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Abstract 

Hyperspectral imaging (HSI), also known as imaging spectroscopy, is a technology 

capable of sampling hundreds of narrow spectral bands across the electromagnetic 

spectrum through the use of optical elements that disperse the incoming radiation into 

discrete wavelengths. This technology combines the main features of two existing 

technologies: imaging and spectroscopy, making it possible to exploit both the 

morphological features and the chemical composition of objects captured by a camera. 

The interaction between electromagnetic radiation and matter is distinctive for each 

material, therefore by using this technology it is possible to discriminate among different 

materials.  

Although historically HSI has been applied to remote sensing, in recent years this 

technology has become a trending topic in different research fields such as food quality 

analysis, military and security applications or precision agriculture, among many others. 

HSI is also an emerging imaging modality in the medical field. The study of light 

propagation through biological tissues is useful to identify several diseases. These 

properties of the interaction between light and biological tissue motivate the use of 

technologies that exploit the information of light propagation through tissues to develop 

tools for diagnosis support. As an alternative diagnostic tool, one of the strengths offered 

by HSI is being completely non-invasive and label-free. 

Traditional computational pathology, also known as digital pathology, is an emerging 

technology that promises quantitative diagnosis of pathological samples, reduction of 

inter-observer variability among pathologists, and saving time in the manual 

examination of histological samples. Traditional computational pathology relies on RGB 

digitized histology images. Within computational pathology, several research groups 

have begun to explore whether hyperspectral/multispectral (HS/MS) imaging are 

technologies able to provide further advantages to this end. 

In this Ph.D. thesis, we evaluate the potential of HSI as a diagnostic tool for the 

analysis of histological samples. First, we perform a literature systematic review, where 

we analyze the use of both HSI and MSI for pathological diagnosis, digital staining and 

other similar applications. Such systematic review adheres to the guidelines of the 

preferred reporting items for systematic reviews and meta-analyses (PRISMA). 

Additionally, we survey the most common processing methods which are used to extract 

useful information for disease detection and diagnosis using HSI. 

 Second, we characterize the instrumentation used to capture microscopic HS images, 

and we propose a methodology where we propose some recommendations to correctly 

set up the instrumentation in order to acquire high quality microscopic HS images. Next, 

different databases composed by histological HS data from both brain and breast tumors 

have been generated. The specimens consist of pathological slides where the Pathologists 

have indicated the areas corresponding to a concrete diagnosis, i.e., tumor or not tumor 

areas.  The pathological slides used in this thesis were processed and analyzed by the 

Pathological Anatomy Department of the University Hospital Doctor Negrín at Las 

Palmas of Gran Canaria (Las Palmas de Gran Canaria, Spain), and by the Department of 

Pathology from the Tortosa Verge de la Cinta Hospital (Tortosa, Spain) 



Due to the nature of the problem, HS images are processed using both Machine 

Learning and Deep Learning algorithms in order to evaluate the performance of 

automatic diagnosis using HS images. In this dissertation, we demonstrate that the 

combination of hyperspectral microscopic imaging and image processing techniques is a 

promising tool for future computational pathologies. 
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Resumen 

La tecnología de imágenes hiperespectrales (HSI), también conocida como 

espectroscopia de imagen, es una tecnología capaz de muestrear cientos de bandas 

espectrales a lo largo del espectro electromagnético mediante el uso de elementos ópticos 

que dividen la radiación lumínica a su entrada en longitudes de onda discretas. Esta 

tecnología combina las principales características de dos tecnologías ya existentes: la 

imagen digital y la espectroscopia. Esto permite explorar tanto las características 

morfológicas como la composición química de los objetos capturados por una cámara 

hiperespectral. La interacción entre la radiación electromagnética y la materia es 

característica de cada material, y a través del empleo de esta tecnología es posible 

discriminar entre diferentes materiales. 

Aunque históricamente este tipo de imágenes se ha aplicado en el campo de la 

teledetección, en los últimos años esta tecnología se ha convertido en un tema candente 

en diferentes campos de la investigación, como puede ser el análisis de la calidad de los 

alimentos, aplicaciones militares y de seguridad o la agricultura de precisión, entre otros. 

Las imágenes hiperespectrales son también una modalidad de imágenes emergente en el 

campo de la medicina. Esto está motivado porque el estudio de la propagación de la luz 

a través de los tejidos biológicos se ha demostrado útil para identificar varias 

enfermedades y patologías. Estas propiedades de la interacción entre la radiación 

lumínica y los tejidos biológicos motivan el uso de esta tecnología para desarrollar 

herramientas de ayuda al diagnóstico. Como herramienta alternativa de diagnóstico, una 

de las principales características que ofrece la imagen hiperespectral es ser 

completamente no invasiva y sin necesidad de etiquetado. 

La patología computacional, también conocida como patología digital, es una 

tecnología emergente con la que se busca el diagnóstico cuantitativo de las muestras 

patológicas, proporcionando la reducción de la subjetividad de diagnóstico entre los 

patólogos, así como el ahorro de tiempo en el análisis manual de las muestras 

histológicas. La patología computacional convencional se basa en imágenes histológicas 

digitalizadas en RGB. En el marco de la patología computacional, varios grupos de 

investigación han comenzado a estudiar si las imágenes hiperespectrales son capaces de 

proporcionar ventajas sobre las tecnologías de imagen convencionales. 

En esta tesis, se evalúa el potencial de la imagen hiperespectral como herramienta de 

diagnóstico para el análisis de muestras histológicas. En primer lugar, se ha realizado 

una revisión sistemática de la literatura, donde se analiza el uso de esta tecnología para 

el diagnóstico patológico, la tinción digital y otras aplicaciones similares. Dicha revisión 

sistemática se ha regido por las directrices de las preferred reporting items for 

systematic reviews and meta-analyses (PRISMA). Además, también se ha realizado un 

análisis sobre los métodos de procesamiento más comunes que se utilizan para extraer 

información útil para la detección y el diagnóstico de enfermedades utilizando HSI. 

En segundo lugar, se ha caracterizado la instrumentación utilizada para capturar 

imágenes hiperespectrales microscópicas, y se ha propuesto una metodología en la que 

se proponen una serie de recomendaciones para configurar correctamente la 

instrumentación con el fin de adquirir imágenes microscópicas de alta calidad. A 



 

 

continuación, se han generado diferentes bases de datos de imágenes hiperespectrales 

de muestras histológicas, tanto de tumores cerebrales como de mama. Los especímenes 

consisten en muestras histológicas en las que el patólogo ha indicado las áreas 

correspondientes a un diagnóstico específico, es decir, la localización de las áreas 

tumorales y no tumorales.  Las muestras patológicas utilizadas en esta tesis fueron 

procesadas y analizadas por el Departamento de Anatomía Patológica del Hospital 

Universitario Doctor Negrín de Las Palmas de Gran Canaria (Las Palmas de Gran 

Canaria, España), y por el Departamento de Patología del Hospital Tortosa Verge de la 

Cinta (Tortosa, España). 

Dada la naturaleza del problema, las imágenes se han procesado utilizando algoritmos 

de Machine Learning y Deep Learning para evaluar la capacidad del diagnóstico 

automático utilizando las imágenes hiperespectrales. En esta tesis, se demuestra que el 

uso de imágenes microscópicas hiperespectrales en combinación con técnicas de 

procesamiento de imágenes es una herramienta prometedora para el futuro de la 

patología computacional. 
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Chapter 1: Introduction 

1.1 Motivations 

In the last decades, hyperspectral/multispectral (HS/MS) imaging (HSI/MSI) have 

become very popular techniques employed in numerous areas and applications. This 

type of images collects information along the electromagnetic (EM) spectrum, covering 

a wide range of wavelengths that generally span the visible, near-infrared and mid-

infrared portions of the spectrum. HS/MS images can be seen as a three-dimensional 

(3D) data structure where two dimensions correspond to spatial information while the 

third dimension stands for the spectral information. This technology combines the main 

features of two existing technologies: imaging and spectroscopy, making it possible to 

exploit both the morphological features and the chemical composition of objects 

captured by a camera. Since all materials reflect, absorb or emit EM energy at specific 

wavelengths, this characteristic of the HS images permits to reconstruct the radiance 

spectrum of every image pixel and consequently, to identify different materials on the 

basis of their spectral shape. This property makes HS data beneficial for a wide variety 

of applications. Although historically HSI has been applied to remote sensing [1], in 

recent years this technology has become a trending topic in different research fields such 

as food quality analysis [2], [3], military and security applications [4] or agriculture [5], 

[6], among many others [7]. HSI is also an emerging imaging modality in the medical 

field. It has been proven that the interaction between the EM radiation and matter carries 

useful information for diagnostic proposes [8].  

The use of HSI for microscopic examination of samples has recently attracted the 

attention of many researchers from different fields  [9]. In mineralogy, Pirad et al used 

HS microscopic images for the quantitative analysis of minerals [10], finding strong 

correlation between the collected spectral signatures and previously collected 

spectrographic data. Jaap van der Weerd et al. applied this methodology to identify and 

classify different pigments in paint cross sections obtained from paintings, exploiting the 

potential of the visible spectra in the detection process [11]. Furthermore, this technology 

was used to evaluate the plant disease resistance against different pathogens in smart 

farming applications [12], [13]. However, it is in the medical field where HS microscopic 

imaging has emerged as a potential tool for non-invasive disease diagnosis.   

Many clinical diagnoses of different diseases are usually carried out by HS 

microscopic examination of histological samples. Traditional diagnosis of histological 

samples is based on the manual examination of the morphological features of samples 

by skilled pathologists. In recent years, the use of computer-aided technologies for 
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improving these procedures has been an emerging trend to reduce the intra and inter-

observer variability [14]. Such technologies are intended to improve the diagnosis, make 

it reproducible and quantitatively measurable, and save time in the examination of 

samples [15], [16].  

Computational pathology, also known as digital pathology, is an emerging technology 

that promises quantitative diagnosis of pathological samples, reduction of inter-observer 

variability among pathologists, and the saving of time in the manual examination of 

histological samples [17], [18]. Traditional computational pathology relies on RGB (Red, 

Green and Blue) digitized histology images. Within computational pathology, several 

research groups have begun to explore whether HSI/MSI are technologies able to 

provide further advantages to this end. 

HSI and MSI technologies have the potential to transform the fields of digital and 

computational pathology. Traditional digitized histopathological slides are sampled 

using RGB imaging. Utilizing HSI/MSI, spectral information across wavelengths within 

and beyond the visual range can complement the spatial information for the creation of 

computer-aided diagnostic tools for both stained and unstained histological specimens. 

Motivated by the aforementioned context, in this PhD thesis we evaluate the potential 

of HSI as a diagnostic tool for the analysis of histological samples. The outline of this 

thesis can be summarized as follows. First, we present a detailed analysis of the usage of 

the HSI technology for histological applications. Then, we review the most important 

concepts regarding the HS instrumentation. Taking advantage of such concepts, the 

instrumentation used during this PhD thesis is described. Such instrumentation consists 

on a microscope and a HS camera. Afterwards, different datasets of HS images from 

histological samples were created. In this PhD thesis, histological samples corresponding 

to two different types of tumors were analyzed. The creation of such dataset involved a 

multidisciplinary collaboration between engineers and pathologists. Finally, the images 

were processed with the goal of evaluating the potential of the HS technology together 

with machine learning as an automatic diagnostic tool for computational pathology 

applications.  

Concretely, the work presented in this thesis describes the main outcomes achieved 

during the collaboration between the Institute for Applied Microelectronics (IUMA) of 

the University of Las Palmas de Gran Canaria (ULPGC) with several relevant research 

institutions, such as the Centre of Software Technologies and Multimedia Systems 

(CITSEM) of the Universidad Politécnica de Madrid (UPM), the Hamlyn Centre of the 

Imperial College London (ICL), the Ecole Nationale Supérieure des Mines de Paris 

(ENSMP), the Wessex Neurological Centre of the University Hospital of Southampton 

(UHS), the Department of Anatomy Pathology of the University Hospital Doctor Negrin 

(UHDRN) of Las Palmas de Gran Canaria, and the Departament of Neurosurgery from 

the later hospital. These collaborations were framed within the European project 

HELICoiD (HypErspectraL Imaging Cancer Detection), funded by the Research 

Executive Agency, under Grant Agreement 618080, through the Future and Emerging 

Technologies (FET-Open) Programme, under the 7th Framework Programme of the 

European Union. HELICoiD was a collaborative project between four universities, three 

industrial partners and two hospitals, whose main goal was to use HSI to generalize a 

methodology to discriminate between normal and malignant tissues in real-time during 

neurosurgical procedures. Besides main goal of this project, biological specimens 

consisting of histological samples extracted during the neurosurgical interventions were 
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analyzed by pathologist and subsequently captured using a HS microscopic acquisition 

system. Finally, the images were processed in order to extract information about the 

samples’ diagnosis using image processing techniques.  

Besides this collaboration, in the context of the project PLATINO (Plataforma 

Hw/Sw Distribuida Para El Procesamiento Inteligente De Informacion Sensorial 

Heterogenea En Aplicaciones De Supervision De Grandes Espacios Naturales, 

reference TEC2017-86722-C4-4-R) founded by the Spanish Government, a microscope 

optimized for the capture of microscopic HS images was acquired by the research group. 

In the context of this thesis, such microscope was optimized for the acquisition of high-

quality images, and several microscopic HS databases of histological samples were 

acquired.  

In addition, thanks a collaboration carried out between the IUMA and the Department 

of Bioengineering of the University of Texas at Dallas (UTD), different algorithms were 

studied and applied to the automatic diagnosis of histological samples. This research was 

framed in the ITHaCA (Hyperspectral Identification of Brain Tumors) project, funded 

by the Canary Islands Government under Grant Agreement ProID2017010164. Besides, 

under the collaboration with the Department of Pathology of the Hospital de Tortosa 

Verge de la Cinta, in Tortosa, it was possible to include in this dissertation the analysis 

of breast cancer specimens. 

Finally, this thesis was developed while Samuel Ortega was beneficiary of a pre-

doctoral grant given by the “Agencia Canaria de Investigacion, Innovacion y Sociedad de 

la Información (ACIISI)” of the “Conserjería de Economía, Industria, Comercio y 

Conocimiento” of the “Gobierno de Canarias”, which is part-financed by the European 

Social Fund (FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74 (85%)). 

1.2 Objectives 

The main objective of this dissertation is to evaluate the combination of HSI with 

image processing techniques for the analysis of histological samples. The final goal of 

this study is to establish a relationship between the outcomes of the HS image processing 

and the diagnosis provided by the pathologists.  To achieve this main goal, several 

specific objectives were proposed at the beginning of this thesis:  

− To acquire the required knowledge about the usage of HSI for 

computational pathology, analyzing the current advantages and 

disadvantages of the technology, the instrumentation requirements, and the 

commonly used image processing methods for such type of data. 

− To design and develop a microscopic HS acquisition system adequate for 

pathological slides, and to propose a methodology to acquire high-quality 

images by using such acquisition system. Using such instrumentation, different 

HS image databases will be generated and used as input for image processing 

algorithms devoted to extract useful clinical information about the samples.  

− To design and develop HS classification algorithms capable of 

discriminate between tumor and normal tissues using different HS histological 

image databases. 
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1.3 Thesis organization 

This thesis has been structured in 6 chapters that are interrelated as presented in 

Figure 1-1. A brief explanation of each chapter is presented next. 

Chapter 1: Introduction. In the present chapter, the main motivations and 

objectives that have led to the development of the thesis are described. In 

addition, the structure of the document is presented. 

Chapter 2: State-of-the-art in computational pathology using 

hyperspectral imaging. In this chapter, the main concepts regarding 

MSI/HSI are introduced. First, we present the main concepts regarding 

the MSI/HSI technology, including the basic knowledge about the 

instrumentation used to acquire HS data and the most common 

techniques for the information extraction from HS data. Second, we show 

the context on the usage of MSI/HSI for biomedical applications, 

especially in computational pathology.  

Chapter 3: Microscopic instrumentation and acquisition of hyperspectral 

data. In this chapter, we present the details about the HS 

instrumentation that has been used during this research project. First, the 

key concepts related with HS acquisition systems are reviewed, 

highlighting how each element of the instrumentation influences the 

overall system response. Second, we describe the instrumentation used in 

this PhD thesis. Such instrumentation consists of a microscope and a 

push-broom HS camera. Finally, we propose a methodology to correctly 

set up a push-broom microscope to capture high-quality HS images. 

Chapter 4: Spectral-based classification of histological HS images. In this 

chapter, we describe the use of HSI for the detection of brain tumor in 

pathological slides. We present two different supervised learning 

approaches for the processing of the same biological samples. These two 

approaches are different since the acquisition system, the data partition 

and the processing framework are different. First, the biological samples 

available for this study are presented. Second, an approach to process the 

HS data with data belonging to low magnifications is presented. Finally, 

an improved acquisition and processing system of high magnification HS 

images is performed. 

Chapter 5: Deep Learning for the spatial-spectral classification of 

histological HS data. Deep Learning approaches are able to exploit 

simultaneously both the spatial and the spectral features of HSI. In this 

chapter, we explore the use of deep learning techniques for the 

classification of two types of specimens. First, we apply deep learning 

techniques to the HS human brain dataset which has been described in 

Chapter 4. Then, we create a novel dataset for discriminating between 

normal and tumor breast cancer cells using deep learning.     

Chapter 6: Conclusions & future lines. In this chapter we summarize the main 

contributions of this PhD thesis, as well as we outline the main 

conclusions depicted from this research work. Then, we present the 

potential research lines which have arisen from the development of this 
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PhD thesis.  Finally, the academic  production developed in the context of 

this PhD is presented, i.e. the scientific communications performed 

during the development of the work described in this thesis and the 

different collaborations performed with other institutions and research 

groups are detailed. Specifically, 33 articles published in several journals 

indexed in the JCR (Journal Citation Reports), 24 peer-reviewed 

conference papers, a book chapter, and 1 patent have been achieved 

during the course of this thesis. In total, 59 scientific contributions have 

been accomplished. 

Annex A:   Sinopsis en español. In this annex, a brief summary of the thesis is 

presented in Spanish.  

Bibliography: This thesis manuscript concludes with the list of references employed 

during the elaboration of this document.  

 

 

Figure 1-1: Thesis organization and interrelation between chapters. 
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Chapter 2: State-of-the-art in 

computational pathology using 

hyperspectral imaging 

In this chapter, we provide a brief survey about the main concepts regarding HSI. 

First, we present the main concepts regarding the MSI/HSI technology, including the 

basic knowledge about the instrumentation used to acquire HS images and the most 

common techniques for the information extraction from HS data. Second, we show the 

context on the usage of MSI/HSI for biomedical applications, especially in 

computational pathology. Finally, we provide some discussion about the current status 

of this field, and the upcoming challenges for the future. 

The contents depicted in this chapter have been published in two literature review 

articles and in a book chapter. The book chapter is entitled “Information Extraction 

Techniques in Hyperspectral Imaging Biomedical Applications”, published in the book 

"In Multimedia Information Retrieval” (2020, IntechOpen); and the literature review 

articles are the following ones: “Use of Hyperspectral/Multispectral Imaging in 

Gastroenterology. Shedding Some–Different–Light into the Dark” (2019, Journal of 

Clinical Medicine, MDPI), and “Hyperspectral and multispectral imaging in digital and 

computational pathology: a systematic review [Invited]” (2020, Biomedical Optics 

Express, OSA Publishing). 

2.1 Hyperspectral imaging 

HSI and MSI, also known as Imaging Spectroscopy, is a technology capable of 

overcoming the imaging limitations of the human vision based in white light (WL). In 

fact, HSI combines the features provided by two technologies that have been, for decades 

now, used separately i.e. digital imaging and spectroscopy. Digital imaging allows 

recording of the morphological features of a given scene, extracting information of 

different objects regarding shape and textures. Spectroscopy deals with the interaction 

between the EM radiation and matter. While the capabilities of the human vision are 

restricted to a certain region of the EM spectrum (EMS), the visible spectrum that spans 

from 400 to 700 nm, most common HS commercial systems expand this spectral range 

from 400 to 2500 nm. Although there are HS cameras able to cover the EM up to 12 

microns, such systems are restricted to certain applications that are out of the scope of 
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this dissertation. HSI provides information in regions of the EMS that the human eye 

cannot see, revealing therefore substance properties that are normally unavailable to 

human beings. Furthermore, while the human eye is only capable of distinguishing three 

different wavelengths associated with the opsins of the retina (Cianopsin sensitive to 430 

nm -blue light-; Cloropsin sensitive to 530 nm -green light-; and, Eritropsin sensitive to 

650 nm -red light-), HS cameras can capture the EMS in hundreds of different narrow 

wavelengths, largely increasing the resolution over to what the humans can see. On the 

other hand, MSI is based on the same principle of HSI with the main difference that MSI 

is generally characterized by a lower number of spectral channels [19]. 

An HS image is recorded in a data structure called HS cube, which contains both 

spatial and spectral information from a given image. The information inside the HS cube 

can be visualized in several different ways. If a single pixel from an HS image is selected, 

the spectrum related to this pixel can be examined. Likewise, it is possible to visualize 

the entire spatial information for a given wavelength. The observed information at 

various wavelengths represents different properties of the matter. Figure 2-1 shows an 

HS cube, where both types of representations can be observed. 

 
Figure 2-1: Example of an HS cube from in-vivo human brain surface and spectrum from the 

pixel in red (left). Several images at different wavelengths obtained from the HS datacube 

(right). 

The spectral signature (also called spectral fingerprint) is the curve that links the EM 

radiation with a certain material. The key point of this concept is that each material has 

its own interaction with the EMS, hence the spectral signature of any given material is 

unique. By analyzing the spectral signatures contained in an HS image, it is possible to 

distinguish between the different substances that are present in the captured image. 

Nevertheless, to properly differentiate materials by using the spectral signature 

information, some issues have to be addressed. First, the measured spectral signature 

from the same material can present subtle variations, i.e. inter-sample variability. 

Second, there are materials that present spectral similarities among them, being 

extremely challenging to perform an automatic differentiation of such materials based 

only on their spectral signatures. 
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 Many researchers have employed HSI technology for different applications such as 

non-invasive food quality inspection [1], [2], improving recycling processes [22], or 

examining paintings for accurate identification of the pigments used in order to refine 

their restoration [4], [5]. Geologists use HSI to identify the location of different minerals 

[25]. Furthermore, in agriculture this technology has been used to quantitatively 

characterize the soil [26] or to identify the stress levels of plants [27].  

2.1.1 Hyperspectral systems 

HS acquisition systems present a challenge to engineers, who have to handle 

sophisticated optical and electronic systems to generate an HS cube. Although a HS cube 

is a 3D data structure (Figure 2-1), most image sensors are 2D. For this reason, HS 

instrumentation can be classified in three main types, depending on how the HS cube is 

generated: spatial-scanning systems, spectral-scanning systems and snapshot cameras.  

Prior to present the different types of HS cameras, some background about the HS 

instrumentation should be presented. The most important concepts to describe a 

hyperspectral acquisition system are the spectral range, the spectral resolution and the 

spatial resolution. The spectral range is the portion of the EMS sampled by a HS camera. 

There are several standard values for the spectral range from 400nm to 2500nm. The 

spectral resolution refers to the maximum number of spectral bands that can be resolved 

by a hyperspectral camera, and the spatial resolution is defined as the size of the smallest 

object that can be recorded by a camera. These definitions allow to establish a 

comparison between hyperspectral systems. 

Here we provide a brief explanation of these technologies, intended to provide readers 

context about the HS instrumentation. Further readings about this topic can be found in 

[28]. 

2.1.1.1 Spatial scanning systems 

Spatial scanning systems are usually compound by an optical element which performs 

the diffraction of the incoming light into fixed locations of a sensor, where the spectral 

channels are sampled. There are two types of spatial scanning HS systems. Whiskbroom 

systems are able to collect a 1-D data array containing the spectrum of the object that is 

being focused by the system. To capture an HS cube in this manner, it is necessary to 

perform a spatial scanning, where either the camera or the captured object(s) shift their 

position while the camera is capturing frames. The scanning can be also performed by 

using a mirror in front of the fore optic and moving the mirror to image the whole object. 

Although the use of mirrors allows developing more compact instrumentation (hence 

more appealing in clinical circumstances), it is necessary to take care about the geometric 

distortion that mirrors can produce in the captured image. In opposition to Whiskbroom 

HS systems, Pushbroom HS systems make use of optical gratings able to capture the 

spatial response of objects across a complete spatial dimension. In other words, 

pushbroom acquisition systems are capable of acquiring simultaneously a single spatial 

dimension (a narrow line of an image) and the whole spectral information for a given 

scene.  In pushbroom systems, a spatial scan of the remaining spatial dimension is 

required to obtain a HS cube.  

The core of these cameras is an optical element that splits the incoming radiation into 

specific wavelengths values [29]. These optical systems are able to provide very 
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competitive spectral resolution and are sensitive to a wider spectral range (from 300 nm 

to 2500 nm). The drawback of spatial scanning systems is the spatial resolution, which 

is limited both by the sensors and by the spatial scanning itself. Additionally, the 

requirement of a spatial scanning makes impossible for spatial scanning systems to 

acquire objects that are moving. In counterpart, these systems fit well in linear 

movement environments, such as a production line chain (e.g. in food industry), or in 

satellites for Remote Sensing applications. For this reason, in the medical field these 

types of cameras are used in open surgical procedures, for in-vivo surface inspection or 

for ex-vivo tissue analysis. It is not possible to directly attach this type of cameras to 

medical apparatus, like laparoscopes or intraoperative microscopes, due to their inability 

to perform spatial scanning. Some examples of HS acquisition systems, based on push-

broom cameras, can be found in Figure 2-2.A and B, while the intraoperative use of these 

systems are presented in [30] and [31]. Furthermore, it is possible to use this kind of 

cameras for registering pathological slides [32], as can be observed in Figure 2-2.C. 

Regarding the acquisition time, it is constrained by a tradeoff between the speed of 

the scanning system and the camera frame rate. However, the spatial scanning imposes 

longer acquisition times compared to other HS systems.    

2.1.1.2 Spectral scanning systems 

Another approach to create a HS cube is performing a spectral scanning where both 

spectral dimensions are captured each time for a single wavelength.  This type of cameras 

employs an optical element that filters the incoming radiation, registering the entire 

spatial information of a single wavelength at each and every moment. Spectral scanning 

systems are also called staring array in the literature. There are several types of staring 

array cameras. The simplest one consists of a wheel containing optical filters, and the 

switch between different filters is performed mechanically. Nevertheless, filter wheels 

are limited in the number of spectral channels, and the time required to capture a HS 

cube is long due to the mechanical switch of spectral channels. However, there are other 

technologies which allow the acquisition of higher spectral resolution images.  

Liquid Crystal Tunable Filter (LCTF) or the Acousto-Optic Tunable Filter (AOTF) are 

devices where the spectral transmission can be electronically controlled [33]. The 

spectral resolution of these systems is limited by the spectral bandwidth of the filter. 

Although there are narrow spectral filters available in the market, the spectral resolution 

is not as accurate as the achieved using a light-diffraction approach. Another drawback 

of AOTFs and LCTFs is that they are limited in the spectral range that can be covered. 

Despite this limitation, the use of spectral scanning technologies allows the use of 

conventional monochromatic cameras as sensors. For this reason, the spatial resolution 

can be high, depending on the selection of the sensors. It makes possible to obtain the 

highest spatial resolution among HS systems. The acquisition time in staring array 

systems is proportional to the number of spectral channels to be captured, and the 

switching time between different wavelengths. Common values of the switching time in 

AOTF and LCTFs are tens of milliseconds. Other advantages of LCTFs and AOTFs is that 

it would be possible to decrease the acquisition time of a HS cube by selecting only the 

most relevant spectral channels for a given application. Spectral scanning systems are 

not suitable for applications where the captured object is moving, because the spatial 

information may vary for different wavelengths. However, these cameras can be easily 

attached to medical instruments and can offer high spatial resolutions. An example of 
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HS acquisition system for medical applications using these cameras is shown in Figure 

2-2.D [34]. 

Other less common spectral scanning technique make use of a spectrally-tunable light 

source to perform the spectral scanning. 

2.1.1.3 Snapshot systems 

The remaining type of HS cameras is called snapshot [35]. Snapshot technology is 

intended to deal with the main limitation imposed by the previously described HS 

technologies: real-time acquisition. It is not possible to collect HS or MS data in real-

time using the above-mentioned HS technologies for the requirement of performing a 

scan (either spatial or spectral). These technologies are restricted to static situations, or 

scenarios where the object that is moving has a slightly lower speed compared to the scan 

speed. For these reasons, where necessary to obtain HS data of non-static scenes (e.g. 

living cell imaging) a snapshot camera must be employed. Furthermore, snapshot 

cameras can be directly attached to clinical instrumentation, such as endoscopes or 

laparoscopes. Nevertheless, both the spectral and the spatial resolution of the snapshot 

cameras are lower compared to the other HS technologies. To the best of our knowledge, 

there is no current research in GI using snapshot cameras, mainly because all 

preliminary exploration of HS technology in GI is focused to prove the capabilities of the 

technology for diagnosis, and hence it is necessary to evaluate each scenario using high 

performance spectral and spatial instrumentation. 

 
Figure 2-2: HS acquisition system used in medical applications. (a) and (b) HSI acquisition 

systems based on push-broom cameras for in-vivo human brain tumor detection [31] and in-

vivo pig abdominal surgery [30]. (c) Liquid crystal tunable filter camera attached to an 

endoscope for cancerous tissue detection [34]. (d) Microscope coupled to an HSI push-broom 

camera for pathological slides registration [36]. 
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2.1.2 Hyperspectral image processing 

As mentioned in the previous sections, HSI data facilitates the identification of 

different materials. However, to successfully retrieve useful information from HS 

images, the application of appropriate image analysis techniques is necessary. In this 

section, a brief overview of such techniques is provided. They include pre-processing 

algorithms, e.g., for noise removal (HS images carry noise that may affect information 

extraction) [37], [38], HSI system calibration (with respect to the camera spectral range 

and resolution) [39], feature extraction [40], dimensionality reduction [41], 

classification [42], spectral unmixing [43], and Normalized Difference Index (NDI) 

estimation [44], [45].  

Data acquired using HS instrumentation is highly biased by both the instrumentation 

and the environmental conditions. In order to remove the influence of instrumentation 

(mostly the wavelength dependencies of the sensor and grating efficiency and 

transmission of the lens), is common to perform a calibration. The typical calibration 

procedure in HS and MS imagery consists of capturing a reference image using a material 

that has a flat spectral response (e.g. Spectralon). This reference image captures the 

spectral dependencies of the instrumentation and is used to remove the influence of the 

instrumentation in the captured HS images. 

There are two main types of medical HSI processing: optical inverse modeling and 

machine learning approaches. Next, both methods will be presented in detail, showing 

their main characteristics, as well as their advantages and disadvantages.  

2.1.2.1 Optical inverse modeling 

In optical inverse modeling techniques, a mathematical equation which models the 

interaction between the light and tissue is proposed, and the collected HS data is used to 

extract optical properties, such as the absorption or scattering of tissue. First, a physics-

based model is proposed for the light propagation in tissues. Second, the HS data are 

used to extract optical properties from the proposed light propagation model. Although 

the number of studies which make use of this type of approach is limited, some 

researchers have used HS and light transport models in tissue to extract useful 

information for the detection of different diseases or conditions. Milanic et. al used 

Monte Carlo simulations of a light transport model in skin to extract information about 

the contents of melanin and blood saturation, with the goal of measuring cholesterol 

levels in human skin [46]. The same authors performed a similar processing analysis to 

skin HS data, but with the goal of detecting arthritis [47]. Claridge et. al demonstrated 

the utility of optical inverse modeling techniques for the estimation of the blood volume 

fraction of ex-vivo colon samples, showing statistically significant differences between 

the blood volume fraction of tumor and healthy conditions [48].  

The use of optical inverse modeling for information extraction in medical HSI 

presents some advantages and challenges. The main advantage is to count with an 

established physical-based model for correlating measured data, which are theoretically 

strong and contain tissue optical parameters that can be used for diagnostics. The main 

disadvantage of this approach is the possibility of bias in the model development and 

over-simplification of complex physical processes, which could result in suboptimal 

performance for information extraction. 
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2.1.2.2 Machine learning methods 

Machine Learning (ML) methods are algorithms able to learn from data. ML 

algorithms enable solutions to difficult tasks which usually cannot be performed by a 

traditionally designed computer program [49]. There are different ML algorithms 

depending on the task they perform. In regression problems, a numerical variable is 

estimated from the data. In the context of medical HSI, Arimoto et al. used regression 

techniques to estimate the oxygen saturation map from human retina [50]. In 

classification problems, the objective is to assign a data sample to a fixed category. For 

example, Fabelo. et al. used classification to identify normal tissue, tumor tissue, 

hypervascularized tissue and background in HS images from in-vivo human brain tissue 

[51]. The results of the classification of a medical HS image are usually represented as a 

classification map or heat map, where different colors for each class are used (Figure 

2-3).  

 

Figure 2-3. Example of classification and heat maps obtained through ML classification from 

(a) in-vivo brain tissue HS images [51] and (b) histological brain tissue HS images [52].  

ML algorithms can be classified as supervised and unsupervised. In unsupervised 

algorithms, the goal is to cluster similar data samples in groups, extracting the 

information from data features. In supervised algorithms, the data is comprised of the 

data features and associated labels [53]. For example, in the example of Figure 2-3.A, the 

data features are the spectra of each pixel of the HS image, and the labels are the different 

categories into which each pixel can be categorized, i.e. normal tissue, tumor tissue, 

hypervascularized tissue and background. The main goal of supervised algorithms is to 

use data and their labels to train a model which can be used to perform predictions about 

new data. ML techniques can be categorized as Feature Learning (FL) or Deep Learning 

(DL) methods. In FL approaches, the inputs of a supervised classifier are given by 

features extracted from the data. For example, in an image processing framework, such 

features may be related to shape, texture or color. On the contrary, DL approaches are 

devoted to use all the data as input to a supervised classifier, and the important features 

to perform the classification task are learned by the supervised classifier.  

There are challenges related with both types of ML approaches. On the one hand, in 

FL methods, the classification may be biased by which features are selected from the data 

for the classification, while the identification of features is performed automatically by 

the algorithm. On the other hand, DL methods usually require large amounts of data to 

succeed in the feature extraction and classification, while FL approaches may provide 
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good performance with a limited dataset. Next, we provide a survey about the different 

ML approaches which are commonly used for HSI processing in medical applications. 

2.1.2.2.1 Feature Learning 

In this section, we describe the most common FL approaches which have been 

employed for processing medical HS data. This section is categorized in three main 

categories, namely pixel-wise classification, feature extraction and selection methods, 

and the usage of both the spatial and spectral information. 

a) Pixel-wise classifiers 

In the HS literature, the concept of pixel-wise processing refers to the exclusive usage 

of the spectral information within an HS cube for extracting information from HS data. 

Recently, Ghamisi et. al performed a survey between the most commonly used classifiers 

in pixel-wise classification of HS images [54]. The most common classifiers used for the 

classification of HS images from a feature learning perspective are Support Vector 

Machines (SVMs), Random Forest (RF) and Multinomial Logistic Regression (MLR) 

based approaches. 

SVM is a binary classification algorithm proposed by Vapnik [55]. The algorithm finds 

the optimal hyperplane that maximizes the margin between samples belonging to 

different classes. Although it was originally designed for linear classification, an SVM 

classifier can be used for nonlinear classification problems by using different kernels to 

map the data into a higher dimensional space. SVM has been shown to provide good 

classification performance even with a limited training sample [56].  

RF was firstly proposed by Breiman [57]. This algorithm consists of an ensemble of 

decision trees, where, in each decision tree, the training data are hierarchically 

partitioned into smaller homogeneous groups. In RF, different decision trees are 

generated from the training data, and the different classification results are combined by 

a voting process. The main advantage of RF is a reduced training time. RF has been 

successfully used for the classification of HS images [58]. 

Finally, MLR [59] approaches exploit the posterior class distributions of the training 

data for making predictions, and these methods have been successfully applied for the 

classification of HS images. The main advantages of MLR are fast computation for 

training and customizability, which allows modifications to the original algorithm to 

provide better generalization, e.g. sparsity constraints or multiple feature learning.   

In the context of medical HS classification, several authors have utilized spectral 

information for the diagnosis of different diseases in a pixel-wise manner. The most 

commonly used pixel-wise classifier in medical HSI is SVM. In the context of surgical 

guidance, Akbari et. al processed HS images from the abdomen to detect intestinal 

ischemia [60]. For cancer detection, SVM and HSI have been used for the identification 

of gastric cancer [61], prostate cancer [62], tongue cancer [63], and skin cancer [64]. 

Although RF and MLR have been widely used for HS information extraction, their usage 

in medical HSI is limited. RF has been used for the detection of in-vivo oral cancer [65], 

while MLR has been considered for identification of ulcerative colitis in histological 

slides [66]. The main challenge in this field is to determine which pixel-wise classifier is 

more suitable for the classification of certain HS data. In this sense, some authors have 

performed comparisons of performance of different pixel-wise classifiers for the 

detection of brain cancer in histological slides [36], or the detection of the tumor margins 
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in head and neck ex-vivo tissue [67]. Although SVM has been shown to outperform other 

classifiers, a deeper comparison between different classifiers should be urgently 

performed to definitively demonstrate which pixel-wise classifier performs better with 

HSI across multiple applications. 

b) Feature extraction and feature selection 

HS data are characterized by having a high dimensionality. For this reason, instead of 

exploiting the complete spectral signature for image analysis, one trend in HSI 

processing is the use of Dimensionality Reduction (DR) methods. These methods reduce 

the dimensionality of the original data while preserving the most relevant information 

[68]. DR methods have been extensively used for HS image processing. There are two 

main types of DR approaches: feature extraction and feature selection methods.  

On the one hand, in feature extraction methods, a transformation is applied to the 

data to generate a new representation with lower dimensionality but similar information 

content. The most studied DR algorithm for HSI is Principal Component Analysis (PCA). 

The goal of PCA [69] is searching for a linear transformation of the data by using 

orthogonal projections which minimize the covariance matrix of the original data. On the 

other hand, several data transformation approaches have been proposed for 

dimensionality reduction, such as wavelet transformations [70], different orthogonal 

projection approaches, or the exploitation of manifold embeddings [71].   

Nevertheless, in feature extraction methods the data are transformed, and thus the 

physical information about specific wavelengths is lost, which means that the provided 

interaction between light and tissue cannot be analyzed, which may affect certain 

applications. For this reason, feature selection methods are devoted to find the most 

relevant features from the original data by keeping the most relevant information. In the 

context of HSI, feature selection methods are also known as band selection methods, 

which also seek to identify the most relevant spectral features for a certain application. 

There are several types of band selection methods. In this chapter, we only describe the 

most prominent methods used in medical HSI. In a large-dissimilarity criteria approach, 

the goal is to select the most dissimilar spectral bands. Conversely, in a low-correlation 

criterion, the spectral bands showing low correlation between each other are selected. An 

example of this kind of algorithm is Maximum Relevance Minimum Redundancy 

(mRMR). In search-based methods, the band selection is performed by solving an 

optimization problem driven by a given optimization function. These algorithms search 

for the best bands to solve such optimization problem. Some search-based methods used 

in HSI are Genetic Algorithm (GA) [72] or Particle Swarm Optimization (PSO) [73]. 

Further details about more sophisticated band selection techniques can be found in [74].   

In the context of medical HSI, feature extraction methods are used both as standalone 

methods and as a preprocessing stage before further data analysis. The former approach 

is to enhance the visualization of data, while the latter reduces the complexity of the data 

for being processed by other machine learning approaches. As an example of the direct 

application of PCA for tissue visualization enhancement, Zuzak et. al applied PCA to 

abdominal HS images in order to enhance the visualization of biliary trees using in-vivo 

samples [75]. Also, Wilson et al. demonstrated the ability of HSI for melanin detection 

in histological unstained specimens of melanocytic lesions in the skin and the eye using 

PCA and false-color representations of data [76]. PCA has been used for extracting the 

most important features of HS data prior to classification in different applications, such 
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as the detection of in-vivo oral cancer [77], prostate cancer in histological slides [78], the 

identification of white blood cells in blood smear slides [79] or the intraoperative 

delineation of brain tumors [80]. Another example of the utility of feature extraction 

methods was demonstrated by Hadoux et. al, where relevant differences between the 

retinal spectral data from patients with Alzheimer and healthy patients were found after 

applying an orthogonal projection of data [81]. Such differences in the spectral signature 

from different disease states were not possible using the raw spectral signature of tissue. 

Beyond PCA and orthogonal projection methods, Ravi et. al proposed a modification of 

the t-Distributed Stochastic Neighbor Embedding (t-SNE) feature extraction algorithm, 

a non-linear dimensionality reduction technique, prior to the identification of tumor 

tissue within in-vivo brain samples [82]. Other feature extraction methods used in 

medical HSI prior to classification are the use of Wavelet transformation for the 

detection of prostate cancer in mice models [83], or the use of Fourier Series coefficients 

for breast cancer detection [84].   

The use of band selection methods for medical HSI applications is not as prominent 

as in other fields, such as remote sensing. However, some researchers have successfully 

exploited different band selection methods in HSI. Goto et. al used the Mahalanobis 

distance to determine the optimal wavelengths for gastric cancer identification between 

normal and tumor mucosa [85]. Additionally, mRMR has been used for the identification 

of the most relevant bands for ex-vivo breast cancer detection [84], and for in-vivo head 

and neck cancer [86]. Finally, Martinez-Vega et. al proposed a search-based method 

based on different optimization algorithms for the identification of the most relevant 

wavelengths for brain tumor detection within in-vivo HS images [87]. The optimization 

function was the pixel-wise classification performance metrics obtained by an SVM 

classifier. The results demonstrated that a GA optimization slightly improves tumor 

identification compared to the full-spectra counterpart. 

