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A B S T R A C T   

In this study, we define a novel methodological approach for introducing Offshore Wind Energy (OWE) facilities 
into sea space, determining the most suitable locations with regard to the five clusters: oceanographic potential; 
environmental sensibility; restrictions related to marine conservation; Land–Sea interactions; and avoiding po-
tential conflict with current maritime and coastal activities. 

The methodology was tested along 1.583 km of the Canary Islands coastline and across more than 50 000 km2 

of related offshore areas. We have identified marine areas that have significant wind&depth potential, minimal 
impact on the marine environment, compatibility with marine conservation and conflict avoidance with oper-
ative economic maritime and coastal sectors (such as coastal tourism, fisheries, aquaculture, maritime transport, 
etc.). Suitability maps were developed with Decision Support System INDIMAR, a novel tool that analyses the 
OWE facilities’ relationship with each cluster parameter, introducing weights calculated by an Analytical Hi-
erarchy Process. 

OWE development needs to find a balance of all five clusters reflecting on Ecosystem-Based Management 
components that should be mirrored in the Maritime Spatial Planning (MSP) strategy, including options with 
tradeoffs among sectorial growth, conflict prevention and environmental protection & conservation.   

1. Introduction 

Offshore Wind Energy (OWE) production in North Europe kicked off 
in the early 2000s, and the new installations coming up demanded new 
marine spatial areas. This emerging marine sector was strongly sup-
ported by the Renewable Energy Roadmap, which set an overall 
mandatory target of 20% for the proportion of renewable energy con-
sumption by 2020 and zero greenhouse gas emissions by 2050 [1]. By 
2018, installed OWE capacity was 18.4 GW (WindEurope 2019) on sea 
space, which has resulted in (potential) conflict not only with other 
energy sectors such as oil & gas, but also with traditional activities like 
fisheries, maritime transport and coastal tourism [2–4]. 

Through the last decade, a new policy instrument named Maritime 
Spatial Planning (MSP), mainly promoted under the umbrella of 
UNESCO, has been used to resolve future potential conflicts originating 
due to the introduction of OWE infrastructures, especially in Europe [3, 
5]. The Intergovernmental Oceanographic Commission (IOC) of the 
UNESCO recognized the necessity of MSP processes at least in the 
Exclusive Economic Zones (EEZ) of maritime states and organized the 

first international workshop [6] in 2006 to underpin its worldwide 
implementation. As a result, the first international MSP initiative was 
developed, which provided a framework and a type of guidance, doc-
umenting worldwide applications and the current state of play. In par-
allel with the UNESCO initiative, the European Commission included 
MSP as one of the cross-cutting policies within the Integrated Maritime 
Policy (IMP, COM/2007/0575), to provide a more coherent and coor-
dinated approach in resolving maritime issues. The pilot MSP projects 
were initiated in the Baltic and the North Sea, followed by numerous 
European initiatives in the Eastern Atlantic and the Mediterranean and 
Black Seas that should support European Member States (MS) to deliver 
the first milestone of the MSP process, a spatial plan to allocate maritime 
sectors and activities. In this sense, a spatial plan of the marine space, 
linking sustainable maritime use and preservation of the marine envi-
ronment, is required by the Directive 2014/89/EU and needs to be 
delivered in 2021 by MS for all European Seas. 

Over the last 10 years, MSP has been used as a planning policy within 
the North Sea and Baltic regions, mainly to avoid or mitigate conflict 
following the introduction of OWE facilities. OWE ventures in the North 
Sea have been successful due to the favorable conditions of the natural 
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environment, especially the sea’s shallowness [7–9], which allowed 
installation of wind parks more than 50 miles from the coastline, at less 
than 50 m depth. Sea depth and the related gradients are strongly related 
to the economic sustainability of the OWE sector [8,10]. For the wind 
industry to survive, it is vital that costs are significantly reduced for 
future projects through efficient support structure and design, cheaper 
fabrication, and quicker installation and maintenance, including the 
commissioning process [11]. 

The economic viability of OWE is changing quickly with the arrival 
of new technology: floating offshore wind structures, novel materials 
and new designs [12,13]. Europe’s floating wind fleet is the largest 
worldwide (70%), with a total capacity of 45 MW by the end of 2019. 
Floating OWE facilities are already operative in Norway; Hywind 
Tampen is the largest OWE facility, with 11 turbines installed that 
produce a reported 88 MW. France has four testing sites that test 
different technologies, reporting more than 100 MW. UK and Portugal 
have constructed one floating OWE site each, reporting 50 MW and 25 
MW, respectively. Most of these initiatives are still demonstration pro-
jects, testing different floating concepts with the objective of reducing 
cost or upscaling previous demonstrators (WindEurope 2019). 

The Canary Islands, a Spanish archipelago of volcanic origin located 
in the Central East Atlantic Ocean, have huge potential for renewable 
energy, with more than 400 MW installed on land, mainly near the 
shores. Potential is even higher in the nearby marine areas (Fig. 1), as 
there are no offshore physical barriers [14,15], and in the channels 
between the islands where the wind strength increases due the Venturi 
effect [16] (Fig. 1). Nevertheless, the potential for OWE is hindered due 
to the geomorphology of these volcanic islands, with sea bottoms 
showing, in most cases, steep gradients and reaching great depths near 
the coasts. Thus, even with the technology developed within the oil and 
gas sector, installing turbines more than one mile from the coastline is 
considered not economically feasible, as the construction and mainte-
nance costs would be prohibitively high. In recent years, though, with 
the emergence of new floating technologies, the potential for OWE at the 
Canary Islands has improved vastly, as there are novel possibilities of 
installing facilities in deeper waters and going to offshore areas where 
wind strength is also more elevated. At the moment the Canary Islands 
are in the pilot phase, testing the floating technology with a WIP10+
European funded project. Additionally, the Wind2Power 1:6 scale 

prototype of 200 kW was successfully tested at The Oceanic Platform of 
the Canary Islands (PLOCAN) site (WindEurope 2019, PLOCAN 
website1). 

Current developments and the results of the demonstration projects 
suggest that the OWE sector will have considerable potential for growth 
in the waters surrounding the Canary Islands. Diverse studies have been 
carried out till date, on exploitation and site selection for the offshore 
wind facilities at the Canary Islands, assessing potential based on the 
wind strength and including the restriction factors [14–17]. Introduc-
tion of the new sector needs to be studied and planned based on the 
offshore wind potential [10,18], but also including analysis to avoid 
conflict with the currently operative sectors and to reduce or, if possible, 
even avoid pressures on the marine environment [7,19,20]. 

The Canary Islands boast more than 1500 km of coastline and almost 
450 000 km2 of Exclusive Economic Zone (EEZ). In the framework of the 
current process of MSP, these numbers point to the need for efficient 
methods to at least understand the implications of the development of 
emerging maritime sectors; for instance, the OWE sector under the 
Ecosystem-Based Management (EBM) approach could cover extensive 
areas, while minimizing conflict with the existing activities and the 
environment. 

