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Abstract: There are some generalizations of the classical exponential distribution in the statistical
literature that have proven to be helpful in numerous scenarios. Some of these distributions are the
families of distributions that were proposed by Marshall and Olkin and Gupta. The disadvantage of
these models is the impossibility of fitting data of a bimodal nature of incorporating covariates in the
model in a simple way. Some empirical datasets with positive support, such as losses in insurance
portfolios, show an excess of zero values and bimodality. For these cases, classical distributions, such
as exponential, gamma, Weibull, or inverse Gaussian, to name a few, are unable to explain data of this
nature. This paper attempts to fill this gap in the literature by introducing a family of distributions
that can be unimodal or bimodal and nests the exponential distribution. Some of its more relevant
properties, including moments, kurtosis, Fisher’s asymmetric coefficient, and several estimation
methods, are illustrated. Different results that are related to finance and insurance, such as hazard
rate function, limited expected value, and the integrated tail distribution, among other measures,
are derived. Because of the simplicity of the mean of this distribution, a regression model is also
derived. Finally, examples that are based on actuarial data are used to compare this new family with
the exponential distribution.

Keywords: bimodal; covariates; exponential distribution; fit; life insurance

MSC: 62-07; 62P05; 62E99

1. Introduction

It is well-known that many empirical datasets that are traditionally used in different
scenarios, such as financial econometrics, actuarial, income modelling, and industrial
engineering, include positive support and bimodality. For example, in the stochastic
frontier model, it can be assumed that some firms are fully efficient. In contrast, others
are inefficient, giving to an error term that can be bimodal (see, for example, the recent
work of [1]). In this case, the problem is to assess which regime (efficient or inefficient) each
firm belongs to. The result of the distribution of the disturbance term can be, in this case,
bimodal. Furthermore, in some cases, the classical continuous distributions can neither
account for zero values in its support nor reach two maxima. In this regard, many empirical
continuous data with positive support begins at zero, including a high frequency of this
initial value. This portion of observations is neither negligible, nor should they be ignored.
Because most of the aforementioned classical distributions are not allowed to incorporate
the zeroes, most of the researchers truncate the data by omitting those values or modelling
with mixed random variables that include a mixture of a classical distribution and a point
mass 0 (see [2]). Although numerous models have been developed in discrete scenarios,
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e.g., zero-inflated and hurdles models, which can perfectly describe the excess of zeros,
this is not the case in the continuous case.

Being motivated by this idea, this work introduces a family of distributions with sup-
port in [0,+∞) that satisfactorily adapts to the unimodal or bimodal nature of the empirical
data. Our objective, following the methodology shown in [3], consists of incorporating
an additional parameter −∞ < θ < ∞, in a parent distribution, e.g., exponential, gamma,
to build a more flexible probability model. This parameter controls the unimodality or
bimodality of the proposed family. The particular case θ = 0 is reduced to the starting
distribution. In that work, the author incorporates a methodology that is conducive to
generating asymmetry and sometimes bimodality starting from the normal distribution.
The idea here is to use this methodology for the general case of starting from any dis-
tribution. In this paper, special attention is paid to the parent distribution case is the
exponential one. After providing the expression of the probability density function (pdf) of
the proposed distribution, we study some of its more relevant properties, such as moments,
kurtosis, Fisher’s asymmetric coefficient, and some estimation methods. A regression
model can also be derived by reparameterizing the mean of this new distribution. Several
examples that are based on actuarial data are discussed and the performance of this model
is compared with the exponential distribution. Note that other generalizations of the
exponential distribution have been considered by [4,5] and also by [6]. Nevertheless, these
generalizations of the exponential model are not able to incorporate covariates. Although
the methodology that is developed in this work is fully parametric, there has been an
increasing number of publications to discuss similar problems within the field of machine
learning and statistical framework, see, for example [7–9], among others.

On the other hand, a weighted distribution is a powerful tool to enhance a parent
discrete or continuous distribution. Recall that, for a random variable X with support in X
with probability density function fX(x; α) that depends on a parameter (or vector of param-
eters) α, it can be constructed a new distribution via a weighted function, κ(x; α, q) > 0,
with probability density function (see for instance [10–12])

gX(x) =
κ(x; α, q)

E fX(x;α)[κ(x; α, q)]
fX(x; α), (1)

where −∞ < q < ∞ is a new parameter and where it is assumed that
E fX(x;α)[κ(x; α, q)] =

∫
X κ(x; α, q) fX(x; α) dx < ∞. Now, by combining this methodology

with the idea that is given in [3], a result that provides a generalization of a classical contin-
uous distribution is proposed. The resulting model can be either unimodal or bimodal, as
shown in the following Proposition.