Both feature selection and feature extraction methods aim to reduce the 

dimensionality of HS data while retaining the most important information. Successful 

application of these techniques leads to reduced computational time, which is required 

in applications such as surgical guidance. Nevertheless, for biomedical HS applications, 

there are some relevant advantages of using band selection methods instead of feature 

extraction methods. The first advantage is that the information about the concrete 

wavelengths that are used is retained. This fact allows further analysis about the physical 

response of different tissues to specific wavelengths. The second advantage of band 

selection methods is the possibility of developing custom HS cameras which only 

captures the most relevant spectral channels for a given application. Such reduced-band 

cameras would be able to acquire HS video, which would be also convenient for some 

surgical guidance applications. 

c) Spatial-spectral information 

Although the aforementioned data processing methods rely on the spectral 

information, a HS cube is a 3D data structure containing both the spatial and the spectral 

information of a scene. In a recent review manuscript, He et. al provided a survey about 

different spatial-spectral techniques which have been used for the classification of HSI 

[88]. The inclusion of both spectral and spatial information is motivated by limitations 

found in the spectral data. First, the high dimensionality of spectral data together with a 

limited dataset can lead to the curse of dimensionality. This phenomenon offers more 

detailed information about the captured scene, but it also contains redundant 
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information and increases the computational time required to process the data [4]. 

Second, the high variability shown in the spectral data due to different lighting 

conditions, instrumentation noise, or other phenomena, makes the classification based 

only on the spectral information a challenge. In addition, high intra-class and low inter-

class variability of the spectral signatures produces difficulties in the differentiation 

between classes. This problem is particularly challenging in biomedical data, where data 

originate from multiple patients. For these reasons, researchers within the HSI 

processing community have successfully improved the classification of pixel-wise 

approaches by the utilization of spatial and spectral features from HS images.  

In [88], the authors proposed a classification of spatial-spectral approaches in three 

main types, depending on how the spatial information is integrated in the processing 

framework. In pre-processing approaches, spatial and spectral features are extracted 

from the HS cube, and then such features are used for the classification. In integrated 

classification, both spatial and spectral features are used to train the classifier. Finally, 

in post-processing approaches, the spatial information is employed to refine the results 

of a pixel-wise processing of the HS cube.  

In the context of medical HSI processing, most of the spatial-spectral approaches have 

been focused in pre-processing and post-processing schemes. Some pre-processing 

approaches are the following. In leukemia detection in blood smear slides, Wang et al. 

evaluated the usage of three types of inputs for a supervised classifier: spatial features, 

spectral features, and spatial-spectral features. The results of this study suggest that the 

exploitation of both the spatial and the spectral features significantly improves the 

quality of the classification [89]. Similarly, Li et al. evaluated the feasibility of utilizing 

HSI for Red Blood Cell (RBC) counting. After conducting the RBC counting using 

uniquely spatial or spectral features of blood cells, the authors found an improvement in 

the under-counting and over-counting rates when they performed the image analysis 

using both types of features together [90]. Ortega et. al make use of the spatial 

information of the HS data by performing superpixel segmentation [91]. In post-

processing approaches, Fabelo et. al proposed the incorporation of the spatial 

information to the SVM pixel-wise classification by using a K-Nearest Neighbors (KNN) 

spatial filter which make use of a one-dimensional representation of the HS cube 

extracted using PCA for the identification of in-vivo brain tumor [80]. 

2.1.2.2.2 Deep Learning methods 

Deep Learning is a family of machine learning algorithms that learn abstract features 

to best represent and make predictions about new data that is presented. More 

specifically, artificial neural networks (ANNs) consist of consecutive layers of neurons 

that have non-linear activations that connect the input data, extract features, and 

connect to logical outputs representing the classes of labels to provide prediction 

probabilities. Neural networks can have various dimensionalities, which largely depends 

on the size and dimensions of the input data. For example, utilizing only spectral 

signature information, a 1-D NN can extract features with fully-connected layers or 1-D 

convolutions. However, HS cameras acquire spatial information and spectral signatures 

simultaneously. Therefore, to exploit both sets of features, pseudo 3-D HS data can be 

input directly into a 2D-CNN (Convolutional Neural Network) and extract spatial 

features with learned convolutional kernels in the spatial domain, and these filters are 

connected across the entire spectral domain of the HS data. Lastly, 3D-CNN can utilize 
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the full pseudo 3D HS data as input and extract spatial-spectral features with 3D 

convolutional kernels. There are numerous approaches, but these methods require more 

computational processing as more features and dimensions are involved. 

The most widely used approach is 2D-CNNs. Aggressive brain tumors, such as 

glioblastoma, often require surgical resection for treatment, and surgeons often 

implement multiple imaging modalities, including fluorescence, to aid in this very 

challenging task. In a pilot study to aid brain surgeons with label-free HSI, Fabelo et al. 

compared both 2D-CNN and 1D-DNN, considering spectral-only and spectral-spatial 

classification using DL [92]. In HSI digital histology, Ortega et al. detected glioblastoma 

brain cancer in digital slides using a patch-based 2D-CNN approach [93]. Additionally, 

Halicek et al. has employed very deep 2D-CNNs for classification, specifically the widely-

used Inception v4 model (Figure 2-4) implemented in a sliding patch-based approach 

for head and neck squamous cancer [94] and thyroid and salivary gland cancers [95]. For 

comparing 2D-CNN and 3D-CNNs, in [96] Halicek et al. explored spatial-spectral 

convolutions in 3D CNNs with 3D convolutional kernels to 2D approaches. Although 

data were limited to only 12 patients, the preliminary results suggest 3D convolutions 

outperformed 2D convolutions for CNN design at the cost of computational power and 

speed. 

Another desired application of DL for HSI is semantic segmentation, which allows the 

entire scene to be classified altogether from spectral-spatial features in the entire scene. 

Semantic segmentation does not require image reconstruction like patch-based 2D-CNN 

approaches. The most commonly used method is the U-Net, as first used in HSI by 

Trajanovski et al. for tongue cancer detection with a 2D input data using all HS channels 

for semantic segmentation of ex-vivo specimens [97]. Additionally, Kho et al. used ex-

vivo specimens from patients with breast cancer and applied a standard U-net with 2D 

input HS data using all spectral channels for semantic segmentation [98].  

 

Figure 2-4. Schematic diagram of the modified inception v4 CNN architecture. The CNN was 

customized to operate on the 25×25×91 patch-size selected. The receptive field size and 

number of convolutional filters is shown at bottom of each inception block. The convolutional 

kernel size used for convolutions is shown in italics inside each convolution box. Squeeze-and-

excitation modules were added to the CNN to increase performance [95]. 

More recently, several modern DL approaches with origins in computer-vision have 

been applied to medical HSI experimentally. In [99], a generative adversarial network 

(GAN) was applied to use DL to learn the association of RGB images and HS images to 

learn the ability to generate HS digital histology images from standard RGB digital 

histology images of breast cancer. Another modern approach is long-short-term-memory 
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(LSTM) and recurrent neural networks (RNN) which can utilize spatial-spectral and 

time-based inputs to operate in real-time video approaches. In [100], RNNs are 

compared to and outperform 2D- and 3D-CNN methods for in-vivo cancer detection with 

the goal of real-time video endoscopy.  

The use of DL for HS processing is currently a hot topic in the research community in 

different fields.  The main advantage of DL approaches in HSI is their capability to exploit 

jointly the spatial and the spectral information for image processing tasks. Currently, 

researchers are experimenting with different DL architectures in order to find the most 

appropriate DL model for HSI [101]. In the context of medical HSI, the use of DL in 

medical HS have shown good performance in different applications, but its usage is still 

limited compared to other ML approaches. The main reason is the limited number of 

data due to the novelty of the technology. More publicly available datasets with a large 

number of patients are required in order to definitively establish an adequate 

comparative of DL and traditional ML techniques. 

2.1.2.3 Other HS processing approaches 

In this section, we provide a survey about the most common processing frameworks 

for information extraction in medical HSI. However, there are other commonly used 

image processing techniques applied to HS image analysis, such as spectral unmixing or 

NDI estimation. On the one hand, spectral unmixing techniques, such as those based on 

Linear Mixture Models (LMMs), make the assumption that each pixel of an HS image 

can be modeled as the weighted sum of pure spectra elements (called endmembers). This 

technique tries to overcome the limited spatial resolution that generally characterizes MS 

and HS imaging compared to the traditional RGB imaging. Unmixing algorithms first 

find the endmembers and then estimate the abundance (proportion) of each endmember 

in a single pixel [43]. On the other hand, NDI-based approaches try to establish a 

combination of spectral channels that reveal some characteristics of the subject under 

study. For example, the Normalized Difference Vegetation Index (NDVI) aims to assess 

the presence of live vegetation in HS satellite images [44]. In the context of medical 

applications, a Melanoma Identification Index has been proposed in [45] for 

identification of skin lesions in dermoscopic HS images. 

2.2 HSI for medical applications 

The study of light propagation through biological tissues is useful to identify several 

diseases. Light propagation in biological tissues involves three different photophysical 

processes: refraction, scattering and absorption [102]. Refraction and reflection of light 

within biological tissues, which are usually non-homogeneous media, is related to the 

changes in speed and direction of light. The absorption of light involves the extraction of 

energy from light by molecules. Thus, absorption peaks are related to transitions 

between two energy levels in a molecule at a specific wavelength. These absorption peaks 

are used as a fingerprint of the molecules’ response to light, providing information that 

can be used for diagnostic purposes. Scattering of light occurs when there is a spatial 

variation of the reflective index within tissues. The scattering of some biological 

components shows variations under certain disease conditions, becoming useful for 

diagnosis purposes [103]. Finally, some tissues show fluorescence when are excited by 

an external light source. For example, the emission of proteins and nucleic acids can be 



Chapter 2 : State-of-the-art in computational pathology using hyperspectral imaging 

~ 38 ~ 

observed after exciting tissue with ultraviolet light. Traditionally, these properties of 

tissue are measured in the spectral range known as therapeutic window, from 600 to 

1300 nm [104], where tissues present weak absorption, and light is more likely to 

penetrate tissues.  

These properties of the interaction between light and biological tissue motivate the 

use of technologies that exploit the information of light propagation through tissues to 

develop tools for diagnosis support. Raman Spectroscopy (RS) and Fourier Transform 

Infrared (FTIR) Spectroscopy make use of the information of the vibrating molecules 

produced by photons for diagnostics [105]–[107]. RS and FTIR spectroscopy are useful 

for identifying types of molecules, leading to their usage in biomedical applications. Both 

techniques are based on the vibrational state of the molecules, but while FTIR 

spectroscopy is more appropriate for absorption measurements, RS is more sensitive to 

scattering changes. This makes both technologies complementary. Additionally, Spatial 

Frequency Domain Imaging (SFDI) make use of modulated light sources and light 

transport models to extract information about absorption and scattering about different 

tissues, which can be subsequently used for diagnosis [108]. Finally, after the application 

of specific fluorescent agents to the sample, fluorescence spectroscopy techniques are 

able to measure the fluorescence spectra of the specimen after light excitation. Such 

fluorescence spectra can be associated with different disease states, leading in 

applications for biomedical diagnosis [109]. 

In opposition to these spectral technologies, HSI/MSI are optical spectroscopy 

imaging modalities, which directly measure the incoming radiance spectra of light. There 

are two major detection modes, depending on the incidence of light within the tissue: 

light reflection or light transmission. The spectral information measured by these 

technologies is usually related to the information about both scattering and absorption 

of light within the sample but can also be used for fluorescence measurements.  In this 

sense, HSI/MSI are imaging techniques (also called imaging spectroscopy) able to obtain 

both spatial and spectral information within and beyond the human visual sensitivity, 

which is restricted to the spectral range from 380 to 740 nm. HSI/MSI can obtain 

additional information within the electromagnetic EMS by capturing the information 

regarding different wavelengths (also called spectral bands or spectral channels) up to 

2500 nm. Similarly to the human eye capabilities, RGB imaging can be conceived as a 

multispectral image with only three spectral bands, related with the opsins of the retina 

(blue light – 430 nm – cianopsin; green light – 530 nm – cloropsin; red light – 650 nm 

– eritropsin) ) [110]. Each pixel of an HS/MS image represent the light measured by the 

camera at each specific wavelength, creating a set of light measurements which comprise 

the spectral signature. This spectral signature can be understood as a fingerprint of each 

material that can allow differentiation of elements in a captured scene by using HS/MS 

processing algorithms [111]. 

In the medical field, several studies implement HSI/MSI for automated disease 

diagnosis and image-guided surgery [8], for example, both in-vivo and ex-vivo cancer 

detection [112], or gastroenterology applications [113], and many others. 
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2.3 HSI for computational histology 

In this section, we analyze the use of both HSI and MSI for pathological diagnosis, 

digital staining and other applications. This literature review adheres to the guidelines 

of the preferred reporting items for systematic reviews and meta-analyses (PRISMA), 

and the objectives of this review can be summarized by using the PICOS (participants, 

interventions, comparisons, outcomes and study design) criteria [114]. The subjects of 

studies found in this review are limited to specimens from healthy and diseased humans 

and mammals. Prior to conducting the search and systematic review, it was unknown if 

other studies would compare outcomes of HSI to other image analysis techniques using 

conventional RGB images. Therefore, the nature of this review is non-interventional and 

studies the applications of HSI/MSI only for microscopic examination. Papers that 

provide comparisons of imaging modalities are reported, but this systematic review is 

not restricted to them. The outcome is to summarize the current status of HSI/MSI in 

histological analysis and methodology, including details about the population of each 

study, sample preparation, instrumentation and data analysis methods. Lastly, regarding 

study design, all primary research publications that make use of HSI/MSI for analysis of 

all types of histological specimens (including both journal papers and conference 

proceedings) are considered for inclusion in this review. A detailed technological analysis 

and summary is provided for clinical applications, methodology, instrumentation, data 

analysis techniques, limitations, and quality of outcomes compared to conventional 

imagery.   

There are existing reviews related to the use of HSI/MSI for microscopy and digital 

histology available in the literature. Some of these reviews aim to present the basics on 

technology and the common processing approaches [115]–[117], but those manuscripts 

are limited in the number of applications covered and are not up to date. Other reviews 

are focused on technology aspects. Gao et al. performed a review describing the 

instrumentation used in HSI/MSI for microscopy applications [118], while Hermes et al. 

performed an overview of the different infrared sensing techniques [119]. Finally, 

Mansfield et al. presented a review about the application of only MSI for 

histopathological analysis more focused in the technical aspects [120].  

2.3.1 Systematic review methodology 

The methodology carried out for this systematic review adheres to the previously 

established PRISMA guidelines. The PRISMA guidelines consist of a four-phase flow 

chart and item checklist. The PRISMA statement [114] aims to improve the reporting of 

systematic reviews and meta-analyses. While the original focus of PRISMA is on 

randomized trials and interventions, it can also be used as the foundation for reporting 

systematic reviews of any type of research. Additionally, we used the PRISMA 

explanation and elaboration document [121] as a guideline, which is intended to enhance 

the use, understanding and dissemination of the PRISMA statement. The PRISMA 

statement establishes a methodology to perform a systematic review that includes a 

description of information sources to be used, the search strategy, the eligibility criteria 

of manuscripts, a report on how the study selection was carried out, and the protocol that 

researchers should follow when reviewing the manuscripts selected for the systematic 

review. 
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2.3.1.1 Eligibility criteria 

The eligibility criteria of the manuscripts are highly related with the aforementioned 

objectives, which follow the PICOS guideline. To this end, the manuscripts eligible to be 

included in this systematic review consist of applications of MSI, HSI, or near-infrared 

(NIR) imaging. The former is included just in case that some studies exploit the use of 

only a few wavelengths, but not the standard RGB for histopathological analysis. 

Moreover, this review will only cover optical microscopy, which excludes point-wise and 

non-imaging spectroscopy, RS, SFDI, or FTIR from the scope of this review.  

Furthermore, the specimens used by the studies covered in this dissertation are 

restricted to be acquired from human or mammals. Regarding the data analysis methods, 

all data analysis techniques will be included in this dissertation. Articles considered must 

be published between 2004 and 2019 and written in English. 

2.3.1.2 Information sources 

The search for manuscripts to be included in this systematic review was performed in 

the Scopus and PubMed databases. The Scopus database [122] is the largest abstract and 

citation database of peer-reviewed literature. Scopus comprises a comprehensive 

collection of research outputs in the fields of science, technology, medicine, social 

sciences, and arts and humanities. On the other hand, the PubMed database [123] is a 

free resource developed by the National Center for Biotechnology Information (NCBI) 

and the National Institutes of Health (NIH) of United States of America. PubMed 

comprises over 30 million citations and abstracts from the fields of biomedicine and 

health, including life sciences, behavioral sciences, chemical sciences, and 

bioengineering. As an additional source of information, after performing the study 

selection, we considered all references cited by the selected manuscripts for the clinical 

diagnostic research category for potential inclusion if they adhere to the previous 

eligibility criteria. 

2.3.1.3 Search 

The database search for manuscripts was performed on August 13th 2019. The search 

was limited to manuscripts published between 2004 and 2019 and written in English. 

Two different researchers performed the search, one in PubMed and the other one in 

Scopus. The keywords used in both searches were: 

(Hyperspectral OR Multispectral) AND (histology OR pathology OR histopathology) 

The primary searches produced 2,213 citations and abstracts in total: 1,115 from 

PubMed and 1,098 from Scopus.  

2.3.1.4 Study selection 

The screening was performed by two researchers by reading the titles and abstracts of 

the manuscript citations found in the search. If the suitability of a manuscript was not 

clear from the abstract, the full manuscript was obtained and scrutinized to decide if the 

document should be included in the systematic review. The studies that adhere to the 

above eligibility criteria were selected.  
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2.3.1.5 Protocol and registration  

As stated in the PRISMA guidelines, prior to the search and analysis of the 

manuscripts for this systematic review, we developed a protocol to be followed for 

reviewing manuscripts. This protocol is mainly focused in covering the objectives, i.e. 

questions to be addressed, of this systematic review, and it defines the data items to be 

sought during the evaluation of each manuscript. Our protocol is based on four major 

questions to be answered: the analysis of clinical data, the methodology used to carry out 

the experiments, the description of instrumentation employed, and the analysis of the 

data processing methods. For the analysis of clinical data, the authors should identify the 

types of tissues to be imaged, the number of patients, the types of patients, the 

histological preparation, e.g. staining, embedding, sectioning, etc., and the outcomes 

from a medical perspective. In the instrumentation, we searched for the type of HS/MS 

system employed and its characteristics, such as the spectral resolution, the spatial 

resolution, the number of bands, and the magnification. Lastly, regarding the data 

analysis methods, we sought for information regarding the calibration of data and the 

goal of the data analysis method, e.g. classification or segmentation. The information 

extracted from each manuscript is summarized in a table that contains all the data items 

previously mentioned. 

2.3.1.6 Risk of bias 

It is worth noting that the studies herein presented may suffer from publication bias 

or selection bias because these studies demonstrate positive results on the utility of 

HS/MS histological analysis. It is possible that only promising results are published and 

that comparison to other technologies, such as conventional imaging, could be 

intentionally omitted from experimental design or the final manuscript preparation. 

2.3.1.7 Search results 

In this section, we describe the study selection performed after the search. We make 

use of the PRISMA four-phase flow diagram (Figure 2-5). We also used Mendeley 

reference manager (Elsevier B.V., Amsterdam, Netherlands) as a computer-aid tool for 

the study selection. The primary search provided 1,115 manuscripts from PubMed and 

1,098 manuscripts from Scopus, having a total of 2,213 manuscripts. After removing 

duplicates, we analyzed abstracts from 1,648 manuscripts. From these records, we 

selected 311 for full-text review, and we rejected 1,337 records. We excluded 497 records, 

which were not related to HSI/MSI, and 840 records, which were not associated to 

histology. After reviewing the full-text articles, 118 were excluded because they were not 

in the scope of this systematic review. Finally, additional 20 manuscripts were included 

from the references of the selected articles. 

In total, we have included 193 research articles for this systematic review. The papers 

were categorized into five different sections: system development, color and staining, 

inmunohistochemistry (IHC), autoflorescence (AF) and diagnostic research for clinical 

routine practice. In addition to the systematic review of the selected papers, we have 

included some critical remarks on the current limitations and challenges of HSI/MSI at 

the end of each section.  
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Figure 2-5: PRISMA flowchart for the search of literatures and studies. 

2.3.2 Hyperspectral/multispectral system development 

In this section, we provide readers with a basic background about the instrumentation 

used for HSI/MSI in histology applications, and we briefly summarize the main research 

carried out in the context of HS/MS instrumentation development and optimization.  

There are three main characteristics of any HS/MS acquisition system: spectral range, 

spectral resolution, and spatial resolution. The spectral range is related to the range of 

EM wavelengths covered by the spectral camera. For biomedical applications, several 

light-tissue interactions can be observed in the diagnostic window, i.e. from 600 to 1300 

nm. There are several types of commercial HS/MS acquisition systems which cover 

different spectral ranges: visible and near-infrared (VNIR) spectrum (400 – 1,000 nm), 

NIR spectrum (900 – 1,700 nm) or short-wavelength infrared (SWIR) spectrum (1,000 

– 2,500 nm). The spectral resolution is defined as the resolution the EM is sampled, i.e. 

the difference between two consecutive spectral channels. A narrow spectral resolution 

may enable the identification of subtle absorption peaks, which is not possible to 

differentiate at lower spectral resolutions. Finally, the spatial resolution is related to the 

actual pixel size. Depending on the application, higher spatial resolutions are required to 

image small objects. In spectral imaging, the use of low spatial resolution can ultimately 

lead to spectrally-mixed measurements, i.e. finding the combined spectral signatures of 

several materials which are present in the current pixel. Low spatial resolution, and 

therefore high spectral-mixing, is admissible only when the application deals with 

homogenous materials, or at least materials that are homogenous enough for such spatial 

granularity.   

In addition to the basic features of HS/MS instrumentation, there are several types of 

acquisition systems that can be found in the literature depending on the way of capturing 

the spectral and spatial information. Spatial-scanning techniques collect all the spectral 

information from a single point (point-scanning or whisk-broom sensors) or from a 
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single spatial line (push-broom or line-scanning sensors) [124]. In order to collect the 

spatial information, spatial-scanning techniques require relative movement between the 

camera and the sample. In opposition, spectral-scanning methods aim to collect 

progressively all the spatial information for different wavelengths. In spectral-scanning 

methods, a single wavelength is captured each time, and the scan is performed by 

changing the central wavelength of the spectral channel to be imaged. Examples of 

spatial-scanning systems are filter wheels, LCTFs, and AOTFs [33]. Finally, snapshot 

sensors are designed to simultaneously collect both the spatial and the spectral 

information of the sample in a single shot [33]. Further comparisons between HS/MS 

acquisition technologies in terms of spatial resolution, spectral resolution, spectral range 

and acquisition time requirements can be found in [125].  

Most of the researchers who use HS/MS technologies for histopathological analysis 

use equipment based on a conventional microscope attached to a commercial HS/MS 

camera. Nevertheless, several research groups have focused their efforts in 

instrumentation development of HS/MS image acquisition systems for histological 

analysis of samples. These approaches include systems based on the following 

technology and sensors: AOTFs [126], [127], tunable light sources [128], imaging 

scanning spectrometers [129], [130], thin-film tunable filters [131], MS filter arrays 

[132], and push-broom scanning [133], [134]. Most of the acquisition systems in 

HSI/MSI are in the proof-of-concept stage and they are not ready to effectively perform 

whole-slide spectral imaging over the samples.  However, Jiang et al. proposed a whole-

slide imaging (WSI) system for HSI based on slit-array projections [135]. The 

aforementioned studies contain valuable information about development of HS/MS 

microscopic systems, but the contents are too technical for the previously established 

scope of this review. For completeness, the references are provided for interested readers 

to explore in more detail.  

In this section, we defined the most important parameters of HS/MS acquisition 

systems. HS/MS technology is shown as a promising technology for biomedical 

applications, since the spectral interaction between light and tissue has been proven to 

provide information about diagnosis. However, the instrumentation is still quite 

expensive, large amounts of data storage are needed, and computational requirements 

are extremely high. These storage requirements are more evident for histopathological 

applications, where histopathological laboratories are able to digitize hundreds of slides 

per day.  

However, it is possible to reduce the cost of the HS/MS instrumentation. If a reduced 

subset of spectral bands, which are useful for a certain application (e.g. certain tissue 

diagnosis) are identified, it would be possible to develop a low-cost MS system with 

similar storage requirements compared to conventional RGB imagery. In this situation, 

different low-cost MS systems can be used for different applications, where different 

spectral bands are required. Nevertheless, to reach this situation, more research should 

be performed with high resolution and wide spectral range HS instrumentation to 

determine which bands are relevant for each application. Furthermore, the storage 

capacity requirements can be also alleviated by making use of HS/MS data compression 

algorithms. The impact of using lossless or lossy compression in the data analysis should 

be determined in the close future. More investigation is required for histological 

applications where HS/MS analysis may increase the diagnosis ability of disease 

compared to conventional RGB imagery. 
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2.3.3 Color enhancement and digital staining 

The examination of pathological slides provides the final diagnosis for most diseases, 

and color plays an important role. In this context, Cukierski et al. made use of the concept 

of metamers for analyzing the advantages of MSI for histopathological imaging. If a color 

has a higher probability of being metameric, then MSI will likely improve the task of 

distinguishing two structures, which have similar color but different absorption spectra. 

Using the concept of metamers and linear algebra transformations, the authors 

concluded that the maximum spectral difference between two metamers is beyond the 

capabilities of the human eye, where MSI could boost the diagnostic capabilities of 

conventional RGB imagery [136], [137]. Uneven color conditions among different 

samples can complicate the examination of samples and may be caused by different 

staining conditions (staining time, temperature or pH of the solution) and 

instrumentation (camera and microscope characteristics). To handle this problem, Abe 

et al. proposed a method where the amount of dye is estimated by using MS images in 

combination with the Beer Lambert law, and then the original image is weighted to 

obtain a color-corrected image. The method was proven to perform the color correction 

under different conditions of H&E (hematoxylin and eosin) stained slides of human liver, 

namely over-staining, under-staining, and excess of either hematoxylin or eosin [138], 

[139]. Yagi et al. proposed a method for color standardization based on MSI and the use 

of a standardized color chart [140], [141]. This procedure was proven to deal with the 

variations in appearance of H&E stained slide from different laboratories, which is one 

of the biggest challenges in whole slide imaging of histological slides. Additionally, the 

capabilities of HSI/MSI to measure colors accurately make it attractive to be employed 

as benchmark for measuring the color performance. Motivated by the lack of 

conventional color performance techniques, such as colorimetry or spectroradiometry, 

to measure microscopic biological tissues, Salehen et al. evaluated the color performance 

of two different whole-slide imaging systems using HSI and three different H&E stained 

histological samples as color targets [142], [143]. 

Another interesting application of HSI/MSI in histopathology is digital staining. The 

main goal of this approach is to highlight molecular components in digitized slides 

without performing a physical stain of the samples. For example, Masson’s trichrome 

(MT) stain is used to emphasize fibrosis structures, which can aid in the diagnosis of 

chronic liver diseases. In this sense, Bautista et al. proposed several techniques to 

digitally stain H&E MS images and virtually transform into MT stained samples [144]–

[150]. Apart from the digital stain to simulate MT, the same group also applied digital 

staining to visualize the color differences between tissue structures that displayed similar 

H&E staining patterns. This approach promises to be useful to visualize tissue structures 

that are not emphasized by the original stain, without the requirement of additional 

physical staining [151], [152]. An example of this application can be observed in Figure 

2-6. Beyond digital staining of previously H&E stained samples, some researchers have 

focused their work in performing digital staining of unstained samples. In this field, 

Bautista et al. also performed digital generation of an H&E image from an unstained 

kidney slide using supervised classification of nucleus, cytoplasm and RBCs, and then 

applied a linear transformation to stain those components into a H&E like image [153]. 

Additionally, Bayramoglu et al. digitally stained an unstained lung specimen, producing 

the appearance of H&E staining, using a conditional generative adversarial network 

(cGAN) [154].  
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 (a) (b) (c)  

Figure 2-6: Example of digital staining of H&E images to provide them with the appearance 

of MT stain. (a) Original H&E image (b) Digitally stained image (c) MT stained image. 

Reproduced from [62]; Creative Commons BY 4.0; published by SPIE (2012). 

In summary, the current state-of-art uses of HSI/MSI in the field of digital staining 

and color optimization are mostly focused on color optimization, standardization of 

digitized slides, and digital staining of samples.  

In the context of color enhancement and standardization, the research carried out by 

the HSI/MSI community has been limited to proof-of-concept research, where the color 

reproducibility and the inter-laboratory variations of digitized slides are improved by 

means of HS/MS image processing. Nevertheless, such studies have not demonstrated a 

significant difference between conventional WSI digitized slides and HSI/MSI. For this 

reason, HSI/MSI solutions have been proven as a realistic alternative to conventional 

RGB imagery for clinical environments despite increased instrumentation costs, data 

storage, and computational requirements for color enhancement and standardization. 

Furthermore, recently, Campanella et al. found a performance drop in a supervised 

classification for histological diagnosis when data used for training belong to different 

institutions, even when the number of training samples was high [155]. For this reason, 

and regardless of the cost associated with image acquisition in the preliminary stages, 

HSI/MSI technology should be further analyzed as an alternative to compensate the 

differences in color between data from different institutions or acquisition systems. Once 

such research is performed, there could be a well-founded argument discussion about 

the enhancements of using expensive HSI/MSI to alleviate inter-laboratory differences, 

and hence, compensating the problems in automatic machine learning approaches, 

which could benefit histopathological laboratories in the long-term. 

In the context of digital staining, some of these works have the goal of generating 

trichromatic images from H&E stained images by processing MS/HS images. Some 

researchers have recently proposed new approaches to reach the same goal using 

conventional imaging techniques. Fereidouni et al. demonstrated the feasibility of 

HSI/MSI for the generation of trichrome images exploiting the combination of a 

fluorescence image and a brightfield image [156]; while Rivenson et al. suggested the use 

of deep learning to generate trichrome images from standard RGB data from H&E slides 

[157]. In fact, both approaches were presented as cost-effective alternatives to the use of 

HSI/MSI. However, these are only examples of the generation of one specific type of 

digital stain. Further research should be performed in order to investigate if HSI/MSI is 

able to outperform RGB or fluorescence technologies for this and other digital stain 

applications. For this reason, the research in the field of digital staining by using 

HSI/MSI should be focused on the exploration of unstained samples. The dyes used to 

stain tissues for subsequent examination of histological samples modify the spectral 

signature of the sample itself, restricting the spectral information only to the visible 
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spectral range of light. Therefore, it should be investigated if the spectral information 

within unstained histological samples could provide advantages compared to 

conventional stained samples. The main opportunity of HSI/MSI technologies is to use 

unstained samples for digitally synthesized multiple-dye digital staining. According to 

the literature, this information can be found in the diagnostic window of the EMS from 

600 to 1300 nm [104]. In addition, Sordillo et al. have recently proposed the spectral 

window from 1600 to 1800 nm to be also useful for diagnosis [158]. The investigation of 

histological samples at these wavelengths should be performed with unstained samples 

and with HS/MS cameras in the NIR spectral range. In summary, to explore the 

possibilities of this promising technology, more research should be performed in order 

to determine the potential clinical usage of HSI/MSI for such applications. 

2.3.4 Immunohistochemistry and immunofluorescence 

Our extensive literature review located 59 research articles that present two 

commercially available MS microscope systems that are predominantly applied in the 

literature for immunohistochemistry and immunofluorescence (IF). These MS 

microscopes are clinically useful because they allow quantitative analysis of multiple 

molecular biomarkers in multi-label tissue specimens, both in bright-field and 

fluorescence modes. The Nuance CRi Multispectral Imaging System (Cambridge 

Research and Instrumentation, Woburn, MA; PerkinElmer, Inc., Hopkinton, MA) is 

available in three versions (VX, FX, and EX), which capture MS images in the wavelength 

ranges of 420 to 720 nm (VX and FX) and 450 to 950 nm (EX). A LCTF acquisition 

system is used for spectral imaging with spectral bandwidths of 20 or 40 nm for the 

EX/FX versions and 7, 10, or 20 nm for the VX version. The more recent Vectra 

Quantitative Pathology Imaging System (PerkinElmer, Inc., Hopkinton, MA) performs 

MS imaging and automated whole-slide scanning, available in 6 slides and 200 slides 

versions, using both the same camera. The Vectra captures MS images from 440 to 720 

nm and uses a LCTF to capture MS images with a 10 or 20 nm spectral bandwidth. As 

summarized in Table 2-1, the MS microscopy has been used to study both IHC and IF in 

a variety of diseases, but it has been predominantly used to identify and quantify cancer 

biomarkers in human patients using the Nuance MS system, [159], [160], [169]–[178], 

[161], [179]–[184], [162]–[168] and the Vectra MS system [185], [186], [195]–[204], 

[187], [205]–[213], [188]–[194]. The IHC and IF studies reported below cover both 

human and animal subjects across all organ systems [159], [160], [169]–[178], [161], 

[179]–[188], [162], [189]–[198], [163], [199]–[208], [164], [209]–[218], [165]–[168]. 

The detection of IHC biomarkers using MS microscopy is usually carried out by 

performing spectral unmixing of the samples, identifying the spectra of biomarkers that 

are similar to the spectra previously recorded in spectral libraries. An example of MSI for 

spectral unmixing of IHC stains for detecting biomarkers of follicular lymphoma is 

shown in Figure 2-7. 
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Table 2-1. HS histopathological dataset summary 

IHC/IF Study Feature No. (%) Relevant Research Article References 
MS Microscope 

 Nuance MS System 27 (46%) [159], [160], [169]–[178], [161], [179]–[184], [162]–[168] 
 Vectra MS System 28 (47%) [185], [186], [195]–[204], [187], [205]–[213], [188]–[194] 
 Other/ Unspecified 2 (5%) [214]–[218] 

Molecular Markers 
 

IHC 
 [159], [160], [169]–[178], [161], [179]–[181], [183]–[189], [162], 

[190]–[199], [163], [200]–[209], [164], [210]–[212], [214], 
[215], [217], [165]–[168]  

 IF  [182], [213], [216]  
 

IHC and IF 
 [159], [160], [192]–[198], [200], [201], [206], [168], [209]–

[212], [214], [215], [218], [169], [170], [174], [176], [183], [188], 
[189] 

 

 

Figure 2-7: Multiple IHC markers in one tissue specimen of follicular lymphoma. MS images 

acquired using the Vectra system and software for spectrally unmix each IHC stain 

component. (a) Triplex IHC composite image. (b-d) Spectral-unmixed grayscale images of 

IHC for CD3, FOXP3, and CD69, respectively. Reproduced from [107]; Creative Commons BY 

4.0; published by Nature (2015). 

The advantages of MSI are arguably most prominent for IHC, specifically regarding 

clinical translation. Firstly, with respect to the equipment needed, relatively small bands 

with ability for high-throughput slide scanning has been somewhat standardized and is 

commercially available in Vectra and Nuance. This is important because in much of 

HSI/MSI research, the technology is still research-grade, meaning that it is customized, 

developmental, and potentially cumbersome to deploy. Secondly, there is a clearly 

defined clinical need: the interpretation of IHC staining can be variable, user dependent, 

and often with an ill-defined threshold of immunopositivity [219]. Next, the data analysis 

techniques needed to solve the problem are quite rudimentary, with spectral-unmixing 

as straightforward and effective algorithms for identifying immunopositivity in the 

literature. Finally, there is the added ability of detection and quantification of multiple 

IHC stains and antigens in single specimens with some preliminary success.  

On the contrary, however, pathology and laboratory medicine departments have not 

yet widely adopted standard RGB digital pathology. Therefore, it is unlikely that even 

more advanced digitization equipment, whose prohibitive cost has been already 

described above, would be widely adopted without convincing merit. The approach 

would have to be tested in multiple institutions with all types of stains, imaging 
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parameters, and acquisition systems before it would ever be able to be clinically utilized 

and relied upon for routine diagnosis of immunopositivity in specimens. Therefore, 

though it is promising, there are numerous and substantial hurdles to the clinical 

translation of even this most plausible application of MSI technology. 

2.3.5 Fluorescence and autofluorescence spectral imaging 

Histological specimens can be excited by a specific, narrow band of light, and longer 

wavelengths can be imaged with MS or HS microscopy to observe the characteristic 

emission from the tissue. AF uses label-free specimens, allowing only endogenous 

fluorophores to create the measured signal, but both AF and dye-based fluorescence, 

such as green fluorescent protein (GFP), can be used for detecting pathologies. In the 

work performed by Pantalone et al., lymph node sections (5 microns thick) from 

unstained, frozen-section specimens were imaged with 365 nm excitation light and 375 

to 750 nm emission. Lymph nodes with metastatic gastric or colon cancer showed 

differences from normal lymph nodes, which was reproducibly validated with multiple 

observers [220]. On the other hand, Constantinou et al. implemented a fluorescent slide 

scanner to image sections of a human colonic adenocarcinoma xenograft with excitation 

light of 488 nm that had detectable AF from elastin and flavin adenine dinucleotide 

(FAD) despite staining with a relevant antibody [221]–[223]. Similarly, Duong et al. 

developed a MS light-emitting diode (LED) array used to photo-irradiate tissue 

specimens, reducing artifactual AF. The appearance of artificial AF from formalin 

fixation degrades the ability to detect fluorescent signatures of interest. Therefore, fixed 

slices of mammalian brains were treated with the LED array with emissions from 

ultraviolet (UV) to infrared (IR), and successful and reproducible removal of artifact AF 

was observed. Treated IHC-stained slides were imaged using excitation/emission of 495 

nm and 520 to 700 nm, and visible reduction of artificial AF were observed [224]. 

Ellingsen et al. demonstrated that using laser excitation of 800 nm, which produces 2-

photon absorption at 400 nm, and capturing AF HS images with confocal microscopy 

allow the detection of amyloid plaque in cryo-sections of mouse brain [225], [226]. 

Another study performed by Leavesley et al. employed HS imaging to capture data 

from cryo-sections of lung tissue for resolving the fluorescence of GFP [227], [228]. 

Additionally, Dolloff et al. explored the application of spectral signatures of GFP in 

tissues for measuring autophagy [229]. The Leavesley et al. group also developed an 

excitation-scanning AF HS microscope imaging system for acquiring microscopic images 

of thin ex-vivo tissues (<1 mm), applied to rat organs [230] and human colon cancer 

[231], [232]. Moreover, as shown in Figure 2-8, this group applied the same technique 

to calculate the properties of FAD, nicotinamide adenine dinucleotide (NADH), elastin, 

and collagen from human colonic cancer tissues [233], [234]. In ocular diseases, Dey et 

al. implemented a tensor decomposition approach to detect age-related macular 

generation using AF with a range of excitation and emission wavelengths [235], [236]. 

Additionally, Habibalahi et al. used MS AF imaging to detect ocular squamous neoplasia 

in unstained, cover-slipped slides with multiple excitation and emission wavelengths 

[237]. 

In summary, there are various advantages and disadvantages of autofluorescence and 

fluorescence spectral imaging methods. The main advantage is that spectral 

autofluorescence can sense the concentrations of endogenous molecules in specimens 

using precise excitation and emission [233], [234]. For example, it can be used to assess 
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the concentration of NAD, FAD, collagen, and keratin, which have well-known excitation 

and emission signatures. One major attraction of this technique is that it works with 

unstained tissue specimens, so no time is lost by applying different histochemical stains, 

which supposes a loss of information. However, there are certain drawbacks of 

fluorescent spectral imaging for histopathology. Mainly, the equipment is not 

standardized, and most experiments are conducted with research-grade, custom-fitted 

microscopes that can be complex and expensive. As most tissues are comprised of 

numerous endogenous fluorophores, it is still unknown what wavelengths are best for 

excitation/emission for certain applications. Additionally, the fluorescence signals can 

be difficult to discern, especially if a stain or label is also used [238]. Therefore, while 

spectral autofluorescence imaging may seem promising, there are many challenges 

which currently hinder its widespread adoption. 

 

Figure 2-8: Autofluorescence from excitation-scanning hyperspectral imaging of colon. (a)–

(i) Psuedocolor RGB images of FOVs from normal healthy colon. (j) Normalized intensity of 

autofluorescence spectral signatures from normal colon. (k)–(s) Psuedocolor RGB images of 

FOVs from neoplastic colon. (t) Normalized intensity of autofluorescence spectral signatures 

from neoplastic colon. Reproduced from [233]; Creative Commons BY 4.0; published by SPIE 

(2018). 

2.3.6 Trends in diagnostic research for clinical routine practice  

In this section, we summarize the research performed for clinical diagnosis of 

histological samples using HSI/MSI. A total of 84 research articles have been analyzed, 

and the systematic review of these manuscripts has been sorted according to the different 

fields within medical diagnosis, namely hematology, breast, central nervous system, 

gastrointestinal, genitourinary, head and neck, and skin. To conclude, we provide a 

summary table where the main characteristics of these research are synthesized.  
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2.3.6.1 Central Nervous System 

HSI and MSI have been applied for aiding central nervous system (CNS) diagnosis 

and characterization, where these technologies have been investigated for the study of 

brain, nerves, and some indicators of different diseases. To investigate the normal 

histology of brain specimens, Bouzid et al. developed a customized MS microscopic 

system based on tunable light sources [239]. Cell nuclei segmentation was performed on 

a stained rat brain sample, and the results obtained were compared across 3 to 10 band 

MS images within the visual range. Ortega et al. investigated the use of HSI for detection 

of high-grade brain tumors in H&E stained slides using a customized push-broom VNIR 

microscopic system. Their results suggest that the differences in the spectral signatures 

of normal and tumor areas within the slides are sufficient to automatically provide a 

prediction of the diagnosis using supervised classifiers, such as SVM or ANNs [32], [36].  

Nerves are also a significant constituent of the CNS. The automatic identification and 

quantitative morphometry of nerve fibers can complement the clinical and 

histopathological evaluations of injured nerves in humans. Li et al. proposed an 

automatic segmentation of unstained nerve fiber specimens using HSI, and relying on 

RGB images of stained samples as ground truth. They found HSI successfully provided 

morphological parameters in unstained nerves, such as myelin thickness and area [240]. 

