Poisson distribution, in the
view that it is suitable for modelling the length of tourist stay, taking bimodality into account.
This model was applied to the Canary Islands, a popular holiday destination, and would also be
suitable with respect to tourism in the Balearic Islands, another major tourist destination in Spain.
Using data from the Canary Islands Tourist Expenditure Survey for the year 2011, and taking into
account information for all tourists, our shifted Poisson model provided a reasonable fit. Only the
coefficient of income did not appear to be coherent with the expenditure literature, although this
outcome has also been reported by previous studies of the duration of tourist visits. Finally, several
variables corresponding to vacation characteristics were found to have statistically significant effects
on the length of stay, as were some individual characteristics, such as age.
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Appendix A. Annex: Brief Description of Variables Used

This annex includes a brief description of the variables used in the empirical analysis section.

1. Length of tourist stay (days) in the Canary Islands.
2. Expenditure at origin (€). Flights and accommodation for the travel party, paid in advance. This is

usually the main expenditure by each tourist, and is effected in the country of origin.
3. Some individual characteristics.

3.1 Household income. Measured as an ordered categorical variable, not as a continuous one.
This variable takes the following values: = 1, from 12,000 to 24,000€; = 2, from 24,001
to 36,000€; = 3, from 36,001 to 48,000€; = 4, from 48,001 to 60,000€; = 5, from 60,001
to 72,000€; = 6, from 72,001 to 84,000€; and = 7, higher than 84,000€. Medium income
is a dummy variable which takes the value one when categories are 3, 4 or 5, and 0
otherwise. High income is a dummy variable that takes the value 1 for categories 6 and 7,
and 0 otherwise.

3.2 Age of the survey respondent. Finally, we controlled for seasonal variables, considering
three dummies: summer, autumn and winter. Summer was taken as June to September,
autumn as October to December and winter as January to March. In winter, there is much
less competition in the sun-and-beach tourism market than in summer, as there are few
good alternatives for tourists in this demand segment (in many cases, too, tourists prefer
to repeat their visits) [24].

4. Some vacation characteristics.

4.1 Type of accommodation. The following types of variable were considered: a dummy
variable, taking the value 1 if the tourist accommodation is a 4 or 5 star hotel/aparthotel,
and 0 otherwise; a second dummy variable, taking the value 1 if the tourist accommodation
is a 1, 2 or 3 star hotel/aparthotel, and 0 otherwise; and a third dummy variable taking
the value 1 if the tourist stays in non-hotel accommodation and the value 0 otherwise.
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The reference categories considered are own home or staying at the home of friends or
family, or other types of accommodation.

4.2 Travel party size or family size. The number of persons booking the holiday package paid
for in the country of origin.

(a) Repetition. The number of previous visits to the Canary Islands. A value of 0 is
possible, indicating that at the moment of the interview, this is the tourist’s first visit
to the Canary Islands.

4.3 Transport (return flight) and accommodation booked via a tour operator.
4.4 Low cost. This is a dummy variable, taking the value 1 if the travel arrangements were

made with a low-cost carrier, and 0 otherwise.
4.5 Sun and beach. A dummy variable, taking the value 1 if the tourist’s motive for travel is a

“sun and beach” holiday, and 0 otherwise.
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