Proposition 1. Let gY(y; µ, σ) a continuous distribution with finite mean µ and variance σ2.
Subsequently, it is verified that

fY(y) = ω(y; µ, σ, θ)gY(y; µ, σ) (2)

with −∞ < θ < ∞. The latter parameter controls the unimodality or the bimodality of the
distribution and

ω(y; µ, σ, θ) =
1

2 + θ2

[
1 +

(
1− θ(y− µ)

σ

)2
]

,

is a genuine pdf.

Proof. The result is obtained by considering that fY(y) ≥ 0 and integrating over the
support of the random variable Y to have

∫
Y fY(y) dy = 1.
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The parameter θ controls the unimodality or bimodality of the distribution. Addition-
ally, by taking θ = 0, the parent pdf gY(y; µ, σ) is obtained as a special case. Subsequently,
the methodology proposed in Proposition 1 is a method to generalize a parent pdf.

The probability density function that is given in (2) can be viewed as a weighted
distribution. There exists a vast literature dealing with the construction of such distributions
in the discrete case since the pioneering work of [10]. However, the literature regarding the
continuous scenario is scarce. The idea behind this construction is simple and it aims to
obtain more flexible distributions that adapt to empirical data distributions. If the weight is
the mean of the initial distribution, then the weighted function’s interpretation in terms of
the length biased (size biased) sampling is possible. However, much more effort is required
to obtain an interpretation of the function ω(·) beyond incorporating a parameter that
controls the unimodality or bimodality of the distribution obtained.

The cumulative distribution function (cdf) of this family is obtained by integrating (2)
by parts

FY(y) = ω(y; µ, σ, θ)GY(y; µ, σ)

+
2θ

σ(2 + θ2)

∫ y

0

(
1− θ(t− µ)

σ

)
GY(t; µ, σ) dt. (3)

It is noted that the integral in the second term of the right-hand side of (3) is obtained
in a closed-form under the classical distributions, such as the exponential, gamma, and
Weibull. In this paper, we discuss the particular case in which the parent distribution is the
exponential distribution. A comprehensive examination of its mathematical properties is
carried out with relevant emphasis on results that are related to insurance. Additionally,
parameter estimation is completed by the methods of moments and maximum likelihood.
Moreover, we analyze the efficiency of the estimates via a simulation study. Finally,
the model’s practical performance is examined by using two real claims size sets of data.
The distribution that is proposed in this paper can be used as a basis for excess-of- loss
quotations. Furthermore, it provides a good description of the random behaviour of
significant losses, similarly to the Pareto distribution. Unlike other generalizations of
the exponential distribution, the one introduced in this work allows for us to derive a
regression model due to its mean simple expression.

The rest of the paper is organised, as follows. Section 2 provides some statistical
properties of this model. Section 3 shows a catalogue of actuarial results. Next, Section 4
describes parameter estimation and a simulation study. The regression model is derived
in Section 5. Numerical applications are given in Section 6 and the last Section concludes
the paper.

2. Bimodal Extension of the Exponential Distribution

Let us first consider the classical exponential distribution with the pdf given by

fX(x; α) = α exp(−αx), 0 ≤ x < ∞, (4)

with a rate parameter α > 0 and a unique modal value located at x0 = α. The survival
function is F̄X(x) = Pr(X > x) = exp(−αx). Henceforward, a random variable X that
follows (4) will be denoted by X ∼ Exp(α).

Now, by using (2) and taking into account that µ = 1/α and σ = 1/α, we have that, for

ω(y; α, θ) = ζ(θ)

[
1 +

(
1− αθ

(
y− 1

α

))2
]

,

where ζ(θ) = (2 + θ2)−1, the expression

fY(y) = ω(y; α, θ) fY(y; α), (5)
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is a genuine pdf for y ≥ 0, α > 0 and −∞ < θ < ∞. The survival function is obtained
from (3) and it is given by

F̄Y(y) = ω1(y; α, θ) exp(−αy), (6)

with

ω1(y; α, θ) = ζ(θ)[2 + θ(θ + αy(αθy− 2))].

The exponential distribution is obtained when θ = 0. From now on, a random variable
that Y follows the pdf (5) will be denoted as Y ∼ BE(α; θ). Figure 1, below, shows the
graphs of the pdf of this distribution for several values of the parameters α and θ.
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Figure 1. The graphs of the pdf of the bimodal exponential distribution for different values of the parameters α and θ.

It can be easily verified that, if |θ| < 1, then the shape of the distribution resembles
the exponential one with a mode at y = 0. On the other hand, for other values of θ, the pdf
reaches a local maximum (local mode) at

y0 =
1 + 2θ +

√
θ2 − 1

αθ
,

and a minimum (antimode) at

ỹ0 =
1− 2θ −

√
θ2 − 1

αθ
.