Additionally, the fiber diameter, perimeter, area, and myelin thickness and area were 

extracted in a later study, showing agreement with the manually labeled ground truth 

[241]. The conclusions of these studies suggest that HSI may be a promising analysis tool 

for unstained nerve sections, making possible a rapid characterization of nerve fibers 

compared to traditional techniques. On the other hand, to investigate pathological nerve 

samples, spinal cord tissue samples from mice were microscopically analyzed by 

Vazgiouraki et al. using MSI to develop a tool for diagnosis of spinal cord myelin loss 

associated with multiple sclerosis. The MS microscopic system used a custom-made 

rotating filter wheel, and the authors concluded that the maximum difference observable 

between normal and demyelinated lesion areas was at 500 nm [242]. Additionally, 

Kopriva et al. demonstrated the contrast enhancement within an unstained sample of 

sciatic nerve fibers from a mouse using nonlinear unsupervised segmentation [243]. 

The study of samples from CNS constituents can reveal the presence or progression 

of different diseases. In such context, More et al. studied the use of HSI as a potential 

tool for early detection of amyloidopathy in Alzheimer’s disease through statistical 

analysis of the spectral signatures from histological mouse retina and brain samples 

obtained with a push-broom VNIR microscopic system [244]. Diabetes can cause 

degeneration of the blood vessels in the eye, specifically in the retina, which can lead to 

blindness. To investigate this, Li et al. performed studies with control group, untreated, 

and treated diabetic rats to study HS analysis techniques of retina sections. The spectral 

signatures showed relevant differences in the range of 636 to 722 nm between the three 

groups, which motivates the quantitative study of the spectral differences for the 

evaluation of the therapeutic efficacy of drugs [245]–[248]. Finally, to investigate the 

detection of the Newcastle disease virus infection, which produces a neurological 

condition known as spongiosis, Abeysekera et al. obtained infected specimens from 

poultry [249]. In this work, a processing framework combined a customized feature 

extraction technique based on statistical indicators obtained from the MS data and 

supervised classifiers, SVM and LDA (Linear Discriminant Analysis), and the results 

demonstrated that MS data outperformed RGB data. 
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2.3.6.2 Head and Neck 

Cancer of the head and neck (H&N) can be diverse due to the anatomical diversity of 

this region. In the oral cavity and upperaerodigestive tract, approximately 90% of 

cancers are squamous cell carcinoma (SCC) [250]. Ou-Yang et al. combined transmission 

and fluorescence based HSI using a push-broom system with hundreds of VNIR spectral 

bands for detection of oral SCC in 34 patient samples. The cell nuclei were identified in 

the basal-cell layer manually and a five-fold method combined spectral and 

morphological features to yield good performance on the testing patients [251]. In order 

to investigate the detection of SCC after metastasizes, Akbari et al. used SVM supervised 

classification for identifying human oropharyngeal SCC cancer cell line xenograft that 

metastasized into lung and lymph node tissues in mice [252]. The SCC detection was 

performed macroscopically within H&E slides without a microscope.  

The thyroid gland rests in front of the trachea in the neck, and masses can often be 

visually observed by the patient. To assess if a thyroid mass is benign or malignant, a fine 

needle aspiration (FNA) biopsy is performed and microscopically investigated, and 

HSI/MSI may be able to increase diagnostic ability. Mansoor et al. used MS histology for 

detecting non-cancerous thyroid and parathyroid adenomas in FNA, using 8 cases of 

follicular adenoma and 7 cases of parathyroid adenoma. Papanicolaou-stained cells were 

manually annotated, and cell-based classification was performed with a basic neural 

network [253]. Thyroid cancer biopsies were also studied by Hahn et al. using 100 cases 

of papillary thyroid carcinoma (PTC) and benign goiter (BG), developing a classifier to 

segment MS images and classify each region as background, PTC, or BG with successful 

results [254], as shown in Figure 2-9. Additionally, the experiments were performed with 

different number of training cases, from 10 to 40 cases, without observing significant 

improvements in the classification results. However, the authors concluded that nuclear 

features offer improvement over nuclear and cytoplasmic regions when developing a 

classifier [254]. Finally, He et al. incorporated Muller matrix polarization HSI to 

distinguish papillary thyroid carcinoma tissues in unstained histological sections [255]. 

Regarding the detection of thyroid nodules in FNA smears, several works performed 

by Shah et al. investigated MSI analysis techniques. After manually labeling the target 

cells to be detected, the authors performed a watershed image segmentation of the cells 

[256], finding that MSI yielded significantly fewer false positives compared to 

conventional image analysis. Furthermore, Wu et al. performed a minimally supervised 

band selection and reduction method of thyroid FNA to increase contrast of RBCs using 

histogram-based local descriptors evaluated by three distinct metrics [257]. On the other 

hand, Gabriel et al. used unsupervised k-means clustering for classification of cells in 

FNA thyroid lesion smears suspicious for cancer [258]. Lastly, Wu et al. also presented a 

conditional random field model segmentation scheme for classification of different 

thyroid nodules. Hyperplastic nodules, PTC, and follicular neoplasm were segmented 

successfully, and it was concluded that MS features offered increased accuracy compared 

to conventional image analysis [259]–[262].  
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Figure 2-9: Thyroid FNA biopsies with Papanicolaou stain in RGB (left) and classification 

results with MSI spectral unmixing (right). (a,b) case of PTC. (c,d) case of benign goiter. 

Background (yellow), PTC (red), benign goiter (green), out-of-focus or crowded areas (blue). 

Reproduced from [254]; Creative Commons BY 4.0; published by ACS (2012). 

2.3.6.3 Breast 

Several approaches have been proposed in the literature for breast cancer 

identification in histological slides using HSI/MSI. Boucheron et al. performed a benign 

versus malignant nuclei classification using MSI, and compared the results with the ones 

obtained using 3 different synthetic RGB images generated from the MS images [263]. 

The authors did not find a significant boost on the classification using MSI compared to 

conventional RGB image processing. Nevertheless, Qi et al. also explored the utility of 

MSI for histological breast cancer diagnosis, finding an improvement in MSI data 

exploitation compared to RGB [264], [265]. Although the instrumentation of both 

approaches was similar, there were some differences in the experimental procedures, 

especially in the type of staining, the magnification and the image analysis approaches. 

While Boucheron et al. used H&E stained samples acquired with 40× magnifications, Qi 

et al. employed hematoxylin-only specimens acquired with 10× magnification. Even if 

the contradictory conclusions can be caused by the differences in magnification or stain, 

the image analysis frameworks present several differences. Both studies used supervised 

classifier approaches, but while Boucheron et al. used the raw spectral bands of the MS 

image as features for classification, Qi et al. used the features, extracted from the MS 

image, that were supposed to maximize the underlying differences between normal and 

tumor tissue samples. More experimentation should be performed in this research line 

to provide a more relevant discussion about the importance of the staining, 

magnification, and the processing framework for these applications.  

Beyond the discrimination between normal and tumor tissue, more specific 

approaches have been recently proposed to identify ductal carcinoma in situ (DCIS) or 

mitotic cells within breast histological slides. In one approach, Khouj et al. proposed the 

detection of DCIS with HSI using two types of specimen preparations of breast biopsies: 

unstained and H&E-stained [266]. Using as inputs some pixels manually annotated by 

pathologists, a semi-supervised k-means approach was applied to both types of images, 

suggesting a good discrimination between normal and tumor regions even in unstained 
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samples. In Figure 2-10, the spectral signatures of DCIS and normal tissue samples are 

depicted. Additionally, mitotic cells counting is an important indicator in breast cancer 

grading. Roux et al. proposed a contest for detecting mitotic cells within H&E stained 

breast cancer specimens. In this contest, three types of datasets were released: two of 

them composed of conventional RGB images, and a single dataset composed of MS 

images. In this challenge, the detection of mitotic cells was suggested to be superior to 

conventional imaging approaches [267]. Nevertheless, some authors have kept working 

in this dataset. Malon et al. proposed a CNN framework for mitotic cell detection, but the 

authors claimed that more images were necessary to successfully train deep learning 

models [268]. Furthermore, by using different band selection methods and different 

supervised classifiers, such as SVM, MLP (Multilayer Perceptron), LDA, Irshad et al. 

[269], [270] and Lu et al. [271] were able to outperform the classification performance 

on this dataset stated by previous groups. Irshad et al. also found improvements in 

performance when exploiting the MS information compared to only the RGB 

information.   

 

Figure 2-10: Spectral signatures of normal breast tissue (blue) and DCIS (red). Reproduced 

from [266]; Creative Commons BY 4.0; published by Frontiers (2018). 

2.3.6.4 Gastrointestinal 

The use of HSI/MSI has been also employed for gastrointestinal disease detection, 

where colorectal cancer is the most prominent application. In colorectal cancer 

diagnosis, an appropriate identification of different tissue constituents within 

pathological slides can help in tracking disease progression and improve the selection of 

an optimal treatment.   

The preliminary studies for colorectal cancer detection using HSI/MSI were limited 

to discrimination between benign adenoma and malignant carcinoma tissues within 

H&E stained colon histological slides. To this end, Masood et al. employed spatial 

features extracted with local binary patterns, and then colonic specimens were classified 

using a SVM classifier [272]. Another approach, proposed by Maggioni et al., consisted 

of an initial segmentation of the MS images into nuclei, cytoplasm and background, and 

subsequently, nuclei were later classified into benign or malignant using a partial least 

squares (PLS) classifier based on morphological features [273]. A similar processing 

framework was followed by Rajpoot et al. and Masood et al., consisting of an initial 

segmentation of colon cell images into nuclei, cytoplasm, lumina propria and lumen, 

followed by the extraction of multiscale morphological features and supervised 
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classification. Using this common framework, Rajpoot et al. employed a SVM classifier 

[274], while Masood et al. employed PCA and LDA algorithms [275].  

Beyond binary classification between benign and malignant colon tissues, a more 

detailed tissue identification scheme was followed by several authors, aiming to detect 

different types of cancer cells within colon samples: carcinoma, intraepithelial neoplasia, 

and benign hyperplasia. The results from Chaddad et al. suggested the utility of texture 

features of MS images for classification  [276]–[278].  An example of this technique is 

demonstrated in Figure 2-11. Using the same dataset, Peyret et al. demonstrated that 

exploiting morphological features in MSI improves the performance of panchromatic 

images in colon tissue classification [279], [280]. Using a hybrid method which combines 

unsupervised clustering and supervised method using PCA and logistic regression, 

Nakaya et al. detected four stages of colon cancer progression from patients with 

ulcerative colitis, namely cancer, non-cancer, low grade dysplasia and high grade 

dysplasia [66]. In addition, Lao et al. used MS histology to directly quantify the optical 

signal obtained from in-situ hybridization (ISH) of colorectal adenocarcinoma tissues 

and counter-stained nuclei with methyl green. For the ISH, a small segment of 

microRNA was used to target cancer differentially, compared to low-grade and high-

grade neoplasia and normal tissues [281]. In a later work, Chaddad et al. also revealed 

that the quantification of the spatial heterogeneity of the pathological tissues can help to 

detect the progression from benign cell proliferation to malignant lesions [282]. Also, 

Haj-Hassan et al. performed comparative research that demonstrated the boost in 

classification performance when using CNNs instead of feature-based approaches [283].  

 
(a) (b) (c) (d) 

Figure 2-11: Segmentation of four types of tissue within colon pathological slides. (a) Stroma 

(b) Benign hyperplasia, (c) Intraepithelial neoplasia, (d) carcinoma. Reproduced from [278]; 

Creative Commons BY 4.0; published by Frontiers (2018). 

Recently, Awan et al. improved the research in colorectal cancer detection within H&E 

pathological slides with two relevant innovations: a large patient dataset (𝑛 = 151) and 

the exploitation of information within near-infrared spectral bands (beyond 1,000 nm). 

The authors performed the classification in two different schemes: a two-class 

classification (normal versus tumor) and a four-class classification (normal, tumor, 

hyperplastic polyp, and tubular adenoma with low-grade dysplasia). Using different 

types of feature extraction, band selection methods and SVM classification, the authors 

found that the use of a greater number of spectral bands significantly improves the 

discrimination of the different classes. Furthermore, they found that the use of near-

infrared spectral bands improved the classification [284].  

Extending beyond detection of primary colon cancers, Kopriva et al. applied MS 

histology for the detection of colorectal adenocarcinoma metastasis in the liver. Although 

the application is quite novel and the classification result was assessed with IHC staining 
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as ground truth, the study was limited to a single patient, thus the results cannot be 

considered conclusive [285].  

In addition to colorectal cancer detection, only pancreas, liver, spleen, and esophagus 

have been explored by means of HS/MS histological analysis. The first computer-aided 

tool for pancreas diagnosis was motivated by the drawbacks of conventional techniques 

for the identification of elastic and collagen fibers within pathological slides, which 

usually requires the use of Verhoef’s Van Gieson (EVG) staining, which is a more complex 

and expensive procedure compared to standard H&E staining. To deal with such 

limitations, Septiana et al. successfully exploited the spectral information within 

pancreatic ductal carcinoma H&E stained slides, showing a good capability of this 

technology to identify collagen and elastic fibers samples [286]. Similarly, motivated by 

the difficulty of distinguishing fibers and cytoplasm in H&E slides, Hashimoto et al. used 

a pixel-wise bag of features classification method over H&E stained liver samples by 

employing simultaneously spatial and spectral features for detecting five liver tissue 

components: nucleus, sinusoid, lymphocytes, fibers and cytoplasm. In this context, HSI 

was shown to outperform conventional RGB imagery [287]. Beyond the segmentation of 

tissue constituents, Wang et al. evaluated the ability of microscopic HSI to early detect 

bile duct carcinoma within H&E stained rat liver samples [288]. In this research, the 

authors were able to quantitatively measure the tumor areas in the biopsies at different 

time points through the analysis of the HS data with a feature extraction method based 

on the morphological watershed algorithm followed by SVM classification. On the other 

hand, Kopriva et al. applied a contrast enhancement technique, previously mentioned 

with application on sciatic nerves, for the evaluation of unstained spleen specimens 

[243]. Finally, Bautista et al. implemented MSI of an H&E stained slide from esophagus 

tissue to enhance the visualization of eosinophilic esophagitis [289]. The nuclei of 

eosinophils were automatically detected using spectral transmission PCA and a 

thresholding method. The authors concluded that this approach allowed tissue 

classification despite the nearby staining attributes, which facilitates a better specimen 

analysis compared to conventional RGB imagery. 

2.3.6.5 Genitourinary 

The genitourinary section comprises the organs of the urinary system, such as kidney 

and bladder, and both male and female reproductive organ systems. Prostate cancer is 

the second leading cause of cancer deaths for men [290]. It has been proposed in recent 

literature that histology using MS spectral analysis may improve the diagnosis of 

genitourinary cancers, such as cervical, prostate, ovarian, and bladder cancers. 

Distinguishing between normal and cancerous cervical cells under Papanicolau stain 

requires the examination of texture, size, shape and contextual information of cells. For 

this reason, Zhang et al. proposed a method for the automatic segmentation of cervical 

cell nuclei that can automate the identification of the relevant cells to be examined 

carefully among other types of cells that are present in the specimens [291]. Another 

approach for identifying abnormal cervical cells that may be malignant in Papanicolau 

smears was implemented using cosine correlation analysis to exploit the differences of 

spectral signatures [292]. For the detection of cervical cancer cells in Pap smears, a 

segmentation method was applied to MSI based on a Gaussian mixture model (GMM) 

for unsupervised nuclear segmentation, and a similarity distance measurement was 

developed to quantity the similarity between the segmentation results and the original 
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data, which were able to reveal intra-spectrum information achieving high nuclear 

segmentation accuracy despite wavelength reduction [293]. Another cervical cancer 

study that employed HSI for the discrimination of normal, precancerous, and cancerous 

cells demonstrated that it is possible to correctly classify high-grade precancerous cells, 

as shown in Figure 2-12, but low-grade precancerous cells are more difficult to 

automatically distinguish from normal cervical cells [294]. The Mueller matrix provides 

a comprehensive characterization of the polarization properties of specimens, and 

contains information regarding optical properties of biological tissues that can be used 

for diagnosis. Using this principle, He et al. successfully analyzed the Muller matrix to 

distinguish cervical carcinoma tissues within unstained histological sections [255]. 

There is only a single research study in the literature that deals with HSI applied to 

ovarian cancer. After the extraction of a dataset carefully annotated by pathologist 

attending to cell morphology, Nakaya et al. suggested HSI as a suitable technology to 

differentiate between normal and cancer cells by using both supervised and 

unsupervised techniques [66]. 

For prostate cancer detection, several groups have implemented MSI for H&E stained 

prostate cancer pathological samples. Tahir et al. successfully performed a round-robin 

Tabu search algorithm along with a nearest neighbor classification method for classifying 

prostate cancer, benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and 

normal stroma in MS histological images of H&E stained prostate specimens from nearly 

600 cases [280], [295]–[297]. Additionally, Khelifi et al. worked in the same task for 

performing a spatial-spectral feature extraction approach and SVM classification for the 

same four types of prostate H&E MS images [298]. Akbari et al. used spectral feature 

based SVM for detection of human prostate cancer in H&E slides imaged 

macroscopically [62]. On the other hand, for automated detection of glandular structures 

and nuclei in prostate cancer H&E slides using MSI, Zarei et al. proposed a method 

combining the PCA algorithm, to generate an artificial RGB image, and the k-means 

unsupervised segmentation [78]. 

With the goal of early detection of bladder cancers, MS examination of urine samples 

could lead to improved diagnosis and follow-up. Angeletti et al. proposed a genetic 

algorithm combining spatial features and MS spectral analysis of Papanicolau-stained 

cells in urine specimens with promising sensitivity and specificity values for detecting 

bladder cancer cells in urine specimens [299]. 
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Figure 2-12: (a) Spectral plots of Papanicolaou-stained cells from cervical Pap smear: normal, 

low-grade (LG), high-grade (HG) and squamous cell carcinoma (SCC). (b-d) Classified HS 

images of normal (green), LG (yellow), and HG/SCC (red) cells. (e-f) RGB image with 

annotation of cervical SCC (e) and HS results of the automatically extracted and classified 

HG/SCC nuclei (f). Reproduced from [294]; Creative Commons BY 4.0; published by ACS 

(2008). 

2.3.6.6 Hematology 

For the diagnosis of a wide variety of diseases, blood sample examinations are usually 

performed by skilled hematologists through microscopic analysis and evaluation of blood 

smears. Although automatic hematological analyzers are available to perform this task, 

pure optical technologies and imaging processing tools are shown as cost-effective 

alternatives to this end. Furthermore, hematological analyzers are not able to consider 

information about cell morphology. To aid researchers and physicians in the analysis of 

blood samples, HS/MS technologies are proposed as an alternative to conventional RGB 

imagery, whose main limitations are the low capabilities to handle both the uneven 

staining of samples and the differences in the instrumentation used to digitize the 

samples [141].  

In the field of RBC analysis, Li et al. evaluated the feasibility of exploiting HSI for RBC 

counting. After conducting the RBC counting using uniquely spatial or spectral features 

of blood cells, the authors found an improvement in the under-counting and over-

counting rates when they performed the image analysis using both types of features 

together [90], [300]. Some authors have also proposed HSI as a promising technology 

for white blood cells (WBCs) segmentation. After the careful annotation of nucleus, 

cytoplasm, erythrocytes and background within blood smears specimens by pathologists, 

different authors have demonstrated a successful differentiation between the 
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aforementioned cell parts based only in their spectral profiles. While Guo et al. employed 

the SVM classifier [301], Guan et al. performed the same task with SID (Spectral 

Information Divergence), k-means and SAM (Spectral Angle Mapper) algorithms [302]. 

Besides the identification of blood cells, morphological characterization is further 

important for diagnosis, especially in WBCs, which present a complex taxonomy with 

more than 20 subtypes. For this reason, Li et al. proposed a method to automatically 

extract morphological features of leukocytes from blood smear samples by using HSI. 

After leukocyte segmentation, morphological parameters such as cytoplasm area, 

nuclear area, perimeter, nuclear ratio, form factor, and solidity were extracted from the 

segmented images [79]. Additionally, due to the complexity of contents of bone marrow 

smears, the identification of WBCs is even more challenging in such type of samples. Wu 

et al. presented an approach to identify WBCs within bone marrow samples, showing the 

capabilities of this technology to identify WBCs in both high and low magnifications 

(100× and 10×) [303]. Finally, another interesting approach in the context of blood cell 

detection was proposed by Verebes et al., who proposed an approach to analyze blood 

samples without prior sample preparation, i.e. with no requirement of stains. The 

authors suggest the capability of darkfield HS microscopy to identify different types of 

red blood cells (ordinary RBCs, stacked erythrocytes), WBCs, and neutrophils within 

unstained samples [304], which can lead in a reduction in the cost and time required for 

blood sample preparations. 

In addition to identification and examination of RBCs and WBCs, HS/MS analysis of 

blood samples has been also used for the identification of diseases. In leukemia analysis, 

Li et al. were able to identify leukemic cells in blood smears based only on their spectral 

differences from RBCs [305]. Additionally, Wang et al. proposed a method to 

differentiate between lymphoblasts and lymphocytes, which is an important task in 

diagnosis of acute lymphoblastic leukemia (ALL) [89]. Due to the high similarity between 

lymphoblasts and lymphocytes, the examination of these samples is challenging by both 

visual examination and RGB analysis. The authors employed a neural network for 

classification, using three types of inputs: spatial features, spectral features and spatial-

spectral features. The results of this study suggest that the exploitation of both the spatial 

and the spectral features significantly improves the quality of the classification. Figure 

2-13 shows some RGB images of lymphoblasts and lymphocytes, and the classification 

maps extracted from this study.  

 

Figure 2-13: Differentiation between lymphoblast and lymphocytes. Top: conventional 

microscope images. Bottom: Identification of lymphoblast (red) and lymphocytes (green). 

Reproduced from [89]; Creative Commons BY 4.0; published by OSA (2017). 
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In another application, some authors proposed the use of MSI to identify malaria in 

blood smear samples by using a multi-mode LED illuminated microscope. These authors 

performed a PCA transformation of normal blood smears and their counterpart infected 

by malaria. Their findings indicate that the parasite presents differences in spectra 

compared to normal blood samples in the spectral range from 590 to 700 nm, making 

the identification of malaria possible using such information. The use of MSI can save 

time in malaria detection compared to traditional methods [306]–[309]. 

Finally, the use of HS/MS analysis of blood samples is not limited to cell examination. 

Qian et al. presented a proof-of-concept system for the visualization enhancement of 

vessels within histological slides, which consisted in the application of a spectral 

correction technique to the MS image [310].  This pre-processing algorithm showed a 

reduction in the variance of the spectral signatures of the specimen, and it was shown as 

a promising method to be applied prior to subsequent segmentation and classification of 

the cells within histological samples. 

2.3.6.7 Skin 

Mammalian skin is comprised of epithelial cells forming a stratified squamous 

epithelium above an inner layer that contains connective tissue, glands, and vessels. 

Normal histological skin samples from rats were studied by Li et al. to enhance the 

visualization of different microanatomical skin structures. Different combinations of 

wavelengths were used to generate false color images for visual inspection, and 3D 

surface views of skin sections were generated by combining spectral and textural 

information from HS data [311]. Normal skin also contains melanin to protect from UV 

exposure, and its quantification can be of clinical utility. Melanin identification was 

performed in H&E sections directly using MSI by Kalleberg et al., comparing the results 

obtained with the traditional gold standard Fontana Masson (FM) silver-staining, which 

directly targets melanin [312]. It was discovered that spectral unmixing of MSI can 

identify melanin in H&E sections directly and more accurately, without the need of an 

additional FM staining. Additionally, spectrally separated MSI of FM stains allowed even 

more sensitive identification of melanin, which led the authors to conclude that FM 

staining was not required and that MSI would yield faster and more accurate results 

[312]. The ability of HSI for melanin detection was further illustrated by Wilson et al. in 

unstained specimens of melanocytic lesions in the skin (cutaneous) and the eye 

(conjunctival) using PCA and false-color representations [76].    

Melanoma is a malignant form of skin cancer arising in melanin-producing 

melanocytes. In this field, Gaudi et al. used a HS push-broom microscope to evaluate 

over 100 H&E sections from different patients with melanocytic lesions. A clustering 

method using spectral Euclidean distance classified the data into 12 clinically-relevant 

spectral classes that were correlated with benign and malignant melanocytic lesions 

[313]. Melanocytic skin cancer has been studied using HSI microscopic systems to 

capture H&E pathological samples for the detection of normal skin, benign nevus, and 

malignant melanoma samples, taking into account the minimum correlation coefficient 

between their spectra [314]. This study also found that the use of higher magnifications 

can reveal more spectral differences between the diverse samples than lower 

magnifications, due to the ability to observe intracellular and extracellular components. 

On a cellular level, Wang et al. proposed a custom spatial-spectral SVM classification 
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method for the analysis of H&E skin samples to detect malignant melanoma cells from 

normal melanocytes with high specificity and sensitivity [315]. 

2.3.6.8 Summary table 

In Table 2-2, we show a summary of the main applications of HSI/MSI for diagnostic 

research targeting clinical histological practice, which is intended to provide readers with 

a quick overview of the current usage of HSI/MSI in histopathological diagnosis 

assessment. The table is organized by different fields, following the same structure 

previously presented for this section. The information of the table is related to the 

number of patients involved in the study, the magnification used for specimen’s 

acquisition, the type of staining and the details on the instrumentation, and the image 

processing techniques used for the analysis of data. Specifically, the instrumentation 

details consist of the type of technology of the HS/MS camera, the spectral range, the 

spatial resolution, and the number of bands. As can be observed, not every field in the 

table was available for every article. For this reason, and following the PRISMA 

recommendations, we emailed every author whose information was missing. In the cases 

that we got a reply with the information, the table was updated. 

2.3.6.9 Concluding remarks 

In this section, we summarize the current status of the usage of HSI/MSI technologies 

for histopathological analysis and diagnosis. According to the results depicted in the 

analyzed research articles, it can be concluded that HSI/MSI technologies are able to 

succeed in histological disease detection. The range of applications which make use of 

HSI/MSI diagnosis research within pathological slides is wide, and mostly focused on 

the detection of cancer. There are some positive outcomes on the use of HSI/MSI 

technologies for histological analysis. First, researchers have found differences in 

spectral information between diseased and normal tissue to be discriminant enough to 

detect some illnesses (e.g. [32], [36], [244] or [301], among others). These results suggest 

that the spectral signatures of tissues can be a complementary source of information for 

disease detection in histopathology, where the disease identification is commonly based 

on the morphological analysis of tissue components. Second, the advantages of HSI/MSI 

compared to conventional RGB digitized slides have been reported in various clinical 

research applications [249], [264], [265], [271], [287], [289]. Nevertheless, in the 

computational pathology community, there is a need to further quantify such 

improvements in disease detection compared to conventional RGB digitized slides. 

Additionally, most investigations on the use of HSI/MSI technologies were performed in 

applications where conventional RGB digital pathology has been proven to be successful. 

In order to really prove the utility of HSI/MSI, future investigations should be highly 

focused in diseases in which current diagnostic procedures are not effective, thus 

allowing the benefit of HSI/MSI to be demonstrated. Third, some researchers suggest 

the utility of the analysis of unstained samples [76], [243], [255], [266], [306]–[309]. In 

most current state-of-art research using HSI/MSI, histological dyes are used for the 

observation of samples. Such dyes modify the spectral response of tissue to light, and 

thus transform the spectral information of the tissue. For this reason, the future 

HSI/MSI analysis should also be focused on the exploitation of the spectral information 

of tissues with no external dyes. Finally, the real capabilities of HSI/MSI in diagnostic 

detection are likely hidden by the broad options for image processing information 
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retrieval techniques. In most of the research carried out at this moment, different 

processing techniques are used with successful results. 

There may be some challenges to the adoption of MSI/HSI for digital pathology in a 

clinical setting. Firstly, the spectral acquisition equipment is unstandardized, complex, 

research-grade, and expensive. The imaging technology is inconsistent between research 

groups. It is impossible at the moment to know which imaging parameters, wavelengths, 

or spectral resolution are best for each application. The experimental results reported in 

the literature are difficult to compare since each of them are usually performed using a 

single HS camera with data from a single institution. Additionally, the CAD (computer-

aided diagnosis) and analysis algorithms are often different. Most CAD methods also use 

custom software, which is not suitable for easy clinical deployment. It is difficult to 

determine if experiments are performed objectively or contain bias. Additionally, 

publication bias may be present in the literature, which yields only positive results, and 

the negative results remain unpublished. Moreover, it is extremely difficult to extrapolate 

the results obtained in one particular diagnostic application in one specific organ system 

to another application/organ, mainly due to the heterogeneity of the spectral properties 

of the different tissues. In this sense, to generalize and standardize a methodology 

capable of achieving accurate results for several different frameworks, more research is 

required, exploring several organ systems and applications, performed in large 

experiments, employing a wide spectral range HS system. Finally, one major challenge 

that cannot be ignored is that storage size of data is greater than RGB digital pathology, 

which is already a challenge with no straightforward solution. The use of HSI/MSI for 

digital and computational pathology is promising and is still in its infancy, requiring 

more investigation and creative solutions to the problems listed above for clinical 

translation. 

 





 

 

Table 2-2. Summary table of applications of HSI/MSI for diagnostic research targeting 

clinical histological practice. 

Application #Pat. Stain Mag. 
HSI 

Technique 

Spectral 

Range 

(nm) 

#B 
Spatial 

Resolution 
Objective Method Ref. (s) 

Central Nervous System 

Normal 

Brain* 
1* H&E† 10×† TLS 400-780 3-10 500×500† Segmentation 

Expectation-

maximization/E
llipse fitting 

[239] 

Brain Ca. 10 H&E 5× 
Push-

broom 
419-768 159 1004×600 Classification SVM/RF/MLP 

[32], 

[36] 

Nerve fiber 20*† Unstained 
20× 

100× 
AOTF 550-1000 80 1600×1200 Segmentation 

Prewitt/Canny/I
SAM/SAM/Cu

stom spatial-

spectral method 

[240], 

[241] 

Autoimmune 
Encephalomy

elitis from 

Multiple 
Sclerosis* 

20* 

Myelin 

Basic 

Protein 

(MBP 

immunosta

ining) 

5× 

10× 

Filter 

Wheel 
400-1200 

13 

10 
2560×1920 Visualization SAM [242] 

Sciatic nerve* N.A.* Unstained 400× 
Filter 

Wheel 
465-620 4 N.A. Visualization 

rth-order 
rational variety 

mapping 

(RVM) 

[243] 

Early 

detection of 

amyloidopath
y in 

Alzheimer’s 

disease* 

6* DAPI 40× 
Push-
broom 

400-1000 467 696×520† 
Statistical 
analysis 

SAM [244] 

Retina * 
40* 

 

34* 

H 40× 
Push-

broom 
400-800 240 

640×300 

460×300 
Visualization 

Normalized 

index/SAM 

[245]–

[248] 

Spongiosis* 10* H&E 20× LCTF 400-720 33 1392×1040 
Feature 

extraction/ 

Classification 

Custom 
FE/SVM/SLD

A 

[249] 

Head and Neck 

Oral Ca. 34 H&E 20× 
Push-

broom 
400-1000 215 1000×1000 Classification 

Spectral and 
nuclear 

morphology 

[251] 

Oropharynx 
Ca. 

Metastasis* 

19 

Mice 
H&E Macro LCTF 450-950 101 1392×1040 Classification Spectral SVM [252] 

Thyroid & 

Parathyroid 
15 Pap 60× LCTF 420-700 29 1392×1040 Classification ANN [253] 

Thyroid Ca. 100 Pap 60× LCTF 400-700 16 1392×1040 Unmixing Cell spectra [254] 

Thyroid Ca. N.A. Unstained N.A. LCTF 500-680 7 1392×1040 Visualization Muller matrix [255] 

Thyroid Ca. 24 Pap 40× TLS 400-700 31 768×512 Segmentation 

Conditional 

Random 
Field/Watershe

d/Band 

selection/k-

Means 

[256]–

[262] 

Breast 

Breast Ca. N.A.† H&E 40× LCTF 420-700 29 768×896 Classification 
MLi/MED/SA

M/FLDA/SVM 
[263] 

Breast Ca. N.A. H 10× LCTF 420-720 31 1392×1040 Classification Adaboost/SVM 
[264], 
[265] 

Breast Ca. 10 
H&E,Unst

ained 
40× Snapshot 461-641 31 443×313 Clustering K-Means [266] 

Breast Ca.,  

Cell Mitotis 
5 H&E 40× N.A. 410-750 10 1360×1360 

Feature 
extraction/ 

Classification 

Spectra 
differentiation/ 

mRMR/CNN/

MLP/SVM/DT/
LDA/Bayes/ 

SVM 

[267]–

[271] 
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Application #Pat. Stain Mag. 
HSI 

Technique 

Spectral 

Range 

(nm) 

#B 
Spatial 

Resolution 
Objective Method Ref. (s) 

Gastrointestinal 

Colon Ca. 
32 

59 
H&E 40× TLS 440-700 128 491×652 Classification 

LBP/ 
LDA/SVM/PL

S 

[272], 

[273] 

Colon Ca. N.A. H&E 40× TLS 
450-640 
450-850 

20 

 

28 

1024×1024 

Feature 

extraction/ 
Segmentation/ 

Classification 

Multiscale 

morphological 
FE/ 

k-Means/SVM 

[274], 
[275] 

Colon Ca. 30 H&E 40× LCTF 500-650 16 512×512 

Feature 

extraction, 
Classification, 

Segmentation 

Morphological 
Texture/FE/PC

A/Wavelet/SV

M/RF/ 
Active Contour 

[276]–

[280], 
[282], 

[283] 

Ulcerative 

colitis 
10 H&E 40× 

Push-

broom 

350-

1050 
141 640×480 

Clustering, 

Classification 

Ward’s 

method/LR 
[66] 

Colon Ca. 31 
NBT/BCIP 
& Methyl 

Green 

50× LCTF 420-720 31 1392×1042 Visualization 
ISH signal 

intensity 
[281] 

Colon Ca. 151 H&E 10× LCTF 

470-710 

1150-
1650 

13 

26 
256×320 

Feature 

extraction, 
Classification 

SVM/Ensemble [284] 

Colon Ca. 
Metastasis 

1 H&E 20× 

Volume 

Bragg 
Tunable 

Filter 

450-800 351 1392×1040 Classification 
Unmixing/SA

M 
[285] 

Pancreatic Ca. 3† H&E 20×† 
Push-
broom 

420- 720 61 752×480 Classification LDA [286] 

Liver N.A. H&E 40× 
Push-

broom 
420-720 61 752×480 Classification 

Spatial-spectral 

Bag of Features 
[287] 

Liver Ca. 10* H&E 4×† AOTF 
550-

1000 
60 1280×1024 

Feature 
extraction/ 

Classification 

Morphological/
Watershed/SV

M 

[288] 

Normal 
Spleen* 

N.A.* Unstained 400× 
Filter 
Wheel 

465-620 4 N.A. Visualization 

rth-order 

rational variety 
mapping 

(RVM) 

[243] 

Esoinphilic 

esaphagitis 
1 H&E 20× LCTF 400-720 55 1034×1050 Segmentation 

Eosophil 
segmentation/P

CA/Thresholdi

ng 

[289] 

Genitourinary 

Cervical Ca. 300 Pap 20× LCTF 400-720 33 1024×1024 Segmentation 
Cosine 

correlation 

[291], 

[292] 

Cervical Ca. 100 Pap 40× AOTF 460-750 30 512×640 Segmentation GMM [293] 

Cervical Ca. 8 
Pap 

H&E 
40× 

Push-
broom 

400-
1000 

600 400×800 Classification 
Normalized 

index 
[294] 

Cervix Ca. N.A. Unstained N.A. LCTF 500-680 7 1392×1040 Visualization Muller matrix [255] 

Ovarian Ca. 10 H&E 40× 
Push-

broom† 

350-

1050 
141 640×480† Clustering 

PCA/Logistic 

regression 

 

[66] 

Prostate Ca. 
592 

624 
H&E 40× LCTF 

400-720 

500-650 

65 

16 
128×128 Classification 

Tabu search/ 
kNN/Spatial-

spectral SVM 

[280], 
[295]–

[298] 

Prostate Ca. 4 H&E Macro LCTF 450-950 101 1392×1040 Classification Spectral SVM [62] 

Prostate Ca. 67† H&E 20× LCTF 420-720 16 2048×2048 Clustering PCA/k-Means [78] 

Bladder Ca. 17 Pap 40× LCTF 420-700 29 896×768 Classification GA [299] 
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Application #Pat. Stain Mag. 
HSI 

Technique 

Spectral 

Range 

(nm) 

#B 
Spatial 

Resolution 
Objective Method Ref. (s) 

Hematology 

RBC N.A. Giemsa 100× AOTF 
550-

1000 
80 1024×1024 Segmentation 

Custom spatial 

spectral 

[90], 

[300] 

WBC N.A. N.A. 100× LCTF 400-720 33 640×480 Classification SMO/SVM [301] 

WBC N.A. Wright N.A. AOTF 550-950 80 N.A. Segmentation 
SID/k-

Means/SAM 
[302] 

WBC N.A. Giemsa 100× AOTF 
550-

1000 
80 1024×1024 Segmentation 

Custom spatial-

spectral/PCA/k-
Means/FCM 

[79] 

WBC, 

bone marrow 
N.A. N.A. 

10× 

100× 
LCTF 400-700 31 1024×1024 Classification Hierarchical tree [303] 

RBC, WBC 27 Unstained 100× 
Push-

broom 

400-

1000 
240 N.A. Classification Unmixing/SAM [304] 

Leukemia 56† Giemsa† 100×† 
Push-

broom 
400-800 240 460×300 Segmentation SAM [305] 

Leukemia 16 Giemsa 100× AOTF 
550-
1000 

70 1280×1024 Classification 

Custom spatial-

spectral 

classifier 

[89] 

Malaria 1 Unstained 15× TLS 
375-940 

375-

1100 

13 

14 

2592×1944 

640×480 
Segmentation 

PCA/Cluster 

analysis/ Kriging 

[306]–

[309] 

Blood vessels 30† H&E† 40× AOTF 400-700 80 
1024×1024

† 
Visualization 

Continuum 
removal 

algorithm 

[310] 

Skin 

Normal Skin* 
10 

Rats 
H&E 

20× 

40× 
AOTF 

550-

1000 
80 1024×1024 Visualization 

False 
RGBs/Spectral 

clustering 

[311] 

Melanin 24† H&E, FM 20× LCTF 420-720 16 1392×1040 Visualization 
Spectral 

Unmixing 
[312] 

Melanoma 15 Unstained 

10×, 

20×, 

40×† 

Push-
broom 

460-900 332† 700×700† Visualization PCA [76] 

Melanocytic 
Ca. 

102 H&E 40× 
Push-
broom 

385-880 496 240×N.A. Clustering ISODATA [313] 

Skin Ca. N.A. H&E 

2.5× 

10× 
63× 

Push-

broom 
410-750 640 240×N.A. Classification 

Spectral Cross-

correlation 
[314] 

Melanoma 49 H&E 20× AOTF 
550-

1000 
60 1280×1024 Classification 

Spectral-spatial 

SVM 
[315] 

N.A.: Information not available; Ca.: Cancer; Pat.: Patients; B: Bands; Mag.: Magnification. 

†: Information provided by the authors, not available in the manuscript.  

*: Animal study. 

A list of acronyms is provided at the beginning of the dissertation. 

 



 

 

2.4 Discussion and conclusions 

In this chapter, we have provided a brief introduction about the most common 

concepts regarding HSI. First, we have presented the main characteristics of the HS 

technology, with particular emphasis on the most important concepts about the 

instrumentation. Besides, we have surveyed the most common approaches for HSI 

processing in the medical field. Second, we have provided an introduction on the main 

motivations of the usage of HSI for medical applications. Finally, the most relevant 

aspects of HSI/MSI for the analysis of histopathological specimens have been 

systematically reviewed. To this end, we employed the PRISMA guidelines for systematic 

reviews to provide a rationale about the motivations of performing this review and details 

about how the review process was performed. We have analyzed the manuscripts selected 

for this review in four major categories: digital staining and color correction, 

autofluorescence, IHC, and histology clinical diagnostic research. The main goal of this 

systematic review has been to provide readers with the current context of the 

applications of HSI/MSI in this field and to illustrate the main limitations and challenges 

for future research. 

Finally, the main focus of this chapter details clinical diagnosis research applications 

of HSI/MSI in histopathology. Given the research works summarized, we conclude that 

HSI/MSI is useful for the identification of diverse diseases and tissues, where cancer 

detection is the most common application. The instrumentation strongly varies among 

different studies. It is not clear which instrumentation parameters are more appropriate 

for HSI/MSI histological analysis. The most important challenge is to determine which 

spectral range is more informative. Regarding the spectral range, most of the studies 

covered in this systematic review are restricted to wavelengths below 1,000 nm. The 

exception is the research performed by Awan et al., whose results suggest an 

improvement in performance of the classification of colon cancer tissues when 

information from NIR bands was also incorporated [284]. Thus, the exploration of the 

performance of the spectral range beyond 1,000 nm is a challenge in HSI/MSI. 

Additionally, for the full exploitation of the spectral range, it should be taken into account 

how different stains limit the spectral range of the sample [316]. Furthermore, there are 

substantial differences among data analysis methods across the different studies. Most 

approaches target automated classification of different types of tissues or diseases using 

machine learning techniques, and others deal with image visualization enhancement of 

different tissue constituents. In order to reach an agreement about an adequate common 

framework for HSI/MSI data processing for histopathological applications, there is a 

need for publicly available datasets, where a fair comparison across different methods 

could be performed. In this context, to allow a fair comparison between different studies, 

we strongly recommend future authors in this field to report in their manuscripts the 

details regarding the number of patients involved in the study, the type of staining, the 

magnification, and details of the instrumentation, namely spectral range, spectral 

resolution, and number of bands. Most importantly, the experimental design of the 

papers should minimize bias, especially in machine learning approaches, i.e. performing 

data partitions with independent patient data for testing.  

Although promising results have been obtained using HSI/MSI technology for 

histopathological diagnosis, there are still challenges to be investigated. There are several 
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studies that point out that HSI/MSI are able to outperform standard RGB for disease 

detection [249], [264], [265], [271], [287], [289]. However, HSI/MSI technologies are 

associated with unique challenges, such as large data storage, expensive processing 

requirements, and whole-slide-imaging acquisition. These problems are already solved 

in conventional RGB digitize slides, where obstacles related to WSI and image processing 

are well-established. For this reason, to state if HSI/MSI has a future in computational 

pathology, more performance comparisons should be carried out to definitively 

demonstrate the suggested superiority of HSI/MSI for disease detection. 