As part of the research objectives of an EU Interreg PLASMAR project 
(MAC/1.1a/030), we have studied the implications of the OWE sector’s 
arrival and development in the waters of the Canarias archipelago. We 
analyzed its environmental suitability and also identified the potential 
conflicts arising from this emerging Blue Growth sector. We reviewed 
the state-of-the-art on OWE pressures and possible mitigation actions for 
discovering potential conflicts and avoiding them. For this task we used 
a newly developed Decision Support System (DSS) tool, INDIMAR, 
which identifies the most suitable location in the marine realm for the 
OWE sites, taking into consideration the marine environment, potential 
conflicts with current maritime and coastal uses, as well as economic 
operability within the framework of the EBM approach. 

In this contribution, we have assessed the fitness and predictability of 
the INDIMAR tool to enhance Blue Growth policies at a regional level, in 
this case determining the potential zoning and suitability of specific 
marine areas for OWE around the Canary Islands. At the same time, we 
did a preliminary evaluation of the potential conflict of OWE with other 
marine activities (associated with extant or emerging maritime sectors), 
with the involvement of diverse maritime actors at expert and stake-
holder levels. 

2. Materials and methods 

2.1. Data collection 

To make data collection more efficient, avoiding redundant data sets 
and making (spatial) information manageable, within the PLASMAR 
project the required data sets were organized within five clusters: Data 
on marine environment structured following Good Environmental Sta-
tus (GES) of Marine strategy Framework Directive 2008/56/EC (MSFD); 
Spatial data and information on Marine Protected Areas (MPAs); Coastal 
Land use; Oceanography data; information collected on Current Mari-
time Activities. 

Data were compiled from European data initiatives such as the Eu-
ropean Marine Observation and Data Network (EMODnet), the Coper-
nicus Earth observation programme, or the Spatial Data Infrastructure 
(SDI) of the European Environment Agency; on the national level in-
formation was harvested from SDI Spain and the Spanish Oceanographic 
Institute; and local data gathered from regional and island administra-
tions, research projects and local data infrastructures (Spatial Data In-
frastructures CANARIAS, University Las Palmas de Gran Canaria 

Abbreviations 

AHP Analytical Hierarchy Process 
CDDA Nationally Designated Protected Areas Inventory 
EBM Ecosystem Based Management 
EEZ Exclusive Economic Zone 
EMODnet European Marine Observation and Data Network 
GES Good Environmental Status 
IUCN International Union for Conservation of Nature 
MPAs Marine Protected Areas 
MS Member States 
MSFD Marine strategy Framework Directive 2008/56/EC 
MSP Maritime Spatial Planning 
NetCDF Network Common Data Form 
NIS Non-Indigenous Species 
OWE Offshore Wind Energy 
QDs Quality Descriptors 
SDI Spatial Data Infrastructure 
SEA Strategic Environmental Assessment  

1 https://www.plocan.eu/en/the-w2power-prototype-test-is-successfully-co 
mpleted-in-the-plocan-test-site/. 
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Geoportal, Pilotaje del Litoral Canario, etc.). 
Each parameter included within the five clusters was analyzed for its 

relevance to OWE, and in the cases where they were relevant, the 
quantitative relationship was identified. These analyses and weights 
were delivered reviewing available state of the art, scientific literature 
and technical reports, mainly from the North of Europe (North Sea and 
Baltic), where OWE parks are operational for the past 20 years, as well as 
taking into consideration the experts’ and stakeholders’ inputs. 

2.2. Marine environment data listed by the Marine Strategy Framework 
Directive following Good Environmental Status 

Data on the marine environment are structured following the Marine 
Strategy Framework Directive 2008/56/EC (MSFD), which described 
the Good Environmental Status (GES) of the European marine waters 
using 11 Quality Descriptors (QDs) and 39 related Criteria Elements. 

The information on benthic habitats for the Canary Islands is the 
integration of two data sets. The first data set—Canary Islands benthic 
habitats 0–50 m depth—was extracted from Ecocartográficos studies, 
environmental and ecological surveys delivered by diverse under- 
contract consultancies for the Spanish Ministry of Environment during 
the period 2000–2008. The second data set on marine habitats used is 
the harmonized EMODnet product,2 a data set with extensive coverage 
(beyond the Canary Islands EEZ), though not rich in detail. Both data 
sets are harmonized applying INSPIRE Directive 2007/2/EC European 
spatial information standard, data model on Habitats & Biotopes, which 
resolves semantic issues with benthic habitats’ common classification 
and facilitates integration. 

As the species distribution data of marine birds, turtles and mammals 
was unavailable, we used the considerable information associated with 
the Canary Islands Natura 2000 Network of Marine Protected Areas. For 
the analysis, it was assumed that there is high probability of species 
appearance in areas where species conservation is targeted by the spe-
cific Natura 2000 protected marine area. 

During the first cycle of implementation of MSFD, the Spanish 
Ministry of Environment published spatial data within the Spanish SDI,3 

including assessments of the Non-Indigenous Species (QD 2); Sea floor 

Integrity (QD 6); Hydrographic alteration (QD 7); accumulation of 
Marine debris (QD 10); and areas potentially impacted by Marine noise 
(QD 11). These spatial data sets—assessments, covering the entire EEZ 
of Canaries, delivered within MSFD implementation—were included in 
the data collection and used in the study for OWE suitability analyses. 

2.3. Spatial data and information on MPAs 

For the analysis of suitability within MPAs, we used two databases, 
both provided by the European Environment Agency. The first is the 
Nationally Designated Protected Areas Inventory (CDDA), covering the 
whole of Europe and updated annually. CDDA has a Protected Area 
Categories System defined by the International Union for Conservation 
of Nature (IUCN), divided into seven categories according to their 
management and protection objectives [21,22]. The second database 
used is the Natura 2000 Network, listing protected areas designated 
under the Birds 79/409/EEC and/or Habitat Directive 92/43/EEC, 
protecting marine birds or/and marine species or/and marine habitats. 
From both data sets we extracted MPA areas and protected coastal land 
areas, including the objectives and targets of conservation. 

2.4. Coastal Land use 

The potential land–sea interactions involving OWE facilities and 
coastal land use were analyzed. During the data collection process, it 
was difficult to find a standardized and detailed Land use data set for the 
whole archipelago. Still, for the purpose of mapping coastal areas we 
used the European Land cover CORINE 2018 data set, complemented by 
regional data sets available at local SDIs (IDE Canarias,4 Pilotaje del 
Litoral Canario5). CORINE 2018 covers the entire Canary Islands ar-
chipelago, and is available as a harmonized product with standard 
classification for the whole of Europe. For the purpose of this study, we 
analyzed harbor areas, urban areas (including coastal tourism areas), 
industrial or commercial units and beach areas; agricultural and forest 
areas were considered but not included in the analysis. 

2.5. Oceanographic data 

Data collection for the oceanographic data was straightforward, as 

Fig. 1. Wind potential in Macaronesia and the Canary Islands - obtained calculating arithmetic mean for Copernicus Marine two-year time daily series, product 
delivered by the PLASMAR project (MAC/1.1a/030). 

2 The European Marine Observation and Data Network (EMODnet); www. 
emodnet.eu.  

3 https://www.idee.es SDI Spain, Infrastructure de Datos Espaciales España 
(IDEE). 