Furthermore, since fY(0) = αζ(θ)
[
1 + (1 + θ)2], then the value of the pdf at zero is

larger than the one of the classical exponential distribution at the same value for θ > 0 and
lower in the rest of its domain.

Reliability, Hazard Rate Function and Moments

The reliability function and the hazard (failure) rate function are two important reliabil-
ity measures. The reliability function of a random variable Y is defined as RY(t) = 1− FY(t)
and it is given by (6), while the hazard rate function, defined as hY(t) = fY(t)/(1− FY(t)),
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is provided by

h(y) =
α ω(y; α, θ)

ω1(y; α, θ)
.

Figure 2 displays the hazard rate function of the BE law for different values of the
parameters. As compared to the exponential distribution, which has a constant hazard rate,
it is discernible that the hazard function of the distribution that is proposed here exhibits
a wide variety of shapes. Therefore, the new family of distributions is flexible enough to
describe a diversity of real datasets.

α 3, θ 0.5

α 1, θ 1

α 2, θ -5
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Figure 2. The hazard rate function of the BE distribution for different values of the parameters α and θ.

It is simple to see that the hazard rate function reaches a minimum at 1
αθ (1 +

√
1 + θ2)

for θ > 0 and at 1
αθ (1−

√
1 + θ2) for θ < 0. Obviously, for θ = 0 the hazard rate function

is constant, corresponding to the exponential case. The moment generating function is
given by

MY(t) =
α

(α− t)3

[
α2 + ζ(θ)

(
2t2 + t(2 + θ)(tθ − 2α)

)]
, (7)

from which we can derive the moments of the distribution; these are given by

µr = ζ(θ)

[(
2 +

2θµ

σ
+

θ2µ2

σ2

)
µ′r −

(
2θ

σ
+

2θ2µ

σ2

)
µ′r+1 +

θ2

σ2 µ′r+2

]
, (8)

where µ′k = k!/αk, and µ = 1/α and σ = 1/α are the mean and standard deviation of the
exponential distribution respectively. Therefore, (8) can be rewritten as

µr =
ζ(θ)r!

αr

[
2− 2rθ + (r2 + r + 1)θ2

]
.

In particular, the mean, second order moment, and variance are given by

E(Y) =
ζ(θ)

α
[2 + θ(3θ − 2)], (9)

E(Y2) =
ζ(θ)

α2 [4 + 2θ(7θ − 4)], (10)

var(Y) =

[
ζ(θ)

α

]2

[4 + θ((16 + θ(4 + 5θ))θ − 8)]. (11)

It is straightforward to see that the mean decreases with θ for−2−
√

6 < θ < −2+
√

6
and increases in the rest of the support of this parameter.
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The asymmetry coefficient (not given here) can be obtained in closed-form expression
by using the well-known formula

µ̃3 =
E(X3)− 3µσ2 − µ3

σ3 ,

where E(X3) = 6(2 + θ(13θ − 6))/(α3(2 + θ2)).

3. Results in Risk Theory

In this section, some interesting actuarial results of this family of distributions are pro-
vided. Let the random variable Y represent either a policy limit or reinsurance deductible
(from an insurer’s perspective); then, the limited expected value function L of Y with cdf
F(y), is defined by

L(y) = E[min(Y, y)] =
∫ y

0
t dF(t) + yF̄(y),

which is the expectation of the cdf F(y). In other words, it represents the expected amount
per claim that is retained by the insured on a policy with a fixed amount deductible of y.
This is an appropriate tool for analyzing an excess of loss reinsurance ([13], Chapter 2, p. 59
and [14], Chapter 3, p. 113), among others. For the BE distribution, this amount is given by

L(y) =
ζ(θ)

α

[
2 + θ(3θ − 2)−

(
2θ̄ + θ(3θ − αy(2θ̄ − αyθ))

)
exp(−αy)

]
, (12)

where θ̄ = 1− θ. The pdf (5) can be also applied to rating excess-of-loss reinsurance, as it
can be seen in the following result.

Proposition 2. Let Y be a random variable denoting the individual claims size taking values only
for individual claims greater than d. Let us also assume that Y follows the pdf (5), then the expected
cost per claim to the reinsurance layer when the loss in excess of m subject to a maximum of l is
given by

E[min(l, max(0, Y−m))] = ϕ1(α, θ, l, m)− ϕ2(α, θ, l, m),

where

ϕ1(α, θ, l, m) =
[
2θ̄ + θ(3θ −mα(2θ̄ −mαθ))

] ζ(θ)

α
exp(−mα),

ϕ2(α, θ, l, m) =
[
2θ̄ + θ

(
3θ − (l + m)α(2θ̄

−(l + m)αθ))]
ζ(θ)

α
exp[−(l + m)α].