In conclusion, in this chapter we have analyzed the current status of HSI/MSI for 

histopathological analysis of biomedical samples. On the one hand, in the field of IHC 

research, the use of MSI is currently established as a technology demonstrated to be 

useful for evaluation of biomarkers. On the other hand, the results pointed out by 

researchers for autofluorescence and for histopathology diagnostic research were 

demonstrated to be promising, but these technologies still present several challenges. In 

the field of color correction, HSI/MSI is presented as a suitable technology for dealing 

with the inter-laboratory variability of digitized slides. Finally, digital staining of samples 

is presented as one of the most promising future trends for HSI/MSI in histological 

analysis, either for the analysis samples with no requirement of physical stain, or to 

digitally improve the visualization of tissue structures within stained slides that are 

difficult to identify with conventional stains. HSI/MSI should be further investigated to 

be proven as an effective and accurate alternative to conventional technologies for digital 

and computational pathology. 
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Chapter 3: Microscopic instrumentation 

and acquisition of hyperspectral data 

Prior to capture the histological HS images which will be used in this PhD, the HS 

instrumentation should be properly characterized, and an adequate methodology to 

capture high quality images should be analyzed.  

In this chapter, we present the details about the HS instrumentation that has been 

used during this PhD dissertation. The chapter is organized as follows. First, the key 

concepts related with HS acquisition systems are reviewed, highlighting how each 

element of the instrumentation influences the overall system response. Second, we 

describe the instrumentation used in this PhD dissertation. Such instrumentation 

consists of a microscope and a push-broom HS camera. Finally, we propose a 

methodology to correctly set up a push-broom microscope to capture high-quality 

images.  

This work is presented as a solution to the limitations imposed by the push-broom 

scanners to be properly combined with HS microscope imaging system. Using push-

broom cameras in microscopes imposes to perform an accurate spatial scanning of the 

sample to collect the full HS image. In this chapter, we discuss how the dynamic range 

maximization, the focusing, the alignment and the adequate speed determination affect 

the overall quality of the images. Finally, we present some examples of HS data showing 

the most common defects that usually appear when capturing HS images using a push-

broom camera, and a set of images acquired from real microscopic samples.  

3.1 Hyperspectral/multispectral instrumentation overview 

In this section, we provide a brief description of HS systems and we discuss how each 

element of the instrumentation affects to the spectral response, the spatial resolution and 

the dynamic range of the acquisition system. 

There are three key elements in every HS acquisition system: a lens, an electronic 

sensor and a light source. The lens is intended to focus the scene, while the sensor records 

the HS data. The light is devoted to illuminate the scene. Depending on the HS 

technology, a fourth element will perform the EMS sampling. On the one hand, spectral-

scanning systems make use of an optical element that filters the incoming light at discrete 

wavelengths, being able to collect the whole spatial information for such wavelength. The 
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central wavelength of such optical filters can be tuned both mechanically (filter wheels) 

or electronically (AOTF and LCTF) to generate an HS cube. On the other hand, push-

broom systems make use of optical grating elements able to perform the diffraction of 

light across a narrow line. In this sense, the complete spectral dimension and a single 

spatial dimension are captured simultaneously. In order to obtain an HS cube, push-

broom systems require to perform a spatial scanning across the remaining spatial 

dimension. In this sense, the complete spectral dimension and a single spatial dimension 

are captured simultaneously. In order to obtain an HS cube, push-broom systems require 

to perform a spatial scanning across the remaining spatial dimension. 

Each element of the acquisition system contributes to its overall spectral response. 

Firstly, the sensor that samples the information has an intrinsic spectral response due to 

its quantum efficiency, which is wavelength-dependent. In conventional greyscale or 

RGB high-performance imaging systems, Silicon-based sensors are widely employed. 

Nevertheless, Silicon shows poor sensitivity above 1100 nm. For this reason, other 

detectors have to be used for measurements beyond the IR range of the spectrum. In HS 

imagery, the most common semiconductors used to record data within the IR are Indium 

Gallium Arsenide (InGaAs) or Mercury Cadmium Telluride (MCT), which are  sensitive 

up to 2500 nm approximately [124] . Although this type of sensors is used to record the 

IR spectrum, they present some drawbacks such as a limited number of pixels and higher 

shot noise than Silicon-based sensors. Due to this reason, cooling systems are typically 

coupled to HS sensors to alleviate such noise. Secondly, light transmission through the 

lens is also wavelength-dependent. For this reason, specific lens with fixed transmission 

spectra have to be used in order to avoid spectral losses [317]. Finally, the overall spectral 

response of the HS acquisition setup relies on spectral shape of the light source. Typically 

halogen or Xenon-based light sources are employed to this end [318].  

In addition, the spatial resolution is influenced by both the lens and the sensor. On 

the one hand, the optical properties of the lens determine the Field of View (FOV) of the 

optical system, which is usually expressed as an angle. Furthermore, the size of the final 

image depends on the distance between the lens and the object to be captured. Besides 

the FOV, the optical properties of the lens also limit the size of the minimum object that 

can be captured, i.e. the resolving power of the lens. On the other hand, the number of 

pixels that the sensor is able to acquire will determine the spatial resolution of the overall 

acquisition system. While Silicon sensors are characterized by high pixel density, other 

sensor technologies (such as InGaAs or MCT) are restricted to a lower pixel density. This 

means that IR measurements (above 1000 nm) are restricted in the sensor size, 

worsening the spatial resolution in such spectral range. Besides, in push-broom systems 

the spatial resolution in the scanning direction is ultimately determined by the 

mechanical resolution of the linear movement mechanism that performs the scan. 

Finally, the dynamic range is defined as the difference between the maximum and 

the minimum values that bounds the measurements capabilities of an instrument [319]. 

In this context, the dynamic range of an HS camera is determined by the radiometric 

resolution of the sensor, i.e. it is directly related to the number of bits used for the image 

digitalization. Nevertheless, in an HS acquisition system the maximization of the 

dynamic range does not exclusively depend on the bit depth of the sensor. The light 

measured by the sensor depends on two main factors: the power of the incoming light 

and the exposure time. The illumination power may be constrained by each application, 

existing situations where is not possible to just increase the light power to maximize the 
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effective dynamic range of a measurement, i.e. daylight condition measurements. The 

exposure time (also known as the integration period) is the fraction of time while the 

sensor is collecting light. For this reason, the quantity of light measured by the sensor is 

ultimately determined by the integration time.  

For the previously mentioned reasons, HS images are highly biased by both the 

instrumentation and the environmental conditions. In order to remove the influence of 

the acquisition system in the measurements, a calibration procedure is usually followed. 

The calibration of HS images will be covered latter in this chapter. 

3.1.1 Further notions about push-broom measurements 

The HS cameras used in this PhD dissertation are push-broom cameras. For this 

reason, in this section we provide some insights about some concepts regarding this type 

of HS cameras. As mentioned before, push-broom cameras are able to acquire a 2-D 

frame containing both the spatial and the spectral information of a narrow line across 

the lens FOV.  

In order to acquire a HS cube, a scanning procedure where a relative motion between 

the HS sensor and the targeted sample is required. An appropriate scanning procedure 

involves appropriate values for the exposure time, the scanning speed, and the pixel size. 

The pixel size, also known as Instantaneous FOV (IFOV) is the width of the push-broom 

frame. As already mentioned, this value depends on both the lens of the optical system 

and the sensor size. In order to capture an undistorted image from the scene, the optimal 

speed for the scanning platform should be configured as the quotient between the pixel 

size and the exposure time (Equation (1)). If the scanning speed is not properly 

configured, the resulting image will be affected by morphological deformations.  

Speed =  
Pixel Size

Exposure Time
 (1) 

In Figure 3-1 we present a graphical representation of a push-broom scan. At each 

instant, a push-broom frame (namely Y-lambda image) is captured, and the scanning is 

performed in the X direction. In this chapter, we make an extensive use of Y-lambda 

images, so we provide some insights about such images. 
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Figure 3-1: Graphical example of the generation of a push-broom HS cube. 

A Y-lambda image is a conventional 2-D grayscale image, where the Y-axis represents 

the spectral dimension, the X-axis represents the spatial dimension, and the gray level 

indicates the luminance at a certain pixel. Usually, the first rows of the image are 

associated to the lowest wavelengths, and the latter ones to the highest wavelengths. For 

a certain pixel, its value represents the measured luminance at a certain wavelength in a 

certain position across the spatial dimension. If we extract a single column (fixed X 

position) from a Y-lambda image, it is possible to visualize the spectra of a certain pixel 

within the X-axis, while a single row represents the spatial distribution for a fixed 

wavelength (Figure 3-1, Y-lambda frame).  

 An appropriate visualization and interpretation of Y-lambda images are important 

for an intuitive usage and configuration of push-broom cameras. Y-lambda images are 

commonly used for focusing push-broom HS cameras. In addition, Y-lambda images can 

be used to set up the optimal illumination level for a given application. The visualization 

of Y-lambda images can reveal, among others, non-homogeneous distribution of light 

across the FOV or the spectral distribution of the light source.  

In Figure 3-2 we present a toy example to visually clarify some concepts regarding Y-

lambda images. To this end, we select a sample contained in a slide, where there is only 

a single black dot printed on its center. A graphical representation of the HS cube of this 

toy example is shown in Figure 3-2.a, while its spatial shape is shown in Figure 3-2.b. 

Within the sample, we represent three different push-broom lines, namely P1, P2, and P3. 

P3 is located in a blank part of the slide, while P1 and P2 are sections that cross different 

parts of the black dot.  
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(a) (b) 

   
(c) (d) (e) 

   
(f) (g) (h) 

   
(i) (j) (k) 

   
(l) (m) (n) 

Figure 3-2: Y-lambda image  a) HS cube b) Spatial distribution of the HC and spatial location 

of different P planes, c)-e) Y-lambda planes for 𝑃1, 𝑃2 and  𝑃3, f)-h) Spatial profiles at  𝜆1, i)-k) 

Spectral profiles at  𝑆1, l)-n) Spectral profiles at  𝑆2. 
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In Figure 3-2.c-e we represent the Y-lambda images associated to P1, P2,and P3. Some 

conclusions can be extracted directly from the Y-lambda image, such as the presence of 

objects within the FOV, or some intuitions about the illumination conditions. 

Nevertheless, to correctly exploit the information within a Y-lambda image, we can 

visualize the spatial and the spectral information separately. First, the visualization of 

the spatial information of a given scene within the Y-lambda image requires the selection 

of a fixed wavelength. This spatial information can be extracted from the Y-lambda image 

by selecting a discrete row (λ1in Figure 3-2.c-e). The corresponding spatial profile for 

such spectral channel can be extracted as the pixel values of all the columns for such row. 

In Figure 3-2.f, Figure 3-2.g and Figure 3-2.h , we can visualize the spatial profile of P1, P2, 

and P3 respectively. For P3, where there is no sample, the spatial profile is flat, showing 

high luminance values for the entire FOV. On the contrary, the P1 and P2 counterpart 

show low luminance values in the center of the spatial profile, corresponding to the 

presence of the black dot within the FOV. The visualization of such spatial profiles is 

extensively used for focusing HS push-broom cameras. Secondly, to visualize the spectral 

information we have to select a spatial position. Within the Y-lambda images represented 

in Figure 3-2.c-e, we chosen two different spatial points, namely S1 and S2, located in a 

blank part of the scene and inside the black dot respectively (blue lines in the figure). If 

we represent the rows corresponding to such spatial locations, we retrieve their spectral 

shape (Figure 3-2.i-n). On the one hand, we can observe the spectral shape of the blank 

part of the scene in Figure 3-2.i-k and Figure 3-2.n, which represent the spectral shape 

of the light source used in the toy example. On the other hand, in Figure 3-2.l-m the 

spectral shape of the black dot is represented, showing low transmittance values in all 

wavelengths. 

3.2 Instrumentation 

The instrumentation employed in this study is composed by two main parts: an optical 

subsystem and a mechanical subsystem. The optical subsystem is composed by both a 

microscope optic path, and a push-broom HS camera. During this PhD dissertation, a 

single push-broom camera has been used, while two different microscopes have been 

employed. The mechanical subsystem is mainly devoted to perform the spatial scanning 

in the push-broom acquisition subsystem. For the mechanical subsystem, in this PhD 

dissertation we have employed three different scanning mechanisms. Two of them were 

custom, while the latter is a commercial one. In this section, we will describe the 

instrumentation used in this PhD.  

3.2.1 Optical subsystem 

The optical subsystem employed in our system consists of an HS camera coupled to a 

conventional light microscope. In this section, we present the main details of the optical 

subsystem.  

3.2.1.1 Microscopes 

3.2.1.1.1 Olympus BH2-MJLT 

The first microscope used was an Olympus BH2-MJLT (Olympus, Tokyo, Japan). The 

main features of this microscope are the dual illumination mode, which allows the 
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observation both in transmittance and reflectance; the trinocular (BH2-TR3), permits 

the attachment of a camera with a selectable light path (i.e. is able to bring the light into 

the observation eyepieces, to the camera or to both of them); the objective lenses, that 

are from the Neo S Plan family (Olympus, Tokyio, Japan) with five different 

magnifications: 5x, 10x, 20x, 50x and 100x. The microscope also provides an in-house 

illumination system based on a 12 V - 50 W halogen lamp. This microscope is shown in 

Figure 3-3.A.  

The HS camera is directly coupled to the microscope using the Olympus MTV-3 C-

mount adapter. The MTV-3 adapter includes a 0.3x relay lens. In order to project the 

image from the trinocular to the MTV-3, a special lens for microphotography is used. In 

our setup, this lens is the NFK 3.3 LD (Olympus, Tokyo, Japan) and it is devoted to 

maximizing the area covered by the camera attached to the trinocular and hence, makes 

this area closer to the one observed through the trinocular eyepieces.  

The FOV captured by the camera will depend on both the lens magnification 𝑀𝑖 and 

the sensor size of the camera 𝑆𝑆 , as shown in Equation (2). The sensor size can be 

calculated as the product of the pixel size of the sensor 𝑃𝑆 by its number of pixels 𝑁. For 

this camera, the pixel size is 7.4 µm, while the overall magnification of the optical system 

is determined by the magnification of each lens, the 0.3× relay lens and the 3.3× from 

the microphotography lens. This means that the overall magnification of the system is 

about 0.99 the lens magnification. Using this information, we are able to calculate the 

FOV for the different magnifications. 

FOV =  
PS ∙ N

Mi
=  

SS

Mi
 (2) 

3.2.1.1.2 Olympus BX-53 

The main limitation of the aforementioned microscope is a limited spectral 

bandwidth, since the microscope is a conventional one, and its parts are not optimized 

for infrared imaging. Using such microscope, the overall acquisition system is limited to 

wavelengths lower than 750 nm approximately. In order to improve the spectral range 

of the overall system, we decided to acquire a microscope optimized for a wide spectral 

range. 

In order to guarantee an enhanced spectral range, we tested different microscopes 

from the main microscope manufacturers, i.e. Carl Zeiss, Leica, Nikon and Olympus. 

After several experimental testing, we selected the Olympus BX-53 (Olympus, Tokyo, 

Japan) microscope. The objective lenses are from the LMPLFLN family (Olympus, 

Tokyo, Japan), which are optimized for infra-red (IR) observations. Such microscope is 

shown in Figure 3-3.B. 

Beyond the enhanced spectral range, the main features of this microscope are the dual 

observation modes (i.e. transmittance and reflectance); a tube lens (U-TLU-IR, 

Olympus, Tokyo, Japan) which allows the attachment of different imaging sensors; a 

motorized dual-axis mechanical stage (Scanning Stage SCAN 130×85, Märzhäuser), 

which provides accurate movement of the specimens; and an integrated light source 

consisting in a 12 V, 100 W halogen lamp. 
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(a) (b) 

Figure 3-3: Microscopes. (a) Olympus BH2-MJLT; (b) Olympus BX-53. 

3.2.1.2 HS camera 

The push-broom HS camera is a Hyperspec® VNIR A-Series from HeadWall 

Photonics (Fitchburg, MA, USA), which is based on an imaging spectrometer coupled to 

a CCD (Charge-Coupled Device) sensor, the Adimec-1000m (Adimec, Eindhoven, 

Netherlands).  This HS system works in the spectral range from 400 to 1000 nm (VNIR) 

with a spectral resolution of 2.8 nm, being able to sample 826 spectral channels and 1004 

spatial pixels. As already mentioned, several factors affect the overall spectral response 

of an HS acquisition system, e.g. the quantum efficiency of the sensor, the spectral shape 

of the light source, or the light transmission of the lens. When the HS camera is attached 

to the microscope, the aforementioned elements affect the overall spectral response of 

the system. In Figure 3-4 we show a comparative of the effective spectral range of the 

acquisition system for the different microscopes. We can observe the spectral bandwidth 

of the Olympus BH2-MJLT microscope is limited to approximately 750 nm, while the 

system which includes the Olympus BX-53 microscope is sensitive to wavelengths up to 

950 nm.  

 

Figure 3-4: Comparative of the spectral range of both optical subsystems: Olympus BH2-

MJLT (red) and Olympus BX53 (red). 
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3.2.2 Mechanical subsystems: 

A relative motion between the HS sensor and the targeted sample is needed in order 

to acquire HS data cubes using a sensor based on a push-broom scanner. The quality and 

limitations of the acquired images are strongly related to the characteristics of this 

relative movement. In our particular acquisition system, the HS sensor remains 

motionless, placed over the microscope, while the sample to be scanned is moved taking 

advantage of the microscope moving system. In the acquisition process followed in this 

work, the HS push-broom sensor is continuously capturing frames while the sample to 

be scanned is moving in the X direction according to the motor steps. Two important 

mechanical restrictions must be fulfilled in order to acquire high quality images using 

this kind of acquisition process. First of all, the resolution of the mechanical movement 

system must be considerably higher than the optical resolution. That is, the smaller 

distance that the sample can be moved has to be considerably smaller than the pixel size. 

In this way, the mechanical movement of the sample is perceived as a continuous and 

uniform displacement by the scanning sensor. On the contrary, if the smaller distance 

that the sample can be moved is close to the pixel size, the scanning sensor perceives the 

movement as a sequence of jumps that correspond with the motor steps. Needless to say, 

that if the smaller distance that the sample can be moved is larger than the pixel size, 

there will be gaps between subsequent acquired frames. Secondly, the stepper motor 

rotation speed has to be not too high, nor too low, so it can efficiently work, avoiding 

vibrations and overheating. The required motor rotation speed depends on the 

mechanical resolution and the linear speed at which the sample has to be moved. This 

linear speed depends on the optical resolution and the frame rate at which the sensor is 

capturing the data, as previously explained in this chapter. 

In this PhD. dissertation, three different mechanical subsystems have been employed. 

For the BH2-MJLT microscope, the mechanical subsystems were designed and 

developed. In this section, we describe all the custom mechanical systems used in this 

PhD dissertation. For the BX-53 microscope, a commercial dual-axis motorized stage 

(Scanning Stage SCAN 130 × 85) is used to perform the spatial scanning. The main 

features of this Scanning Stage are a movement resolution of 10 nm in both axis; and the 

possibility to be controlled both by software or by using a joystick.  

3.2.2.1 Custom mechanical subsystems 

3.2.2.1.1 Preliminary prototype 

So as to obtain a HS cube from the pathological slides, a customized scanning platform 

based on a linear-movement mechanism with a resolution of 4.5 μm was developed. The 

scanning platform was attached to the microscope employing a customized 3D-printed 

flat base, which replaces the original plate of the microscope (Figure 3-5.b). For a 5x 

magnification, each pixel represents an area of 1.32×1.32 mm, while the movement 

resolution of the linear mechanism is limited to 4.5 μm. The lower resolution of the linear 

mechanism compared to the pixel resolution of the optical system imposes a limitation 

in the spatial information that can be collected to create a HS cube. This fact implies that 

a complete pathological slide cannot be captured in a single shot, because there is a 

spatial information gap between the contiguous lines that compose the HS cube. 
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(a) (c) 

Figure 3-5: Microscopic HS acquisition system. (a) System overview modified for HSI 

acquisition. (b) Designed flat base of the scanning platform. (c) Scanning platform attached 

to the microscope. 

3.2.2.1.2 Optimized prototype: 

This mechanical subsystem is composed by a custom 3D printed transmission 

mechanism, a stepper motor and a controller. By default, the movement system of the 

microscope is manual, in which two knobs can be manually rotated for moving the 

sample in the X and Y directions using two rack and pinion gears mechanisms. A stepper 

motor has been set up for driving the handle corresponding to the X direction. By doing 

so, the movement in the X direction has been automated, which can be controlled from 

the computer in order to synchronize the sample movement with the sensor acquisition 

process. The stepper motor is controlled using a DRV8825 driver plugged into an 

Arduino UNO board, which communicates with the computer through the USB serial 

port. The stepper motor has been mechanically fixed using a custom designed 3D printed 

mechanism that includes a pulley transmission and a planetary reduction, as it can be 

seen in Figure 3-6. The main goal of this mechanism is to fulfill the mechanical 

requirements imposed by the application at hand, i.e. the resolution of the mechanical 

movement system must be considerably higher than the optical resolution.  

 

Figure 3-6: Mechanism made of custom designed 3D printed parts for automatically moving 

the samples in the X direction. 1: Microscope handles for manual movements. 2: Microscope 

rack and pinion gear mechanism. 3: Stepper motor. 4: Planetary reduction. 5: Pulley 

reduction. 
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Generally, the linear movement of the sample is proportional to the movement of the 

stepper motor, multiplied by the transmission ratio of the system (TRsystem) as shown in  

Equations (3) and (4), where Dlinear refers to the linear distance that the sample is moved 

for each motor step, and Slinear is the linear speed at which the sample is moved according 

to the rotation speed of the motor (Srotation) measured in steps per second. 𝑀𝑆𝑃𝑅 refers 

to the number of steps per motor revolution. 

Dlinear = TRsystem ∙
1

MSPR
 (3) 

Slinear = TRsystem ∙
1

MSPR
∙ Srotation (4) 

Whereas we are targeting a microscopic application and the aforementioned 

mechanical requirements for acquisition systems based on push-broom sensors has to 

be fulfilled, the project at hand needs a mechanical system able to accurately move very 

short distances and at a very low but continuous and uniform speed. Hence, according 

to Equations (3) and (4), a small TRsystem value is desired, as well as a high MSPR. In 

particular, the selected stepper motor has 400 steps per revolution. Additionally, the 

DRV8825 driver is able to increase the stepper motor steps per revolution by introducing 

micro-steps up to a maximum of 32 micro-steps per motor steps. Accordingly, the 

minimum MSPR for our motor is 400 steps per revolution and the maximum is 12800 

steps per revolution (400 ∙ 32).  

The TRsystem can be depicted as shown in Equation (5), where TRplanetary refers to the 

transmission ratio of the planetary reduction placed after the motor, TRpulley refers to 

the transmission ratio of the pulley reduction placed between the planetary reduction 

and the microscope handle, and TRgear refers to the transmission ratio of the microscope 

rack and pinion gear mechanism, measured in millimeters per revolution. The 

transmission values that correspond to the custom designed 3D printed parts are 

𝑇𝑅𝑝𝑙𝑎𝑛𝑒𝑡𝑎𝑟𝑦= 1/5 and 𝑇𝑅𝑝𝑢𝑙𝑙𝑒𝑦 = 16/64. The transmission ratio of the rack and pinion gear 

mechanism is 42 millimeters per revolution (28 teeth with a pitch of 1.5 millimeters). 

These results (Equation (6)) in a considerably small transmission ratio (TRsystem = 2.1 

mm per revolution (rv)). Additionally, more than one planetary reduction can be stacked 

together for obtaining extra 1/5 reductions. According to these values, the mechanical 

resolution of the system is 164.0625 nm per motor step. This means that the minimal 

distance that the sample can be moved is Dlinear = 0.1640625 µm. 

TRsystem =  TRplanetary ∙ TRpulley ∙ TRgear (5) 

TRsystem =  
1

5
∙  

16

64
∙ 42 = 2.1 

mm

rv
 (6) 

3.2.3 Summary 

In this section we have provided a brief overview of the previously described 

acquisitions systems. In Table 3-1 we showed a summary of the different features of the 

different acquisition systems, namely System-I, System-II and System-III. In such table 

we can observe the main features of both the optical and the mechanical subsystems, 

including the specifications of the FOV, the pixel size, and the mechanical resolution. As 
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can be observed from the table, there are some situations where the mechanical 

resolution of the system is higher than the pixel size for some magnifications. In those 

situations (marked as † in the table), the mechanical resolution is not enough to capture 

the complete spatial information in a push-broom scan, since the movement size is 

higher than the pixel size. We show a graphic representation of the three acquisition 

systems in Figure 3-7. 

Table 3-1: Summary table of the acquisition systems. † indicates a pixel size lower to the 

mechanical resolution. 

Configuration System-I System-II System-III 
Optical Subsystem 

Microscope BH2-MJLT BH2-MJLT BX-53 
Objective Lens Neo S Plan family Neo S Plan family LMPLFLN family 
Hyperspectral camera HeadWall Hyperspec®VNIR A-Series 

FOV (µm) 

5× 1471 1471  1485  
10× 735.53 735.53  742.96  
20× 367.76 367.76  371.48  
50× 147.10 147.10  148.59 

Pixel Size 
(nm) 

5× 1465 † 1465  1480  
10× 732.60 † 732.60  740  
20× 366.30 † 366.30  370  
50× 46.52† 146.52 † 148  

Mechanical subsystem 

Scanning mechanism 
Based on Blue-Ray 
linear actuator 

Custom 3-D 
printed 

XYZ stage 

Mechanical resolution (nm) 4500  164  10  

 

   
(a) (b) (c) 

Figure 3-7: Acquisition systems used in this PhD. (a) System-I, (b) System-II, (c) System-III. 

3.3   Methodology 

In this section, we present a methodology to correctly set up an HS push-broom 

microscope to capture high quality HS images. This methodology involves the setup of 

the light conditions, the optical focusing of the system, the camera alignment, and the 

empirical measurement of both the FOV and the mechanical resolution of the scanning 

platform. Additionally, a methodology for quantitatively verifying the correct set up of 

the whole system is described. Finally, we show the most common defects that may 

appear when the system is not properly configured.  
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Although three different acquisition systems are available, this methodology has been 

developed by using the System-II (Figure 3-8). However, this methodology can be 

applied to any push-broom HS camera and microscope.  

 

Figure 3-8: Acquisition System-II. 1) VNIR HS camera. 2) Controller of the mechanical 

system. 3) Camera alignment mechanism. 4) Stepper motor for controlling the sample 

movement. 5) Custom 3D printed transmission mechanism. 

For this research, an additional custom 3D printed mechanism is included, which 

allows to perform an accurate positioning of the HS camera relative to the microscope, 

and thus facilitating a precise alignment between the HS camera and the microscope 

(Figure 3-8.3). The methodology described in this section has been published in a 

research paper entitled “Hyperspectral Push-Broom Microscope Development and 

Characterization” (2019, IEEE Access, IEEE) [134]. 

3.3.1 Calibration instrumentation 

In the proposed methodology for setting up an HS push-broom microscope, we 

employ a microscope calibration slide (Figure 3-9) composed by four different parts: a 

single axis micrometer scale, a dual axis micrometer scale and two dots with different 

diameter. The single axis micrometer scale has a length of 10 mm with divisions of 0.1 

mm, numbered from 10 to 1. The dual axis scale ranges in 0.01 mm each division, having 

also additional markers which facilitates measurements of 0.05 mm. Finally, the 

diameters of the target dots are 0.15 and 0.07 mm respectively. 
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(a) 

  
 

(b) (c) (d) 

Figure 3-9: Calibration slide. (a) Complete calibration slide. (b) Micrometer scale, with 0.1 

mm divisions. (c) Two-axis micrometer scale, with 0.01 mm divisions and (d) Black dot, 0.07 

and 0.15 mm diameter. 

3.3.2 Dynamic range characterization of the HSI system 

The first step prior to capture an HS cube is the configuration of the illumination 

conditions. There are three main factors that should be taken into account for light 

adjustment of HS cameras: the spectral shape of the light source, the light intensity and 

the spatial distribution of light across the camera's FOV. First, an optimal light source 

for HSI should ideally present a flat spectral response along the spectral range of the 

camera. If there is no radiation of light in some regions of the spectral range of the 

camera, it will be impossible to acquire images in such spectral bands. The spectrum 

emitted by the light source depends on the type of illumination. Second, normally it is 

desirable to maximize the light intensity measured by the camera, i.e. maximizing the 

dynamic range. There are two ways to maximize the dynamic range in HS measurements: 

increasing either the exposure time or the illumination intensity. On the one hand, the 

exposure time adjustment can improve the dynamic range conditions, but at the 

expenses of increasing the time required to collect an HS cube. The exposure time can be 

also limited by the hardware itself, i.e. the maximum and minimum exposure time will 

strongly depend on sensor manufacturers. On the other hand, variations in the light 

source power can improve the dynamic range exploitation, but light illumination 

adjustment is not possible in some situations. Summarizing, there is a trade-off between 

acquisition time, dynamic range and the available illumination conditions. 

For the reasons discussed above, to properly characterize the illumination conditions 

of an HS instrumentation, we should pay special attention to the spectral shape of the 

light source, the light intensity, and the spatial distribution of light across the FOV. In 

our acquisition system (System-II), the illumination is provided by the in-house 50 W 

halogen lamp of the microscope, and the maximum exposure time that can be configured 

in the camera is 40 ms. The first configuration of the system was just observing the 
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microscope light (with no sample) using the highest light power provided by the in-house 

lighting and also the highest exposure time supported by the camera. To fully 

characterize the illumination conditions, we analyzed an Y-lambda image. In order to 

observe both the measured spectral shape and the dynamic range exploitation, we 

analyzed the mean spectral profile of the Y-lambda image (Figure 3-10.a) using the 4 

different magnifications available. By visual inspection, it is possible to notice that the 

spectral shape of the measured light is not flat. These spectra are mostly influenced by 

the spectra of the light source, the spectral transmission response of the microscope light 

path and the spectral response of the sensor. Attending to Figure 3-10.a, it is possible to 

notice that, although the spectral range of the HS camera covers from 400 to 1000 nm, 

the instrumentation limits the effective spectral range to approximately 400-800 nm.      

To visualize the spatial distribution of light in our system, we analyze a spatial profile 

from the Y-lambda image. In Figure 3-10.b, we show the spatial illumination conditions 

of our system, where a flat response can be observed for each objective lens. 

  
(a) (b) 

Figure 3-10: Light measurements. (a) Spectral and (b) spatial distribution of light varying the 

magnification. 

Figure 3-10 also shows that the full dynamic range of the acquisition system is not 

maximized, even with the maximum light power and exposure time. Furthermore, it can 

be observed that each objective lens present different transmission losses, being the 

higher magnifications the ones which present higher attenuation of light. In the herein 

setup, the only way to improve the dynamic range usage of our system is by attaching an 

external high-power light source. The improvement of the dynamic range conditions is 

mandatory to acquire HS images with high magnification. Due to the poor light intensity 

captured when using the 50× objective lens, the experiments in this paper are limited to 

the 5×, 10× and 20× magnifications.     

Finally, we performed an additional experiment to illustrate the effect of varying the 

exposure time. Figure 3-11 shows that the best dynamic range exploitation is achieved 

when the higher exposure time is selected. 
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Figure 3-11: Spectral distribution of light varying the exposure time. 

3.3.3 Focusing an HS image 

Focusing targets are usually employed for focusing both conventional and HS 

cameras. Using an appropriate focusing target, the acquisition system is considered 

focused when the Y-lambda is sharp, showing high contrast between lines and gaps, 

otherwise the system is out of focus. The coarse focusing of an HS image can be 

performed through Y-lambda image inspection. An Y-lambda image from a micrometer 

contains both low luminance areas (corresponding to the micrometer marks) and the 

high luminance counterpart (related to the blank areas in the calibration slide). In this 

work, we used the micrometer scale from the calibration slide as a focusing target (Figure 

3-9.b). Figure 3-12.a shows an example of a focused Y-lambda image, while Figure 3-12.a 

shows an Y-lambda image out of focus.    

  
(a) (b) 

Figure 3-12: Focused (a) and unfocused (b) push-broom frames from a focusing target. 

    For a precise focus adjustment, it is mandatory to make use of the spatial profile of 

the Y-lambda image. This spatial profile is a one-dimensional signal where low 

luminance values correspond to the micrometer marks, and high luminance values 

correspond to the blank spaces in the calibration slide. In a focused image, this profile 

looks like a square signal, showing high contrast between lines and gaps. In opposition, 

if the system is completely out of focus, the spatial profile will look like a sinusoidal 

signal. Partially focused images present a shape similar to a square signal but revealing 

soft edges. Figure 3-13 shows an example of different spatial profiles of a focusing target. 
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In such figure, the focused spectral profile is drawn using a blue line, a near-focused 

image is represented using a black line and finally an unfocused image is represented 

using a red line.   

 

Figure 3-13: Examples of a focused (blue), unfocused (red) and near focused (black) push-

broom frames using a spectral profile. 

3.3.4 Microscope-HS camera alignment 

In the following sections, we will extract some information about the precision of our 

acquisition system by measurements taken from a calibration slide. For some of these 

measurements, the calibration slide and the FOV of the push-broom camera are required 

to be correctly aligned. The calibration slide is fixed on the microscope stage, so the only 

manner to align the camera and the calibration slide is by rotating the camera position 

relative to the microscope mount. As a coarse alignment methodology, we propose to 

make use of the micrometer ruler. Figure 3-14 shows a representation of two different 

push-broom frames within a micrometer ruler. The solid line (p2) represents a scenario 

where the camera and the microscope stage are aligned, being the FOV of the camera 

perpendicular to the ruler marks. By contrast, the dashed line (p1) shows an example of 

a misaligned setup, where the FOV of the camera is not perpendicular to the sample.      

 

Figure 3-14: Example of the spatial location of different push-broom frames within a 

micrometer ruler. The blue solid line 𝑝2 represents a correct alignment, while blue dashed line 

shows misalignment 𝑝1. 

In this example situation, the camera's FOV was placed exactly at the end of the 

micrometer marks to facilitate the misalignment detection. In this scenario, when the 

camera and the microscope stage are properly aligned (Figure 3-14, p2), the Y-lambda 
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image present a similar shape to Figure 3-15.a. Furthermore, when the FOV and the 

sample are aligned, there is no variation in the observed Y-lambda image when manually 

varying the position of the push-broom frame relative to the sample. Conversely, when 

FOV position is not perpendicular to the sample (Figure 3-14, p1) the Y-lambda image 

looks like Figure 3-15.a, where some of the micrometer marks are missing, revealing 

misalignment.    

In order to perform the coarse alignment, we propose to iteratively rotate the HS 

camera position relative to the microscope stage while visualizing the Y-lambda image. 

A most reliable methodology to align the HS camera once it is coupled to the microscope 

will be covered later section. 

  
(a) (b) 

Figure 3-15: Aligned (a) and not aligned (b) frame of the HS camera respect to the sample. 

3.3.5 Spatial resolution measurement 

In this section, we aim to determine the effective FOV measured by the HS camera, 

which also will reveal the width of the push-broom line. This measure allows to 

determine the proper scanning speed. As mentioned before, the camera should be 

correctly aligned prior to this step-in order to avoid undesired measurement errors. For 

the FOV measurement, both the micrometer ruler and the dual axis scale (Figure 3-9.b 

and Figure 3-9.c) from the calibration slide are used. Using both calibration targets, it is 

possible to record images where the distance between lines is known, and hence the 

effective FOV of the camera can be estimated by performing image analysis over such 

targets. 

The setup of this experiment consists in positioning the FOV of the camera within the 

micrometer scale. For the measurements to be correct, the microscope and the HS 

camera should be correctly aligned, being the situation similar to the one shown in Figure 

3-14, p2. The associated Y-lambda image is exactly the same as shown in Figure 3-15.a. 

Our image analysis approach is devoted to determine the distance (in pixels) between 

two consequent lines (as drawn in Figure 3-14, p2) by finding the edges of the ruler lines, 

and counting the pixels between consecutive edges in order to estimate the FOV of the 

HS camera. To this end, we first extract the spatial ruler profile from the Y-lambda image. 

Then, we search for the edges of the Y-lambda image by calculating the first derivative of 

the ruler profile. The ruler profile and its derivative are shown in Figure 3-16. The 
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positive peaks from Figure 3-16.b corresponds to the rising edges, and the negative peaks 

to the falling edges of the ruler profile.  

  
(a) (b) 

Figure 3-16: Information extracted from the micrometer ruler. (a) Ruler spatial profile. (b) 

Ruler profile derivative. 

Prior to estimate the distance between lines, we have to find the peaks within the ruler 

first derivative. To this end, we set a threshold to identify the positive and negative peaks 

within the ruler derivative profile. Once the peaks are located, we estimate the mean 

distance (in pixels) between two consecutive peaks of the same sign (positive peaks and 

negative peaks respectively). The distances are calculated independently for the rising 

edges and for the falling edges of the ruler profile. In Figure 3-17 the peaks corresponding 

to rising edges are marked in red, while the falling edges counterpart are marked in blue. 

Once these peaks are identified, it is possible to calculate the distance between two 

consecutive lines as the mean of both distances (between positive and negative peaks). 

Using this distance, we are able to retrieve an estimation about the pixel size, and hence, 

about the FOV. 

 

Figure 3-17: Distance calculation based on the ruler's profile derivative. 

In this experiment, the estimation of the FOV was carried out for three different 

magnifications (5×, 10× and 20×), and the micrometer scale allows to measure three 

different distances (0.1 mm, 0.05 mm and 0.01 mm). Prior to show the experimental 

estimation of the FOV for each magnification, some considerations should be 
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highlighted. First, although the calibration slide allows measuring three different 

distances, the width of the line for 0.05 mm and 0.01 mm divisions keeps constant. For 

this reason, measures using the 0.01 mm ruler are highly biased by the line width. For 

an adequate FOV estimation using this methodology, the micrometer ruler should 

present a low line width compared to the distance between consequent lines.  

Although the proposed methodology to measure the FOV is straightforward, the 

image analysis method will strongly depend on the threshold used to identify the ruler 

edges within the derivative. Threshold values will be related to the magnification and the 

distance of the ruler. Assuming that 𝑅𝑑 is the first derivative of the ruler profile, we 

propose to detect the peaks within the ruler's derivative using the threshold defined in 

Equation (7). Nevertheless, the manual determination of the constant k to be general 

enough for the different scenarios (varying magnifications and line widths) is difficult. 

For this reason, to tackle with the manual determination of a threshold, and to fully 

automate the process, k was determined using a non-linear fitting of manually picked k 

values for the different magnifications and ruler distances. We found that a third-grade 

polynomial fit provides enough generalization over our process.   

threshold = mean(Rd) + k ∙ Rd (7) 

Using this methodology, we found agreement between the estimated FOV using 

Equation (2), shown in Table 3-1, and the measured FOV using the ruler profile, as we 

can see from results collected in Table 3-2. 

Table 3-2: Measured FOV (𝜇𝑚) 

Distance 5x 10x 20x 
0.1 1470.62 733.94 366.30 

0.05 1492.58 738.01 368.32 
0.01 1538.53 800.00 392.16 

Theoretical 1471 735.53 367.76 

 

3.3.6 Empirical assessment of the mechanical movement precision 

and repeatability 

As described in Section 3.2.2.1, the mechanical resolution of the system is a critical 

characteristic for being able to acquire high-quality images. Due to this reason, a stepper 

motor has been set up in the microscope using a custom 3D printed mechanism for 

automatically controlling the sample movement and theoretically achieving a very high 

movement resolution (Dlinear = 0.1640625 µm). In order to verify the precision of the 

developed mechanism as well as its repeatability and tolerance, the linear displacement 

of the microscope stage in the X direction when rotating the motor 200,000 steps has 

been measured using a digital caliper gauge. For doing so, the digital caliper gauge has 

been installed also using custom design 3D printed parts. 

Using this set up, a set of 10 measurements have been taken. The average obtained 

distance was 32.941 mm with a standard deviation lower than the 0.3%. According to 

this value, the minimal distance that the sample could be moved (mechanical resolution) 

is 0.164705 µm. As it can be observed, this value is very closed to the theoretically 

calculated one (Dlinear = 0.1640625 µm), being the difference lower than 0.5%. 
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3.3.7 System speed and alignment calibration improvement 

At this stage of the calibration process, the camera has been aligned by visual 

inspection, as described in Section 3.3.4. The pixel size has also been calculated using the 

methodology described in Section 3.3.5. Additionally, the spatial resolution of the system 

is also known (calculated in Section 3.3.6). Using the pixel size, the mechanical 

resolution and the capturing frame rate of the HS camera, the required motor rotation 

speed can be calculated using Equation (4), as it was described in Section 3.2.2.1.2. 

Hence, relatively good HS images should be obtained using this set up. Nevertheless, one 

extra stage is carried out in this section in order to slightly improve and/or verify the 

correct execution of the previous calibration stages. In this calibration stage the entire 

acquisition system (microscope, camera, and movement mechanism) is considered as a 

whole. The goal is to take a picture of a circle of the calibration slide and evaluate its 

spatial appearance in order to determine possible camera misalignment's and/or not 

optimal movement speeds. Figure 3-18 graphically indicates the different scenarios that 

may be faced in this process.  

As it can be seen in Figure 3-18, when the image of the circle of the calibration slide is 

taken at the correct speed, it shapes perfectly corresponds with a circle (Figure 3-18.a). 

However, when the speed is too high or too low, its shape seems like an ellipse (Figure 

3-18.b and Figure 3-18.c, respectively). Additionally, when the camera is not correctly 

aligned, the circle seems to be slightly rotated. However, this effect can be better 

perceived when the speed is too low, and the circle seems outstretched (Figure 3-18.d). 

Accordingly, in order to verify the correct alignment of the camera, a low speed can be 

forced in this experiment. 