4 https://www.idecanarias.es SDI Canarias.  
5 https://www.pilotajelitoralcanario.es Coastal SDI Canarias. 
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Canary Islands EEZ is covered by harmonized Copernicus Marine 
Environment Monitoring Service (CMEMS) products. Downloaded 
products from CMEMS were: coverage time series on wind, currents and 
waves observations, that should be considered within the Oceanography 
data cluster. CMEMS products are coverage time series, provided in 
network Common Data Form (NetCDF). NetCDF is a format for storing 
multidimensional scientific data, where variables (in our case wind, 
currents and wave observations) are displayed through time in two- 
dimensional space [23]. To manage coverage time series, we calcu-
lated basic statistics as maximum, minimum, percentiles (10, 90) and 
arithmetical mean. In this way we statistically summarized several large 
time series coverages into one single coverage file [24–26]. 

For wind speed, the WIND_GLO_WIND_L3_NRT_OBSERVATIONS 
_012_002 – CMEMS product, which contains daily gridded near-real time 
scatter-meter wind vector, was supplemented with wind stress compo-
nents, wind stress amplitude and wind stress curl and divergence, the 
observations for which were initiated on January 01, 2016 (Copernicus 
quality information document on wind observations, 2019). 

For wind time series, we used bi-annual average wind speed, basic 
statistics—calculated on more than 700 values series—per analyzed cell 
(0.125◦ × 0.125◦, that within the longitude and latitude of Canary 
Islands is around 14 km2). We assumed that annual average statistics, as 
currently often used for the identification of OWE locations ([10,19, 
27]), are appropriate for the analysis as include and affected by outliers 
(e.g. storm wind events). 

For bathymetry we used the GEBCO_2020 global product, combined 
with local data extracted from the previously mentioned Ecocartográficos 
studies, providing detailed bathymetry data set till 50 m depth. 

2.6. Current maritime activities 

The data on current maritime activities were mainly compiled from 
regional and national databases. Most of the information on current 
maritime activities (operative aquaculture and designated areas, artifi-
cial reefs, wrecks, submarine cables, whale watching, diving, military 
areas, research areas, seaweed cultivation, nautical sports, etc.) was 
collected from the regional spatial data infrastructures, SDI Canarias and 
Coastal SDI Canarias. Data on fisheries were directly provided by 
Instituto Español de Oceanografía. For maritime traffic density, we used 
the Human Activities EMODnet European product, Vessels density maps 
based on the ship reporting data of the Automatic Identification System, 
as collected by coastal stations and satellites. 

2.7. DSS INDIMAR tool, parameter weights and OWE suitability 
calculation 

The collected data were introduced into the INDIMAR spatial data 
Decision Support System (DSS) for sectoral zoning and MSP purposes. In 
the framework of the PLASMAR project, DSS INDIMAR was designed by 
the ECOAQUA Institute as a Geographical Information System (GIS) web 
application. To reduce time of computing and facilitate post processing, 
we decreased the area analyzed from the overall Canaries Exclusive 
Economic Zone (EEZ) to an area up to 30 km From the coastline around 
each of the islands. This decision, which made our analyses more rapid 
and efficient, was justified as most of the maritime activities are 
confined within a 30 km coastal belt (except for inter-island maritime 
transport), due to the great depths around and between the islands. 
Then, the Canary Islands areas included in the analysis were divided into 
fragments, based on 10” arc square cells (about 300 m2). Each cell in-
cludes encoded spatial information on the marine environment; MPAs; 
Land–Sea interaction; oceanography; and current maritime uses. 

DSS INDIMAR was used for calculating the suitability (R) of OWE 
facilities’ location, classified from 0 to 10, where R = 0 means absolutely 
unsuitable location, and R = 10 is the most appropriate site. Suitability 
(R) is calculated for each cell, as a sum of parameter weights and sum of 
parameter contributions:  

R = Σ pWi* CVi                                                                                   

Where contribution (CV) can be positive (1), neutral (0) or negative 
(− 1), excluding (R = 0), with the condition that:  

Σ pWi = 100 

After inclusion of data for parameters relevant for OWE facilities, 
DSS INDIMAR was used for analysis of:  

1. Potential for OWE related to the oceanography parameters (Table 1);  
2. Suitability based on environmental sensibility, following MSFD GES 

(Table 1);  
3. Potential combination/exclusion of OWE facilities within MPAs 

(Table 1);  
4. Land–sea interaction, avoiding conflict and seeking compatibility 

with land activities in the coastal areas (Table 1);  
5. Identifying suitable areas, including co-use and avoiding conflict 

with existing maritime activities (Table 1). 

The ultimate result was a superposition of all previous five cluster 
suitability analyses, applying all previously used criteria to find the most 
suitable locations for OWE facilities in the Canaries. Still, one of the 
hardest issues to address within this study was to determine weights, the 
significance of each parameter included in the INDIMAR application. 
Although we analyzed the relation of each parameter with the OWE 
sector, this did not answer the question of which cluster would have 
more significance, nor help define the exact parameter weights. To 
resolve this problem, we adopted the Analytical Hierarchy Process 
(AHP), a technique used in engineering to solve complex problems, 
including spatial planning for renewable energy projects [19,28–30]. 
AHP is one of the most widely used multicriteria decision-making 
techniques, and its use is based on relatively easy procedures as well 
as on the possibility of evaluating any inconsistency [20,31]. 

3. Results 

3.1. The Canary Islands’ OWE potential based on physical oceanographic 
parameters 

Average wind power at 50 m height, which exceeds 8,5 m/s, is 
assumed as a high-potential OWE resource, in terms of economic sus-
tainability [10,19]). A number of European atlases point to wind re-
sources including values higher than 8,5 m/s for the coastal zone and 
offshore as excellent, and as an argument for the development of OWE 
facilities [32–35]. Marine Copernicus Observation values that we 
managed for this study were obtained by the scattering technique, which 
provides wind speed on the sea surface. 

Wind speed values at 50 m depth are significantly higher than on the 
surface [36–38], and can be calculated applying the wind profile power 
relationship formula, simplifying atmospheric conditions [39]. For this 
study we used the values provided by the Marine Copernicus product, 
calculating average wind speed values for the surface, which ranged 
from 5,98 m/s to 11, 46 m/s, classified as follows: 

5.98–7.00 m/s – No potential. 
7.00–8.50 m/s – neutral potential. 
8.50–11.46 m/s – High potential. 
Sea depth is another key criterion that mainly affects the cost of 

turbine installation. The foundation cost almost triples for an increase in 
depth from 10–20 m to 40–50 m. The offshore wind turbine installations 
in Europe had an average sea depth of 20 m and 22.4 m in 2013 and 
2014, respectively [40,41]. In terms of economic viability for offshore 
wind farms, a monopole foundation is suitable for depths up to 35 m, 
jacket type till 50 m and for deeper foundations an advanced jacket is 
needed, while floating technologies are currently under development 
[38]. For this study we classified depth till 150 m as having positive 
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Table 1 
Five data clusters, structured to facilitate data collection required for OWE analysis: Data on marine environment structured following Good Environmental Status 
(GES) of Marine strategy Framework Directive 2008/56/EC (MSFD); Spatial data and information on Marine Protected Areas (MPAs); Coastal Land use; Ocean-
ography data; collected information on Current Maritime Activities. Structure used within the PLASMAR project (MAC/1.1a/030) for data collection. 
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Fig. 2. OWE suitability analyses delivered by Decision Support System INDIMAR (Gran Canaria Island detail): Wind & depth potential; Suitability based on envi-
ronmental (GES) sensibility; Marine Protected Areas sensitivity analysis; Land–Sea Interaction analysis; Current maritime uses conflict/suitability analysis. Delivered 
with PLASMAR project (MAC/1.1a/030). 
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potential, as most of the offshore wind demonstration projects are at 
100–150 m (WindEurope 2019). We classified depths from 150 to 300 m 
as having neutral potential, as these require higher cost of installation 
and maintenance, and beyond 300 m as restrictive. 