Proof. The result follows by taking into account that

E[min(l, max(0, Y−m))] =
∫ m+l

m
(y−m) f (y) dy + lF̄(m + l),

from which we obtain the result after some algebra.

The failure rate of the integrated tail distribution, as defined by

γI(y) =
F̄(y)∫ ∞

y F̄(t) dt
,
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is given by

γI(y) =
α[θ(θ + αy(αθy− 2)] + 2)

θ[3θ + αy(θ(αy + 2)− 2)− 2] + 2
.

Additionally, the reciprocal of γI(y) is the mean residual life that can be easily derived.
In the insurance context (see, for example [13,15]) for a claims amount random variable
Y, the mean excess function or mean residual life function, e(y), plays an essential role in
reinsurance framework. It is interpreted as the expected payment per claim on a policy with
a fixed deductible of y, where claims with an amount less than or equal to y is completely
ignored. Because the mean residual life is related to the limited expected value function
through the expression (see [13], p. 59)

E(Y) = L(l) + e(l)F̄(l),

a closed-form expression can be obtained for the mean residual life

e(y) = E(Y− y|Y > y) =
1

F̄(y)

∫ ∞

y
F̄(t) dt

=
2θ̄ + θ

[
3θ − αy(2θ̄ − αyθ)

]
α[2(1− αyθ) + θ2(1 + α2y2)]

.

Finally, the TVaR function is also provided in closed-form,

TVaR(Y) = E(Y|Y > πp) =
1

F̄(πp)

∫ ∞

πp
y f (y) dy

=
(1 + απp)

[
2(1− αθπp) + θ2(3 + α2π2

p)
]
− 2θ

α
[
2(1− αθπp) + θ2(1 + α2π2

p)
] .

4. Methods of Estimation and Simulation

Given a random sample ỹ = (y1, . . . , yn) taken from the BE(α, q) distribution, simple
moment estimates can be calculated by equating the sample and theoretical moments.
Because there are two parameters, we need, for example, the mean, m̃, and the sample
second order moment around the origin, s̃2. Now, by setting equal (9) and (10) to the
sample counterparts, we get

α̂ =
ζ(θ̂)

[
2 + θ̂(3θ̂ − 2)

]
m̃

. (13)

By plugging (13) into (10), we obtain the equation

[4 + 2θ(7θ − 4)](2 + θ2)m̃2 − [2 + θ(3θ − 2)]2 s̃2 = 0,

which depends solely on θ̂ and it can be solved numerically. The impossibility of proving
that both moment and maximum likelihood estimators exist and are unique is one of the
most substantial limitations of the proposed probabilistic model. However, in practice,
the model’s estimates, as shown in the simulation analysis and numerical applications, are
easily obtained by numerical methods without difficulty. This issue leads us to think that
they correspond to global maxima, although they cannot be guaranteed.

We now proceed with the maximum likelihood method of estimation. The log-
likelihood function can be written as

`(ỹ; α, θ) = n[log α + log ζ(θ)]− α
n

∑
i=1

yi +
n

∑
i=1

log G(yi),
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where G(yi) = G(yi; α, θ) = [1 − αθ(yi − 1/α)]2 + 1. Then, the normal equations are
given by

n

∑
i=1

G1(yi)

G(yi)
=

n

∑
i=1

yi −
n
α

, (14)

n

∑
i=1

G2(yi)

G(yi)
= 2nθζ(θ), (15)

with, G1(yi) =
∂

∂α G(yi), G2(yi) =
∂
∂θ G(yi) and

G1(yi) = 2θyi(αθyi − θ − 1),

G2(yi) = 2α(αθyi − θ − 1)
(

yi −
1
α

)
.

Numerical procedures, such as the Newton–Raphson algorithm can be used to derive
the solutions of the system of equations that are given by (14) and (15). Unlike the exponen-
tial distribution, the maximum likelihood estimates cannot be expressed in closed-form.
In practice, as we are unable to prove that the log-likelihood function is concave, the likeli-
hood function can be directly maximized by considering different values as seed points,
since the global maximum is not guaranteed by the impossibility to prove that the log-
likelihood function is concave. We have used different maximum search methods available
in the FindMaximum built-in function in Mathematica software package. These methods
include the Newton–Raphson and the Broyden–Fletcher–Goldfarb-Shanno (BGGS) algo-
rithms. The same results were achieved under these two optimization functions. Although
a more general structure, such as kernel regression or neural network, could provide
accurate estimates, the approach used in this paper does not require training data. It can
also work well, even if the fit to data is not perfect. Additionally, this method is easier to
understand and interpret results, i.e., a parametric test for the significance of the parameter
estimates can lead to a rejection of the null hypothesis rather than the non-parametric
counterpart. Finally, from the actuarial perspective, the practitioner may be interested in
the parametric approach since it provides appealing closed-form expressions, as is the case
of this BE representation.