 

Figure 3-18: Possible scenarios when capturing a circle (Movement in the X direction). a) 

Correct motor speed. b) Motor speed is too high, camera is aligned. c) Motor speed is too low, 

camera is aligned. d) Motor speed is too low, camera is misaligned. 
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Despite a relatively good assessment of the correct system calibration can be done by 

visual inspection, an automatic methodology has been proposed in order to make it in a 

more precise and rigorous manner. For such purpose, the circle (or ellipse) eccentricity 

has been used together with a PCA method. The employed automatic methodology is 

described as follows: 

- Image binarization: The image is firstly binarized generating a single 2D 

classification map where the pixels corresponding to the circle are labeled as 1, 

and the background pixels are labeled as 0. This is a relatively straightforward 

process considering that once that the image is calibrated, the HS pixels 

corresponding to the circle already have very low values and the background pixels 

have very high ones. 

- Principal components extraction: A 2D principal component analysis is 

computed over the binarized classification map. This analysis provides two 

eigenvalues, corresponding to the directions of the longest and shortest axes of the 

ellipse (𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛), as well as their corresponding eigenvectors, which 

conform the rotation matrix, as shown in Figure 3-19. 

 

Figure 3-19: Principal component analysis of the pixels that conform the ellipse. X represents 

the sample moving direction. 𝑉1and 𝑉2represent the eigenvectors corresponding to the 𝜆𝑚𝑎𝑥 

and 𝜆𝑚𝑖𝑛 eigenvalues, respectively. 𝛼 represents the rotation angle.   

- Eccentricity calculation: The eccentricity of the ellipse can be expressed in 

terms of its major and minor (𝜙𝑚𝑎𝑥 and 𝜙𝑚𝑖𝑛) axes as shown in Equation (8). In 

order to simplify the calculations, we are using the two eigenvalues extracted in 

the previous stage in order to calculate the eccentricity, as shown in Equation (8), 

taking advantage of the fact that 𝜙𝑚𝑖𝑛
2 𝜙𝑚𝑎𝑥

2⁄ = 𝜆𝑚𝑖𝑛 𝜆𝑚𝑎𝑥⁄ . Using this 

methodology, when the speed at which the sample is moved is perfectly fixed 

according to the pixel size and the camera frame rate, the obtained eccentricity (𝑒) 

should be ideally zero. 

e = √1 −
ϕmin

2

ϕmax
2 = √1 −

 λmin

 λmax
 (8) 

- Rotation angle calculation: Using the first eigenvector of the rotation matrix 

𝑉1, which corresponds to the first eigenvalue, the "counterclockwise" rotation 
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angle, with respect to the X axis, 𝛼, can be calculated as shown in Equation (9). 

For simplicity, we are always considering the first eigenvalue as the largest one, 

and hence, the rotation angle can be represented as shown in Figure 3-19. This 

angle is equivalent to the camera misalignment. If the obtained angle value is 0°or 

90°, it means that the camera is perfectly aligned. Notice that for making this 

calculation is better to set a relatively low speed in order to obtain an outstretched 

appearance of the ellipse, being 0° the desirable angle value. If a relatively high 

speed were used, the desirable angle value would be 90°. It is also important to 

highlight that the axis are rotated 90°clockwise so that the X axis of the capture 

image corresponds with the sample moving direction (X). 

α = tan−1 (
V1y

V1x

) (9) 

Figure 3-20 displays a set of example HS images collected by the described system, as 

well as the alignment and eccentricity values provided by the described method. On the 

one hand, Figure 3-20.a and Figure 3-20.b display a set of images collected with the HS 

camera misaligned and at a relatively low speed in relation to the optimal capturing 

speed for the specified frame period and pixel size. The low speed was established in 

order to highlight the misalignment in the dot circle sample, which cannot be appreciated 

in optimal scanning speed conditions. Such images are useful for obtaining the rotation 

angle that needs to be applied to the HS camera in each situation in order to correctly 

align it. On the other hand, Figure 3-20.c and Figure 3-20.d display a set of images 

collected with the camera already aligned but using different speeds. In these images we 

can observe that the measured rotation angle is close to either 0 or 90 degrees, while the 

rotation angle calculated from Figure 3-20.a and Figure 3-20.b indicate a misalignment 

between the camera and the microscope. Nevertheless, the eccentricity values calculated 

for Figure 3-20.c and Figure 3-20.d is not close to zero, which indicates that the circle 

dots were not captured using an appropriate scanning speed. Finally, Figure 3-20 show 

a HS cube captured in adequate conditions, i.e. the scanning speed is correctly configured 

and the microscope and the HS camera are aligned. In such example, the value of the 

eccentricity is close to zero, indicating that the image was acquired in adequate 

conditions. 

 

Figure 3-20: Real examples of the results provided by the described methodology. a-b) 

Examples of misaligned HS images. c-d) Examples of images acquired with a bad scanning 

speed configuration. e) Image acquired with correct alignment and speed conditions. 
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3.3.8 Calibration 

The goal of HS acquisition systems is to provide a spectral signature per spatial pixel 

of the captured scene. These spectral signatures indicate the percentage of incident 

radiation at each spatial pixel that the scanned object transmits or reflects at each 

captured wavelength. 

As already mentioned in Section 3.1, the spectral response of an HS acquisition system 

is affected by several factors, namely the intrinsic spectral response of sensor, the light 

transmission through the lenses and optical elements, and the spectral shape of the light 

source. Due to this reason, in order to obtain spectral signatures that really indicate the 

percentage of transmitted or reflected radiation at each of the different wavelengths, the 

data acquired by the HS system need to be radiometrically calibrated. This calibration 

consists in normalizing the captured HS pixels by linearly scaling their values 

considering the maximum and minimum values that the sensor could measure if the 

scanned object transmitted the 100% and 0% of the incident radiation. This calibration 

must be performed in the exact same capturing conditions that the HS image is taken. 

The next process is followed in order to carry out this calibration process. First of all, 

once the adequate capturing conditions (exposure time, light intensity, etc.) have been 

set up, the sample slide is positioned at a blank area. Then, an HS frame is obtained at 

this position. This HS frame is typically referred as White Reference, (𝑊𝑅). Since there 

is not any sample material in such position of the slide, this HS frame contains the 

maximum values that the sensor is able to measure for each pixel and band in the 

specified capturing conditions (exposure time, light intensity, etc.). Afterwards, the light 

source is turned off and a new HS frame is collected. This HS frame is typically referred 

as Dark Reference, (𝐷𝑅), and contains the minimum values that system is able to provide 

for each pixel and band. Ideally, the DR values should be very close to zero, however 

higher values may be obtained, typically due to the intrinsic noise of the sensor. Once the 

WR and DR have been collected, the light source is turn on again and the HS image is 

captured. Each HS frame of the captured image is radiometrically calibrated using the 

WR and DR as shown in Equation (10), where 𝑅𝑎𝑤𝑖 refers to the 𝑖𝑡ℎ HS frame of the 

acquired image while 𝑟𝑖 refers to the same frame after the radiometric calibration. 

Additionally, in order to mitigate the noise influence, the 𝑊𝑅 and 𝐷𝑅 are collected 100 

times each, thus calculating their average values. 

ri =
Rawi − DR

WR − DR
 (10) 

Figure 3-21 shows an example of how the spectral signatures of different pixels are 

scaled to transmittance values using the aforementioned radiometric calibration process. 

This effect is shown for certain pixels within an example image (Figure 3-21.a). 

Concretely, Figure 3-21.b shows the uncalibrated raw spectral signatures, including the 

spectral signatures of the white and dark references (𝑊𝑅 and 𝐷𝑅), representing with the 

black color lines. Figure 3-21.c  shows the same spectral signatures after applying the 

calibration procedure. The effect of scaling the spectral values to reflectance or 

transmittance values can also be observed in Figure 3-22.a and Figure 3-22.b where RGB 

images are obtained using the spectral bands centered at 709.0, 539.5 and 479.6 nm, 

respectively. 
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Additionally, the calibration process also helps to remove the stripping noise effect, 

which typically appears when acquiring HS images using push-broom scanners [320]. 

The stripping noise consists in spatially coherent lines that appear in the spatial scanning 

axis due to static artifacts produced in the sensors, that are repeated in each push-broom 

frame, as shown in Figure 3-22.a and Figure 3-22.c. In the calibrated images, the effect 

of the stripping noise disappear (Figure 3-22.b and Figure 3-22.d).The stripping noise is 

mainly due to the fact that different photo-receptors of the sensor have slightly different 

sensibility, producing slightly different values when measuring the exact same amount 

of incident radiation.  

 
(a) 

  
(b) (c) 

Figure 3-21: Effect of calibration in the spectral signatures. a) Selected pixel within an example 

image. b) Uncalibrated spectral signatures. c) Calibrated spectral signatures. 

  
(a) (b) 

  
(c) (d) 

Figure 3-22: Real examples of the uncalibrated and calibrated spectral images. a) 

Uncalibrated RGB image (709.0, 539.5 and 479.6 nm). b) Calibrated RGB image (709.0, 539.5 

and 479.6 nm). c) Uncalibrated single image band (539.5 nm). d) Calibrated single band image 

(539.5 nm).   
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3.3.9 Common defects in HS images 

In this section, we show some examples of how the images look like when the setup of 

the HS acquisition system is not appropriate. To this end, we collected images from the 

micrometer ruler grid (Figure 3-9.b). Images were collected using the 20× magnification 

for this experiment. To perform the comparative between the different scenarios, we 

show the panchromatic images from the original HS cubes, i.e. we average all spectral 

channels and visualize the defects spatially. Figure 3-23 shows an HS image collected in 

adequate conditions, while Figure 3-24 illustrates some common defects in HS images. 

 

Figure 3-23: Correct HS image from a micrometer ruler. 

  
(a) (b) 

  
(c) (d) 

Figure 3-24: Common defects in HS images. a) Unfocused image. b) Misaligned image. d-e) 

Bad speed configuration (fast and low scanning speed respectively). 

In Figure 3-24.a, we can observe an unfocused image. The image is not sharp, and 

hence small details are lost. Although it is desirable a proper focusing, there are several 

techniques to enhance the quality of badly focused images [321]. Besides, we can see the 

effect of an image captured when the camera and the microscope stage are not correctly 

aligned in Figure 3-24.b. As far as the spectral information is concerned, there will be no 

change in the spectral signature of different materials in a misaligned image. 

Nevertheless, this misalignment can cause morphological deformations over the sample, 
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which has to be avoided in applications where the morphological features of the samples 

are important. 

Finally, we show the effect of a bad scanning speed configuration. On the one hand, if 

the scanning speed is fast compared to the sensor frame rate, some lines of the scene will 

be skipped, resulting in the loss of some information from the scene. The spatial 

appearance of a fast-scanning speed can be visualized in Figure 3-24.c, where the shape 

of the image seems to be flat compared with the original one. On the other hand, if the 

scanning speed is slow compared to the acquisition time, each line of the spatial scanning 

is re-sampled, resulting in an outstretched image of the original sample, Figure 3-24.d. 

3.3.10 Capturing real samples 

Finally, Figure 3-25 shows different representations of HS data collected from real 

samples using the described acquisition system at different magnifications. The 

specimens under evaluation are prepared slides from Brunel Microscopes (Brunel 

Microscopes, Wiltshire, U.K.), Specifically, we imaged a pine stem sample (BS17 Stem 

Structure) and a rat kidney histology sample (BS28 Rat Histology). 

Figure 3-25 display a RGB representation of the data acquired using 5x, 10x and 20x 

magnifications from the BS28 Rat Histology and BS17 Stem Structure samples, 

respectively.  As it happens in any microscope system, more spatial details can be 

observed for higher magnifications.  

 

Figure 3-25: RGB representation of the HS data collected using different magnifications for 

the rat kidney histology sample (a-c) and for the pine stem sample (d-f). 

Besides, Figure 3-26 shows some spectral signatures extracted from the HS data 

acquired using the 20x magnification. Each of these spectral signatures corresponds to 

one HS pixel of the image. As it can be observed, there are many differences in the 

spectral signatures displayed for both data sets. This suggests the presence of different 
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materials and provides the possibility of distinguishing them using their spectral 

characteristics, what justifies using microscope acquisition systems based on HS push-

broom scanners for many different applications, such as the ones cited in Section 2.3. It 

can also be observed that the pixel size increases for lower magnifications, and targets 

that can be clearly distinguished using higher magnifications appear mixed in a single 

pixel. This results in mixed spectral signatures [43] making more challenging the 

detection of some specific targets, what justifies the use of high magnifications and 

resolutions for some applications where the targets to be analyzed are especially small. 

 

Figure 3-26: Spectral signatures present in the rat kidney histology sample (a) and the pine 

stem sample (b). Pixels corresponding to the rat histology sample are shown in subfigures (c), 

(d), (g) and (h). Pixels corresponding to the pin stem sample are displayed in subfigures (e), 

(f), (i) and (j). 

3.4 Conclusions 

In this chapter, we present the instrumentation that was used during this PhD. thesis, 

which is based on push-broom hyperspectral cameras. Among other HS technologies, 
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push-broom cameras present high spectral resolution, and are the ones able to capture 

HS images in the NIR or SWIR spectral ranges, making them a very interesting 

technology in this field. 

First, we presented three different microscopic HS acquisition systems, and we 

discuss their main differences and drawbacks. Secondly, we presented a methodology to 

correctly set-up a push-broom HS microscope to acquire high-quality HS images. The 

main motivation of such methodology is to propose a sorted list of automatic and semi-

automatic tasks that should be executed prior to acquire high-quality microscopic HS 

images using push-broom cameras. This methodology has been tested using a 

Hyperspec® VNIR A-Series from HeadWall Photonics coupled to an Olympus BH2-

MJLT microscope, using a self-developed 3D printed mechanism for accomplishing the 

required mechanical movements, which provides a low-cost alternative to commercial 

motorized microscope stages. Nevertheless, the proposed methodology is intended to be 

general enough to be suitable for whatever microscope and whatever push-broom HS 

camera is used. This methodology involves the setup of the light conditions, the optical 

focusing of the system, the camera alignment and the setup of the optimal scanning 

speed. In addition, it allows the empirical measurement of both the FOV and the 

mechanical resolution of the scanning platform, as well as detecting and characterizing 

the limitations of the acquisition system under analysis. 

Concretely, firstly a method for characterizing the HSI dynamic ranges and the latter 

optimization of the intensity of the light source and exposure time of the camera to 

achieve optimal illumination conditions has been proposed. Secondly, a method for 

correctly focusing the HS camera has been introduced using calibration slides and Y-

lambda images. Thirdly, a method for calculating the adequate scanning speed has been 

introduced, which requires the previous knowledge of the pixel size and the mechanical 

resolution of the scanning platform. In case that these values are not known in advance, 

a methodology for empirically calculating them is also described. Finally, a semi-

automatic method based on PCA has been introduced, which helps the user to precisely 

carry out the HS camera alignment as well as fine tuning the scanning speed. 

Additionally, this method for fine-tuning the scanning speed of a push-broom camera 

can be directly used even if the technical details of neither the optical system nor the 

mechanical system are known. However, the setup process may take considerably less 

time if an initial speed value closed to the optimal one is set. 

The methodology presented in this dissertation is intended to provide a fast and 

accurate configuration of HS push-broom microscopes for researchers in this field. To 

be able to apply this methodology, a HS push-broom camera and a mechanism able to 

perform the linear movement of the sample are needed. Any push-broom camera is 

suitable to be used in the application of the proposed methodology, i.e. to perform the 

experiments regarding the dynamic range and the FOV measurements. As far as the 

mechanism is concerned, although in this dissertation we employed a custom 3D printed 

mechanism, commercial mechanisms are also compatible with the proposed 

methodology. To perform the steps of this methodology which involve a linear movement 

mechanism, the only requirement is to be able to control by software both the speed and 

the movement of the linear mechanism. 

Although in this manuscript we have presented some quantitative outcomes (such as 

the relationship between the theoretical values of the FOV or the mechanical resolution 

and the experimental ones), we have not performed quantitative measurements of the 
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overall quality of the acquired HS images, both spatially and spectrally. In future works, 

we are planning to further investigate in this field in order to provide measurements of 

the quality of the HS images obtained by the acquisition system. 

After applying this methodology to the acquisition system named System-II, some of 

its limitations have been described. Particularly, it has been observed that the 

illumination conditions are not optimal. The dynamic range cannot be maximized due to 

limitations in the light source power and also in the exposure time (which has an upper 

limit of 40 ms). To improve the dynamic range conditions in this scenario, an external 

light source could be used. Additionally, in the acquisition system under analysis, the 

focus is carried out manually by the user. Although we are able to acquire good quality 

images when focusing manually, a better focus plane configuration could be achieved if 

the Z-axis of the microscope were motorised.  

Most of the aforementioned shortcomings of this acquisition system have been solved 

with the System-III. First, the Z-axis has been motorized, which facilitates the focusing 

procedure. Second, the spectral range of the microscope has been enhanced, enabling 

the exploitation of the spectral range beyond 1000 nm. Finally, there is possibility to use 

external light sources, which allows the improvement of the dynamic range, enabling the 

use of higher magnifications than 20×.  
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Chapter 4: Spectral-based classification 

of histological HS images  

In this Chapter, we describe the use of HSI for the detection of brain tumor in 

pathological slides. In this research work, HS data from pathological slides belonging to 

human brain tissue suffering high-grade gliomas have been analyzed. The main goal of 

this study is to analyze if it is possible to discriminate between normal and tumor tissue 

in pathological slides by processing only the HS data.  

Using the instrumentation described in the previous Chapter, several databases of 

histological slides diagnosed with high-grade gliomas have been generated, and then 

such images have been processed in order to retrieve from the HS data useful 

information for diagnosis. We present two different supervised learning approaches for 

the processing of the same biological samples. These two approaches are different since 

the acquisition system, the data partition and the processing framework are different. 

This chapter is organized as follows. First, the biological samples available for this 

study are presented. Second, an approach to process the HS data with data belonging to 

low magnifications is presented. Finally, an improved acquisition and processing of high 

magnification HS images is presented. 

4.1 Biological samples description 

The specimens investigated in this research work consist of human biopsies extracted 

during brain tumor resection procedures (Figure 4-1). The pathological slides in this 

study were processed and analyzed by the Pathological Anatomy Department of the 

University Hospital Doctor Negrín at Las Palmas of Gran Canaria (Spain). The study 

protocol and consent procedures were approved by the Comité Ético de Investigación 

Clínica-Comité de Ética en la Investigación (CEIC/CEI) of the same hospital. After the 

resection, the samples were dehydrated and embedded in paraffin blocks. The blocks 

were then mounted in microtomes and sliced in 4 µm thick slices. Finally, the slices were 

rehydrated and stained with H&E. After routine examination of the samples, every 

sample was diagnosed by pathologists as glioblastoma (GB), according to the World 

Health Organization (WHO) classification of tumors of the nervous system [322]. 
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(a) (b) (c) 

Figure 4-1: Biological samples. (a) Pathological slides overview. (b) and (c) Diagnosed 

pathological slides with the tumor and normal tissue surrounded by red and blue color 

respectively.  

After the pathologist confirmed the GB diagnosis, macroscopic annotations of the GB 

locations were made on the physical glass slides using a marker-pen. Non-tumor areas 

are defined as areas in the pathological slide where there is no discrete presence of tumor 

cells. Within the areas annotated by a pathologist, we selected regions of interest (ROI) 

that were subsequently digitized using HS instrumentation. Within each ROI, different 

numbers of HS images were acquired for analysis. Figure 4-2 shows an example of the 

annotations within the pathological slide, and the selection of different ROIs (shown at 

5×) and the HS images (imaged at 20×). In this case, red color annotations indicate areas 

diagnosed as GB, while non-tumor areas were annotated in blue marker.  

 

Figure 4-2: Pathological samples used in this study. (a) Macroscopic annotations performed 

in pathological slides after diagnosis. Blue squares denote ROIs within annotations. (b) ROIs 

from (a) shown at 5×. (c) Examples of HS images used in this study for classification (imaged 

at 20×). 

4.2 Low magnification experiments 

The experiments carried out in this research work were performed employing 

hyperspectral images obtained from human brain pathological slides, using a custom 

microscopic hyperspectral acquisition system. Then, data were processed with three 

different ML algorithms to classify and identify the tissue samples. Three different 

classifiers have been employed to automatically distinguish between tumor and normal 

tissue, using as features only the spectral information of the tissues. A qualitative 

description of this methodology has been recently published [323], and the work 
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described in this section has been published in a manuscript entitled “Detecting brain 

tumor in pathological slides using hyperspectral imaging” (2018, Biomedical Optics 

Express, OSA Publishing) [36].  

4.2.1 Dataset description 

In this research work we used the System-I described in Chapter 3. Such acquisition 

system is characterized by a low resolution of the mechanical system. As indicated in the 

description of the HS acquisition system, not all the spatial information can be captured 

by this HS camera. If the full spatial information would be available, the morphological 

characteristics of the tissue could be exploited, employing similar criteria of that used by 

pathologists for diagnosing (i.e. cell proliferation and nuclei morphology). Figure 4-3.c 

shows a typical histological image used by pathologist to diagnose brain tumor. 

Compared with Figure 4-3.a or b, it can be seen that the histological image allow 

distinguishing cells, what is not possible in the acquired HS images. This spectral 

information consists of a mixture of all tissues inside a certain area of a pathological slide. 

Nevertheless, in real applications, different regions of a tissue could have different 

spectrum. Although we would like to isolate the different elements in a pathological slide, 

i.e. cells, our scanning system constraints the spatial resolution of the images. For this 

reason, in this research study all the tissue inside an area is macroscopically extracted 

for the classification. Due to this fact, in this study only the spectral information obtained 

from the HS cubes has been taken into account. Furthermore, the objective of this 

research work is to analyze if solely the spectral signature analysis is a useful 

complementary tool for detecting brain tumor in pathological slides, as the 

morphological analysis has been already proven to be appropriate to this end. 

   
(a) (b) (c) 

Figure 4-3: Synthetic RGB representations of a HS cube acquired from a pathological slide of 

(a) tumor tissue and (b) normal tissue. (c) Histological image of a brain tissue sample (10×). 

  

Employing the microscopic HS acquisition system named System-I previously 

described in this document, the spectral database described in [32] was obtained. This 

database consists of 36 HS cubes collected using a 5× magnification. Each hyperspectral 

cube is composed by 826 spectral channels and 1004×600 pixels. Figure 4-3.a and b 

show the synthetic RGB representations of two different HS cubes captured from 

pathological slides presenting tumor and healthy tissue respectively. As previously 

mentioned, tissue inside red markers were diagnosed as tumor while tissue inside blue 

marker were diagnosed as normal tissue. 

As it will be detailed next in the pre-processing chain description section, a ROI of 

each HS cube were defined to extract a spectral signature dataset. In this study, two 

different classes of tissue have been defined: tumor tissue and normal tissue. Table 4-1 

summarizes the labelled dataset of spectral signatures available for each patient per 
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tissue class after defining the ROI and extracting the spectral data from each hypercube. 

The spectral signatures for both classes and all patients are shown on Figure 4-4. These 

spectral signatures have been calculated as the mean spectrum of each tissue type for 

each patient. The spectral signatures depicted in blue lines belong to normal tissue and 

the ones depicted in red lines belong to tumor tissue. After a visual inspection of these 

spectral signatures, it can be noticed that there are significant differences between the 

signatures of normal and tumor tissue, especially in the spectral range between 550 nm 

and 700 nm.  

Table 4-1: Spectral signature labelled dataset summary 

#Patient 
#Total of spectral samples 

Normal  Tumor 
P1 36,648 36,685 
P2 36,923 37,826 
P3 35,159 35,181 
P4 36,821 37,800 
P5 37,321 35,230 
P6 35,366 37,379 
P7 36,605 37,718 
P8 36,736 38,242 
P9 - 38,325 
P10 - 39,399 

 

 

Figure 4-4: Average spectral signatures of tumor tissue (red) and normal tissue (blue) and 

their respective standard deviation.  

4.2.2 Data partition strategy 

In order to validate supervised classification algorithms for discriminating between 

normal and tumor tissue, three different case studies (CSs) have been proposed. This 

approach differs in which patients are included as subject of study. These scenarios are 

described below: 

• Case study 1 (CS1): The goal of this CS is to check if the discrimination between 

normal and tumor tissue can be performed using the available labelled data, 

avoiding the inter-patient variability of data. The datasets explored in this CS 

include HS cubes from pathological slides where both type of tissue, normal and 

tumor, are present. In order to avoid the inter-patient variability of data, data 
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from each patient is used independently for training and testing the supervised 

classifiers. Patients #9 and #10 are not included in this CS because no normal 

samples are available from these two patients.  

• Case study 2 (CS2): In CS2, all the available labelled data are merged into a 

unified dataset, taking into account the inter-patient variability in this scenario. 

All the samples for the ten patients have been included in this CS.  

• Case study 3 (CS3): This case study is the most realistic one in a diagnosis 

context. In this scenario, each patient data are used independently as a test set 

for the classification algorithm. The classifier model is trained by using the 

information from the rest of the HS labelled data that belong to the remaining 

patients. This CS represents a real case where new samples arrive to the 

pathological laboratory and the classification must be performed using a 

classifier trained with data from previous patients.  

In this research work, a 10-fold cross-validation (CV) was used as model validation 

scheme for CS1 and CS2, randomly partitioning the dataset in 10 folds and using only 

one fold for training the classifier (10% of data) and the remaining data are used to assess 

the classifier performance. The process is repeated until each fold has been used to train 

the classifier, and finally the classifier performance is calculated as the average of the 

performance obtained in each iteration. In CS3, it is not possible to apply cross-

validation, so the model was evaluated using hold-out validation, where the test set 

corresponds to the spectral samples from one patient, and the classifier is trained using 

all the available spectral signatures from the remaining patients. 

4.2.3 Processing framework 

The proposed processing framework is based on a supervised classification scheme. 

Although it has been proven that combining both the spatial and spectral features of the 

hyperspectral images can improve the accuracy in the predictions [324], in this research 

work only the spectral characteristics of the data have been taken into account. The 

inputs of the classifiers are the measured spectral signatures from healthy and tumor 

pixels. Figure 4-5 shows an overview of the processing framework employed in this study. 

The first stage of the proposed framework consists of a pre-processing chain that aims to 

compensate the effects produced by the environmental conditions and the sensor 

response of the acquisition system during the capture procedure of the HS cubes. Then, 

a supervised classification is performed using three different classification methods. 

Finally, the performance of the classifiers is evaluated using standard metrics for 

assessing a classifier performance. 

 

Figure 4-5: Processing framework block diagram.  
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4.2.3.1 Data preprocessing 

The pre-processing chain proposed in this research work is based on four steps: 1) 

selection of the ROI; 2) image calibration; 3) spectral band reduction; and 4) removal of 

the microscope light inside the pathological slide where there is no tissue sample. 

Following, each step of the pre-processing chain is explained. 

1) ROI selection: First, due to the high dimensionality of the HS cubes, which 

extremely slows down the processing of the data, a manual ROI selection is applied. In 

this procedure, the ROI selection is carefully performed taking a ROI that is a balanced 

solution between selecting a reduced area (that involves decreasing the computational 

cost) and choosing enough relevant data inside each area.  

2) Calibration: The second stage of the preprocessing chain is related to the 

calibration of the image. Through the calibration, the acquired image is transformed 

from radiance observation to transmittance. The transmittance image (𝐼𝑡𝑟𝑎𝑛𝑠) is 

calculated by taking the ratio between the raw HS image (𝐼𝑟𝑎𝑤) with respect to a reference 

image (𝐼𝑟𝑒𝑓), as shown in Equation (11). This is a standard procedure for hyperspectral 

images [325]. The reference material provides a measure of the instrument response 

function from the resultant optical density image set [326]. Figure 4-6.a shows a single 

spectral signature extracted from the raw data acquired by the HS camera while Figure 

4-6.b shows the reference spectrum of the microscope light, passing through an empty 

pathological slide, acquired by the HS camera. Finally, the calibrated spectrum in 

absorbance mode is shown in Figure 4-6.c.   

Itrans = −log
Iraw

Iref

 (11) 

 

   
(a) (b) (c) 

Figure 4-6: Spectral signatures of a single tumor pixel in each calibration step. (a) Raw 

spectrum. (b) Reference spectrum. (c) Calibrated spectrum.  

3) Band reduction: The next stage in the pre-processing chain consists of a band 

reduction of the HS cube, since there are spectral channels which do not carry any 

relevant information. The band reduction is performed in two different ways. First, in 

the reference spectrum presented in Figure 4-6.b, it can be observed the measured 

intensity is almost zero for the extreme wavelengths (mainly produced because the 

microscope is not optimized to be employed beyond the limits of the visible spectral 

range). For this reason, such bands can be removed to avoid the inclusion of meaningless 

information in the machine learning scheme. The selected operating bandwidth covers 

the spectral range from 419 nm to 768 nm (Figure 4-7.a). Second, the measured spectral 

signatures present high redundancy between contiguous bands due to the high 

resolution of the HS camera sensor related with the diffraction capability of the optical 



Chapter 4 : Spectral-based classification of histological HS images 

~ 107 ~ 

 

grating. The spectral resolution of the HS camera is 2.8 nm, obtaining 826 spectral 

bands, so each contiguous band is sampled at 0.6 nm approximately, thus producing 

redundant information. In order to avoid this redundancy and to reduce the 

dimensionality of the HS cubes (to accelerate the processing of the samples), the spectral 

bands were averaged in a similar way as proposed in [327]. The spectral signature 

generated after applying the band average can be observed in Figure 4-7.b. It can be 

observed that the overall shape of the spectral signature does not change compared with 

the full-spectra signature, with 826 spectral channels (Figure 4-6.c).  

  
(a) (b) 

Figure 4-7: Spectral signatures of a single pixel in the band reduction step. (a) Selected 

operating bandwidth in the reference spectrum. (b) Calibrated spectral signature after the 

spectral band reduction.  

4) Microscope light removal: Finally, in order to process only the useful 

information of the HS cube, a method to discriminate between pixels that belong to the 

microscope light were developed. This method is based on a binarization process 

performed over the synthetic RGB image extracted from the HS cube, taking advantage 

of the white color of the measured light. After a manual selection of the suitable threshold 

for binarizing the image, it is possible to isolate the microscope light to avoid processing 

light pixels without relevant information. Figure 4-8.a shows the synthetic RGB 

representation of a HS cube acquired from a healthy pathological slide before the 

binarization process. Figure 4-8.b shows the binarized images and Figure 4-8.c the 

synthetic RGB representation after removing the pixels associated with the microscope 

light.  

   
(a) (b) (c) 

Figure 4-8: Synthetic RGB representations of a HS cube acquired from a healthy area of 

pathological slide. (a) Synthetic RGB image without light pixels removal. (b) Binarized image. 

(c) Synthetic RGB image after the binarization process application to remove light pixels. 
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4.2.3.2 Supervised classification 

An extensive literature about pixel-wise classification of HS images is available in the 

current state-of-the-art. When using this technique, each pixel of a HS cube is assigned 

to a certain class based exclusively on its spectral signature analysis. For this purpose, 

approaches based on decision trees, neural networks and kernel-based methods have 

been widely used. These algorithms have to face two main problems: the high 

dimensionality of data and the limited size of sample data [328]. The supervised 

algorithms employed in this research work have been SVMs, ANNs and RF. In a recent 

review article [54], these classifiers have been highlighted among others, such as MLR or 

DL techniques, for the pixel-wise classification of hyperspectral images. Nevertheless, in 

this study we only analyses SVM, ANNs and RF as they have been shown to be more 

computationally efficient.  

SVMs are kernel-based supervised classifiers that have been widely used in the 

classification of HS images. In the literature, it is shown that SVMs achieve good 

performance for classifying HS data, even when a limited number of training samples 

are available [329]. Due to its strong theoretical foundation, good generalization 

capabilities, low sensitivity to the curse of dimensionality, and ability to find global 

classification solutions, many researchers usually prefer SVMs instead of other 

classification algorithms for classifying HS images [125]. In this research work, the  

LIBLINEAR [330] integrated software for support vector classification has been used.  

Recent remote sensing literature has shown that SVM methods generally outperform 

traditional statistical analysis based on ANN methods in classification problems 

involving HS images. Nevertheless, ANNs have been also successfully employed in the 

classification of HS images [329], [331]. Some studies have applied ANNs as classifiers 

over HS images in the medical field [332], [333]. The ANN used in this research work is 

a feed forward MLP network, trained using a backpropagation algorithm. The MATLAB® 

Neural Network ToolboxTM has been selected to test the quality of these algorithms in the 

classification of in-vitro hyperspectral brain tissue.  

Finally, the third algorithm considered in this supervised classification approach is 

Random Forest. RF is an ensemble classification algorithm that builds a set of classifiers 

and classify new data by performing a voting of their predictions [334]. In order to test 

this supervised ensemble algorithm in the classification of HS pathological data, the 

MATLAB® Machine Learning ToolboxTM has been employed. 

4.2.3.3 Evaluation metrics 

The results obtained by the supervised classifiers were evaluated using the standard 

sensitivity, specificity, and overall accuracy (ACC) metrics. These are frequently 

employed as statistical measures of the performance of hyperspectral image 

classification[252], [335], [336]. Sensitivity is related to the tests ability to identify a 

condition correctly. It is obtained as the number of true positives (TP) divided by the 

total number of true positives and false negatives (FN) in a population (Equation (12)). 

Specificity is related to the tests ability to exclude a condition correctly. It is obtained as 

the number of true negatives (TN) divided by the total number of true negatives and false 

positives (FP) in a population (Equation (13)). Finally, overall accuracy is calculated by 

dividing the total number of successful results by the total population (Equation (14)). 
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Sensitivity =
TP

TP + FN
 (12) 

Specificity =
TN

TN + FP
 (13) 

ACC =
TotalSuccess

TotalPopulation
 (14) 

4.2.4 Experimental results  

This section presents the results achieved after applying the supervised classification 

framework described in section 2 to the histological human brain hyperspectral dataset. 

These results present the performance estimation of each classifier for each CS. In 

addition, the computational time of each classifier is shown as a measure of the time 

required to train and evaluate the performance of each classifier, employing a computer 

with Intel® Core™ i7-4770k at 3.5 GHz. 

Three different supervised classifiers were evaluated: SVMs, ANNs and RF. A linear 

kernel has been tested in the SVM classifier. Several ANN topologies were tested, 

(varying the number of hidden layers, the number of neurons inside each layer and the 

activation function selected for each layer). The selected ANN topology consists of a 

multilayer neural network with two hidden layers composed by 36 and 16 neurons 

respectively (employing a logistic activation function for these layers) and using a 

hyperbolic tangent sigmoid activation function for the output layer. After simulating the 

classifier using different network topologies, it has been experimentally determined that 

this architecture is the most suitable for this application. Finally, an ensemble of 50 

different classification trees composes the RF configuration. It has been detected that the 

use of an increased number of classification trees does not improve the classification 

accuracy. 

4.2.4.1 Case Study 1 

As described before, CS1 implies the classification of data that only belongs to a single 

patient. The main goal of this CS is the evaluation of the possibility of discriminating 

between the spectral signatures belonging to tumor or normal areas of the pathological 

slides when no inter-patient variability of data is considered. For this reason, due to the 

absence of normal tissue for patient #9 and #10, these patients were not included in this 

experiment. The estimation of the model performance was obtained using 10-fold cross-

validation. Table 4-2 shows the classification results obtained for each classifier per 

patient in this CS.  

It can be seen that the results achieved employing the SVM classifier offers a 

competitive discrimination between normal and tumor tissue with high sensitivity and 

specificity (higher than 90% in any case). On the other hand, the results obtained using 

ANNs outperform 93% of overall accuracy for every patient, being the most suitable 

classifier for this CS. In terms of specificity and sensitivity, these results show a good 

discrimination rate between the different classes, being the sensitivity and specificity 

values also higher than 93% in all the cases, achieving an average ACC of 97.88%. 

Regarding the computational cost, ANNs show a higher computational cost compared 

with the SVM classifiers for this CS. Finally, RF also offers accurate results to 
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differentiate between normal and tumor tissue, achieving results that outperform 89.5% 

of specificity and sensitivity. 

Table 4-2: Supervised classification results in CS1. 

Classifier  
Type 

#Patient  
ACC  
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Time–1 Fold 
(s) 

Time–10 Fold 
(s) 

SVM Linear 
Kernel 

P1 98.84 99.06 98.63 16.59  165.96 

P2 99.99 99.99 99.98 1.89  18.97  

P3 97.83 97.49 98.17 11.02  110.22  

P4 96.89 96.41 97.35 12.54 125.42 

P5 97.32 97.07 97.58 12.27 122.74 

P6 90.55 91.02 90.11 30.08 300.84 

P7 91.61 90.30 92.89 26.28 262.87 

P8 97.24 96.67 97.79 20.81 208.11 

Avg. 96.28 96.00 96.56 16.44 164.39 

ANN 

P1 98.79 99.00 98.58 84.35  843.57  

P2 99.99 99.99 99.99 30.05  300.56  

P3 98.94 98.93 98.95 74.71  707.19  

P4 99.05 98.71 99.38 70.66 706.62 

P5 98.23 98.33 98.12 83.07 830.75 

P6 93.75 93.11 94.37 84.41 844.17 

P7 94.37 94.49 94.26 86.04 860.47 

P8 99.91 99.89 99.93 66.64 666.43 

Avg. 97.88 97.81 97.95 72.49 719.97 

RF 

P1 97.76 98.20 97.32 27.76  277.62  

P2 99.93 99.92 99.93 16.01  160.12  

P3 96.91 96.04 97.78 27.00  270.08  

P4 98.54 98.03 99.03 23.40 234.07 

P5 95.88 95.47 96.31 28.79 287.98 

P6 91.73 91.67 91.79 38.29 382.98 

P7 90.48 89.50 91.43 39.86 398.61 

P8 99.76 99.68 99.84 20.87 208.79 

Avg. 96.37 96.06 96.68 27.75 277.53 

 

The results achieved in the CS1 scenario shows that all the classification algorithms 

can reach significant classification results. The behavior measured for all the classifiers 

is very similar in this CS, having close averaged metrics around 96% of overall accuracy, 

specificity and sensitivity. It can be observed that the classification quality also depends 

on the subject of study, i.e. patients #6 and #7 show lower accuracy than the other 

patients whatever classifiers is employed. The worst results in terms of overall accuracy 

are higher than 90% of success, and the values of sensitivity and specificity outperform 

89.5% in all the cases. As far as computational cost is concerned, it can be seen that SVM 

and RF can perform the training and classification tasks more efficiently. 

4.2.4.2 Case Study 2 

This CS aims to introduce some inter-patient variability in the classification task by 

merging all available data from all patients in a single dataset. The model evaluation was 

accomplished through 10-fold cross-validation. The results achieved by all the classifiers 

for this CS are shown in Table 4-3. Although the discrimination rate in all the supervised 

classifiers present good discrimination capabilities to distinguish normal and tumor 

tissue (higher than 80% in terms of overall accuracy, sensitivity and specificity), the 

results have worsened compared to CS1 results. In this CS, RF and ANNs show the most 

competitive classification results, with values of overall accuracy, sensitivity and 

specificity higher than 90%. It can be also observed that the results achieved using SVM 
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have the lowest accuracy, which metrics around 80%. The computational cost in this CS 

has extremely increased compared with CS1 time results due to the higher amount of 

data that compose the CS2 dataset (more than 665,000 spectral signatures). In this CS, 

the computational time required for ANNs is much higher than the one required for SVM 

or RF. The time consumed by ANNs is almost twice than RF or SVM for training the 

classifier and evaluating its performance. For these reasons, RF provides more 

competitive prediction results, having significantly lower computational cost. Although 

the SVM classifier performs the classification with a lower computational cost compared 

to ANNs, the classification performance is slightly worst. 

Table 4-3: Supervised classification results in CS2. 

Classifier Type 
ACC  
(%) 

Sensitivity  
(%) 

Specificity  
(%) 

Time–1 Fold 
(s) 

Time–10 Fold 
(s) 

SVM Linear Kernel 82.94 86.33 79.14 418.53  4185.4  

ANN 91.71 92.45 90.78 795.16  7951.6  

RF 93.25 93.97 92.35 467.95  4679.6  

4.2.4.3 Case Study 3 

This experimental setup emulates a realistic situation where a pathological slide, 

belonging to a new patient, arrives to the Pathological Anatomy department and the 

prediction of the disease is performed based only on the information from previous 

patients. In this CS, the model evaluation is performed following a hold-out method, 

where the samples from a certain patient are used as a test set to evaluate the 

performance of the classifier model generated employing the remaining patients of the 

database. Patients #9 and #10 only have tumor tissue samples, so the measurement of 

the specificity cannot be obtained due to the impossibility of getting neither false 

positives nor true negatives. Therefore, the overall accuracy and the sensitivity are the 

same for these two patients.  

Table 4-4 shows the classification results of each classifier per patient in the CS3 as 

well as the computational time results for the hold-out process. It can be seen that the 

classification results of this CS are not as accurate as in the other two cases. Furthermore, 

as it can be observed, the sensitivity and specificity values are not balanced as occurs in 

the other CSs. Unlike the results obtained in CS1, the prediction accuracy strongly varies 

between the different patients. There are some success subjects in this study, such as 

patients #1, #2, #3, #9 and #10, where the classification results are higher than 80% of 

overall accuracy. Some patients even show a classification accuracy similar to the one 

obtained in CS1, for instance patient #2 using the SVM classifier. Nevertheless, the 

models cannot be generalized enough to produce quality prediction about tissues 

diagnosis in the rest of the patients.  

The best classification results are obtained for patient #9 where the overall accuracy 

and sensitivity are higher than 98% whatever classifier is employed. According to Table 

4-4, it is possible to see that there could be chance for cross-fertilization between the 

different classifiers. For instance, the results obtained using SVM for patient #1 are better 

than 90% of overall accuracy, whereas the results for the patient #3 using this same 

classifier are near to 80%. Analogously, the results obtained for patient #1 in ANN is 

about 80% of overall accuracy, while the results for patient #3 are better (90%). 

Moreover, ANN achieves the best average overall accuracy (78.02%), SVM achieves the 

best average sensitivity (75.69%) and RF achieves the best average specificity (79.33%), 

demonstrating that none of the analyzed classifiers is optimum for all the patients. This 
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fact can motivate an ensemble of supervised classifiers where the misclassifications from 

one classifier are compensated with the correct classification of another. Following the 

same trend as in the other CSs, ANNs are the classifier with the higher computational 

load. 