After including wind speed and bathymetry parameters and the 
related ranges, we developed the OWE potential analysis for the Canary 
Islands. Although we performed an overall analysis for the entire Ca-
naries archipelago, in Fig. 2 it is possible to observe the OWE potential 
based on the physical oceanographic data set for the Gran Canaria Is-
land. We did not include waves and currents, even though the relevant 
data were available, as these two parameters are mostly related to the 
design of OWE floating structures, which are still in the pilot, testing and 
demonstration phases of development [42]. 

3.2. MSFD Good Environmental Status suitability 

Within project PLASMAR, more than 100 technical and scientific 
recent reports were analyzed, to determine the state of the art and to 
understand the major OWE environmental issues with marine environ-
ment. For this study we were following the MSFD GES framework; as a 
checklist we followed 11 quality descriptors (QD) and the related 39 
criteria elements to deliver a detailed review of scientific and technical 
reports [43]. 

OWE turbine tower masts and foundations attract marine organisms, 
acting as an artificial reef and consequently increasing the benthic 
biodiversity and conceivably drawing pelagic species. In the soft bottom 
substrates, foundations and turbine masts are providing new and 
different habitats, which is considered as habitat gain that results in 
increased species abundance close to OWF foundations [44–49]. Poly-
gons with EUNIS classification listed as special areas of conservation 
within the Habitat Directive 92/43/EEC were restricted for OWE. 
Polygons with broad classification (e.g., A5.26 - Circalittoral muddy 
sand) were assessed based on substrate; for soft substrates we included 
positive contribution due to the expected artificial reef effect [50–52], 
while for hard ones we expect higher impact, especially in the con-
struction phase [53,54], and therefore we included negative 
contribution. 

Based on the QD1 biodiversity list of sensitive species, birds are the 
unique group that show increased mortality during the operative phase 
of OWE [55–59]. The species distribution of mammals, birds, cephalo-
pods and fish is impacted mainly during the construction phase [60–62]. 
Therefore, Natura 2000 areas designated for the protection of marine 
birds and/or turtles and/or mammals were assumed as being areas with 
high profile for conservation of those targeted species, so these polygons 
were included in the analysis applying negative contributions. 

Modified habitats such as the wind turbine structures—similar to 
artificial reefs—can be colonized by Non-indigenous species (NIS) – 
QD2. OWE maritime structures can indirectly increase vectors enabled 
by anthropogenic introduction (ballast waters, fouling on ship hulls, 
marine debris, etc.) or natural introduction by means such as currents 
and loop current eddies [51,52,63,64]. To anticipate the potential of 
increasing distribution vectors related to the OWE facilities’ location, we 
used MSFD Quality Descriptor 2 assessment maps on NIS distribution 
status for the Canary Islands. We included areas with presence and 
distribution range as negative contribution in the GES analysis. 

OWE impact on commercial fish stocks (QD3) includes both negative 
and positive effects [51]. Wind turbines, both fixed and floating facil-
ities, may act as artificial reefs and/or fish aggregating devices that 
concentrate marine fish and facilitate their capture [44,65,66]. 
Furthermore, OWE facilities may create fishery exclusion zones acting as 
marine protected areas where trawling and gillnetting, for example, are 
prohibited [67], and have been shown to lead to higher abundance and 
larger specimens of certain fish, including commercially-exploited spe-
cies [68–70]. To include this parameter in GES analysis, it was necessary 
to carry out a detailed study of the OWE floating platform facilities’ 
impact on the fish stocks. Because the floating technology is in the 

development/pilot phase, these types of studies are not available. 
Additionally, commercial species stocks’ distribution data were not 
available; moreover, there is uncertainty about the policy decisions on 
whether commercial fisheries will be allowed within designated OWE 
areas. 

Extant studies show that a number of the ecosystem processes and 
properties are sensitive to changes generated by OWE installations [71], 
and can alter food webs – QD4. Food web guild increment/decrement 
could have a significant impact on the ecosystem [58,59,72–75]; even 
these relationships need to be further researched, especially with 
empirical studies and/or ecosystem modeling that can identify OWE 
impact expected in the biogeographic conditions of the Canary Islands. 

Reported impacts for shallow seas (Baltic and North Sea) related to 
the eutrophication status (QD5) and local downwelling processes that 
can generate a turbulent wake, contributing to vertical mixing and an 
increase of nutrient concentrations [75,76], are negligible due to the 
oligotrophic state and hydrodynamics of the Canary Islands. 

The surface area of the OWE foundations and related materials, such 
as submerged electric cables and other support structures, does not 
occupy a large extent of the sea floor [48,51,77,78]. Adequate selection 
of the seabed substrate (sand, gravel, etc.) for foundations can minimize 
impact and permanent change (QD6). Rocky substrates may require 
more complicated engineering solutions that can have a higher impact 
and cause potentially greater and more significant permanent changes. 
New types of foundations and anchoring solutions for floating base 
turbines will be required, so the impact on the seabed and permanent 
change needs further research. To include QD6 in the GES analysis, we 
used the EMODnet habitat product that includes substrate type infor-
mation, favoring a soft (with positive contribution) rather than hard 
(with negative contribution) substrate. For the QD6 suitability analysis, 
MSFD assessment on sea floor integrity data set is also included, 

Table 2 
Significance parameters/clusters—defined weights based on pairwise compari-
son, for three groups: researchers involved in PLASMAR project (MAC/1.1a/ 
030),; external experts; maritime sectors’ stakeholders (MarSP project 
workshop).  

Cluster Parameter Weights 

PLASMAR External 
experts 

MSP 
stakeholders 

GES Biodiversity 
(Benthic habitats) 

11.65 7.97 7.06 

Biodiversity 
(Mammals) 

5.29 3.02 3.17 

Biodiversity (Birds) 16.11 19.08 12.44 
Non-indigenous 
species 

2.33 0.92 1.08 

Population of 
commercial fish 
species 

10.83 6.97 1.84 

Energy, including 
underwater noise 
data 

9.63 4.92 3.85 

MPA Natura 2000 
Network 

7.71 12.9 26.42 

Land Use CORINE 3.17 1.8 8.44 
Distance to the coast 1.56 0.98 1.69 

Oceano- 
graphy 

Depth/bathymetry 2.74 3.04 2.99 
Wind 5.73 5.15 20.95 

Current 
Maritime 
Activities 

Aquaculture 
facilities 

1.65 1.66 0.23 

Fishery areas/efforts 7.91 3.57 0.59 
Maritime traffic 
lanes/intensity maps 

5.91 7.71 0.8 

Aggregate extraction 
(Dredging/Sand 
extraction) 

1.52 0.71 2.39 

Cables 3.65 7.57 2.38 
Military area 1.31 11.19 3.42 
Seaweed cultivation 1.29 0.84 0.27  

A. Abramic et al.                                                                                                                                                                                                                                



Renewable and Sustainable Energy Reviews 145 (2021) 111119

8

Table 3 
OWE suitability analysis applying project PLASMAR profile (km2).  