Simulation Experiment

Here, an acceptance-rejection algorithm to generate random variates from the BE(α, θ)
distribution (see [16]) is used. The simulation analysis results are illustrated in Table 1,
where the behaviour of the maximum likelihood estimates of 1000 simulated samples
of sizes 50, 100, 150, and 200 from the BE(α, θ) distribution. For each simulated sample
generated, the estimates were numerically computed via a Newton–Raphson algorithm.
In this Table, the means, standard deviations (SD), and percentage of coverage probability
(C) are reported for different values of the parameters α and θ. As expected, it is observable
that the bias becomes smaller as the sample size n increases.
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Table 1. Means, standard deviations (SD) and percentage of coverage probabilities (C) for different
values of α and θ.

n = 50 n = 100

α θ α̂ (SD)(C) θ̂ (SD)(C) α̂ (SD)(C) θ̂ (SD)(C)

1.0 1.0 1.0415(0.1793)(92.9) 0.9997(0.2508)(95.3) 1.0128(0.1042)(94.1) 0.990155(0.1579)(94.6)
2.0 1.0133(0.1021)(93.5 2.0564(0.4298)(94.7) 1.0040(0.0701)(95.0) 2.0488(0.2953)(96.0)
3.0 1.0063(0.0856)(94.3) 3.1707(0.8710)(94.0) 1.0051(0.0600)(95.2) 3.0881(0.5573)(94.9)

2.0 1.0 2.0615(0.3737)(93.8) 0.9813(0.2605)(94.7) 2.0262(0.2094)(93.4) 0.9971(0.1579)(93.9)
2.0 2.0133(0.2013)(93.9) 2.0671(0.4328)(94.6) 2.0083(0.1414)(95.4) 2.0266(0.2916)(95.3)
3.0 2.0147(0.1718)(95.5) 3.2368(0.9209)(92.9) 2.0101(0.1200)(94.0) 3.0804(0.5570)(94.5)

3.0 1.0 3.1000(0.5494)(93.1) 1.0011(0.2582)(96.3) 3.0544(0.3125)(94.2) 1.0085(0.1573)(95.4)
2.0 3.0277(0.3052)(93.9) 2.0567(0.4303)(92.8) 3.0265(0.2130)(95.1) 2.0296(0.2919)(95.9)
3.0 3.0013(0.2545)(95.8) 3.2297(0.8992)(94.6) 3.0076(0.1795)(95.2) 3.1114(0.5715)(94.4)

n = 150 n = 200

α θ α̂ (SD)(C) θ̂ (SD)(C) α̂ (SD)(C) θ̂ (SD)(C)

1.0 1.0 1.0139(0.0843)(93.3) 1.0097(0.1275)(95.3) 1.0092(0.0731)(95.8) 1.0014(0.1098)(92.8)
2.0 1.0023(0.0574)(94.4) 2.0158(0.2348)(95.4) 1.0029(0.0495)(95.2) 2.0255(0.2039)(95.2)
3.0 1.0010(0.0485)(95.4) 3.0794(0.4495)(95.3) 1.0030(0.0422)(93.5) 3.0395(0.3785)(95.3)

2.0 1.0 2.0184(0.1696)(95.1) 0.9979(0.1271)(94.2) 2.0096(0.1457)(95.3) 1.0011(0.1098)(95.7)
2.0 2.0068(0.1147)(95.6) 2.0116(0.2336)(95.9) 2.0063(0.0992)(93.2) 2.0133(0.2020)(95.3)
3.0 2.0016(0.0972)(95.2) 3.0647(0.4466)(94.7) 2.0059(0.0844)(95.3) 3.0312(0.3763)(94.8)

3.0 1.0 3.0231(0.2533)(94.5) 0.9943(0.1265)(95.2) 3.0227(0.2193)(95.9) 1.0037(0.1100)(95.5)
2.0 3.0051(0.1719)(93.9) 2.0268(0.2365)(96.0) 3.0016(0.1486)(95.2) 2.0109(0.2017)(95.1)
3.0 3.0030(0.1458)(94.5) 3.0851(0.4518)(95.8) 2.9982(0.1261)(95.9) 3.0397(0.3784)(93.6)

5. A suitable Regression Model

In practice, to better explain the response variable, it is important that the statistical
model is able to incorporate covariates. By rewriting (9) as

α =
ζ(θ)

µ
[θ(3θ − 2) + 2],

a reparameterization of the BE distribution in (5) is obtained, where E(Y) = µ. The variance
of the reparameterized distribution is given by

var(Y) = µ2m(θ),

where

m(θ) =
θ[θ((5θ + 4)θ + 16)− 8) + 4]

[θ(3θ − 2) + 2]2
.