Table 4-4: Classification results in CS3. 

Classifier Type #Patient  ACC (%) Sensitivity (%) Specificity (%) Time (s) 

SVM Linear 
Kernel 

P1 90.65 92.19 89.12 468.73  

P2 96.75 99.97 93.62 492.41 

P3 80.37 63.26 97.46 457.00 

P4 66.62 66.93 65.54 426.61 

P5 57.18 62.27 51.78 381.72 

P6 38.75 21.81 54.77 349.74 

P7 81.10 74.62 87.40 428.12 

P8 58.82 90.80 28.11 413.94 

P9 99.48 99.48 - 410.59 

P10 85.58 85.58 - 474.33 

Avg. 75,53 75.69 70.97 430.31 

ANN 

P1 86.51 79.87 93.14 788.04  

P2 82.48 99.95 65.42 778.60  

P3 92.48 86.60 98.35 781.80  

P4 70.36 67.23 73.40 774.45 

P5 61.20 38.72 85.02 781.99 

P6 53.67 24.67 81.10 786.06 

P7 72.84 68.36 77.18 771.44 

P8 69.91 98.23 42.70 776.62 

P9 98.73 98.73 - 824.74 

P10 92.04 92.04 - 830.83  

Avg. 78.02 75.44 77.03 789.45 

RF 

P1 80.54 70.35 90.72 426.62  

P2 92.18 99.39 85.15 506.75  

P3 8i6.46 73.62 99.28 489.01  

P4 66.46 57.11 75.56 466.18 

P5 58.87 41.64 77.13 443.80 

P6 60.69 39.74 80.51 437.98 

P7 70.93 60.26 81.29 444.93 

P8 69.59 95.18 45.01 461.59 

P9 99.42 99.42 - 526.78 

P10 92.70 92.70 - 513.57 

Avg. 69.13 72.94 79.33 471.72 

 

4.2.5 Discussion 

In this section we have proposed and validate several supervised classification 

methods to obtain an automatic diagnostic tool based on HSI to assist pathologist in the 

task of distinguishing between tumor and non-tumor human brain tissue using 

pathological slides. For this purpose, customized microscopic HS instrumentation was 

used (System-I, described in the previous chapter).  

One of the main challenges of this research was the creation of the first library of 

spectral signatures from different tissues, which have been collected according to the 

current diagnosis of the tissue, provided by a pathologist. The contents depicted in this 

section are just a step forward in the achievement of an automatic diagnosis tools.  
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The research shown in this section presents several drawbacks. First, the 

instrumentation used for this study is not suitable to capture the whole spatial 

information of a pathological slide, and thus the spatial information of the HS cube 

cannot be used in the image processing scheme. Additionally, this restriction in the 

spatial resolution imposes the use of a low magnification (5x) for this study. Second, in 

terms of the data partition, CS1 and CS2 represent a proof of concept to demonstrate the 

capabilities of HS data processing for the discrimination between tumor and normal 

areas in histological slides. However, such experimental design is not appropriate since 

data from the same patient are used for both train and test the supervised classifiers, 

which can lead in a data leakage problem. Finally, the optimization of the classifier 

hyperparameters have not been carried out exhaustively. In this sense, the classification 

performance can be also further improved. 

In the next Section, we present an evolution of this research work where most of the 

aforementioned shortcomings are addressed.    

4.3 High magnification experiments 

In this section, we propose to further investigate the effectiveness of the exclusive 

exploitation of the spectral information within HS images. For this reason, we have 

created a new database of HS data from brain histological slides using a more 

sophisticated acquisition system (System-III). Such acquisition system allows to capture 

all the spatial information from the histological slides, and also allows the exploitation 

of the spectral range up to 1000 nm. Additionally, both the data partition scheme and 

the hyperparameter tuning of the supervised classifiers are improved.  

The novel contributions of this work are as follows. First, we explore superpixels for 

region-based grouping of similar pixels using both spatial and spectral information in 

HS digital histology images from GB tumor patients. For superpixel generation, we 

utilized the original SLIC (Simple Linear Iterative Clustering) algorithm but modifying 

the distance metric to be more suitable for spectral data. Next, the objective of this work 

is to employ only the spectral information from superpixels for supervised classification 

for GB tumor detection. 

The work described in this section has been published in a manuscript entitled 

“Hyperspectral Superpixel-Wise Glioblastoma Tumor Detection in Histological 

Samples” (2020, Applied Sciences, MDPI) [52]. 

4.3.1 Dataset description 

The dataset for this study consisted of a set of HS images acquired from human brain 

histological slides, as described in Section 4.1. For this research work, we used the 

System-III (Figure 4-9.a) described in the previous chapter. Such acquisition system is 

characterized by a high spectral sensitivity in the spectral range from 400 to 1000 nm, 

and an accurate mechanical system, which allows the acquisition of the full spatial 

information of a sample. Using this system, we were able to address the aforementioned 

disadvantages of the previous acquisition system (System-I). 

To ensure high quality acquisitions, the methodology proposed in the previous 

chapter to maximize the quality of HS images acquired with a push-broom microscope 
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[134] was followed. This methodology includes the optimal speed determination of the 

scanning, a dynamic range configuration, an appropriate alignment, and the correct 

focusing procedure. We developed custom software for synchronizing the scanning 

movement and the camera acquisition. Although we are not focused on collecting a 

whole-slide HS image of the specimens, the software was developed to allow the 

acquisition of consecutive HS cubes in a row to save time in the acquisition of the images, 

thus reducing the human intervention in the process. Due to the challenges imposed by 

the high dimensionality of the HS images, we decided to collect images with a spatial size 

of 800 lines, producing HS cubes of 800 × 1004 × 826, i.e. number of lines × number of 

rows × number of bands.  

HS image acquisition was performed within the annotated areas of tumor and non-

tumor in the slides (Figure 4-9.b). The spectral range of the images was from 400 to 1000 

nm with a spectral resolution of 2.8 nm, sampling 826 spectral channels. The camera 

captures 1004 pixels per line, and the image width was fixed to 800 lines. The images 

were captured using 20× magnification, producing a HS image size of 375 × 299 µm 

(Figure 4-9.c). After pre-processing, the HS cubes were formed by 275 spectral channels. 

Further details about the acquisition system and the data acquisition procedure can be 

found in Chapter 3.  

 
(a) (b)  (c) 

Figure 4-9: HS data acquisition procedure. (a) HS microscope-based acquisition system. (b) 

Pathological slide with macroscopic diagnosis annotations. Yellow squares represent an 

example of the captured areas for tumor and non-tumor HS images. (c) Examples of non-

tumor and tumor HS images acquired at 20×. 

Using the aforementioned instrumentation, some of the areas highlighted by 

pathologists from each slide were imaged. The positioning joystick of the microscope was 

used to select the initial position of the first HS image within a ROI to be captured. Then, 

we configured in the software the number of images to be captured consecutively. This 

number of images should keep relatively low to avoid the focus worsening of the images 

throughout the specimen. In this case, a maximum of 10 HS images were extracted 

consecutively from a ROI. We used a 20× magnification for image acquisition, producing 

a HS image size of 375 × 299 µm. This magnification was chosen because it allowed the 

visualization of the cell morphology, and hence the classifier was able to exploit both the 

spatial and the spectral features of data. In Figure 4-10, we show some examples of HS 

images used in this study, together with the spectral signatures of representative tissue 

components, i.e. cells and background for both tumor and non-tumor regions. 
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Figure 4-10: HS histopathological dataset. (a) and (b) are HS cubes from tumor and non-

tumor samples, respectively. (c) Spectral signatures of different parts of the tissue: tumor cells 

(red), non-tumor cells (blue), tumor background tissue (black), and non-tumor background 

tissue (green). 

A total of 494 HS images were acquired from 13 slides from 13 different patients with 

GB. A brief description of the dataset can be seen in Figure 4-11, which demonstrates that 

the dataset is not balanced, having more samples from non-tumor tissue than tumor 

tissue. Additionally, some of the slides only contained tumor tissue, as occurs in patients 

P9 to P13. 

 

Figure 4-11: Number of non-tumor and tumor HS images per patient 

4.3.2 Data partition strategy 

In order to perform the machine learning analysis, an unbiased data partition should 

be performed. The dataset used for this study poses three problems. First, the dataset is 

limited in the number of patients. Second, samples containing both classes (non-tumor 

and tumor) are only available for 8 patients. Hence, the information about the non-

tumor samples is limited in terms of patients. Third, the dataset is not balanced, having 

more images annotated as non-tumor.  

In this work, we split data into training, validation and test sets. We are targeting a 

real clinical application. For this reason, the data partition scheme is intended to 

minimize bias, where the patients used for train, validation and test are independent. We 

are limited to 13 patients, where five of them only have samples belonging to tumor class. 

For this reason, we decided to perform the data partition in 4 different folds, where every 

patient should be part of the test set across all the folds. We propose the use of three folds 

with 9 training patients, a single validation patient, and 3 test patients. The remaining 

fold is composed by 8 training patients, a single validation patient, and 4 test patients. 
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Regarding the distribution of the classes in each fold, the patient selected for validation 

in each fold should have samples from both types of classes (non-tumor and tumor). The 

initial data partition scheme is shown in Table 4-5, where data from patients who only 

have tumor samples has been highlighted (‡). 

Table 4-5: Data partition design (patients with only tumor samples are marked with ‡). 

Fold ID #Training Patients #Validation Patients #Test Patients 
F1 9 (5 + 4‡) 1 3 (2 + 1‡) 
F2 9 (5 + 4‡) 1 3 (2 + 1‡) 
F3 9 (5 + 4‡) 1 3 (2 + 1‡) 
F4 8 (5 + 3‡) 1 4 (2 + 2‡) 

 

We decided to make the patient assignment randomly within the different folds. 

However, the distribution of patients in fold F4 was different from the others, and 

required some minor manual adjustments in data partitioning. Nonetheless, the rest of 

assignments were performed randomly. Fold F4 required assigning two tumor-only 

specimens for testing, so we decided to manually assign the tumor-only samples that 

have the least number of patches (i.e. P10 and P12). Furthermore, because fold F4 had 

fewer training patients compared to the other folds, we decided to assign the patient with 

the most patches (i.e. P5) to train this fold. The final data partition into the different folds 

is shown in Table 4-6. 

In summary, the data partition used in this research consists of dividing the data in 

four different folds, each one built with patient-independent train, validation and test 

sets (Figure 4-12). 

Table 4-6: Final data partition (patients with only tumor samples are marked with ‡). 
Fold ID Training Patients Validation Patients Test Patients 

F1 
P2, P3, P4, P5, P8 

P6 P1, P7, P11‡ 
P9‡, P10‡, P12‡, P13‡ 

F2 
P1, P2, P5, P7, P8 

P3 P4, P6, P13‡ 
P9‡, P10‡, P11‡, P12‡ 

F3 
P1, P3, P4, P6, P8 

P7 P2, P5, P9‡ 
P10‡, P11‡, P12‡, P13‡ 

F4 
P2, P4, P5, P6, P7 

P1 P3, P8, P10‡, P12‡ 
P9‡, P11‡, P13‡ 

 

 

Figure 4-12: Data partition among the different folds (patients with only tumor samples are 

marked with ‡). 

4.3.3 Processing framework 

The proposed processing framework is divided into six steps (Figure 4-13). First, 

homogenous spectral areas of the input HS cube (Figure 4-13.a) are extracted by using a 

superpixel segmentation algorithm (Figure 4-13.b). The main motivation on the use of a 

superpixel segmentation approach prior to classification is to alleviate the amount of 

data to be processed, without losing relevant information from the HS image. After 

superpixel segmentation, superpixels belonging to the background light of the 
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microscope are removed, while superpixels corresponding to tissue are stored (Figure 

4-13.c). Since the annotation of the images was performed at a macroscopic level, all the 

superpixels extracted from a single image are annotated as non-tumor or tumor 

depending on the annotation of the current image (Figure 4-13.d). Finally, the spectral 

data from all patients in a fold are used to train, validate and optimize, and test a 

supervised classifier (Figure 4-13.e). In the test stage, the prediction about the diagnosis 

of each superpixel (non-tumor or tumor) is performed using the classifier trained and 

optimized in the training/validation stage. Finally, the classification performance is 

quantitatively measured, and a representation of the classification is provided as heat 

and classification maps (Figure 4-13.f).   

 

 Figure 4-13: Proposed superpixel-based hyperspectral image processing framework. 

4.3.3.1 Simple linear iterative clustering (SLIC) approach 

In this research, we used the SLIC superpixel segmentation method proposed by 

Achanta et al. [337]. This algorithm is a modification of the k-means clustering algorithm 

to work with superpixels. Given a fixed number of target superpixels (𝐾), the SLIC 

algorithm first initializes the superpixels by dividing the input image (Figure 4-14.a) in a 

regular grid (Figure 4-14.b). The initial area of the superpixel is 𝑆 pixels. Next, the initial 

centroids of each superpixel are assigned to a randomly selected pixel within the 

superpixel area. Then, for each superpixel centroid, the distance between the superpixel 

centroid and the pixels in an area of 2 · 𝑆 pixels are computed (Figure 4-14.c). After 

computing this distance for all pixels in the images, each pixel is assigned to a superpixel. 
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Finally, the superpixel centroid is updated (Figure 4-14.d), and the process is repeated 

until the error in pixel assignment is minimized (Figure 4-14.e).  

 

Figure 4-14: Block diagram of the different steps of the SLIC approach for superpixel 

classification.  

In the original paper, the SLIC segmentation approach was developed for 

conventional RGB images. The distance between a superpixel and a pixel in its 

neighborhood is calculated as the root mean squared of the color distance and the spatial 

distance. For each pixel, the color distance (𝑑𝑐) is defined as the Euclidian distance 

between two color components in the CIELAB color space (a color space defined by the 

International Commission on Illumination in 1976 [338]), and the spatial distance (𝑑𝑆) 

is defined as the Euclidean distance between the spatial coordinates of the pixels. In 

order to compensate for the difference in range between 𝑑𝑐 and 𝑑𝑆, a hyperparameter 𝑚 

is defined (Equation (15)). This hyperparameter weighs the importance of each type of 

distance in the overall distance computation. Small values of m make the distance more 

sensitive to the color distance component, while a large 𝑚 provides more importance to 

the spatial component. 

𝐷𝑆𝐿𝐼𝐶 =  √𝑑𝑐
2 + (

𝑑𝑆

𝑆
)

2

∙ 𝑚2 (15) 

In a first attempt, we utilized the original SLIC algorithm with the HS data. However, 

in our experiments we found the use of the Euclidian distance for the spectral similarity 

was not convenient for spectral data. The superpixels generated when using the 

Euclidian distance were not able to successfully group spectrally similar materials, 

showing high spectral variations between pixels belonging to the same superpixel. For 

this reason, we propose some modifications to such distance metrics for adapting the 

SLIC algorithm to HSI. First, we propose the use of the Spectral Angle (SA) as a distance 

metric for measuring the spectral similarity between two pixels 𝑝1 and 𝑝2 with 𝑁 spectral 

bands (Equation (16)). The use of this type of distance is widely extended in the HSI 

research community [339]. For the spatial distance, we keep the Euclidian distance 
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between two pixels. The SA distance (𝑑𝑆𝐴) is in the range [0,1]. For this reason, in order 

to compute the total distance (𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑), we propose to simply weight the influence of 

the spatial distance by multiplying it for a factor 𝑚 (Equation (17)). This hyperparameter 

is used to weigh the importance of the spatial and the spectral distance in the superpixel 

assignment. 

𝑑𝑆𝐴 =
∑ 𝑝1𝑖 ∙ 𝑝2𝑖

𝑁
𝑖=1

√∑ 𝑝1𝑖
2𝑁

𝑖=1 + √∑ 𝑝2𝑖
2𝑁

𝑖=1

 
(16) 

𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 =  𝑑𝑆𝐴 + (
𝑑𝑆

𝑆
) ∙ 𝑚 (17) 

4.3.3.2 Supervised classification 

The last stage of the super-pixel-based processing framework is composed by a 

supervised classifier employed to perform the classification of each superpixel centroid. 

SVMs were employed to perform the experiments since it has been demonstrated in the 

literature this algorithm performs well with imbalanced datasets [54]. The SVM classifier 

can be used for data which is not linearly separable by using different kernels to map the 

data in higher dimensional space. In this work, we selected the linear kernel for the SVM 

approach, employing two different evaluation metrics to optimize the hyperparameter 

cost (C). This hyperparameter is the constant of constraint violation, which is in charge 

of deciding if a data sample is classified on the wrong side of the decision limit [340]. 

MATLAB® was employed to perform the experiments and LIBSVM (Library for Support 

Vector Machines) was used for the classifier implementation [341]. 

4.3.3.3 Evaluation metrics 

The evaluation metrics employed in this work to assess the performance of the data 

classification are accuracy (ACC), sensitivity, specificity, precision (PPV), F1 score (F1) 

and balanced accuracy (BA). BA allows a measurement of the performance of the 

classifier by balancing the weights o sensitivity and specificity results (Equation (18)). As 

will be shown later in this work, this metric was necessary to improve the optimization 

of the hyperparameters of the supervised classifiers. Finally, PPV is the proportion of 

positive results correctly classified, as expressed in Equation (19), while F1 is the 

harmonic mean of precision and sensitivity (Equation (20)). 

𝐵𝐴 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (18) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

𝐹1 =
2 · 𝑇𝑃

2 · 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
= 2 ·

𝑃𝑃𝑉 · 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (20) 

4.3.4 Experimental results  

4.3.4.1 SLIC hyperparameter selection 

There are two hyperparameters to be configured on SLIC algorithm: the number of 

targeted superpixels (𝐾) and the weight parameter (𝑚), which balances the contribution 
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of the spectral and the spatial distance. The superpixels will be used as input to a 

supervised classifier. The main motivation for the use of a superpixel algorithm in the 

proposed processing framework is to extract the most salient spectral information from 

each HS image. Therefore, the subsequent superpixel-based classification can be affected 

if the spectral information within each superpixel does not belong to spectrally consistent 

areas, i.e. if some superpixels contain pixels with significant different spectral signatures. 

For this reason, we evaluated the effect of varying both 𝐾 and 𝑚 in the mean intra-cluster 

distance (Equation (21)), where 𝑐𝑗 is the centroid of the superpixel 𝑗, and 𝑥𝑖 represents a 

pixel on the image assigned to such superpixel. The lower 𝐷𝐼𝐶, the most similar pixels 

within a superpixel. 

𝐷𝐼𝐶 =
1

𝐾
∑

1

𝑁𝑖
∑ 𝑑𝑆𝐴(𝑐𝑗 , 𝑥𝑖) + (

𝑑𝑆(𝑐𝑗 , 𝑥𝑖)

𝑆
) ∙ 𝑚

𝑁𝑖

𝑖=1

𝐾

𝑗=1

 (21) 

To select the optimal hyperparameters for the SLIC segmentation, we ran the SLIC 

segmentation with different 𝐾 and 𝑚 values and calculated the corresponding intra-

cluster distance (DIC). We analyzed values of 𝐾 ranging from 64 to 1024, while the values 

for 𝑚 varied from 0.005 to 0.1. In Figure 4-15, we present the results of these 

experiments, showing the mean 𝐷𝐼𝐶 for each hyperparameter.  

 

 

(a) (b) 

Figure 4-15: Different SLIC Intra-cluster distance for different SLIC hyperparameters: (a) 𝐾 

and (b) 𝑚.  

First, we can observe that with an increased number of superpixels, 𝐾, the lower inter-

cluster distance is achieved. The rationale of this behavior is the following. If the number 

of superpixels is low, a pixel may be assigned to a superpixel for spatial similarity. On the 

contrary, if the number of superpixels is high, each superpixel is more likely to reject 

pixels which are not spectrally similar. For this reason, we selected the maximum value 

of 𝐾, 1024.  

Second, the value of 𝑚 equalizes the importance of both the spectral and the spatial 

distance during the superpixel assignment. Low values of 𝑚 reduce the importance of the 

spatial proximity, while prioritizing the importance of the spectral similarity. As can be 

observed in Figure 4-15.B, the greater values of 𝑚 result in greater intra-cluster distance. 

The rationale for this behavior is the following. Large values of 𝑚 result in the spatial 

distance outweighing the spectral distance, and superpixels are likely to include pixels 

that are spatially closer, more than spectrally different. For this reason, we selected a 
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value of 𝑚 = 0.01 to provide relevance to the spatial information, while keeping the inter-

cluster distance low. 

An example of the variation of the SLIC results depending on 𝐾 is represented on 

Figure 4-16. If K is low, the area covered by a single superpixel is high, and could result 

in a mixture of different elements in a superpixel. As 𝐾 increases, the area covered by 

each superpixel decreases, resulting in more compact superpixels. Figure 4-16 shows that 

low values of 𝐾 (64 and 256) produce superpixels that are comprised of pixels from 

different materials. Additionally, for large values of 𝐾 (512 and 1024), the superpixels are 

able to isolate pixels from single materials. In this application, we used the superpixels 

as a spectral summary of the current HS image. For this reason, the presence of 

superpixels with heterogenous spectra may lead to inaccurate predictions during 

supervised classification. In this research, we empirically selected 𝐾 = 1024, which was 

shown to provide spectrally compact areas.      

 

Figure 4-16: Different SLIC segmentation results depending on the number of target 

superpixels (K). 

 

Figure 4-17: Different SLIC segmentation results depending on the distant hyperparameter 

(m). The rows present different image area example around a superpixel centroid (red cross). 

The first column shows the synthetic RGB image of the area and the remaining columns shows 

the distance between the superpixel centroid and the rest of pixels in the area with different 

values of m.  
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An example of this effect can be observed in Figure 4-17 for different regions of an 

image. In this application, we would expect the superpixels to be spectrally coherent. For 

this reason, we selected 𝑚 = 0.01 for the generation of the superpixels.   

4.3.4.2 Supervised classification results 

After performing SLIC segmentation in all the images of the dataset, a superpixel 

dataset was constructed of both tumor and non-tumor annotations. In Figure 4-18.A, we 

show the distribution of superpixels among the different patients, while Figure 4-18.B 

represents the distribution of classes between the different folds. In this figure, the 

imbalanced nature between non-tumor and tumor samples is evident.  

 
(a) 

 
(b) 

Figure 4-18: Number of non-tumor and tumor superpixels per patient (a) and percentage of 

the total per fold (b). 

4.3.4.3 Validation results 

Using the aforementioned superpixel dataset, we used the training data of each fold 

for training a supervised classifier, and we employed the validation data of each fold to 

optimize the hyperparameters to increase performance. In this section, we describe the 

results obtained by using SVMs with linear kernel as classifier. RF and 1-D CNNs were 

also evaluated, but the performance of those classifiers was not competitive. For RF we 

used the MATLAB Machine Learning Toolbox, while 1-D CNN experiments were carried 

out using the TensorFlow implementation of the Keras Deep Learning API [22-23]. 

Average validation sensitivity and specificity results of the 1-D CNN classifier were 

66.0±31.4% and 60.8±44.2%, respectively. Regarding RF classification, the sensitivity 

and specificity results were 59.3±43% and 62.3±24%, respectively. Because of 

inadequate performance on the validation set, these classifiers were not further 

evaluated in the subsequent experiments.    

In order to tune the hyperparameters of the supervised classifier, the model was 

trained using the training data, and the performance of the model was evaluated using 
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the validation set. This process was repeated several times by varying the 

hyperparameters’ values to find the optimal hyperparameters which provided the best 

performance on the validation set. Finally, the performance of the tuned model was 

evaluated using the test set.  

In this investigation, we performed the classification independently for each fold. 

Additionally, we proposed several optimization strategies for the hyperparameter 

optimization. Due to the large number of superpixels in each training fold, the time 

required to train a linear SVM classifier was about 21 hours. Although this computation 

time is not prohibitive, the required number of iterations to find the optimal 

hyperparameter in each fold drastically increased the execution time for finding the 

optimal classification models. In order to alleviate these training times for each fold, we 

decided to divide the training data into 10 different data partitions, and then train an 

ensemble of 10 different SVM classifiers. We first proved there was no performance drop 

when using the SVM ensemble compared to using all the training data at once. Then, we 

realize that using the SVM ensemble the execution time required to train a single fold 

decreased from 21 hours to 4 hours, which made hyperparameter optimization possible 

in a reasonable time. 

For linear SVM, the cost value was the hyperparameter to be tuned. Instead of 

performing a grid search of the hyperparameters, we searched the optimal 

hyperparameters by using a Bayesian optimization algorithm [344]. Due to the 

imbalanced nature of our dataset, we proposed the use of BA and sensitivity metrics as 

optimization functions to be minimized. In this case, ACC is not a good metric to be 

optimized, since it would produce models that are more specialized in detecting the 

majority class of the dataset. In this optimization framework, the values of cost were 

bounded between 10−5 and 105.     

Table 4-7 shows the final validation results for each fold using the linear kernel with 

the default cost value (𝐶 = 1) and with the optimal hyperparameters obtained using the 

BA and the sensitivity metrics. The most relevant outcomes of these results are the 

following. First, we can notice that hyperparameter optimization has a positive impact in 

the classification results, achieving an increase of 16% (ACC), 29% (sensitivity), 13% 

(specificity), 29% (PPV), and 28% (F1 metric). Second, the results obtained with 

optimized models show high accuracy, sensitivity and specificity for Fold 2 and Fold 4 

(higher than 88%), while models for Fold 1 and Fold 3 suffer from low sensitivity (47-

54%) and low specificity (35-41%), respectively. However, only Fold 1 shows remarkable 

PPV and F1 results. Finally, the results suggest the hyperparameter selection using BA as 

the optimization function provides subtly better performance, obtaining an 

improvement of 1% in the ACC, sensitivity, specificity and PPV metrics and an 

improvement of 2% in the F1 metric with a reduced standard deviation (std). 

As mentioned in the dataset description, the usage of a single patient as validation 

patient may result in overfitting on the validation patient. We ensure there is no 

overfitting to the validation data by checking for similar performance between the 

classification of the training and validation samples within a fold. 
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Table 4-7: Superpixel classification results of the validation set in each fold using the SVM 

with Linear Kernel, with and without hyperparameter optimization. 

 No Opt. Opt. Metric (BA) Opt. Metric (Sensitivity) 
Partition ACC Sens. Spec. PPV F1 ACC Sens. Spec. PPV F1 ACC Sens. Spec. PPV F1 

Fold 1 0.65 0.12 0.78 0.13 0.13 0.88 0.54 0.97 0.84 0.66 0.87 0.47 0.97  0.81     0.60    
Fold 2 0.81 0.57 0.91 0.73 0.64 0.95 0.89 0.98 0.96 0.92 0.95 0.88 0.99 0.96    0.92    
Fold 3 0.39 0.92 0.10 0.36 0.51 0.61 0.99 0.41 0.48 0.64 0.58 0.99 0.35 0.45     0.62    
Fold 4 0.80 0.48 0.89 0.56 0.52 0.89 0.88 0.89 0.69 0.78 0.88 0.89 0.88  0.68     0.77    

Avg. 0.66 0.52 0.67 0.44 0.45 0.83 0.82 0.81 0.74 0.75 0.82 0.81 0.80  0.73     0.73    

Std. 0.20 0.33 0.39 0.26 0.22 0.15 0.19 0.27 0.21 0.13 0.17 0.23 0.30 0.22 0.15    

Sens.: Sensitivity; Spec.: Specificity; Avg.: Average; Std.: Standard Deviation. 

 

In this research work, the dataset annotation was performed at a macroscopic level. 

Because of this, the HS images annotated as tumor would contain some superpixels with 

spectral features which are not indicative of tumor, such as superpixels that are common 

in both tumor and non-tumor tissue. These wrong annotations could lead to false 

positives in the superpixel classification. For this reason, we considered an alternative 

approach to evaluate the results. Instead of performing the classification over all the 

superpixels of the validation patient, we also evaluated the image level. To this end, we 

used the trained SVM model to classify each image from the validation patient. Then, an 

image is flagged as tumor if more than 50% of the image superpixels are classified as 

tumor. On the contrary, if fewer than 50%, then the image is flagged as non-tumor. The 

threshold value of 50% to decide if an image should be flagged as tumor or not was 

experimentally determined using the validation data. Although it seems 50% is a high 

value since intuitively the presence of a few superpixels flagged as tumor may suggest the 

presence of tumor, this high threshold can be a consequence of the aforementioned 

incorrectly annotated superpixels. These inappropriate annotations would lead to false 

positives in the superpixel classification. A graphic representation of this approach is 

shown on Figure 4-19. 

 

Figure 4-19: Classification results of the majority voting of superpixels classified by SVM. The 

top row shows a representative non-tumor image RGB composite and its corresponding SLIC 

result (left), the corresponding superpixel heat-map and the binarized form of tumor and non-

tumor superpixels (right), where the white color represents the superpixels that correspond 

with light, green and red colors represent the non-tumor and tumor superpixels respectively. 

The result contains less than 50% tumor superpixels, so it is classified as non-tumor. The 

bottom row shows of a tumor image, where it is possible to observe that the result contains 

higher than 50% tumor superpixels, so this image is classified as tumor. 

Results on the validation set using the image classification approach are shown in 

Figure 4-20. These results were obtained from the SVM model optimized using BA and 

sensitivity. On the one hand, similarly to the previous evaluation, Fold-2 and Fold-4 
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present the best performance. In Fold-2 all the images are correctly classified. For Fold-

4, only a single non-tumor image and one tumor image are misclassified. For these folds, 

the performance of both types of SVM models work similarly. On the other hand, the 

classification performance for Fold 3 and Fold 4 is lower. In Fold 1, the sensitivity is low, 

and several images from tumor samples are not flagged as tumor, but all the images from 

non-tumor class are correctly classified. In opposition, in Fold 3 all tumor images are 

correctly classified, but one half of the non-tumor images are misclassified.  

Regarding the comparison about the type of optimization for hyperparameter 

selection, the performance of the SVM optimized by BA is subtly higher compared to 

optimization driven by sensitivity. 

 

Figure 4-20: Average image classification results of each fold in the validation set using both 

metrics (BA and Sensitivity) for the hyperparameter optimization of the SVM Linear kernel. 

4.3.4.4 Quantitative test results 

In this section, we show the classification results for the test set of each fold. The 

quantitative results obtained for the test set for the SVM Linear classifier optimized with 

the BA and the sensitivity metrics are shown in Figure 4-21. On average, the use of the 

BA metric for the hyperparameter optimization provided better ACC results (82.6±7.1%) 

than the Sensitivity metric (78.3±6.2%). Considering sensitivity and specificity results, 

the classifier optimized with the BA metric provided a result of 88.5±10.2% and 

80.2±16.9%, respectively, representing an improvement in the sensitivity of 4.3% with 

respect to the classifier optimized with the sensitivity metric. Regarding to the 

differences between the use of BA metric and sensitivity metric in the PPV and F1 results, 

PPV practically were the same, achieving 73.4±19% and 73.1±17.6%, respectively, while 

F1 improved 1.6% using the BA metric (78.3±6.4%). For this reason, the BA metric was 

shown as a suitable evaluation metric to optimize the hyperparameters of a supervised 

classifier with imbalanced datasets for this specific application. 
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Figure 4-21: Average image classification results of each fold in the test set using both metrics 

(BA and Sensitivity) for the hyperparameter optimization of the SVM Linear kernel. 

Finally, in Figure 4-22, we show the results obtained for each patient individually. For 

every patient except for P2, P6, P8 and P10, the sensitivity is higher than 90%. For P2 

and P8 the sensitivity is also high, beyond 80%. For P6 and P10, the sensitivity is low. 

These patients were classified using models from Fold 2 and Fold 4, respectively. 

However, models from those folds demonstrated good sensitivity for the remaining 

patients. This fact will be further investigated in future works. The specificity can only be 

measured for patients with both types of annotations (non-tumor and tumor), i.e. from 

P1 to P8. Five of these patients present a sensitivity of 100%, while the others present low 

specificity. The worst case is P7, where the specificity is 10%.         

The high sensitivity of the proposed methodology suggests that it could serve as a 

clinical tool to detect images with suspicious tumor presence for a pathologist to 

examine. However, despite the fact that the overall amount of time spent in examination 

could be reduced, the low specificity would likely result in some false positives. 

 

Figure 4-22: Average image classification results per patient in the test set using the SVM 

Linear kernel optimized with the BA metric. P9 to P13 only have samples from tumor class.  
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4.3.4.5 Qualitative test results 

The results of the proposed approach can be visualized as a heat map, which shows 

the predicted tumor probability map of superpixels, or as a classification map, where the 

superpixels are assigned to a class using a probability threshold of 50%.  

Figure 4-23 shows four examples of qualitative results obtained from four tumor 

images, belonging to P3, P4, P5, and P7, with their respective tumor presence probability. 

For P3, 61% of the superpixels were classified as tumor, thus the image-scale prediction 

is tumor. The heat maps for P4 and P7 suggest the presence of tumor with high 

probability. On the contrary, the heat map for P5 shows a misclassification, where about 

46% of the superpixels were classified as tumor, so the image is misclassified, being a 

false negative prediction.  

 

Figure 4-23: Heat and classification maps of four example tumor images. First row shows the 

synthetic RGB image of the HS cube, while second row represents the SLIC result. Third row 

represents the heat map, where red colors represent higher tumor probability. Fourth row 

shows the classification map, where red, green and white colors indicate tumor, non-tumor 

and light superpixels, respectively. In the last row, the tumor presence probability of the image 

is indicated. HS images with classification results with tumor probability >= 50% were 

considered tumor images, while results <50% were considered non-tumor images.   

Figure 4-24 shows the results of four example non-tumor images that belong to P3, 

P4, P5, and P7 with their respective tumor probability results. As can be seen, the heat 

maps for P3, P4 and P5 show a successful classification of non-tumor samples. For P3 

and P4, only a few superpixels were classified as tumor, less than 13% of the image in 

either case. In the case of P5, the image was flagged as non-tumor, but the number of 

superpixels classified as tumor is higher, about 36%. Finally, we show an example of a 
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false positive, where 68% of the superpixels were classified as tumor and thus the image 

was flagged as tumor.   

 

Figure 4-24: Heat and classification maps of four example non-tumor images. First row shows 

the synthetic RGB image of the HS cube, while second row represents the SLIC result. Third 

row represents the heat map, where red colors represent higher tumor probability. Fourth row 

shows the classification map, where red, green and white colors indicate tumor, non-tumor 

and light superpixels, respectively. In the last row, the tumor presence probability of the image 

is indicated. HS images with classification results with tumor probability >= 50% were 

considered tumor images, while results <50% were considered non-tumor images.   

As mentioned previously, the presence of misannotated superpixels in the dataset 

could lead in misclassifications. For this reason, we selected the 50% tumor threshold. 

Although in most situations this strategy provides an accurate diagnosis, there are some 

limitations. For example, in Figure 4-23, we can observe how the image belonging to P5 

was misclassified as a non-tumor image, while the number of superpixels classified as 

tumor was around 46%. On the contrary, the image from P7 in Figure 4-24 represents a 

false positive because around 68% of the superpixels were classified as tumor. However, 

this behavior is only found in a few examples of the dataset. 

4.3.5 Discussion 

In this section, we have proposed a combination of superpixel segmentation and 

supervised classification for the identification of GB tumor in HS images from brain 

histological slides. Regarding the HS images, the image quality and spectral range have 

been significantly improved, resulting in a more appropriate experimental design for 

realistic clinical applications. We modified and optimized the original SLIC 
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segmentation algorithm for HS images. These modifications included the use of a 

spectral distance based on the spectral angle, and the modification of the global distance, 

which is a tradeoff between the spectral and the spatial distances between pixels in a 

neighborhood. After optimizing the hyperparameters of the SLIC algorithm to generate 

compact pixels, the superpixels were used to build a dataset where superpixels were 

labeled as tumor or non-tumor according to pathologists’ annotations. The data were 

then partitioned in patient independent training, validation, and test sets. Finally, 

superpixels were classified using a linear SVM classifier.  

The results obtained with this methodology are promising, showing high sensitivity 

and specificity values for almost all the patients independently. On average, our proposed 

approach achieved 87% and 81% of sensitivity and specificity, respectively. Additionally, 

8 out of the 13 patients obtained a sensitivity of 100%, and 3 out of the 13 had a sensitivity 

of 83-95%. Screening tests with high sensitivities could be useful clinically. The outcomes 

of this processing framework could potentially be used in a clinical application to flag 

which regions of the histological slide are of interest to be further analyzed by a 

pathologist, and then reduce whole-slide examination. 

Regarding the supervised classification, after testing SVM, 1-D CNN, and RF 

algorithms, the only classifier that demonstrated accurate classification results in our 

data was SVM. For other applications, all of these classifiers have demonstrated high 

performance with spectral data in the literature [10]. However, the classification 

performance strongly depends on the data used to train the model. Although those 

classifiers did not perform well in our application, we cannot suggest that using a larger 

dataset would allow those classifiers to correctly classify the spectral data. Moreover, it 

is possible that the 1-D CNN underperformed because of the nature of the task. 

Specifically, the HS signatures were 1-D signals averaged from across a superpixel. The 

strengths of CNN methods are typically learning from highly variable data with spatial 

features.  

In this work, we only explored the linear kernel of the SVM to demonstrate the 

feasibility of the superpixel-based approach exploiting only the spectral information. 

However, in future works, we will evaluate the performance of additional kernels for this 

task with the goal of trying to improve the classification results obtained in this work. 

The main limitation of this study is the reduced number of patients and the imbalance 

of the dataset. Regarding the imbalanced dataset, in this dissertation we deal with this 

problem by using a hyperparameter optimization guided by metrics which may 

compensate the data imbalance, i.e. balanced accuracy and sensitivity. The use of 

sensitivity was motivated by the lower number of examples in the tumor class (~35% of 

tumor superpixels, compared to ~65% of non-tumor superpixels). Nevertheless, other 

metrics can be used to drive the hyperparameter optimization to alleviate the effect of 

the imbalanced dataset. For example, the F-1 score or a weight balance between precision 

and recall, where the weight will favor the class with lower number of samples. 

Other limitations of this research are depicted herein. Although the spatial 

information of the HS is partially considered when the superpixels are extracted with 

SLIC, the supervised classification is only focused on the spectral information. In this 

study, we demonstrated the potential of the exclusive use of spectral information for the 

identification of tumor areas in HS digitized slides. Nevertheless, these results can be 

further improved if we also include additional spatial information into the classification 



Chapter 4 : Spectral-based classification of histological HS images 

~ 130 ~ 

framework. For example, as shown in the work by Zhao et al. [345], it could be possible 

to develop a method which efficiently combines the spectral information from the 

proposed superpixel approach with the spatial information extracted from the HS data 

using a 2D-CNN. Another challenge to be addressed in future works is to improve the 

way the optimal number of superpixels is extracted. In this research, we selected the 

number of superpixels to minimize the intra-cluster distance, but more sophisticated 

methods can be used in the future to reduce the number of superpixels while retaining 

the most important information from each image [346]. In this research, we 

overestimated the number of superpixel centroids in order to ensure proper extraction 

of spectral features from the HS image. However, the computational time could be 

reduced by decreasing the number of superpixels per image, which is more competitive 

for screening histology slides.  

4.4 Conclusions 

In this Chapter, we have presented two different approaches for analyzing HS images 

from histological slides. The first approach (Section 4.2) presented some limitations. The 

total number of HS cubes used was limited to 40, only 4 HS cubes per patient. Secondly, 

the instrumentation used in this preliminary work presented limitations in both the 

spectral and spatial information. Regarding the spectral information, the spectral range 

was restricted to 419–768 nm due to limitations of the microscope optical path. The 

spatial information was limited due to the use of a scanning platform not able to image 

the complete scene, so the analysis of the HS images was restricted to a low magnification 

(5×), which was not sufficient to image the morphological features of the sample. 

Additionally, the main goal of such previous work was to develop a preliminary proof-of-

concept on the use of HSI for the differentiation of tumor and non-tumor samples, 

showing promising results.   

With the research presented in Section 4.3, we addressed the main limitations found 

in Section 4.2. An improved acquisition system capable of capturing high-quality images 

in a higher magnification (20×), and with a higher spectral range (400–1000 nm) has 

been used to capture a high number of HS cubes. The use of 20× magnification allows 

the classifier to exploit both the spectral and the spatial differences of the samples to 

make a decision.  

The main limitation of this study is the reduced number of patients and the imbalance 

of the dataset. Additionally, only 8 out of the 13 patients have annotated data available 

from the two classes, i.e. tumor and non-tumor. This fact, together with the known 

histological heterogeneity of GB tumors, makes this task very challenging. Therefore, 

more patients are needed in future analysis to obtain more robust conclusions about the 

ability of HSI and ML for the automatic detection of GB in histological slides. More 

concretely, to obtain statistically significant results, we hypothesize that at least 10 

patients are needed with both types of annotations for both validation and test. This 

would require at least 40 patients with both types of annotations to train the classifiers. 

The main challenges for the acquisition of such a dataset are the large amounts of data 

generated during image acquisition and the time-consuming manual annotation for the 

ground-truth definition. Further data acquisition campaigns will be deployed to increase 

our dataset, reinforcing the conclusions achieved in this work about the potential use of 

HSI to detect GB in histological slides.  
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Additionally, as previously mentioned, due to the macroscopic annotations, some 

regions of the tumor HS images are in fact not characteristic of GB tumor but are still 

labeled as tumor. Such misannotated data are likely to produce misclassifications. To 

handle this fact, one of the future works in this field will be to identify which spectral 

signatures can be found in both tumor and non-tumor images, which may improve the 

quality of the predictions.  
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Chapter 5: Deep Learning for the 

spatial-spectral classification of 

histological HS data 

Among the use of conventional image analysis, HSI technology is presented as an 

interesting alternative to RGB analysis due to its capability to differentiate between 

different materials by exploiting both morphological and spectral features. The use of 

this technology is motivated by the fact that spectral information may detect subtle 

molecular differences between biological samples [8]. This technology is used together 

with advanced machine learning algorithms to retrieve useful information about the 

materials within an HS image. In the previous chapter, we successfully employed FL 

methods for the diagnosis of histopathological samples using HS information. However, 

the performance of these approaches may be improved by using DL schemes. Recent 

studies have proven the advantages of using deep learning approaches for HSI 

classification [101], which are able to exploit simultaneously both the spatial and the 

spectral features of HSI. 