ISLAND Suitability level 

0 1 2 3 4 5 6 7 8 9 10 

LANZAROTE 42560.09 13.32 32.86 44.20 42.96 45.42 92.26 38.90 0.08 0.00 0.00 
FUERTEVENTURA 14.26 50.76 441.66 395.32 222.55 213.23 61.73 12.17 0.00 0.00 
GRAN CANARIA 0.65 30.48 39.12 129.85 202.56 281.86 70.23 0.14 0.00 0.00 
TENERIFE 6.13 13.81 22.69 72.84 92.40 56.94 7.86 0.00 0.00 0.00 
LA GOMERA 1.06 0.65 1.67 2.57 52.12 21.10 0.00 0.00 0.00 0.00 
LA PALMA 0.00 0.00 26.43 23.56 28.09 20.10 8.14 4.37 0.00 0.00 
EL HIERRO 0.00 0.00 3.22 7.44 66.22 20.53 5.91 2.93 0.00 0.00 

TOTALS 42560.09 35.42 128.55 578.98 674.55 709.36 706.02 192.78 19.68 0.00 0.00  

Table 4 
OWE suitability analysis applying external experts profile (km2).  

ISLAND Suitability level 

0 1 2 3 4 5 6 7 8 9 10 

LANZAROTE 42554.48 3.65 15.01 58.96 43.38 23.20 35.56 108.64 24.22 0.00 0.00 
FUERTEVENTURA 10.02 31.57 181.96 697.85 245.01 99.43 110.65 35.88 0.00 0.00 
GRAN CANARIA 0.49 8.05 48.72 60.14 31.65 186.38 410.14 9.89 0.00 0.00 
TENERIFE 2.97 6.45 24.74 12.13 21.06 127.10 73.48 6.61 0.00 0.00 
LA GOMERA 1.06 0.42 0.23 2.42 0.08 12.37 61.75 0.00 0.00 0.00 
LA PALMA 0.00 0.00 15.81 29.62 4.67 24.51 27.96 8.30 0.59 0.00 
EL HIERRO 0.00 0.00 0.91 8.03 2.94 62.54 24.53 7.28 0.00 0.00 

TOTALS 42554.48 18.18 61.50 331.33 853.57 328.60 547.88 817.15 92.17 0.59 0.00  

Table 5 
OWE suitability analysis applying MSP stakeholders profile (km2).  

ISLAND Suitability level 

0 1 2 3 4 5 6 7 8 9 10 

LANZAROTE 42592.80 56.97 47.25 18.18 0.00 0.00 19.79 94.71 62.63 0.00 0.00 
FUERTEVENTURA 0.00 158.82 726.33 265.78 0.00 0.00 13.95 135.17 97.49 1.51 0.00 
GRAN CANARIA 0.00 65.43 32.85 7.89 32.22 0.05 25.27 109.53 62.90 311.27 105.15 
TENERIFE 0.00 25.61 11.46 1.40 0.00 0.92 59.92 129.49 36.78 1.41 0.00 
LA GOMERA 0.00 0.52 0.00 1.67 0.76 0.00 1.82 0.66 0.00 71.59 0.00 
LA PALMA 0.00 3.59 25.06 12.34 6.05 0.51 0.00 10.23 18.76 21.48 13.05 
EL HIERRO 0.00 0.00 0.00 3.18 7.60 0.81 0.00 45.53 1.65 33.82 14.00 

TOTALS 42592.80 310.94 842.94 310.43 46.62 2.29 120.74 525.32 280.20 441.08 132.19  

Fig. 3. OWE suitability analysis for Canary Islands, delivered by DSS INDIMAR, applying project experts profile, PLASMAR project (MAC/1.1a/030).  
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avoiding any cumulative impact on the seabed. 
Previous studies from the Baltic and North seas suggest that OWE 

parks/facilities can change the hydrographical conditions—QD7 
including currents, waves, turbidity and salinity—which can affect 
marine ecosystems in the shallow and coastal areas [50,75,79–82]. 
Their Impact in the Canary Islands is not considered significant, mainly 
due to the depth gradients of the analyzed offshore and coastal areas. 

In the construction phase and during the maintenance operations, 
the risk of acute pollution (oil spills) or introduction of contaminants 
into the environment due to an accident or collision is increased. Within 
the review, no technical reports or scientific publications on further 
relationship of OWE facilities to levels of contaminants in the environ-
ment (QD8) or/and in fish and seafood (QD9) were either found or 
considered. 

No technical reports were found in the review process, concerning 
any link between marine litter/micro-litter (QD10) and OWF in either 
the construction or the operational phases. Still, decommissioning pro-
cesses after the life cycle of the OWF can be a possible source of marine 
litter. As the first ever decommissioning of an offshore wind energy 
project took place only in 2016, until now there are not enough reports 
that can confirm this as a real threat. A study on sustainable decom-
missioning, delivered by Topham and McMillan [83], examines diffi-
culties in foundations’ decommissioning. Turbine foundations during 
the operative phase develop new habitats that attract pelagic and 
benthic species. A decommissioning process that involves abandoning 

the foundation is less stressful than extracting it from the seabed. Areas 
assessed with litter impact (MSFD) were included in the analysis with 
negative contribution. 

Impulsive noise coming from OWE has three phases: the short-term 
potential impact during pre-construction; the short-term intensive 
impact during construction; and the physiological and/or masking ef-
fects that may occur over a long period while the wind farm is in 
operation [53]. During the pre-construction phase, there is a risk to 
marine mammals, sea turtles and fish, particularly due to collision and 
disturbance from vessel movements associated with surveying and 
installation. During the construction phase, noise and vibration from 
pile driving and other works may affect the animals over a large area 
[60–62,84]. The noise impact on marine mammals is more severe during 
the construction of wind farms than during their operation [85]. During 
operation, underwater sound levels are unlikely to reach dangerous 
levels or mask acoustic communication of marine mammals [86,87], 
and this is generally considered an insignificant impact on the marine 
environment [50,88,89]. We included areas that are assessed as having 
elevated noise potential (within MSFD implementation QD11), with 
negative contribution. 

In Fig. 2 can be observed (Gran Canaria island) integrated suitability 
analysis for all Quality Descriptors. We assessed suitability considering 
environmental sensitivity for OWE facilities location, based on the 
MSFD GES and applied to the whole Canary Islands archipelago. 

Fig. 4. OWE suitability analysis for Canary Islands delivered by DSS INDIMAR applying external OWE experts profile, PLASMAR project (MAC/1.1a/030).  

Fig. 5. OWE suitability analysis for Canary Islands delivered by DSS INDIMAR applying MSP stakeholders profile, PLASMAR project (MAC/1.1a/030).  