In this case, the parameter θ can be interpreted as a precision parameter, since the
function m(θ) increases for −3 < θ < 1 (see Figure 3) and decreases in the rest of the
domain of θ. Thus, µ is the mean of the response variable and θ can be regarded as
a precision parameter in the sense that, for a fixed value of µ, the variance of Y varies
according to the values of m(θ), i.e., the values of the parameter θ.
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Figure 3. Graph of the function of the precision parameter m(θ).

Because the mean of the response is non-negative, the most common function that
relates the mean and the linear predictor is the log link,

log(µi) = xxx>i βββ, i = 1, . . . , n,

where xxx>i = (xi1, xi2, . . . , xiq) is a q-vector of explanatory variables and
βββ = (β1, β2, . . . , βp)> ∈ IR q is a q-vector of unknown regression coefficients that may
include an intercept. Subsequently, we have the conventional log-linear model, such that
E(Yi) = µi = exp{xxx>i βββ} with i = 1, . . . , n.

The maximum likelihood estimates of the regressors βs, s = 1, . . . q, can be computed
via the Newton–Raphson algorithm. In our applications, parameters will be estimated by
the maximum likelihood method by using this algorithm available in the software packages
Mathematica [17] and RATS [18]. The code for the latter package is available upon request.

As is well-known, the marginal effect reflects the variation of the conditional mean
of Y due to a one-unit change in the sth covariate, and it is calculated as ∂µi/∂ys = βsµi
for i = 1, . . . , n and s = 1, . . . , q. Thus, the marginal effect indicates that a one-unit
change in the sth regressor increases or decreases the expectation of the dependent variable,
depending on the sign, positive or negative, of the regressor for each mean. For indicator
or dummy variables that take only the value 0 or 1, the marginal effect in term of the
odds-ratio is approximately exp{β j}. Therefore, the conditional mean is exp{β j} times
larger if the indicator variable is one rather than zero.

6. Empirical Results

Two datasets will be used to illustrate the applicability of the distribution studied in
this paper. The first one is related to life insurance and the other one to non-life insurance.
For these two examples considered, the exponential distribution and the zero-adjusted
gamma model provided in [2] will be used as a benchmark. The pdf of this last distribution
is given by

f (y) =

 p, y = 0,
1−p

(θα2)
1/α2

Γ(1/α2)
y

1
α2−1 exp

(
− y

θα2

)
, y > 0,

where 0 < p < 1, α > 0, θ > 0. This mixture distribution will be denoted hereafter as GM.
It is worthy to point out that other versions of the generalized exponential distribution,
such as the one that was proposed by [4], and the one suggested by [5], do not yield
significant improvement over the model introduced in this work.

6.1. Dataset 1

Life insurers offer new products to increase their market share, as is the case in the
majority of financial companies that operate in the markets. Thus, insurance companies
need to know specific characteristics of their potential customers, which makes it is crucial
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to update their databases accordingly to include the appropriate information. In this
first example, we use data from the Consumer Finance Survey (SCF), a representative
sample at the national level (in the U.S.) of 500 households with positive income who
were interviewed in the survey that was conducted in 2004. For term life insurance,
the amount of insurance is measured by the policy face, the amount that the company
will pay in the event of the death of the named insured. Important characteristics that
may impact this quantity (covariates) are shown in some detail in Table 2. This dataset
can be found in the personal website of Professor E. Frees (Wisconsin School of Business
Research), https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/
BookWebDec2010/data.html.

Table 2. Description of the explanatory variables of the US Term Life Insurance dataset.

Variable Description

Gender Gender of the survey respondent
Age Age of the survey respondent
Marstat Marital status of the survey respondent

(=1 if married, =2 if living with partner, and =0 otherwise)
Education Number of years of education of the survey respondent
Ethnicity Ethnicity
Smarstat Marital status of the respondent’s spouse
Sgender Gender of the respondent’s spouse
Sage Age of the respondent’s spouse
Seducation Education of the respondent’s spouse
Numhh Number of household members
Income Annual income of the family
Totincome Total income
Charity Charitable contributions

Parameter estimates obtained by the method of maximum likelihood together with
standard errors (in brackets) are illustrated in Tables 3 and 4 for the model without and
with covariates, respectively. As it can be observed, the model proposed in this paper
provides a better fit to this dataset than the exponential distribution in both cases in terms
of three measures of model selection, maximum of the log-likelihood function, AIC and
CAIC. The expressions of the latter measures are:

AIC = −2`max + 2k,

CAIC = −2`max + k(1 + log(n)),

where k is the number of parameters, and n is the sample size. A model with a lower value
of these measures is preferable. It is also discernible in Figure 4 that the BE distribution is
able to reproduce the bimodality of the empirical data. Also, in Table 4 are displayed the
estimates, standard errors (S.E.), t-Wald statistics and p-values for the BE and exponential
(in brackets) distributions. It can be noticed that the sign of some of the estimated regressors
differs in the sign for both models. Besides, most of the explanatory variables (except for
ethnicity and smarstat) are statistically significant at the 5% significance level. Similarly to
the previous case, according to the same model validation measures, the BE provides a
better fit to data.

https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
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Figure 4. Histogram of the empirical data and density of the BE, GM, and exponential distributions
superimposed for the US Term Life Insurance dataset.