DL approaches automatically learn from the data which features are optimal for 

classification, potentially outperforming handcrafted features [347]. In the case of HS 

images, both the spatial and spectral features are exploited simultaneously. In the recent 

years, only a few researchers have employed DL for the classification of HS images for 

histopathological applications. 

In this chapter, we explore the use of DL techniques for the classification of two types 

of specimens. First, we apply DL techniques to the HS human brain dataset which has 

been described in the previous chapter. Then, we create a novel dataset for 

discriminating between normal and tumor breast cancer cells using DL.     

5.1 Brain cancer approach 

In this section, we propose the use of CNNs for the classification of H&E stained brain 

tumor samples. Specifically, the main goal of this work is to differentiate between high-

grade gliomas (i.e. GB) and non-tumor tissue. In the previous chapter, we presented a 

feature learning approach for this type of disease. Although such research was shown as 

a useful proof-of-concept on the possibilities of HS for histopathological analysis of GB, 
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it presented some limitations, such as the exclusive usage of the spectral information for 

the classification.  

5.1.1 Dataset description 

The HS dataset used in for this study was described in the previous chapter.  In this 

research, we used a CNN to perform the classification of the samples. Due to the nature 

of the data for this study, the ground truth assignment into tumor or non-tumor is shared 

across each selected ROI, and thus each HS image is assigned within a certain class. For 

this reason, it was decided to perform the classification in a patch-based approach 

because a fully-convolutional design was not feasible. There are two motivations on the 

selection of the patch size. Firstly, the patch should be large enough to contain more than 

one cell, but if the patch is too large, then the CNN could learn that the tumor is located 

only in dense cell patches. Secondly, the smaller the patches, the higher the quantity of 

patches will be extracted from a single HS image, so the number of samples to train the 

CNN will be increased. Finally, we choose a patch size of 87 × 87 pixels. In principle, 

from a spectral cube of size 800 × 1004, 99 patches can be extracted. However, there are 

some situations where most parts of the patches consisted only of a blank space of light. 

For this reason, we decided to reject patches that were composed by more than 50% of 

light, i.e. half of the patch is empty.  

The method to reject the patches which presented high amount of light is as follows. 

Firstly, the RGB image is extracted from the HS cube and is transformed to the hue-

saturation-value color representation. Then, the hue value of each image is extracted and 

binarized using a threshold empirically configured to separate the pixels belonging to the 

specimen and the pixels containing background light. The generation of the patches can 

be observed in Figure 5-1, where the last row of the patches (in Figure 5-1.c) represents 

patches that have been rejected in the database due to high content of background light 

pixels. 

The database used in this work consists of 527 HS images, where 337 are non-tumor 

brain samples and 190 were diagnosed as GB. It should be highlighted that only the 

biopsies from 8 patients presented both non-tumor and tumor samples, the other 5 

patients only presented tumor samples. The summary of the employed dataset is detailed 

in Table 5-1. After extracting the patches that were valid to be processed, we had a total 

of 32,878 patches from non-tumor tissue and 16,687 from tumor tissue. 

 

Figure 5-1: Generation of patches. (a) Original HS image. (b) Grid of patches within the HS 

image (c) Patches of size 87x87 used in the classification. The last row contained patches that 

were rejected for the dataset for having more than 50% of empty pixels. 
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Table 5-1: HS histopathological dataset summary. 

Patient ID 
#Images #Patches 

Non-tumor Tumor Non-tumor Tumor 
P1 48 12 4,595 1,090 
P2 36 12 3,563 1,188 
P3 31 12 3,058 1,178 
P4 40 12 3,779 1,158 
P5 66 12 5,675 1,165 
P6 48 12 4,586 1,188 
P7 44 12 4,289 1,184 
P8 24 36 3,333 2,260 
P9 0 22 0 1,695 
P10 0 12 0 1,094 
P11 0 12 0 1,169 
P12 0 12 0 1,137 
P13 0 12 0 1,181 

Total 337 190 32,878 16,687 

 

5.1.2 Data partition strategy 

The data partition strategy is the same used in the previous chapter. In other words, 

it consists of dividing data in four different folds, each one built with patient-independent 

train, validation, and test sets (Figure 5-2). A brief summary of the dataset partition into 

folds is as follows: 1) data from a single patient is located in training, testing, or 

validation; 2) validation patients should have both types of annotations (non-tumor and 

tumor); and 3) all patients have to be included in a test set eventually. The limited total 

number of patients available leads to a limited number of patients used for validation in 

each fold. Therefore, it is possible to have overfitting of the models to validation patients.  

 

 Figure 5-2: Data partition among the different folds (patients with only tumor samples are 

marked with ‡). 

5.1.3 Processing framework 

The processing framework applied to each HS cube is composed by the following 

steps. First, a standard flat field correction is applied to the images. To this end, the 

images are transformed from radiance to normalized transmittance by using a reference 

image that is captured from a blank area of the pathological slide [36]. Then, due to the 

high correlation of spectral information between adjacent spectral bands, a reduced-

band HS image is generated by averaging the neighbors’ spectral bands, reducing the 

number of spectral bands from 826 bands to 275 and slightly reducing the white 

Gaussian noise. This band reduction is also beneficial for alleviating computational cost 

in the subsequent image processing. Finally, each image is divided into patches, which 

will train the CNN. In this section, we will detail the architecture of the proposed neural 

network, the metrics that are used for performance evaluation, and the proposed data 

partition scheme. 
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5.1.3.1 Convolutional Neural Network 

We employed a custom 2D-CNN for the automatic detection of non-tumor and tumor 

patches. As mentioned previously, these types of networks are able to exploit together 

the spatial and spectral features of the sample. The performance of DL approaches for 

the classification of HS data has been proven both for medical and for non-medical 

applications [101]. We used the TensorFlow implementation of the Keras Deep Learning 

API [342], [343] for the development of this network. This selection was made because 

it allows effective development of CNN architectures, training paradigms, and efficient 

deployment between the Python programming language and GPU deployment of 

training/testing. The architecture of this CNN is mainly composed by 2D convolutional 

layers. We detail the description of the network in Table 5-2, where the input size of each 

layer is shown in each row, and the output size is the input size of the subsequent layer. 

All convolutions and the dense layer were performed with ReLU activation functions 

with a 10% dropout. The optimizer used was stochastic gradient descend with a learning 

rate of 10−3.  

Table 5-2: Schematic of the proposed CNN. 

Layer Kernel size Input Size 
Conv2D 3×3 87×87×275 
Conv2D 3×3 85×85×256 
Conv2D 3×3 83×83×256 
Conv2D 3×3 81×81×512 
Conv2D 3×3 79×79×512 
Conv2D 3×3 77×77×1024 
Conv2D 3×3 75×75×1024 
Conv2D 3×3 73×73×1024 

Global Avg. Pool 25x25 73×73×1024 
Dense 256 neurons 1x1024 
Dense Logits 1×256 

Softmax Classifier 1×2 

5.1.3.2 Evaluation metrics 

The metrics for measuring the classification performance of the proposed CNN were 

overall accuracy, sensitivity and specificity. Additionally, we used the area under the 

curve (AUC) of the receiver operating curve (ROC) of the classifier as an evaluation 

metric. The AUC has been proven to be more robust compared to overall accuracy. AUC 

is decision threshold independent, shows a decreasing standard error when the number 

of test samples increases, and is more sensitive to Analysis of Variance (ANOVA) test 

[348]. 

5.1.4 Experimental results 

5.1.4.1 Validation results 

We trained different CNNs using the data from each fold, and using the validation 

data, we selected the aforementioned CNN architecture (Table 5-2) as the best candidate 

for the classification of the samples. As can be observed in Table 5-1, the data between 

tumor and non-tumor classes are not balanced: the number of non-tumor samples is 

twice the number of tumor samples. For this reason, we performed data augmentation 

on the tumor data to balance the data during training, creating twice the number of 

tumor patches to train the CNN than cited in Table 5-1. Such data augmentation 

consisted in a single spatial rotation of tumor patches.  
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At the beginning of the validation phase, some of the folds presented problems when 

they were trained, showing poor performance metrics in the validation set. For this 

reason, we carefully examined the tumor HS images from each patient, and we detected 

that accidentally some necrosis areas were included in the dataset as tumor samples. 

These necrosis areas (found in P8) were excluded from the dataset. After excluding the 

necrosis areas, we got competitive results for all the folds in the validation set. These 

results are shown in Table 5-3. The models for each fold were selected because they all 

presented high AUC, higher than 0.92, and the results in terms of accuracy, sensitivity 

and specificity were balanced, indicating that the models identified correctly both non-

tumor and tumor tissue.  

In order to provide a comparison of performance between HSI and RGB imagery, we 

performed the classification of synthetic RGB images using the same CNN. Such RGB 

images were extracted from the HS data, where each color channel was generated 

equalizing the spectral information to match the spectral response of the human eye [95]. 

After separately training the CNN with RGB patches, the models selected after the 

validation were found to be competitive. Nevertheless, the validation performance when 

using HSI data was more accurate in each fold and presented more balanced sensitivity 

and specificity values (Table 5-3). 

Table 5-3: Classification results on the validation dataset, across all four folds (F). 

 HSI RGB 

Partition AUC 
ACC 
 (%) 

Sensitivity 
(%) 

Specificit
y (%) 

AUC 
ACC 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1 0.92 84 84 85 0.88 77 71 88 
F2 0.97 93 91 94 0.95 87 83 93 
F3 0.95 88 90 88 0.93 87 91 79 
F4 0.95 89 87 91 0.92 92 93 89 

Avg. 0.95 88 88 89 0.92 86 84 87 

Std. 0.02 3.70 3.16 3.87 0.03 6.29 9.98 5.91 

5.1.4.2 Test results 

After the model selection in the validation phase, we applied them to independent 

patients for the test set. These results are shown in Table 5-4. Some results show good 

discrimination between non-tumor and tumor tissues, i.e. patients P1, P3, and P8. For 

these patients, the AUC, sensitivity and specificity are comparable to the values obtained 

during validation. The tumor detection in patients P9 to P13 was also highly accurate. 

However, there are some patients where the classification performance was poor. 

Although the sensitivity is high in patients P2 and P5, the specificity is low, which 

indicates there may be an issue classifying non-tumor patches. There are also some 

patients with poor accuracy, namely patients P4 and P7, which have results slightly better 

than random guessing. Finally, the results obtained for patient P6 are suspicious, being 

substantially worse than random guessing.  

The selection of the models in the validation phase was performed using independent 

patients for validation, for this reason such inaccuracies on test data was unexpected. To 

determine the reasons for the misclassifications, we used the CNN models to generate 

heat maps for all the patients, and we carefully examined them. After this analysis, we 

found that some HS images presented problems, and hence the results were worsened 

for these reasons. As mentioned before, we performed a careful inspection of tumor HS 

images in the validation set. However, upon inspection after the test outcomes, we 

discovered there were also problems in non-tumor samples. There were four main 
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sources of errors in the images: 1) some HS images were contaminated with the ink used 

by pathologists to delimitate the diagnosed regions (𝑛 = 15); 2) some images were 

unfocused (𝑛 = 13); 3) some samples presented artifacts from histopathological 

processing (𝑛 = 2); and 4) other images were composed mainly by red blood cells (𝑛 =

2). Examples of these images can be observed in Figure 5-3. 

Table 5-4: Initial classification results on the test dataset. 
 

 HSI RGB 
Patient 

ID 
AUC 

ACC 
 (%) 

Sensitivity 
(%) 

Specificity 
(%) 

AUC 
ACC 
 (%) 

Sensitivity 
(%) 

Specificity 
(%) 

P1 0.97 92 90 94 0.92 90 97 61 
P2 0.75 77 99 69 0.98 85 99 80 
P3 0.95 85 91 80 0.96 92 97 78 
P4 0.62 57 57 58 0.69 77 98 7 
P5 0.81 69 81 64 0.66 59 59 60 
P6 0.35 37 38 36 0.21 67 81 7 
P7 0.64 59 64 57 0.51 45 36 76 
P8 0.98 96 96 96 0.99 97 97 97 
P9 N.A. 99 99 N.A. N.A. 89 89 N.A. 
P10 N.A. 89 89 N.A. N.A. 43 43 N.A. 
P11 N.A. 92 92 N.A. N.A. 98 98 N.A. 
P12 N.A. 92 92 N.A. N.A. 84 84 N.A. 
P13 N.A. 99 99 N.A. N.A. 88 88 N.A. 

Avg. 0.76 80 84 69 0.74 78 82 58 

Std. 0.22 19 19 20 0.28 19 22 34 

 

    

    
(a) (b) (c) (d) 

Figure 5-3: Example of image defects detected in the test dataset. (a) Ink contamination. (b) 

Unfocused images. (c) Artifacts in the specimens. (d) Samples mainly composed of red blood 

cells. 

Furthermore, due to the suspicious results obtained on patient P6, the specimen was 

examined again by a pathologist for reassessing the initial diagnosis. After this 

examination, the pathologist realized a problem with the selection of ROIs in the HS 

acquisition for the non-tumor areas. In Figure 5-4, we show the initial evaluation of the 

sample, where the tumor area was annotated by using a red marker contour, and the rest 

of the sample was considered as non-tumor. Figure 5-4.b corresponds to the second 

evaluation of the sample. The original annotation of tumor was technically correct, but 

the yellow markers indicate the location of the highly invasive malignant tumor, i.e. GB. 

Although the other tumor areas correspond to tumor, their cells are atypical and cannot 

be considered a high-grade GB. In both Figure 5-4.a and Figure 5-4.b, the ROIs selected 

for HS acquisitions are highlighted with squared boxes, where red and blue boxes 

indicate tumor and non-tumor ROIs, respectively. As can be observed in Figure 5-4.b, 

the non-tumor areas selected for our experiments were located too close to areas where 
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the infiltrating GB was identified, and thus they contain extensive lymphocytic 

infiltration and cannot be considered strictly non-tumor samples. Furthermore, it was 

found that the GB of this patient was not typical, presenting low cellular density in the 

tumor areas. Finally, the ROI selected from the tumor area was located where the 

diagnosis is tumor, but cannot be considered a high-grade glioma, i.e. GB. These reasons 

explain the seemingly inaccurate results obtained in the classification. Nevertheless, 

such bad results helped us to find an abnormality in the sample. 

 
(a) (b) 

  
(c) (d) 

Figure 5-4: Evaluation assessment for the samples of Patient P6. Red pen markers indicate 

the initial evaluation of tumor regions. Regions without pen contour were considered as non-

tumor. Red squares indicate the ROIs of tumor samples. Blue squares indicate the ROIs of 

non-tumor samples. (a) Initial evaluation of the sample. (b) Second evaluation of the sample, 

where a yellow marker is used for the updated tumor areas. (c) Example of HSI from tumor 

ROI. (d) Example of HSI from non-tumor ROI. 

In order to quantify the influence of the inclusion of incorrect HS images in the 

classification, we evaluated again the classifiers when the corrupted HS images were 

excluded from the dataset. These HS images were only removed from the test. The CNN 

was not trained again to avoid introducing bias in our experiments. These results are 

shown in Table 5-5. Patients where data exclusion was performed are indicated with an 

asterisk (*), and the results of patient P6 were removed due to the diagnosis reasons 

explained before. The results of the classification after data exclusion improved 

significantly for patients P2 and P7, while the results of other patients keep constant after 

the exclusion of some HS images. This data removal also boosts the overall metrics across 

the patients, due to the improvement in the classification in some patients and because 

of the removal of patient P6 due to justifiable clinical reasons. 
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Table 5-5: Final classification results on the test set after excluding incorrect HS images. 

 HSI RGB 

Patient AUC 
ACC 
 (%) 

Sensitivity 
(%) 

Specificity 
(%) 

AUC 
ACC 
 (%) 

Sensitivity 
(%) 

Specificity 
(%) 

P1* 0.98 93 91 96 0.93 90 97 61 
P2* 0.99 89 99 83 0.99 87 79 99 
P3* 0.95 85 91 80 0.96 92 97 78 
P4 0.62 57 57 58 0.69 77 98 7 
P5* 0.81 69 81 64 0.66 58 57 60 
P6† - - - - - - - - 
P7* 0.74 66 71 63 0.68 58 50 77 
P8 0.98 96 96 96 0.99 97 97 97 
P9 N.A. 99 99 N.A. N.A. 89 89 N.A. 
P10 N.A. 89 89 N.A. N.A. 43 43 N.A. 
P11 N.A. 92 92 N.A. N.A. 98 98 N.A. 
P12 N.A. 92 92 N.A. N.A. 84 84 N.A. 
P13 N.A. 99 99 N.A. N.A. 88 88 N.A. 

Avg. 0.87 85 88 77 0.84 80 81 68 

Std. 0.15 14 13 16 0.16 18 20 31 
* Data exclusion  † Data removed     

 

Regarding the classification performance of HSI compared to RGB, the results suggest 

the superiority of HSI (see Table 5-4 and Table 5-5). The average metrics on the whole 

datasets are worse for RGB images, especially in terms of specificity and sensitivity. We 

consider good performance in classification when all the metrics are high, with balanced 

specificity and sensitivity. For example, P4 presents a better AUC for RGB, but really 

poor specificity (7%). For this reason, the HSI classification for such patient presents a 

better performance. Only for P2, P3 and P8, the performance of RGB is approximately 

equivalent to HSI. P11 is the only patient where RGB substantially outperforms HSI. For 

patients where the performance is the most promising (e.g. P1, P2, P3, and P8), RGB 

classification is also accurate. However, the sensitivity and specificity are not as balanced 

compared to HSI. Furthermore, the standard deviation in specificity and sensitivity are 

higher for RGB classification, which show a wider spread of the classification results 

compared to HSI. The decrease of performance of RGB images compared to HSI is more 

evident in patients with only tumor samples, where HSI classification was shown to be 

really accurate (e.g. P9, P10, P12, and P13). Finally, in patients where the classification 

of HSI was found poor (e.g. P4, P5, and P7), HSI performance is still shown to be more 

competitive than the RGB counterpart. On average, the accuracy of the classification is 

improved 5% when using HSI instead of RGB imaging, and particularly, the specificity 

and specificity are increased achieving 7% and 9% of improvement, respectively (Table 

5-5). 

5.1.4.3 Heat map results 

Beyond the results obtained for the analysis of the patches, we also qualitatively 

evaluated the outcomes of the classification by generating classification heat maps from 

the HS images. In these maps, the probability of each pixel to be classified as tumor is 

represented, where red values indicate high probability and blue values indicate low 

probability. The inputs of our CNN are patches of 87×87 pixels, for this reason the 

resolution of the heat maps cannot contain pixel-level details. To provide them with 

resolution enough for a useful interpretation, we generated classification results for a 23-

pixels sliding window length. We show two different types of heat maps in Figure 5-5 and 

Figure 5-6. 
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On the one hand, in Figure 5-5 we illustrate the different types of results that are 

obtained in patients where the models were proven to classify accurately the samples. 

Figure 5-5.a and Figure 5-5.c show examples of non-tumor and tumor images that were 

classified correctly, with no presence of neither false positives nor false negatives, 

respectively. In Figure 5-5.b we can see the presence of some false positives in a non-

tumor tissue image, but such false positives are located in an area where there is a cluster 

of cells, indicating that it is a suspicious region. Finally, Figure 5-5.d shows a tumor 

image where there are some regions classified as non-tumor tissue. Nevertheless, such 

false negatives are located in areas where there are no cells. The FP in Figure 5-5.b 

suggests the CNN perceives areas with high cell density as tumor. The FN shown in 

Figure 5-5.d has a clinical interpretation, but it is computed as a bad result in the 

quantitative evaluation of the classification. Furthermore, a more detailed ground truth 

scheme for classification may improve the classification performance, e.g. the inclusion 

of brain background tissue, blood vessels, or blood cells.  

On the other hand, we show in Figure 5-6 the heat maps from patients that present 

the worst performance in the quantitative evaluation of the results. Firstly, Figure 5-6.a 

and Figure 5-6.b show the results for Patient P4. It can be observed that the heat maps 

for each kind of tissue are similar, presenting false positives for the non-tumor image 

and false negatives for the tumor image. For this patient, the heat maps and the 

quantitative results are coherent, showing that the CNN is not able to accurately classify 

the samples from this patient. Secondly, Figure 5-6.c and Figure 5-6.d show the heat 

maps for Patient P6. As mentioned before, the non-tumor tissue of this patient was 

proven to be adjacent to the tumor area, and hence cannot be considered as non-tumor 

tissue. In this case, Figure 5-6.c shows that the non-tumor area has been classified as 

tumor, which is in fact correct. Finally, it was also discussed that Patient P6 presented a 

non-typical GB with low cellularity. A heat map from a tumor image from this patient 

(Figure 5-6.d) shows that tumor cells are highlighted as tumor, but the areas with low 

cellular presence are diagnosed as non-tumor. 

 

Figure 5-5: Heat maps from good performance patients. (a) Non-tumor tissue with no false 

positive. (b) Non-tumor tissue with some false positives. (c) Tumor tissue with no false 

negative. (d) Tumor tissue with some false negatives. 
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Figure 5-6: Heat maps from bad performing patients. (a) and (b) Non-tumor and tumor maps 

from Patient P4. (c) and (d) Non-tumor and tumor maps from Patient P6. 

5.1.4.4 Comparative between SLIC and CNN 

Table 5-6 shows the results of the proposed superpixel approach (reporting both the 

results at image and superpixel level) and the results from the CNN approach (reporting 

the results at patch level). As shown in Table 5-6, data from P6 are missing from the CNN 

experiments. In the CNN approach, we found a pathology error in the annotations of P6, 

and this patient was removed from the dataset. For the superpixel approach, we 

corrected the annotation errors of this patient. However, to provide a fair comparison 

between the two different processing approaches, P6 patient has not been included in 

the computation of the mean metrics. The average ACC results obtained with the 

proposed approach (considering the results at image level) is 3% below the CNN-based 

approach. However, the average sensitivity obtained with the superpixel-based approach 

is higher than the CNN results, 91% and 88%, respectively. Moreover, the average 

specificity is slightly improved using the proposed approach (78%) respect to the CNN-

based approach (77%). Considering the fact that the superpixel approach only exploits 

spectral information, the results achieved in this preliminary study are competitive with 

respect to the CNN approach, which uses both spatial and spectral properties. Moreover, 

it is worth noticing that the amount of data generated with the patch-based CNN 

approach is extremely large (49,565 image patches of 87 × 87 pixels with 275 bands, i.e. 

approx. 768 Gigabytes) compared to the data generated for the superpixel-based 

approach (426,260 superpixels with 275 bands, i.e. approx. 0.87 Gigabytes). Hence, the 

CNN approach requires substantial memory and computational requirements to 

perform the classification of the data, while the superpixel-based approach alleviates 

these requirements. This is especially important when targeting real-time aid 

visualization tools for histological screening process during clinical routine practice with 

the goal of assisting pathologist during diagnostic procedures.  
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Table 5-6: Results comparison between the proposed superpixel-based approach and a 

previous work using a CNN-based approach [93]. 

 
Proposed superpixel-based 

approach  
(results at image level) 

Proposed superpixel-based 
approach  

(results at superpixel level) 

Previous CNN-based approach 
[93] 

(results at patch level) 
Partition ACC Sensitivity Specificity ACC Sensitivity Specificity ACC Sensitivity Specificity 

P1 1.00 1.00 1.00  0.91     0.91     0.90    0.93 0.91 0.96 
P2 0.94 0.83 1.00  0.79     0.50     0.97    0.89 0.99 0.83 
P3 1.00 1.00 1.00  0.90     0.88     0.92    0.85 0.91 0.8 
P4 0.79 1.00 0.73  0.78     0.87     0.75    0.57 0.57 0.58 
P5 0.68 1.00 0.63  0.54     0.67     0.51    0.69 0.81 0.64 

P6* 0.90 0.50 1.00  0.85     0.35     0.98    - - - 
P7 0.35 1.00 0.10  0.53     0.95     0.30    0.66 0.71 0.63 
P8 0.96 0.83 1.00  0.89     0.75     0.93    0.96 0.96 0.96 
P9 0.95 0.95 -  0.92     0.92     -  0.99 0.99 - 
P10 0.25 0.25 -  0.41     0.41     -  0.89 0.89 - 
P11 1.00 1.00 -  0.98     0.98     -  0.92 0.92 - 
P12 1.00 1.00 -  0.83     0.83     -  0.92 0.92 - 
P13 1.00 1.00 -  0.97     0.97     -  0.99 0.99 - 

Avg. 0.83 0.91 0.78 0.79 0.80 0.76 0.86 0.88 0.77 

Std.  0.27     0.22     0.34     0.19     0.19     0.26    0.14    0.13    0.16    
* Data not available for CNN-based approach and excluded for the computation of the average (Avg.) and 

standard deviation (Std.) values. 

5.1.5 Discussion 

In this research work, we have presented a deep learning approach for the 

classification of hyperspectral images of H&E pathological slides of brain tissue samples 

of human patients diagnosed with GB. The dataset employed in this work was described 

in the previous chapter (Section 4.3.1).  

Such dataset was then used to train a CNN and to perform the classification between 

non-tumor and tumor tissues. Due to the limited number of patients involved in this 

study and with the aim to provide a data partition scheme with minimum bias, we 

decided to split the dataset in four different folds where the training, validation and 

testing data belonged to different patients. Each fold was trained with 9 patients, where 

only 5 of them presented both types of samples, i.e. tumor and non-tumor tissue.  

After selecting models with high AUC and balanced accuracy, sensitivity and 

specificity in the validation phase, some results on the test set were not accurate at all. 

For this reason, we carefully inspected the heat maps generated by the classifiers for each 

patient in order to find a rationale about the inaccurate results. After this, we detected 

four types of problems in the images that could worsened the results, namely the 

presence of ink and/or artifacts in the images, unfocused images or excess of red blood 

cells. We reported both results, before and after cleaning wrong HS images, for a fair 

experimental design. We consider that the test results after removing such defective HS 

images are not biased because the rationale of removing the images from the test set is 

justifiable and transparent. These corrupted images were part of the train set, but it is 

unknown if the training process of the CNN was affected.  

We also found a patient, P6, where the results were really inaccurate. For this reason, 

the regions of interest that were analyzed by HS were re-examined by the pathologists. 

After examining the sample, an atypical subtype of GB was found, and examination 

revealed that the ROIs selected as normal samples were close to the tumor area, which 

cannot be considered as non-tumor. Although the classification results were not valid for 

this patient, by using the outcomes of the CNN, we were able to identify a problem with 

the prior examination and ROI selection within the sample. Additionally, although this 
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patient was used both as part of the training and as a patient used for validation, the 

results are not significantly affected by this fact. These results highlight the robustness 

of the CNN for tumor classification. Firstly, although the validation results of fold 1 were 

good when evaluating patient P6, the model from this fold was also capable of accurately 

classifying patients P1 and P11. Secondly, although patient P6 was used as training data 

for fold 3 and fold 4, the outcomes of these models were not proven to be significantly 

affected by contaminated training data.   

Although the results are not accurate in every patient, after excluding incorrectly 

labelled and contaminated HS images, nine patients showed accurate classification 

results (P1 to P3 and P8 to P13). Two patients provided acceptable results (P5 and P7), 

and only a single patient presented results that were slightly better than random guessing 

(P4). Nevertheless, these results can be considered promising for two main reasons. 

First, a limited number of samples were used for training, especially for the non-tumor 

class, which was limited to only five training patients for each CNN. Second, the high 

inter-patient variability shows significant differences between tumor samples among the 

different patients. As can be observed in the analysis of heat maps (Figure 5-5 and Figure 

5-6), there is a significant heterogeneity in cellular morphology in different patients’ 

specimens, which makes GB detection an especially challenging application. To handle 

these challenges, in future works the number of patients should be increased, and to deal 

with the high inter-patient variability, HS data from more than a single patient should 

be used to validate the models.  

Finally, we found that HSI data perform slightly better than RGB images for the 

classification. Such improvement is more evident when the classification is performed 

on challenging patients (e.g. P5 or P7), or in patients with only tumor samples. 

Furthermore, the classification results of HSI are shown to provide more balanced 

sensitivity and specificity, which is the goal for clinical applications, improving the 

average sensitivity and specificity by 7% and 9% with respect to the RGB imaging results, 

respectively. Nevertheless, more research should be performed to definitively 

demonstrate the superiority of HSI over conventional RGB imagery. 

5.2 Breast cancer approach 

In this section, we investigate the use of HSI to differentiate between normal and 

tumor cells from breast histological samples. The images were acquired using a high 

spectral resolution system which provided 826 spectral bands from 400 nm to 1000 nm, 

beyond the visible limitations of naked eye. First, cell-level annotations were performed 

by a skilled pathologist in digitized whole-slides. Then, HS images from the annotated 

areas were captured. We applied an image registration method to translate the 

annotations from the whole-slide RGB image to the HS domain, thus extracting an 

annotated HS dataset from breast cancer cells. Finally, we used a CNN to automatically 

discriminate between tumor and normal breast cells. 

5.2.1 Biological sample description 

In this research work, the samples consisted of pathological slides diagnosed with 

breast tumor. In this study, two different pathological slides from different patients were 

analyzed. The tissue samples were processed using a conventional histological process, 
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including paraffin embedding, tissue sectioning, and staining using H&E. Then, the 

whole-slides were digitized using a Pannoramic SCAN digital scanner (3D Histech Ltd., 

Budapest, Hungary).  

The samples were examined, and some parts of the digitalize slides were carefully 

annotated by pathologists using the Pannoramic Viewer software (3D Histech Ltd., 

Budapest, Hungary). The annotations were performed at cell-level, and different types 

of cells were annotated: tumor cells, mitotic cells, lymphocytes and normal cells. 

Different colors markers were used to highlight different types of cells: red for tumor 

cells, green for mitotic cells, yellow from lymphocytes, and blue for normal cells. We 

show an example of the whole digitalize slide with and without annotations in Figure 

5-7.a and b, respectively. In Figure 5-7.c, a detail from an annotated region of the slide is 

presented. 

   
(a) (b) (c) 

Figure 5-7: Histological samples used in this study. a) Digitized whole-slide image. b) Digitized 

whole-slide image including annotations. c) Details of an annotated area in the slide. Different 

types of cells were annotated by using different colors: tumor cells (red) mitotic cells (green), 

lymphocytes (yellow) and normal cells (blue).  

5.2.2 Dataset description 

The instrumentation employed is the System-III, described previously in this 

document. Using the aforementioned instrumentation, most of the areas annotated by 

the pathologist were captured. We used a 20× magnification for image acquisition, 

producing a HSI image size of 375 × 299 µm (1004 × 800 pixels). We imaged a total of 

112 HS images, 65 from patient 1 and 47 from patient 2. Flat-field correction and 

reduction of the spectral bands by averaging contiguous spectral channels were applied 

to the HS images. The final goal of this study is to establish a relationship between the 

outcomes of the HS image processing and the diagnosis provided by the pathologists. For 

this reason, after capturing each HS cube, the consequent annotations from each area 

were extracted using the Pannoramic Viewer software. Figure 5-8 show an example of 

several HS images and their corresponding digitized counterparts. The annotations for 

each image are also shown.  

   
(a) (b) (c) 

Figure 5-8: Example of some of the HS images acquired for this study (a), and the same area 

extracted from the digitized slide (b) and its corresponding annotations (c). 
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5.2.2.1 Hyperspectral dataset generation 

In this study, we processed HS data from different types of cells within a breast cancer 

histological sample. We extracted the information from the areas that had been 

previously annotated by the pathologist. We had two different types of images: the 

annotated regions from digitized RGB slides and the corresponding HS images from the 

same regions. The size and the orientation of both types of images were different. For 

this reason, in order to identify the annotated cells in the HS images, an image 

registration between the HS images and the digitized slides was necessary. Our approach 

for the image registration consisted of searching for a geometric transformation that 

matched the information from the annotations to our HS images. To this end, we 

performed an image registration between the digitized RGB slide and a RGB synthetic 

image extracted from the HS cube. 

The steps of our approach for the image registration are the following. First, the 

Speeded-Up Robust Features (SURF) algorithm is applied to both images. The output of 

the SURF algorithm is a set of relevant points of an image that can be used in subsequent 

image matching tasks. After applying SURF, feature descriptors of relevant points are 

extracted. Then, feature matching is applied to the feature descriptors retrieved for each 

image. This feature matching is based on a nearest neighbors search, using the pixel-wise 

distance between the different feature descriptors of each image. Finally, using the 

relevant points of both images that present similar features, we search for an appropriate 

geometric transformation. This computation was performed using the MATLAB 

Computer Vision Toolbox (MathWorks Inc., Natick, MA, USA). 

Figure 5-9 shows a flowchart of the workflow for this task, where the inputs of our 

image registration approach are the digitized slide and an RGB synthetic image extracted 

from the HS cube. After obtaining the appropriate geometric transformation to map the 

digitized slides to the HS domain, we apply this geometric transformation exclusively to 

the annotations. The annotation image is calculated as the subtraction of the digitized 

image from the pathological slide and its annotated counterpart. As a result, we retrieve 

the information about the annotations in the HS domain. 

 

Figure 5-9: Framework for image registration between the digitized slides and the HS images. 

After the image registration process, the annotations are geometrically aligned with 

the HS image. In order to extract the spectral information of each cell, we perform some 

image processing over the annotated image. First, taking into account that each color 

used for the cell annotation procedure contains information about a particular cell type, 
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we separate the different colors (red, green, yellow and blue) for subsequent analysis. 

These images consist of binary maps containing the contour of the annotations for each 

cell type. To generate a binary map where the whole cells are identified, we apply 

morphological operations to retrieve a map containing the location of each cell. Finally, 

we search for the centroids of each cell. Using this information, we can extract the 

information about the annotated cells within our HS data, generating HS image-patches 

of 39 × 39 spatial pixels and 159 spectral channels. This procedure is shown in Figure 

5-10. 

 

Figure 5-10. Detection of cells within the spectral image. 

Table 5-7 shows a summary of our annotated dataset of 112 HS images, and Figure 

5-11 shows the average spectral signature for each patient and each cell type. In the 

experiments presented in this work, we employed only normal and tumor cells to 

demonstrate the feasibility of the proposed method.  

Table 5-7: Number of HS image-patches in the dataset. 

Class 
Patient 1 

(65 images) 
Patient 2 

(47 images) 
Tumor cells 12505 7607 
Mitotic cells 576 1082 

Lymphocytes 2238 563 
Normal cells 300 365 
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Figure 5-11: Mean spectral signatures found from normal cells (blue), tumor cells (red), 

mitotic cells (green) and lymphocytes (black), for each patient. 

5.2.3 Data partition strategy 

Due to the limited number of patients available for this study, we decided to train the 

network using the data from a single patient and using the data from the remaining 

patient for both validation (25%) and test (75%). A schematic of the data partition is 

shown in Figure 5-12. We refer to Experiment 1 and Experiment 2 for the situations 

where the data from patient 1 and patient 2 are used for training, respectively. This 

preliminary data partition was motivated by the limitation on the number of patients 

involved in this preliminary study. However, this situation is not realistic for biomedical 

applications. For this reason, we proposed two additional experiments (namely 

Experiment 3 and Experiment 4), where the models were trained and validated using the 

data from one patient, and the test was performed in an independent patient. 

Additionally, because of the imbalance between classes, we performed data 

augmentation for the normal cells for training the CNN. This data augmentation 

consisted of spatial flip and rotation of the patches corresponding to normal cells. 

 

Figure 5-12: Data partition used for the classification experiments and testing.  

5.2.4 Processing framework 

We employed a custom 2D-CNN for the automatic differentiation between normal 

and tumor cells. The network was developed using the TensorFlow implementation of 

the Keras Deep Learning API [342], [343]. This network is mainly composed by 2D 

convolutional layers. We detail the description of the network in Table 5-8, where the 

input size of each layer is shown in each row, and the output size is the input size of the 

consequent layer. All convolutions and the dense layer were performed with ReLU 

activation functions with a 10% dropout. The optimizer used was stochastic gradient 

descend with a learning rate of 10−4.  
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Table 5-8. Schematic of the proposed CNN. 

Layer Kernel size  Input Size 
Conv2D 3×3  39×39×159 
Conv2D 3×3  37×37×256 
Conv2D 3×3 35×35×256 
Conv2D 3×3 33×33×512 
Conv2D 3×3 33×33×512 
Conv2D 3×3 31×31×1024 
Conv2D 3×3 29×29×1024 
Conv2D 3×3 27×27×1024 

Global Avg. Pool 25×25 25×25×1024 
Dense 256 neurons  1×1024 
Dense Logits 1×256 

Softmax Classifier 1×2 

 

5.2.5 Experimental results 

In order to measure the performance of the classifier in discriminating between 

normal and tumor cells, we made use of the receiver operating characteristic (ROC) curve 

on both the validation and test sets. To generate these results, we used different 

thresholds for each experiment. These thresholds were selected using the validation data, 

and then were applied to the final classifiers. In Table 5-9, we show the values for AUC, 

overall accuracy, sensitivity and specificity extracted for both the validation and the test 

datasets. Additionally, due to the low number of normal tissues in the test and validation 

sets, we studied the variations of the classifier performance using bootstrapping, and we 

reported the 95% confidence intervals for such metrics. 

Table 5-9: Results on the classification of normal and tumor cells for Experiment 1 and 

Experiment 2, which performs validation and testing on the same patient (inter-patient 

validation). 

Group Experiment AUC ACC (%) 
Sensitivity 

(%) 
Specificity 

(%) 

Validation 
Patient 1 0.88 (0.83, 0.93) 80 (74, 85) 80 (73, 86) 80 (73, 87) 
Patient 2 0.91 (0.86, 0.95) 82 (76, 88) 85 (77, 91) 80 (73, 87) 
Average 0.89 (0.85, 0.94) 81 (75,87) 82 (75, 89) 80 (73,87 ) 

Test 
Patient 1 0.87 (0.84, 0.90) 80 (77, 83) 80 (76, 84) 80 (76, 84) 
Patient 2 0.94 (0.91, 0.96) 87 (84, 90) 86 (82, 90) 89 (85, 93) 
Average 0.90 (0.88, 0.93) 84 (80, 87) 83 (78, 87) 85 (81, 89) 

 

The results of experiments 1 and 2 are competitive in terms of AUC, reaching an 

average AUC of 0.89 and 0.90 for both validation and test. The values of accuracy, 

sensitivity and specificity are greater than 80% in all the experiments, with narrow 

confidence intervals. Furthermore, specificity and sensitivity are balanced, showing a 

competitive detection of both normal and tumor cells. The selected threshold values were 

50% for Experiment 1, and 10% for Experiment 2.   

The results for experiments 3 and 4 are shown in Table 5-10. The threshold values 

were selected during the validation as 25% for both Experiment 3 and Experiment 4. For 

these experiments, the validation values of all the metrics are high. This is because the 

data from the same patient was used for training and validation. Nevertheless, the results 

on an independent patient show competitive results in terms of AUC, with an average of 

0.9. In the case of Experiment 4, the accuracy is not worsened significantly compared to 

Experiment 2. Unlike Experiment 2, however, the specificity and sensitivity values are 

not as balanced.  
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Table 5-10: Results on the classification of normal and tumor cells for Experiment 3 and 

Experiment 4, which performs training and validation on the same patient (intra-patient 

validation). 

Group Experiment AUC ACC (%) 
Sensitivity 

(%) 
Specificity 

(%) 

Validation 
Patient 1  0.97 (0.96, 0.98) 90 (88,91) 99 (98,100) 83 (81, 85) 
Patient 2 0.94 (0.93, 0.95) 87 (85,89) 84 (82,86) 90 (88,92) 
Average 0.95 (0.94, 0.96) 88 (87, 90) 92 (91, 93) 87 (85, 89) 

Test 
Patient 1 0.88 (0.86, 0.90) 78 (75, 81) 70 (68, 72) 97 (95, 99) 

Patient 2 0.91 (0.89, 0.93) 79 (76, 82) 96 (93, 98) 71 (68, 74) 
Average 0.90 (0.87, 0.92) 79 (76, 81) 83 (80, 86) 84 (82, 87) 

 

In Figure 5-13 we present the ROC curves associated with the intra-patient validation 

experiments for both patients. The AUCs are similar for both patients. Additionally, the 

ROC curves suggest the classification for Patient 1 is more specialized in correctly 

detecting tumor cells (low false positive rate), while the classification for Patient 2 is 

more accurate in detecting normal cells (high true positive rate).      

 

Figure 5-13: ROC curves from Experiment 3 and Experiment 4. 

5.2.6 RGB comparison 

Finally, in order to investigate if the classification results using HSI boost the 

classification performance of standard RGB digitized images, in this section we perform 

a comparison between both types of images. To this end, we generated synthetic RGB 

images from the HS cubes by using a combination of wavelengths simulating the human 

eye response. Then, we generated the patches for only Experiment 3 and Experiment 4 

and performed the classification using the same CNN described in Section 2.4. After 

validation, we selected the best performing models, and we summarized the results in 

Table 5-11. As can observed in the Table, although the validation results suggested 

models with competitive AUC values where the specificity and sensitivity values were 

also high, the results on the test show unbalanced results, suggesting an specialization of 

the CNN on the prediction of a single class, what worsen the overall performance of the 

classifier for the other one. This fact is more evident in Experiment 3, where the 

specificity is highly worsened while the sensitivity is high. 
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      Table 5-11: Comparison between HSI and RGB for Experiment 3 and Experiment 4, 

which performs training and validation on the same patient (intra-patient validation). 