A. Abramic et al.                                                                                                                                                                                                                                



Renewable and Sustainable Energy Reviews 145 (2021) 111119

10

3.3. MPAs’ sensitivity 

OWE facilities under certain conditions may even be more efficient 
means of conservation than ordinary marine protected areas. Offshore 
wind farms can create a refuge for benthos, fish and marine mammals. 
On the other hand, offshore wind farms can negatively affect several 
species of seabirds, essentially those occupying preferred feeding or 
wintering grounds. We assumed co-locating OWE farms with MPAs 
scenarios, as they contribute to the energy needs of society and to eco-
nomic development, and provide biodiversity protection [90]. 

For analysis of suitability within MPAs (Fig. 2, Gran Canaria Island 
detail), we used two data bases, CDDA and Natura 2000, compiling 
protected areas designated under the Birds 79/409/EEC and/or Habitat 
Directive 92/43/EEC. CDDA has a Protected Area Categories System 
defined by the International Union for Conservation of Nature (IUCN), 
divided into seven categories according to their management objectives. 
According to IUCN, renewable energy generation is suitable in the cat-
egories IV, V and VI. 

Applying Natura 2000 data, we excluded all the areas that are 
designated for any marine bird species’ conservation. For all the other 
Natura 2000 sites, we included the possibility of building OWE parks, as 
they can provide a physical barrier that disables a number of fishing 
practices and other maritime uses [90]. 

3.4. Coastal Land use suitability, applying land–sea interactions 

For the purpose of mapping coastal area activities, we mainly used 
the European Land Cover CORINE data set based on the photo- 
interpretation of satellite images. Land–sea interactions, suitability 
and possible conflicts with coastal land activities are analyzed and can 
be observed using maps (Fig. 2, Gran Canaria Island detail). 

Using the CORINE Land Cover data set, we analyzed potential OWE 
distance to the ports and harbors, based on the studies delivered for the 
North Sea [91], adapted to the environment of the Canary Islands, 
excluding marine space from port areas till 1000 m, and including 
negative contribution till 3000 m, to avoid issues with maritime traffic. 
Distances from 3 km to 10 km apart were classified positive, as being 
distances appropriate for the maintenance operations for smaller OWE 
facilities within the islands. 

For coastal urban areas (including areas with heightened tourism 
development) and those with beach, sand and dunes, based on the 
landscape impact we excluded coastal waters within 2000 m; we clas-
sified the first 5000 m as providing a negative contribution and those 10 
000 as neutral [92]. The area beyond 10 000 m was classified as positive 
due to low conflict with coastal activities based on the visual impact. 

Coastal waters till 5000 m in front of industrial areas were included 
in the analysis with positive contribution. 

The cost of electricity transmission cable installation in coastal areas 
increases tremendously with distance [41,92]. We Included distance to 
the coast as a parameter related to the sea cables’ extension, which was 
classified as positive within the first 1000 m and beyond that as neutral. 

3.5. Conflict assessment with current maritime uses 

Many authors of MSP studies include conflict assessment analysis, 
using the matrixes which superpose the maritime activities, identifying 
potential conflicts, possible co-use or even multi-use [93,94]. This ex-
ercise was also delivered for regional archipelagic conditions in the 
MarSP project, gathering local stakeholders in a set of 4 workshops [95]. 

Applying conflict assessment analysis, for OWE we excluded areas 
with operative aquaculture sites, cable areas, military areas and wreck 
areas. Fishing areas data set was included in the analysis, where we 
considered possible multi-use with conflict potential. Areas with high 
maritime traffic density, proposed areas for aquaculture sites, diving 
sites, whale watching activities and nautical sports, including surfing, 
windsurfing and kitesurfing, were included in the analysis as areas with 

conflict potential (Fig. 2, Gran Canaria Island detail). 

3.6. Cluster & parameter significance: project, OWE experts’ and 
stakeholders’ weights analyses 

To superpose all the delivered cluster suitability analyses (Ocean-
ography, GES, MPA, Coastal Land use, Maritime uses) and integrate the 
results, it was necessary to determine the significance of each cluster 
parameter. We employed the statistical Analytical Hierarchy Process 
(AHP), applying pairwise comparisons and assigning weights to each 
parameter. 

We obtained parameter weights by applying AHP with researchers 
who are involved in the PLASMAR project, working on OWE zoning. 
Further, we applied the same method with OWE external experts who 
are not directly connected with the PLASMAR project. Finally, the 
method for assigning the weights was again applied with diverse mari-
time sectors’ stakeholders during the MSP process workshop delivered 
within the MarSP project. 

Applying the defined weights to INDIMAR DSS (Table 2), we ob-
tained three different profiles for offshore suitability at the Canary 
Islands. Each profile identifies areas with corresponding suitability 
levels, applying different criteria defined by PLASMAR researchers, 
external OWE experts and maritime stakeholders (Table 2, Figs. 3–5, 
Tables 3–5). 

4. Discussion 

For a preliminary offshore wind energy assessment, long-term wind 
data are necessary. To make it possible, for wind speed satellite obser-
vations in this study we used a product provided by the Copernicus 
Marine Service, as a daily time series for a period of 2 years. However, 
products derived from satellite observations cover vast areas (the data 
product also includes the Madeira and Azores archipelagos), with less 
precision at lower scales. The first assessment was based on the sea 
surface wind speed observations, and it provides the locations of areas 
within the Canary Islands that have high potential for OWE development 
(Fig. 2, Gran Canaria Island detail). In previous studies that compared 
satellite observations and meteorological models, in situ measurements 
were found to provide the most precise results (as expected), though 
offset by poor spatial coverage and a short measurement period [96]. 
Soukissian & Papadopoulos’s (2015) study concluded that satellite 
observation usually slightly overestimates, while the modeled data un-
derestimates wind speed with respect to in situ measurements, although 
both can cover a wide area and longer time periods. In situ measurement 
should be applied to confirm and precisely adjust identified areas ob-
tained by satellite observation, but this is not necessary within the MSP 
and sector zoning process. In situ surveys and buoy and mast observa-
tions, to obtain precise results and fine tune OWE facilities’ locations to 
get the most efficient results, should be delivered by investors interested 
in concessions for use of marine areas for commercial energy 
production. 

The second parameter included in the analysis was bathymetry, 
identifying areas that extend up to 150 m depth. As current floating 
platform pilot projects go till 100 m depth, we expect that the 
economical threshold will soon reach 150 m. We included depths till 
300 m as likely within the planning for the next 10 years, accounting for 
technology development and translating bathymetry thresholds to 
greater depths. Areas with depths beyond 300 m were excluded from the 
analysis, as building, managing and maintaining OWE facilities at this 
moment can have elevated costs, with the attendant risk of financial 
failure. Applying two parameters, areas with high potential were 
reduced, following the depth gradient and clearly identifying areas be-
tween islands where wind speed elevates due to the Venturi effect [16]. 

Applying two limiting factors, wind speed and depth, we identified 
extensive areas with high potential, around the Islands. This is an op-
portunity for introducing the OWE sector, choosing suitable areas that 
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will minimize environmental issues, avoiding incompatibility with 
MPAs and conflict with current maritime uses and coastal land activities. 
The objective of this study was to introduce a new sector, applying as 
few tradeoffs as possible with the marine environment and maritime and 
coastal activities. 