Table 3. Estimates and standard error (in brackets) for BE, GM, and exponential distributions for the
US Term Life Insurance and Swedish motor insurance datasets without covariates.

Dataset 1 Dataset 2
Exponential GM BE Exponential GM BE

α̂ 0.243 1.534 0.285 0.114 1.353 0.129
(0.011) (0.053) (0.012) (0.009) (0.076) (0.014)

θ̂ - 7.475 1.429 - 10.893 1.172
- (0.691) (0.091) - (1.412) (0.169)

p̂ - 0.45 - 0.198
- (0.022) - (0.034)

`max −1206.92 −1073.63 −959.524 −430.685 −419.870 −393.317
AIC 2415.84 2153.26 1923.05 863.369 845.741 790.635
CAIC 2421.05 2168.90 1933.48 867.282 857.479 798.460

Table 4. Parameter estimates, standard errors, t-Wald statistics and p-values for the BE and
exponential (in brackets) regression models for the US Term Life Insurance dataset.

Variable Estimate S.E. |t|-Statistic Pr >|t|

gender 1.688 (1.023) 0.190 (0.192) 8.879 (5.308) 0.00 (0.00)
age −0.023 (0.018) 0.007 (0.007) 3.371 (2.618) 0.00 (0.00)
marstat −1.639 (−1.310) 0.158 (0.189) 10.344 (6.906) 0.00 (0.01)
education 0.206 (0.221) 0.019 (0.019) 10.622 (11.462) 0.00 (0.00)
ethnicity 0.002 (−0.128) 0.032 (0.035) 0.078 (3.622) 0.93 (0.00)
smarstat 0.201 (0.613) 0.112 (0.111) 1.789 (5.487) 0.07 (0.00)
sgender −1.132 (0.031) 0.268 (0.296) 4.223 (0.104) 0.00 (0.91)
sage 0.048 (0.010) 0.007 (0.008) 6.093 (1.287) 0.00 (0.19)
seducation 0.134 (0.044) 0.020 (0.024) 6.492 (1.821) 0.00 (0.07)
numhh −0.126 (0.145) 0.034 (0.044) 3.679 (3.282) 0.00 (0.00)
income 0.261 (0.369) 0.030 (0.030) 8.730 (12.053) 0.00 (0.00)
totincome 0.125 (0.097) 0.037 (0.037) 3.348 (2.616) 0.00 (0.01)
charity −0.612 (−0.630) 0.106 (0.122) 5.762 (5.170) 0.00 (0.00)

θ 1.495 0.102 14.646 0.00
constant −5.018 (−8.959) 0.585 (0.519) 8.570 (17.246) 0.00 (0.00)
`max = −628.150 (−759.280)
AIC = 1286.300 (1546.560)
CAIC = 1364.520 (1619.560)
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6.2. Dataset 2

This second example discusses a cross-sectional dataset that was collected in 1977
related to third party car insurance claims. It can also be found in the website of Professor
E. Frees. See also [19] and the references therein. The explanatory variables of interest are
described below in Table 5. Using these explanatory variables, we explain the response
variable, the payments in Swedish krona (variable payment divided by 103). Only 136 data
observations out of the total 2182 observations correspond to the case where the insured is
classified in the bonus scale 1 (insured starts in class 1 and it is moved up one class, to a
maximum of 7 after a claim-free year). Therefore, in this application, only those insureds
with a lesser driving experience have been considered since the empirical distribution
shows bimodality.

Table 5. Description of the explanatory variables in the Swedish motor insurance dataset.

Variable Description

km Distance driven by a vehicle, grouped into five categories
zone Graphic zone of a vehicle, grouped into seven categories
bonus Driver claim experience, grouped into seven categories
make Type of a vehicle
claims Number of claims

The estimates of the basic model (without covariates) and standard errors are exhibited
in Table 3. Once again, the BE distribution provides a better fit to data than the exponential
model in terms of the three measures of model selection.

Moreover, Table 6 shows the estimates, standard errors (S.E.), t-Wald statistics, and
p-values for the BE and exponential (in brackets) distributions. It is noted that there are
no significant differences with respect to the exponential regression model, except for the
variable make, which is not statistically at the usual significance levels under the new
regression model.

Table 6. Parameter estimates, standard errors, t-Wald statistics and p-values for the BE and
exponential (in brackets) regression models for the Swedish motor insurance dataset.