Group Experiment Technology AUC 
ACC  
(%) 

Sensitivity  
(%) 

Specificity 
(%) 

Validation 

Patient 1 
HSI 0.97 (0.96, 0.98) 90 (88, 91) 99 (98, 100) 83 (81, 85) 
RGB 0.94 (0.93, 0.96) 85 (83, 86) 97 (96, 99) 77 (75, 79) 

Patient 2 
HSI 0.94 (0.93, 0.95) 87 (85,89) 84 (82,86) 90 (88,92) 
RGB 0.88 (0.86, 0.90) 76 (74, 79) 86 (83. 89) 71 (69, 73) 

Average 
HSI 0.95 (0.94, 0.96) 88 (87, 90) 92 (91, 93) 87 (85, 89) 
RGB 0.91 (0.89, 0.93) 80 (78, 82) 91 (89, 94) 74 (72, 76) 

Test 

Patient 1 
HSI 0.88 (0.86, 0.90) 78 (75, 81) 70 (68, 72) 97 (95, 99) 

RGB 0.94 (0.93, 0.95) 66 (64, 68) 99 (98, 100) 60 (59, 61) 

Patient 2 
HSI 0.91 (0.89, 0.93) 79 (76, 82) 96 (93, 98) 71 (68, 74) 
RGB 0.83 (0.81, 0.86) 77 (75, 79) 70 (68, 73) 89 (86, 92) 

Average 
HSI 0.90 (0.87, 0.92) 79 (76, 81) 83 (80, 86) 84 (82, 87) 
RGB 0.88 (0.87, 0.90) 71 (69, 73) 84 (83, 86) 74 (72, 76) 

 

5.2.7 Discussion 

The use of machine learning techniques for assisting pathologists in routine 

examination of samples is an emerging trend. These computer-assisted tools are devoted 

to provide a quantitative diagnosis of different diseases, and also to decrease the current 

inter-observer variability in diagnosis. Although most of the approaches are based on 

conventional RGB image analysis, HSI is presented as a suitable technology that can 

boost the outcomes of conventional imagery due to its capability of differentiating 

between materials that present subtle molecular differences. 

This work is novel due to the use of an annotated cell-level dataset using a digitized 

slide, and the translation of such annotations to the HS domain using image registration 

techniques. After a cell-based dataset was generated, we used a 2D-CNN for the 

automatic differentiation of tumor and normal cells. The CNN was trained by using the 

data from one patient, and the performance of the classifier was measured using data 

from a different patient. After creating an HSI cell-level annotated dataset from the 

information of an annotated digitized slide, HSI data was classified by using a 2D-CNN. 

The AUC for all our experiments were above 0.89, and the sensitivity and specificity 

values were approximately equivalent for experiments 1, 2 and 3. In the case of 

experiment 4, sensitivity and specificity values of each patient were not as balanced as in 

the other experiments. These metrics strongly depend on the threshold selected for the 

final models. Nevertheless, due to the competitive AUC, there is room for improvement 

for specificity and sensitivity if the threshold is selected using data from an independent 

patient. Two main challenges have to be addressed in the future to improve the 

performance of the CNN in this application. The number of patients should be increased, 

and more annotated cells from the normal class should be included in the dataset in order 

to balance the classes for the classification problem. 

Finally, we included a comparative between the classification of HSI and conventional 

RGB. Previous study has proven the feasibility of RGB image analysis for breast cancer 

applications [349], [350]. Our experiments suggest the outperformance of HSI analysis 

over RGB images. Nevertheless, further investigations should be performed to prove the 

boost of HSI performance over RGB analysis for this application.    

Although the results of this study are promising, the study is limited by the sample 

size of the current dataset.  Future work involves the inclusion of data from additional 
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patients, and also the study of the classification of the other types of cells present in the 

pathological slides, i.e. mitotic and lymphocyte cells. In conclusion, this preliminary 

investigation demonstrates the potential of semi-automated HS histological imaging. 

5.3 Conclusions 

In this work, we have presented the use of hyperspectral imaging and deep learning 

for automatic classification of normal and tumor cells in histological samples. The 

biological samples used in this study are different since the annotations provided by the 

pathologist are different. On the one hand, in the case of the brain cancer detection, the 

annotations are provided at area-level. This causes that each HS cube has a single 

annotation (i.e. tumor or non-tumor). In order to process such area-based annotated 

data, the images have been cut in different patches, which are subsequently processed by 

the CNN. On the other hand, the breast cancer samples were annotated at cell-level. This 

fact implies a higher workload in the pathologist side, who have to manually annotate 

the different cells in a digitized slide. Besides, additional image processing techniques 

are necessary to retrieve the information of the annotations in the HS images. Finally, 

the patches used for the CNN approach correspond to the different cells. Further 

investigation should be carried out in order to determine which type of annotations is 

more convenient from a Machine Learning perspective. 

One of the principal shortcomings of this study is the limited number of patients, 

especially for the breast cancer approach. Although the results of such study are 

promising, the study is limited by the sample size of the current dataset.  Future work 

should involve the inclusion of data from additional patients, and the study of the 

classification of the other types of cells present in the pathological slides, i.e. mitotic and 

lymphocyte cells. 

Finally, the architecture used for the classification of samples in both the breast cancer 

and the brain cancer scenarios consist of 2D-CNNs. However, an exploratory analysis of 

which Deep Learning architecture is most convenient for the classification of the 

different types of HS images should be carried out in future works.  
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Chapter 6: Conclusions & Future Lines 

Within this document, the development of this PhD thesis has been presented. In this 

chapter, we summarize the main contributions of this PhD thesis, as well as we outline 

the main conclusions depicted from this research work. Then, we present the potential 

research lines which have arisen from the development of this PhD thesis. Finally, we 

shown the academic production developed in the context of this PhD. 

6.1 Conclusions 

In this thesis, we have presented a novel use of HS imaging as an assistant tool for 

histopathological samples analysis. To this end, first we performed an insight review of 

the state-of-art about the usage of HS for histological applications. Then, we presented 

the instrumentation which have been used during this thesis, and we proposed a 

methodology to acquire high-quality HS images using a push-broom camera and a 

microscope. Using such instrumentation, we generated several HS datasets of different 

types of histological samples, corresponding to brain tumor and breast cancer. Finally, 

we used different Machine Learning algorithms in order to extract information from the 

HS data, which can be potentially used as a clinical assisting tool, i.e. the discrimination 

between tumor and non-tumor areas in histological HS images. In this section, we 

provide a summary of the main contributions of this PhD thesis, as well as we present 

some concluding remarks regarding the main topics covered in this dissertation. 

6.1.1 Context of HSI in computational pathology 

One important contribution of this PhD thesis is a detailed overview of the current 

state of art of HSI for medical applications, especially for computational pathology. First, 

we outline the most important concepts regarding HSI, with especial emphasis on the 

instrumentation. Afterwards, in Section 2.1.2, we provided a survey about the most 

common information extraction techniques applied to medical HS data. There is a wide 

variety of methods used to extract information from HS data. Furthermore, there is a 

limited number of publicly available HS datasets. The aforementioned restrictions 

impose a complication in establishing a fair comparison between the different processing 

approaches available in the literature.    

In Section 2.3 we accomplished a systematic review where the current usage of 

MSI/HSI for histological applications was analyzed. From such review, the most relevant 

category refers to the examination of the current usage of HSI/MSI for the analysis of 



Chapter 6 : Conclusions & Future Lines 

~ 154 ~ 

histological samples targeting clinical applications. According to the analysis presented 

in Section 2.3.6, we conclude that HSI/MSI is presented in the literature as a useful tool 

for the identification of diverse diseases and tissues, where cancer detection is the most 

common application. The two main drawbacks which hinder the standardization of 

procedures for histological MSI/HSI acquisition and analysis are related to both 

instrumentation and the image processing approach. On the one hand, the 

instrumentation strongly varies among different studies. Thus, it is not clear which 

instrumentation parameters are more appropriate for HSI/MSI histological analysis. On 

the other hand, there are substantial differences among data analysis methods across the 

different studies. Most approaches target automated classification of different types of 

tissues or diseases using machine learning techniques, and others deal with image 

visualization enhancement of different tissue constituents. In order to reach an 

agreement on an adequate common framework for HSI/MSI data processing for 

histopathological applications, there is a need for publicly available datasets, where a fair 

comparison across different methods could be performed. 

Regardless of the high performance shown in the literature for the HS analysis of 

histological data, there is insufficient evidence to affirm the superiority of this technology 

over conventional imagery. There are several studies that point out that HSI/MSI are 

able to outperform standard RGB for disease detection [249], [264], [265], [271], [287], 

[289]. In order to state if HSI/MSI has a future in computational pathology, more 

performance comparisons should be carried out to definitively demonstrate the 

suggested superiority of HSI/MSI over conventional imagery for disease detection. 

Furthermore, HSI/MSI instrumentation is expensive and not standardized. Therefore, 

more research should be done to determine the cost-benefit trade-off on the use of 

HSI/MSI for the diagnosing-aid analysis of histological samples compared to 

conventional imagery. 

Nonetheless, there is room for HSI/MSI technologies to outperform conventional 

imagery in clinical applications where the identification of diseases using the manual 

examination of samples is still challenging for pathologists.  

6.1.2 Instrumentation 

Since the main topic of this PhD is the usage of HSI for histological applications, one 

of the main achievements is related to the instrumentation. In Chapter 3, we first 

introduce the background about the most important concepts regarding the HS 

instrumentation, with a critical perspective on how each element of the instrumentation 

affects to the overall response of the acquisition system. Second, we presented the 

instrumentation which has been used to acquire the data in this PhD, which is composed 

by an optical and a mechanical part. In terms of the optical subsystem, we have shown 

how the spectral response of the Olympus BX-53 microscope is improved compared to 

the Olympus BH2-MJLT. While the latter is limited to wavelengths above 750 nm, the 

former is sensitive throughout the entire VNIR spectral range. Besides, one of the main 

limitations of the optical system, whatever microscope is used, is the dynamic range. The 

dynamic range cannot be maximized due to limitations in the light source power and also 

in the exposure time (which has an upper limit of 40 ms). To improve the dynamic range 

conditions in this scenario, an external light source could be used. Such maximization of 

the dynamic range would allow the acquisition of images at higher magnifications. 

Regarding the mechanical subsystem, we have developed two custom mechanism 
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devoted to performing the spatial scanning required for push-broom acquisitions. Such 

mechanical systems can be considered as a suitable low-cost alternative to adapt a 

microscope to a push-broom HS camera.    

Finally, we proposed a methodology for the acquisition of microscopic push-broom 

HS images. This methodology is an important contribution of this PhD. This 

methodology is intended to provide a fast and accurate configuration of HS push-broom 

microscopes, even when certain specifications of the acquisition system are unknown 

beforehand, e.g. the FOV or the resolution of the mechanical system. It involves the setup 

of the light conditions, the optical focusing of the system, the camera-microscope 

alignment and the setup of the optimal scanning speed. In addition, it allows the 

empirical measurement of both the FOV and the mechanical resolution of the scanning 

platform, as well as detecting and characterizing the limitations of the acquisition system 

under analysis.  

6.1.3 Datasets 

A relevant contribution of this PhD thesis is the creation of novel HS datasets of 

histological samples. The datasets used in this PhD have been created in close 

collaboration with two different Pathological Departments from two different hospitals. 

The creation of the datasets involves a close collaboration with pathologist, who have to 

prepare the samples and provide them with annotations, i.e. an specification of the 

location of the different types of tissue within the sample. In this PhD thesis, we analyzed 

two different types of samples. First, we analyzed brain histological samples diagnosed 

with GB. Such samples were examined and prepared by pathologists from the Pathology 

Department from the University Hospital Dr. Negrín at Las Palmas de Gran Canaria. The 

annotations of such samples were performed macroscopically, where both non-tumor 

and tumor regions of the sample were highlighted using a pen marker over the 

pathological slides. Second, we analyzed breast cancer histological samples. Such 

samples were processed thanks to the collaboration with the Pathology Department of 

the Hospital de Tortosa Verge de la Cinta. The annotations of such samples were 

performed at cell level, where different types of cells were highlighted in an RGB digitized 

slide. 

The sample annotation is one of the most important stages within the dataset 

generation and involves a close multidisciplinary collaboration between engineers and 

pathologists. Such sample annotations also involve a high workload to pathologists, who 

have to carefully examined the samples to accurately perform the annotations. The type 

of annotation scheme has implications in the subsequent research. On the one hand, the 

macroscopic annotations impose that each HS image has a single annotation, since the 

images are acquired from areas of the slides annotated with such certain annotation, e.g. 

tumor or non-tumor. On the other hand, cell level annotations require to use an image 

processing approach to translate the annotations from an annotated RGB digitized slide 

to match the acquired HS images. Although both approaches are valid, more research 

should be performed in order to determine which workflow for sample annotation is 

more appropriate for the HS analysis of histological samples.    

One of the main limitations of this study is the reduced number of patients and the 

imbalance of the dataset. For example, in the case of brain tumor, only 8 of the 13 patients 

have annotated data available from the two classes, i.e. tumor and non-tumor. In the case 
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of breast samples, although a competitive number of annotated cells have been extracted 

from the slides, the specimens belong only to two patients. 

This limited data makes training supervised classification models challenging, 

especially due to the intra-patient variability of data. For future research in this field, an 

increased number of patients will be required. More concretely, to obtain statistically 

significant results, we hypothesize that at least 10 patients are needed with both types of 

annotations for both validation and test. The rationale of at least 10 patients for each type 

of annotation is motivated to enable normality assumptions over both test and validation 

data. Besides, if we would like to train the models with a dataset which is at least twice 

the data used for validation or test, this would require at least 40 patients (20 for 

training, 10 for validation, and 10 for test) with both types of annotations to train the 

classifiers. The main challenges for the acquisition of such a dataset are the large 

amounts of data generated during image acquisition and the time-consuming manual 

annotation for the ground-truth. 

6.1.4 Algorithms 

Besides the characterization of the instrumentation and the generation of datasets, 

the most important contribution of this PhD is the image processing and machine 

learning techniques used to retrieve information from the HS cubes. In this PhD, the 

main goal was the development of algorithms capable to discriminate between non-

tumor and tumor in HS histological images. 

The types of algorithms that can be used strongly depend on the quality of the 

available HS data. In our first approach to process HS data (Section 4.2), the HS data 

presented some restrictions due to limitations of the instrumentation used to capture 

data (System-I). Namely, the spatial information was not complete due to limitations in 

the mechanical stage, and the magnification was fixed to 5× due to light source power 

limitations. For such reason, the classification was performed using three commonly 

used pixel-wise classifiers: SVM, RF and ANN. In this preliminary approach, we found 

positive results, which indicate a successful discrimination between normal and tumor 

tissue by exploiting the spectral information of the samples. However, the results 

presented in Section 4.2 have room for improvement in several aspects. First, the image 

quality can be further improved in order to exploit both the spatial and the spectral 

information of the samples. Second, using a hyperparameter optimization within the 

classifiers, the classification results can be further improved. 

Once the problems related to low image quality were solved, we were able to acquire 

HS images with full spatial information and high magnifications, thus proposing 

different strategies to process HS data. Such dataset consists of about 500 HS images 

from 13 different patients. Furthermore, due to the availability of all the spatial 

information of the specimens, it was possible to generate heat maps indicating the areas 

that the algorithms considered affected by tumor. 

We followed two different approaches for the processing of this type of data. On the 

one hand, in Section 4.3 we proposed the use of a spatial-spectral algorithm based on 

superpixel segmentation followed by a supervised classification of the superpixel spectra. 

The motivation of the use of a superpixel approach is to summarize the spectral 

information of a HS cube by searching for spectrally-coherent spatial regions in the HS, 

and then use such information to train the supervised classifiers. On the other hand, in 
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Section 5.1 we proposed the use of CNNs for the classification of the brain cancer 

samples. The main motivation behind the use of CNNs is their theoretical ability to 

jointly exploit both the spatial and the spectral features of HS data. Both approaches have 

been demonstrated to be valid for the classification of such samples. These results can be 

considered positive due to the large heterogeneity of GB tumors, and the limited number 

of patients available. 

One remarkable outcome of this research is shown in Section 5.1.4. After a careful 

examination of the results of CNNs for a certain patient, whose results were really 

inaccurate, we asked pathologist to examine the sample again in order to check some 

abnormality in the sample. With such second analysis, it was determined that the 

annotated area was incorrectly annotated as normal. 

In Section 5.1.4.4 we shown a comparative between the performance of SLIC and CNN 

methods for brain cancer detection. The performance of both methods was similar in 

terms of ACC and specificity. However, the average sensitivity obtained with the 

superpixel-based approach was higher than the CNN results, 91% and 88%, respectively. 

Considering the fact that the superpixel approach only exploits the spectral information 

for the classification, the results achieved in the superpixel approach can be considered 

competitive with respect to the CNN approach, which exploits both spatial and spectral 

features of HS data.     

Finally, we applied the CNN classification to histological breast cancer samples 

(Section 5.2). The research presented in this context is limited in the number of patients. 

Although the classification results cannot be considered general due to the limited 

number of patients, it was possible to correctly classify the different cells (tumor and 

non-tumor) in a patient-independent data partition. Besides the classification results, an 

important part of this research was the methodology proposed to retrieve the 

information about the cell annotation from a conventional digitized slide to the HS 

domain.  

We also performed a comparison between the performance of CNNs in HS and RGB 

images. Such comparisons are shown on Section 5.1.4 (brain cancer) and Section 5.2.6 

(breast cancer). In such comparisons we found a similar average performance within the 

dataset, where HS classifications is shown to subtly outperform the classification 

compared to RGB images. However, the performance is shown to be dependent on which 

patient data are being classified, i.e. there are patients whose RGB classification 

outperforms the HS classification and vice versa. For such reason, more research should 

be performed in order to establish a more robust comparative between HSI and RGB in 

the aforementioned applications. 

6.2 Future research lines 

In this section, we discuss the more prominent research lines derived from the work 

presented in this dissertation. 

6.2.1 Potential applications 

According to our systematic review, we have shown the current status of color 

correction and digital staining of histological samples using HSI/MSI. First, together 
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with image analysis techniques, HSI and MSI have demonstrated to be able to correct 

the variations on the digitized slides among different laboratories. Such differences are 

mainly caused by differences in the instrumentation and in the histopathological process, 

e.g., differences in the staining conditions. For these reasons, MSI and HSI are presented 

as suitable technologies to deal with inter-laboratories variability of digitized slides, 

which is currently one of the main challenges in computational pathology. Second, 

HSI/MSI has been also applied to perform digital staining of samples. In this field, one 

trend consists of applying image processing techniques to standard H&E samples to 

highlight tissue structures that are barely visualized using such staining. The other trend 

is to directly use image processing techniques for synthetic staining of unstained 

samples, avoiding the physical staining. Although the research regarding digital staining 

is promising, the number of works in this field is still limited and more research should 

be conducted. 

Additionally, one of the most promising fields for future research in HSI/MSI for 

histopathological applications is the exploitation of unstained samples. The use of 

unstained samples is mainly motivated by the fact that the stains usually employed for 

the manual sample examination reduce the spectral range of the samples [316]. In the 

case of H&E, this staining limits the spectral response of the specimens to the visible 

spectral range, i.e. wavelengths between 400 and 750 nm. With unstained specimens, 

there is the possibility to exploit information in a wider spectral range, which may 

provide more information on some tissue constituents. For example, spectral 

information about collagen or lipids is more evident beyond 800 nm, and cell fuel 

sources that are upregulated in certain diseases states, such as FAD and NAD, have 

spectral responses from 300 to 500 nm [103], [234]. Theoretically, these signals would 

still be present in stained specimens, but they may have been washed out by the strong 

visible signals from stains. In this systematic review, we found some successful diagnosis 

applications using unstained samples [240], [241], [243], [255], [266], [304], [306]–

[309]; however, the influence of staining on the spectral response of tissue should be 

further quantified in the future.   

6.2.2 Dataset generation 

One of the most evident future lines derived from this PhD is the analysis of a wider 

variety of histological samples. The most immediate future line would be to improve the 

research about the breast cancer classification in order to include more patients in the 

analysis. However, beyond the currently available samples, another important future line 

is to figure out which type of histological specimens are hardly diagnosed by manual 

examination of the samples. This type of samples, which are still a challenge for 

pathologists, would provide information that cannot be observed with conventional 

imagery. 

Regarding the spectral range, attending to the analysis shown in the systematic review 

(Section 2.3), most of the research performed in the literature is restricted to wavelengths 

below 1,000 nm. The exception is the research performed by Awan et al., whose results 

suggest an improvement in performance of the classification of colon cancer tissues when 

information from NIR bands was also incorporated [284]. Thus, the exploration of the 

performance of the spectral range beyond 1,000 nm is one of the main challenges in 

HSI/MSI for histological applications. 
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Additionally, although in this thesis we focused on fixed magnification experiments, 

in future studies we will evaluate the influence of the magnification in the classification 

of histological samples. The main goal of such experimentation is to proof whether the 

usage of the spectral information would make possible to predict an accurate diagnosis 

of the samples by using lower magnifications, which would alleviate the acquisition 

process. 

6.2.3 Instrumentation research 

Future studies will address some limitations of this work. In this PhD thesis, the 

images were collected in a laboratory environment under controlled conditions. One of 

the main challenges associated to medical imaging processing is dealing with noisy 

images. Although in this work we focused on investigating the potential of HS images for 

the identification of tumor, in future works we will further analyze the effect of noise-

removal strategies in the histological HS images [351]–[353]. 

Additionally, in this thesis, we have shown how the HS instrumentation strongly 

varies among different studies. It is not clear which instrumentation parameters are 

more appropriate for HSI/MSI histological analysis. The most important challenge is to 

determine which spectral range is more informative. As stated before, the NIR spectral 

range has been poorly explored for the analysis of histological HS images. The usage of 

such spectral range also imposes challenges in the instrumentation development. NIR 

cameras are characterized by a low spatial resolution. For this reason, along with the 

exploration of the NIR spectral range, techniques devoted to increase the spatial 

resolution of such images should also be investigated, e.g. superresolution. This 

challenge is especially important in histology applications, where the morphological 

features of tissue are important. 

Other challenge for the instrumentation is regarding the magnification. As shown in, 

the light power transmission is inversely proportional to the objective lens magnification. 

This fact is illustrated in Figure 3-10. For this reason, in order to achieve higher 

magnifications with an optimal dynamic range, an external light source should be 

attached to the microscope to increase the light power delivered to the sample. 

Finally, in conventional computational pathology, the image acquisition is performed 

in a Whole Slide Image framework. Such framework includes the acquisition of all the 

information from a histological slide at the same time. In this thesis, the regions of 

interest of the samples were manually selected according to the areas which have been 

previously annotated by the pathologist. The future of the acquisition of HS histological 

images involves the development of techniques to allow the acquisition of HS-WSI. In 

order to achieve such goal, further investigation should be performed in, at least, two 

specific fields. First, since the entire histological slide will require the acquisition of 

several HS cubes, stitching techniques are necessary to generate seamless spatially 

coherent HS images from the whole sample. The image stitching of HS samples will 

impose challenges for both the image acquisition and its subsequent image processing. 

Second, to ensure the correct focus of the captured image automatically, further 

investigation should be performed in the automatic analysis of the appropriate focus of 

the HS cubes. Such analysis may be facilitated by capturing different images with 

different focusing levels by programming the motorized stage of the System-III 

microscope. 
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6.2.4 Algorithm development 

As stated in Chapter 2, the methods used to retrieve information from HS images 

widely vary among different research works. However, the determination of which 

method is more appropriate for data processing is heavily dependent on the target 

application. In this dissertation, we have evaluated both classical Machine Learning 

algorithms and Deep Learning approaches. In our particular case, both types of image 

processing approaches seem to provide competitive results in the classification of 

histological samples. 

However, one of the most evident future research in this field is to perform a detailed 

comparison among different image processing approaches in order to quantify which 

processing approach is more appropriate for the classification of histological HS 

samples. On the one hand, regarding traditional ML approaches, it would be valuable the 

evaluation of different techniques such as dimensionality reduction, spectral unmixing, 

or NDI estimation, among others. On the other hand, regarding the Deep Learning 

approaches, the main goal is to evaluate which Neural Network architecture is more 

convenient for this application. In order to reach an agreement about an adequate 

common framework for HSI/MSI data processing for histopathological applications, 

there is a need for publicly available datasets, where a fair comparison across different 

methods could be performed. Additionally to the evaluation of a wide variety of image 

processing methods, a comparative among the different methods using statistical tools 

may provide a rationale of which methods are more adequate for this application.  

Finally, since the target application of this research work is in the field of medical 

diagnosis, an interesting research line is in the model interpretability. This means that, 

together with the classifier predictions, we are able to provide details about the 

interpretability of the models. In the case of the analysis of histological samples, such 

study may reveal which spectral regions are more distinctive for a specific disease, or 

which morphological features are used by the model to generate the predictions. 

6.3 Impact of the PhD. Thesis 

In this section, all the scientific communications published during the development 

of the work described in this thesis are detailed. The scientific communications have been 

divided into conference presentations and journal publications and they have been 

organized in chronological order. Furthermore, as part of the outcomes achieved during 

the development of this research project, a patent has been obtained; and a book chapter 

has been published. The contents are organized in two different sections, differentiating 

the scientific contributions that are directly related to the contents depicted in this 

document. 

Specifically, 31 journal citation reports (JCR) papers (19 Q1, 7 Q2, 4 Q3 and 1 Q4), 2 

non-indexed JCR papers, 24 peer-reviewed conference papers, 1 book chapter, and 1 

international patent have been achieved during the course of this thesis. In total, 59 

scientific contributions have been accomplished. 
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Annex A: Sinopsis en español 

A.1 Introducción y motivaciones 

Las imágenes hiperespectrales son una tecnología que combina dos técnicas que han 

coexistido independientemente durante décadas: la espectroscopia y la fotografía digital. 

Por una parte, la espectroscopia estudia la interacción entre la radiación 

electromagnética y la materia. Dicha interacción es única para cada material. La curva 

que relaciona la radiación electromagnética con un determinado material se denomina 

firma espectral, y a través de su análisis es posible discriminar entre distintos materiales. 

Se trata pues, de una especie de huella digital que identifica cada material. Por otro lado, 

la fotografía digital permite capturar imágenes de una determinada escena, haciendo 

posible el análisis de características espaciales de determinados objetos tales como su 

morfología o su textura.  

Las imágenes hiperespectrales han sido empleadas tradicionalmente en Remote 

Sensing para labores de teledetección, incluyendo diversas aplicaciones como podrían 

ser la agricultura de precisión, la mineralogía o los estudios medioambientales. La 

potencialidad de esta tecnología para diferenciar entre distintos tipos de materiales ha 

hecho que se emplee en otros campos muy diversos. Por ejemplo, los restauradores de 

obras de arte emplean esta tecnología para identificar qué pigmentos son los que han 

sido empleados en una determinada obra de arte para así mejorar su restauración. En 

las plantas de reciclaje, esta tecnología se emplea para separar automáticamente los 

distintos tipos de materiales. En la industria alimentaria, esta tecnología se está usando 

para la inspección de la calidad de diferentes alimentos, evitando los análisis biológicos 

invasivos requeridos en las metodologías tradicionales. También en la industria 

farmacéutica se hace uso de las capacidades de las imágenes hiperespectrales para 

realizar un análisis químico no invasivo.  

En el campo de la medicina, las imágenes hiperespectrales también han despertado el 

interés de la comunidad científica en los últimos años. Esto se debe a que se ha 

demostrado que la interacción entre la radiación electromagnética y los tejidos 

proporciona información útil para el diagnóstico. En los últimos años el uso de esta 

tecnología ha tenido un gran auge en el campo de la biomedicina, dada su eficacia para 

detectar enfermedades y su carácter no invasivo. En lo que respecta a la detección de 

cáncer, las imágenes hiperespectrales se plantean con el fin de proporcionar a los 

cirujanos una herramienta de ayuda al diagnóstico que permita la resección total del 

tejido tumoral, así como evitar la resección errónea de tejido sano. Esta tecnología se ha 

empleado desde hace más de veinte años en diferentes áreas de la medicina, como 
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pueden ser el análisis de tejidos cancerosos en muestras in-vivo y ex-vivo, en la detección 

de melanomas, o en diversas afecciones en el campo de la gastroenterología, entre otras. 

Esta tesis doctoral se enmarca dentro del empleo de imágenes hiperespectrales en 

muestras histológicas. El diagnóstico tradicional de las muestras histológicas se basa en 

el examen visual de las características morfológicas de las muestras por patólogos 

especializados. En los últimos años, el uso de tecnologías asistidas por computador para 

mejorar estos procedimientos es una tendencia emergente para reducir la subjetividad 

del diagnóstico. Esas tecnologías tienen por objeto mejorar el diagnóstico, hacerlo 

reproducible y cuantitativo, así como ahorrar tiempo en el análisis manual de las 

muestras. La tecnología de imágenes hiperespectrales se presenta como una alternativa 

interesante a las imágenes RGB, debido a su capacidad de diferenciar entre diferentes 

materiales mediante la explotación simultánea de las características morfológicas y 

espectrales de los tejidos. El uso de esta tecnología está motivado por el hecho de que, 

haciendo uso de la información espectral es posible detectar sutiles diferencias 

moleculares entre muestras biológicas. Esta tecnología se utiliza junto con algoritmos 

avanzados de aprendizaje automático para extraer información útil sobre los materiales 

de una imagen hiperespectral. 

En esta tesis doctoral, se propone el empleo de imágenes hiperespectrales para 

discriminar entre tejido tumoral y no tumoral en muestras histológicas. Específicamente, 

se aborda el análisis de cáncer cerebral y de cáncer de mama. El trabajo presentado en 

esta tesis incluye la preparación de las muestras, su captura usando instrumentación de 

captura de imágenes hiperespectrales, y el procesado de las imágenes capturadas. 

A.2 Contexto 

Los contenidos de esta tesis doctoral se engloban dentro de los siguientes proyectos 

de investigación: el proyecto europeo HELICoiD  (618080), financiado por la Comisión 

Europea Programa de Future and Emerging Technologies (FET-Open), dentro del 7º 

Programa Marco de la Unión Europea; el proyecto ITHaCA (ProID2017010164), 

financiado por la Agencia Canaria de Investigación Innovación y Sociedad de la 

Información del Gobierno de Canarias, y el proyecto PLATINO (TEC2017-86722-C4-1-

R), financiado por el Programa Estatal de I+D+i Orientada a los Retos de la Sociedad del 

Ministerio de Ciencia e Innovación del Gobierno de España.  

Durante esta tesis se ha tenido estrecha colaboración con dos departamentos de 

Anatomía Patológica de dos hospitales diferentes, gracias a los cuales se ha tenido acceso 

a las muestras histológicas que se han digitalizado y procesado usando imágenes 

hiperespectrales, así como al análisis de los resultados que se han obtenido desde el 

punto de vista médico. Dichos hospitales son el Hospital Universitario de Gran Canaria 

Dr. Negrín (Las Palmas de Gran Canaria, España) y el Hospital de Tortosa Verge de la 

Cinta (Tortosa, España). 

Además, en el marco de esta tesis doctoral se ha realizado una estancia de 

investigación en el Quantitative BioImaging Laboratory, enmarcado en el Departamento 

de Ingeniería Biomédica de la Universidad de Texas en Dallas (https://fei-lab.org/). Este 

grupo está liderado por el Prof. Baowei Fei, quien es uno de los pioneros a nivel 

internacional en el uso de la imagen hiperespectral en medicina y especialmente en la 

aplicación de esta técnica para el análisis del cáncer.  

https://fei-lab.org/
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A.3 Estudio del estado del arte 

En esta tesis doctoral se ha realizado una revisión sistemática del estado del arte 

referente al procesamiento de muestras histológicas usando imágenes hiperespectrales. 

Para la metodología de dicha revisión sistemática se han empleado las reglas propuestas 

por PRISMA (http://www.prisma-statement.org) para el desarrollo de revisión 

sistemática de la literatura. Tras una búsqueda preliminar usando bases de datos 

extendidas en el ámbito científico (PubMed y Scopus), se han recabado un total de 

aproximadamente 1600 artículos. Tras la inspección de dichos artículos atendiendo a su 

resumen, finalmente se han seleccionado 193 artículos para dicha revisión del estado del 

arte. Realizando un análisis pormenorizado de los 193 artículos, se ha decidido dividir el 

manuscrito en cuatro secciones principales: autoflorescencia, mejoras del color y tinción 

digital, análisis inmunohistoquimico de las muestras; y diagnostico rutinario. Dicho 

artículo, titulado Hyperspectral and multispectral imaging in digital and 

computational pathology: a systematic review [Invited], ha sido publicado por 

invitación en la revista Biomedical Optics Express. Con el desarrollo de este artículo se 

ha conseguido tener una visión general del estado actual y de los futuros retos a los que 

hay que hacer frente en el uso de imágenes hiperespectrales para el análisis de muestras 

histológicas. 

A.4 Instrumentación y adquisición de imágenes 

hiperespectrales microscópicas 

La captura de imágenes hiperespectrales microscópicas no es algo trivial. En las 

primeras etapas de esta tesis, se diseñó un sistema de adquisición de imágenes 

hiperespectrales compuesto por una cámara hiperespectral, un microscopio, y un 

sistema de posicionamiento para realizar el barrido espacial requerido para obtener 

dichas imágenes (Figura A-1).  

 

Figura A-1: Sistema de captura preliminar, consistente en una cámara hiperespectral acoplada 

a un microscopio convencional 

http://www.prisma-statement.org/
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El sistema de posicionamiento fue desarrollado en el ámbito de esta tesis, y fue 

acoplado a un microscopio disponible en el Instituto Universitario de Microelectrónica 

Aplicada. El microscopio (Olympus BH-2) es estándar, y no está optimizado para las 

capturas de imágenes hiperespectrales. Esto causa que, aunque las cámaras 

hiperespectrales usadas en dichos microscopios cubran un rango espectral amplio, el 

microscopio filtra las longitudes de onda superiores a 700 nm. Esto limita la cantidad de 

datos que se desean medir. Por este motivo, en el marco del Proyecto  PLATINO se 

adquirió un microscopio que sí tiene capacidad hiperespectral (Olympus BX-53), lo que 

permite la adquisición de imágenes hiperespectrales microscópicas hasta los 2000 nm 

(Figura A-2). 

 

Figura A-2: Rango espectral percibido por un microscopio no optimizado para la captura de 

imágenes hiperespectrales (azul, Olympus BH-2), y por un microscopio optimizado para la 

captura de imágenes hiperespectrales (rojo, BX-53) 

Al usar dos sistemas de adquisición diferentes, nos hemos percatado de que hay 

ciertos problemas que siempre aparecen cuando se acopla una cámara de tipo push-

broom a un microscopio. Por ese motivo, durante esta tesis se ha propuesto una 

metodología para la optimización de los parámetros de captura cuando se usa una 

instrumentación a medida de este tipo. Dicha metodología ha sido presentada en el 

artículo Hyperspectral Push-Broom Microscope Development and Characterization, 

publicado en la revista IEEE Access.  

Dicha metodología consiste en un procedimiento empírico, basado en el 

procesamiento de imágenes, para optimizar los parámetros de captura de imágenes 

hiperespectrales de tipo push-broom; especialmente el enfoque, la velocidad de captura 

y el alineamiento.  En la Figura A-3 se puede observar el ejemplo de varias imágenes 

hipersepectrales de un portaobjetos de calibración, en el que se pueden observar tanto 

una imagen adquirida en condiciones ideales, así como algunos ejemplos de defectos 

comunes que aparecen en las imágenes si algunos de los parámetros de captura no son 

adecuados. 
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(a) 

  
(b) (c) 

  
 (d) (e) 

Figura A-3: Imágenes hiperespectrales adquiridas en buenas condiciones (a), o en malas 

condiciones: imagen desenfocada (b), error de alineamiento entre la cámara y el microscopio 

(c), imagen adquirida con velocidad superior a la óptima (d), e imagen adquirida con velocidad 

inferior a la óptima (e). 

Usando esta metodología de captura, se han obtenido imágenes hiperespectrales 

microscópicas de muestras histológicas para su posterior análisis. 

A.5 Bases de datos de imágenes hiperespectrales histológicas 

Las muestras biológicas empleadas durante esta tesis doctoral consisten en muestras 

histológicas de dos tipos de tumores: cáncer de mama y tumor cerebral. Un ejemplo de 

este tipo de muestras se puede observar en la Figura A-4. 

   

Figura A-4: Ejemplo de muestras histológicas empleadas en esta tesis doctoral. 

El objetivo final de este trabajo de investigación es proporcionar una herramienta de 

ayuda al diagnóstico basada en imágenes hiperespectrales. Sin embargo, de forma previa 

al desarrollo de algoritmos capaces de realizar un diagnóstico preciso, es necesario 

elaborar una base de datos etiquetada en la que se tenga un alto número de imágenes 

hiperespectrales con la correcta identificación de la mayor parte de las zonas de la 
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imagen. Para esto, los patólogos involucrados en este proyecto han anotado en los 

portaobjetos las zonas de interés de cada muestra. En la Figura A-5.a se puede observar 

un ejemplo de una muestra donde se ha indicado el tejido tumoral usando un marcador 

rojo, y el tejido sano usando un marcador azul. Una vez los patólogos han determinado 

las zonas de interés, se procede a la captura de las imágenes. En esta tesis doctoral se han 

usado muestras histológicas correspondientes a tumor cerebral (específicamente de 

glioblastoma) y a cáncer de mama. 

El proceso de captura se puede realizar en diferentes magnificaciones. Usando 

imágenes con baja magnificación, como 5× (Figura A-5.b) y 10×, es posible determinar 

si se trata de una zona de tejido tumoral o no (las zonas tumorales presentan alta 

proliferación celular). Además, en estas imágenes se pueden observar estructuras como 

vasos sanguíneos, zonas del tejido que presentan hemorragia o núcleos de células. Sin 

embargo, con estas magnificaciones no es posible observar detalles de las células que 

permitan a un experto determinar el diagnóstico preciso, siendo necesario utilizar una 

magnificación mayor, como 20× (Figura A-5.c).  

 

Figura A-5: Ejemplo de muestras histológicas de tumor cerebral. (a) Muestra etiquetada por 

los patólogos. Las zonas tumorales se han delimitado usando un marcador rojo, y las zonas de 

tejido sano con marcador azul. (b, c) Imagen hiperespectral a falso color a 5× y 20×, 

respectivamente 

A.6 Procesamiento de las imágenes 

Una vez se ha capturado un número significativo de imágenes hiperespectrales, el 

objetivo es aplicar técnicas de procesado de imágenes para extraer información relevante 

para el diagnóstico a partir de los datos hiperespectrales. 

A.6.1 Tumor cerebral  

Empleando las muestras de tumor cerebral capturadas, se ha realizado una 

clasificación de dichas muestras usando distintas técnicas de procesamiento de 

imágenes, especialmente Machine Learning. Las muestras han sido etiquetadas 

macroscópicamente en los portaobjetos a nivel de área, indicándose las áreas tumorales 

y no tumorales (Figura A-5.a). La primera aproximación al procesamiento de este tipo de 

imágenes se ha realizado con una baja magnificación por restricciones impuestas por el 

sistema de adquisición. Dichas muestras fueron clasificadas usando clasificadores 

supervisados a nivel de firma espectral, y los resultados de dicha investigación fueron 
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publicadas en el artículo Detecting brain tumor in pathological slides using 

hyperspectral imaging, en la revista Biomedical Optics Express.  

Sin embargo, esta investigación estaba limitada por la instrumentación, que 

únicamente permitía la captura de imágenes usando magnificaciones bajas (5×), y con 

una resolución espacial baja, lo que no permitía explotar las características morfológicas 

de las muestras. Por ese motivo, tras realizar mejoras en la instrumentación, las muestras 

fueron digitalizadas de nuevo con una mayor magnificación (20×), y con una calidad de 

imagen alta. Usando dicha base de datos, se han realizado dos aproximaciones diferentes 

para el procesamiento de las imágenes hiperespectrales. En primer lugar, se realizó una 

clasificación de las muestras usando redes neuronales convolucionales. Dicho trabajo fue 

presentado en el artículo Hyperspectral Imaging for the Detection of Glioblastoma 

Tumor Cells in H&E Slides Using Convolutional Neural Networks, en la revista Sensors. 

Adicionalmente, también se ha propuesto el uso de una combinación de algoritmos de 

superpíxel y de clasificación supervisada para esta aplicación. Los resultados de dicha 

investigación fueron presentados en el artículo Hyperspectral Superpixel-Wise 

Glioblastoma Tumor Detection in Histological Samples, en la revista Applied Sciences. 

Los resultados de este estudio han sido prometedores, indicando una buena 

discriminación entre tejido tumoral y sano. Sin embargo, se ha concluido que, debido a 

la gran variabilidad de los tumores cerebrales de alto grado, es necesario disponer de un 

mayor número de pacientes para obtener mejores resultados en la clasificación. 

A.6.2 Cáncer de mama 

Durante esta tesis doctoral se han procesado también datos hiperespectrales de 

muestras de cáncer de mama usando técnicas de Deep Learning. Concretamente, se ha 

usado una red neuronal convolucional para realizar el diagnostico a nivel celular de 

dichas muestras. Los datos de partida consisten en un conjunto de datos hiperespectrales 

que tienen asociados unas etiquetadas a nivel celular, que han sido anotadas 

cuidadosamente por patólogos en una muestra digitalizada en RGB (Figura A-6).   

   
(a) (b) (c) 

Figura A-6: Imágenes de cáncer de mama. (a) Imagen hiperespectral adquirida en el IUMA. 

(b) Imagen RGB digitalizada por los patólogos. (c) Misma imagen que (b) pero con 

anotaciones sobre los distintos tipos de células: sanas (azul), mitosis (verde), tumorales (rojo), 

linfocitos (amarillo). 

En primer lugar, se ha realizado un procesamiento de las imágenes para extraer 

automáticamente los distintos tipos de células para una posterior clasificación (Figura 

A-7). Una vez se han localizado las células indicadas por los patólogos para su 

clasificación, se ha entrenado una red neuronal convolucional para realizar dicho 

diagnóstico. Los resultados en la diferenciación entre células tumorales y células no 

tumorales han aportado resultados prometedores. Los resultados de este estudio se han 

presentado al congreso SPIE Medical Imaging 2020, con un artículo titulado 
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Hyperspectral imaging and deep learning for the detection of breast cancer cells in 

digitized histological images. 

 

 

Figura A-7: Extracción de las células indicadas por los patólogos en la imagen hiperespectral. 

A.7 Conclusiones 

Tras el desarrollo de esta tesis, se concluye que la imagen hiperespectral puede ser 

una valiosa herramienta de ayuda a la hora de mejorar la precisión del diagnóstico 

histopatológico, de acelerar los diagnósticos rutinarios más comunes y de objetivar el 

diagnóstico entre distintos profesionales. Los resultados preliminares son muy 

alentadores y parecen indicar que la imagen hiperespectral puede ser una disciplina que 

juegue un importante papel en la anatomía patológica del siglo XXI.  
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