To minimize environmental tradeoffs, we analyzed suitability of 
OWE facilities in relation to the marine environment (Fig. 5). As we 
organized data collection within five data clusters, it was necessary to 
understand what type of marine environmental data was necessary to be 
included in the analysis. It was clear that we needed to structure a 
marine environmental data cluster, to understand what exactly includes 
biodiversity and how to shape it; and what are the relevant OWE envi-
ronmental impacts beyond biodiversity. 

EU environmental legislation includes the framework on MSFD GES, 
following and extending the framework of Good Ecological Status 
applied for coastal waters in the Water Framework Directive 2000/60/ 
EC. The GES framework integrates wider EU environmental legislation 
(such as the Habitat Directive, Birds Directive, Water Framework 
Directive, etc.), including only components that apply to the sea [97]. 
The Commission Decision (EU) 2017/848 document describes the GES 
in detail, as restructured and amended in 2017, replacing the previous 
versions from 2010 on GES criteria and methodological standards. The 
framework established was fine tuned to cover biodiversity, function-
ality of marine ecosystems, eutrophication balance, non-indigenous 
species, marine debris and noise pressures, including 
hydro-morphological, physical & chemical properties. GES re-
quirements were defined as 11 Quality Descriptors and related 39 
criteria elements which we used as a check-list for analyzing environ-
mental issues for the OWE sector. To understand the relevant parameters 
within the marine environmental data cluster, an exhaustive state of the 
art review focusing on environmental issues was delivered, following the 
GES checklist [43]. 

Numerous studies have pointed out that OWE facilities act as artifi-
cial reefs, and this has (positive and negative) impacts on the benthic 
and pelagic habitat distribution (QD1), concentrating commercial fish 
species (QD3) around such facilities as alternate ecosystems and food 
chains (QD4). For the analysis, we restricted sensitive and endemic 
habitats and identified areas with suitable soft bottom desert habitats. 
Still, it is difficult to assess when OWE facilities will provide a positive 
effect, when alternating broader ecosystem and concentrating species 
around OWE facilities’ structures. Within the state of the art, we have 
more than 20 years of experience on turbine mast technologies (in the 
North Sea and Baltic), and to understand positive/negative impacts and 
related spheres of influence we need to deliver empirical studies with 
new floating technologies. This uncertainty should not stop develop-
ment of the OWE sector, but in future concessions the Environmental 
Impact Assessment process should include study and assessment of the 
type of habitats and distribution and commercial species’ biomass dis-
tribution, including food chain models. In this way we could compare 

the environmental status preceding an OWE facility with the trends 
obtained through monitoring surveys during the construction and 
operational phases [98–100]. 

GES suitability analysis identified areas away from the coastline. 
Analysis included marine birds’ distribution parameter, due to potential 
species mortality, which can restrict offshore areas. It was very difficult 
to find marine birds distribution maps, assessed and provided by ex-
perts, applying taxa distributional models [101]. To include marine 
birds in the analysis, as strongly recommended in the reviewed litera-
ture, we used polygons of the Canary Islands’ extensive Natura 2000 
network sites (that cover more than 35% of the territorial waters), as 
areas with potentially high distribution and frequency. In this manner 
we included negative contribution regarding marine species distribution 
for more than 12 000 km2. Nevertheless, applying marine sentinels’ 
distribution maps developed by the specialists applying distribution 
models would provide more reliable analysis, for minimizing marine 
birds’ mortality related to OWE. 

Studying the GES suitability (Fig. 5) helped us identify areas where 
we expect the installation of OWE facilities to cause fewer issues with 
the marine environment. Analysis included sensitivity mapping, iden-
tifying areas where OWE environmental tradeoff can seriously decrease 
the perspective for maintaining GES, which is a fundamental MSFD 
requirement. It supports an ecosystem approach, including detailed 
study of the marine environment for the whole archipelago, which can 
be a solid foundation for the Strategic Environmental Assessment (SEA) 
required by SEA Directive 2001/42/EC [2,41]. 

In the analysis of marine conservation suitability, we considered the 
possibility of combining MPAs with OWE facilities [102], excluding 
areas that necessitate marine birds’ protection. OWE floating turbines 
can physically restrict access for shipping, some fishery and any other 
maritime activities that can threaten MPA targets. Integrating environ-
mental conservation (species and habitats) with energy production 
should be further investigated, especially for the new floating technol-
ogies, assuming a lower impact on marine environment compared with 
other energy sources and current OWE technologies. 

It was possible to analyze land–sea interactions due to availability of 
the CORINE data set, which provided land cover information for the 
entire coastal areas of the Canaries, as a harmonized data product. The 
land cover classes were used as surrogates for land use information for 
coastal areas, and suitability analysis was carried out, mainly avoiding 
the areas with conflict potential, such as urban and touristic areas. Areas 
in front of harbors were restricted, but proximity was evaluated posi-
tively regarding maintenance operations. The map on coastal uses 
suitability provided potential areas without and with tradeoffs, mainly 
with the tourism sector, which is highly relevant for the Canary Islands’ 
economy. 

For analysis of suitability with current maritime uses, it was possible 
to apply co-use and multi-use opportunities, but these were not applied 
as they are still in the experimental phase and depend on the security, 

Fig. 6. - AHP results, cluster weights profiles by project experts, external experts and MSP stakeholders. PLASMAR project (MAC/1.1a/030).  
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safety and other regulations that have not yet been adopted at the pre-
sent time [103]. We applied published conflict matrices, delivered at 
local stakeholder workshops on the MarSP project [95]. Conflict 
matrices are frequently very similar, most can be delivered using com-
mon sense, although they can still vary due to local regulations and 
applied rules. Suitability analysis provides areas with the relevant 
tradeoffs or even potential conflict, analyzing planned aquaculture, 
current maritime traffic routes, nautical sports, maritime tourism as well 
as whale watching and diving sites. The analysis results include re-
strictions in the form of military areas, 37 historical wreck sites, areas in 
the proximity of submarine cables, as also operational aquaculture 
production sites. 

To obtain a final suitability map for OWE facilities at the Canary 
Islands, all five clusters and related parameters needed to be superposed. 
Still, for the superposition analysis, it was necessary to define the 
weights for the inputs and the significance for each parameter and 
related data cluster. To finalize the analysis, the defined parameter 
weights had to be introduced in the DSS INDIMAR. Defining the pa-
rameters’ weights/significance in the suitability analysis was a compli-
cated task within this study. AHP facilitated the definition of the weights 
by applying a pairwise analysis for all the parameters and clusters. 

During the first tests of the AHP method, we understood that the 
results, weights of parameters and clusters would depend on many 
factors relating to the person or group doing the inquiry, including their 
professional occupation, involvement in the MSP process, whether they 
are in favor of the OWE development or are part of a community 
potentially in conflict with OWE, their sensitivity to the marine envi-
ronment, understanding of OWE technical requirements, etc. This raises 
a very important question: Who should define weights to be applied in 
AHP, for introduction of OWE in the Canary Islands? 

For testing the methodology, we applied AHP survey along with the 
PLASMAR project personnel working on OWE zoning, and further with 
OWE external experts and finally with stakeholders invited to the MarSP 
project, MSP involvement workshop (Table 2). 