Variable Estimate S.E. |t|-Statistic Pr >|t|

km −0.303 (−0.290) 0.070 (0.076) 4.303 (3.824) 0.00 (0.00)
zone −0.335 (−0.255) 0.049 (0.052) 6.707 (4.887) 0.00 (0.00)
make −0.030 (−0.206) 0.056 (0.079) 0.535 (2.588) 0.59 (0.01)
claims 0.034 (0.027) 0.004 (0.004) 8.400 (6.759) 0.00 (0.00)

θ 1.799 0.226 7.932 0.00
constant 2.752 (3.044) 0.479 (0.481) 5.735 (6.317) 0.00 (0.00)

`max = −297.607 (−299.280)
AIC = 607.213 (608.560)
CAIC = 630.689 (628.123)

Similarly to the previous example (see Figure 5), the new model can also reproduce the
second mode of the empirical data. Finally, we have computed the limited expected values
tha are given in (12) for the basic model, without including covariates, and compared
those numerical figures with the empirical values and those obtained for the exponential
distribution. It is apparent that, for the BE distribution, the computed values adhere closer
to the empirical ones than those ones that are derived from the exponential model (see
Figure 6).
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Figure 5. Histogram of the empirical data and density of the BE, GM, and exponential distributions
superimposed for the Swedish motor insurance.
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Figure 6. Empirical and fitted limited expected values for the Swedish motor insurance dataset.
Exponential (dashed line), BE (thin line), and empirical (thick line).

Now, we are interested in analyzing the out-of-sample performance of the BE distri-
bution. For that reason, we have randomly partitioned the second dataset into two disjoint
subsets of the same size. The first subset of size 68 is used for fitting the models, whereas
the second subset tests the model’s out-of-sample prediction accuracy. We have fitted
the exponential and the BE distribution to these datasets. Subsequently, we compare the
out-of-sample performance via the likelihood ratio test proposed by [20] for non-nested
models. The test statistic of Vuong’s closeness test is

T =
1

ω
√

n

(
` f (θ̂1)− `g(θ̂2)− log n

(n f

2
−

ng

2

))
, where

ω2 =
1
n

n

∑
i=1

[
log

(
f (yi|θ̂1)

g(yi|θ̂2)

)]2

−
[

1
n

n

∑
i=1

log

(
f (yi|θ̂1)

g(yi|θ̂2)

)]2

is the sample variance of the pointwise log-likelihood ratios and f (·) and g(·) represent the
pdf of two different non-nested models, θ̂1 and θ̂2 are the maximum likelihood estimates
of θ1 and θ2 and n f and ng are the number of estimated parameters in the model with
pmf f (·) and g(·), respectively. Note that the Vuong’s statistic is sensitive to the number
of estimated parameters in each model and, therefore, the test must be corrected for
dimensionality. We test H0 : E[` f (θ̂1)− `g(θ̂2)] = 0 against H0 : E[` f (θ̂1)− `g(θ̂2)] 6= 0.
Under the null hypothesis, T is asymptotically normally distributed. At the 5% significance
level, the rejection region for this test in favour of the alternative hypothesis occurs when
|T| > 1.96. By following this approach, we have calculated the test statistics of the Vuong’s
test 1000 times. The resulting average value of the test statistics was T = 6.985, then the BE
regression model is preferable to the exponential regression model at the 5% significance
level, in-sample and out-of-sample, for this dataset.



Symmetry 2021, 13, 679 15 of 16

Apart from improving the maximum value of the likelihood function, it is interesting
to note that the estimation of the parameters is fast from a computational point of view
and not problematic. Bear in mind that, to obtain bimodal modelling, a finite mixture
of two distributions, such as the gamma exponential, may be possible. Still, in these
cases, the estimation of the parameter that weighs both distributions can give rise to
identifiability problems.

7. Conclusions and Extensions

In this paper, a methodology that allows us to generalize an initial probability dis-
tribution by adding a parameter that controls the unimodality or bimodality of the new
family was introduced. Special attention was paid to the case where the parent model
is the exponential distribution, thus obtaining a new generalization of the exponential
distribution that can be considered to be an alternative model to other extensions of this
distribution. This new model’s analytical expression is simple, and many interesting sta-
tistical and actuarial quantities are obtained in closed-form. The derivation of composite
and folded models that are based on this bimodal family might be a line of further research
following the recent works of [21,22], among others.

Finally, the computation of the disturbance term’s distribution in the stochastic frontier
analysis assuming the bimodal exponential distribution as the distribution of the ineffi-
ciency and a normal distribution of the noise can be obtained in a closed-form expression.
This distribution can be bimodal, thus it is a suitable model for explaining different sources
of inefficiency. We believe that this is a promising line of research to be addressed in
the future.
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