Each weights profile (Fig. 6) shows cluster significance, but also what 
are the acceptable tradeoffs for each investigating group. The first group 
(PLASMAR project) includes maximum consideration for the marine 
environment, but the group is also open to tradeoffs with MPAs, as they 
are amenable to exploring possibilities of combining OWE and extensive 
marine conservation in the Canary Islands. External OWE experts have a 
similar consideration of potential conflict with maritime sectors, as to 
the impact on the marine environment. Stakeholders, the third group, do 
not believe in OWE tradeoffs with MPAs, but include lowest weights 
related to the marine environment. They prioritize natural (wind & 
depth) capacities, and consider as more relevant potential conflict with 
coastal land activities (tourism) rather than with traditional maritime 
sectors. 

It can be deduced from the three developed profiles (Fig. 6), that 
each group has their priorities on different EBM components, but 
considering each of them, following data clusters and a holistic method. 
If we use PLASMAR project profile, the OWE zoning prioritizes mini-
mizing tradeoffs with the marine environmental component; the 
external experts group steers for zoning, with priority for the resolution 
of conflicts with the maritime sector and mitigating impact on the ma-
rine environment; and finally, the stakeholders profile focuses on marine 
conservation, energy potential and mitigating conflict with the most 
profitable coastal sector in the Canary Islands, tourism. 

The MSP process needs to find a balance of all three EBM compo-
nents; environmental, social and economic, that should be reflected in 
the MSP strategy, including options with tradeoffs for sectoral growth, 
conflict prevention and environmental protection. 

Observing the maps (Figs. 3–5) obtained for each of the profiles for 
the entire Canary Islands archipelago, it is clear that the PLASMAR 
project environmental approach was the most restrictive (Fig. 3). The 
maximum suitability level 8 includes an area less than 20 km2 divided 
between the islands of Fuerteventura, El Hierro and La Palma. Still, there 

is an almost 200 km2 level 7 suitable area divided among all the islands 
except La Gomera, which is covered by Natura 2000 protection targeting 
marine birds and thus excluding this area for OWE facilities. 

The profile by the OWE external experts (Fig. 4) is less restrictive, 
and INDIMAR identified even a small area (0,59 km2) with suitability 
level 9 at the La Palma Island. It identified 90 km2 with high suitability 
(level 8) covering all the islands except La Gomera. For lower suitability 
levels extensive areas are identified covering all the islands, including La 
Gomera, being offshore areas out of the Natura 2000 network. 

Finally, the MSP stakeholders profile (Fig. 5), which includes a less 
restrictive approach, identified 132 km2 with maximum suitability level, 
including more than 100 km2 at Gran Canaria for OWE facilities. Lower 
levels of suitability cover the wide offshore areas, 441 km2 for level 9 
and 280 km2 for level 8. 

DSS INDIMAR analyzes the long Canary Islands coastline (15 020 
Km) and the corresponding offshore sea (52.426 km2), identifying po-
tential areas for the OWE facilities that should be included or at least 
considered in the first Canary Islands Maritime Spatial Plan, which is 
expected to be finalized during mid-2021. Still, exact locations for 
concessions should be selected within the results, but applying in situ 
detailed wind measurement and updating environmental information 
through the Environmental Impact Assessment process, following the 
data cluster structure. 

The development and introduction of OWE operational facilities in 
the Canary Islands can be based on any of the three obtained zoning 
profiles (project PLASMAR; external experts; MSP stakeholders), or even 
a hybrid version, including weights related to the governance strategy 
that bear more relevance for marine environment and/or development 
of the sector and/or preventing conflict. The same governance strategy 
will need to define relations with the traditional fishery sector, including 
whether multiuse will be permitted in areas operating OWE facilities, or 
towards combining OWE facilities as a barrier for environmental 
conservation. 

To define OWE governance strategy and relations with traditional 
sectors such as fisheries and/or marine conservation, we still need to 
understand the impact on the commercial species distribution and the 
endangered species/habitat considered as well as the changes in the 
marine ecosystems produced by the installation of wind turbines or the 
size of the OWE facilities. For a proper answer to this question, we 
recommend modeling techniques in combination with monitoring 
practices, including pre- and post-operational site monitoring. The next 
necessary step is to understand which fisheries practices are compatible 
with the new OWE floating technologies and what are the possibilities of 
combining these two sectors. Finally, governance decisions should be 
defined in the stakeholders’ involvement process, clearly communi-
cating tradeoffs to all communities and exploring the best and holistic 
solutions in effective discussions based on updated data and scientific 
knowledge. 

5. Conclusion 

The developed DSS INDIMAR tool coupled with the AHP method-
ology is useful for introducing OWE facilities into marine space, with the 
objective of applying as few tradeoffs as possible. Testing it in the case of 
the Canary Islands, it was found to be advantageous for the analysis of 
other potential archipelagos, extended coastal systems and related 
offshore areas. 

To analyze OWE suitability, it is necessary to collect essential spatial 
information following the five clusters framework, including data on 
oceanographic potential; environmental sensibility; restrictions related 
to marine conservation; coastal areas Land use; and information on 
operational maritime sectors. Data products provided by European data 
initiatives such as EMODnet, Copernicus Marine and European Envi-
ronment Agency SDI are very useful as they cover extended marine areas 
(entire EEZ); nevertheless, these should be combined with regional and 
local data of coastal areas. These data sets are delivered mainly by in situ 
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monitoring, providing higher precision but significantly lower coverage. 
For marine environment cluster collection, we found it very useful to 

follow the Marine Strategy Framework Directive GES, as a check list 
structured by 11 quality descriptors and related 39 criteria elements. 
The GES checklist is also suitable for analyzing environmental issues 
related to the OWE sector and defining environmental sensibility and 
suitability. 

For analyzing OWE sector conflict potential and Land-Sea in-
teractions, the European Land cover product CORINE is adequate. If the 
CORINE data set is updated with local Land use data collections, 
Land–Sea interaction analysis will provide more detailed suitability re-
sults. For analyzing OWE conflict potential with operative maritime 
sectors, conflict matrices can be applied, which frequently are very 
similar, and can vary due to local regulations and applied rules. 

To obtain a final suitability map for OWE facilities, all five clusters’ 
analysis results needed to be superposed. AHP is suitable for defining 
weights, applying pairwise analysis for all the parameters and clusters. 
During the initial experiments with the AHP method, we understood 
that the results, weights of parameters and clusters will depend on many 
factors relating to the person or group doing the inquiry, including their 
professional occupation, involvement in the MSP process, whether they 
are in favor of the OWE development or are part of a community 
potentially in conflict, their sensitivity to the marine environment, un-
derstanding of OWE technical requirements, etc. Testing the method, 
applying pairwise analysis, we could deduce that each group has their 
priorities within the five clusters, but considering all EBM components. 
The profiles obtained indicate what are the acceptable tradeoffs as to the 
policy on environment, marine conservation, economic potential or 
conflict mitigation for each investigating group. 

The MSP process needs to find a balance of all five clusters reflecting 
on EBM components that should be mirrored in the MSP strategy, 
including options with tradeoffs regarding sectoral growth, conflict 
prevention and environmental protection & conservation. Still, the exact 
locations for concessions should be selected within the highest scoring 
suitability areas, applying in situ detailed wind measurements and 
updating key environmental information required in the Environmental 
Impact Assessment process. 
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