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Photocatalysis is one of the most promising processes within catalysis, due to its
increasing potential and the possibility of its being combined with renewable solar energy.
There are countless applications, such as hydrogen production from wastewater, decontam-
ination and disinfection of gaseous and water effluents, and more specific applications such
as autocleaning surfaces, biosensors, or new chemical synthesis pathways. Photoactive
semiconductor nanomaterials form the basis of all of these, catalyzing reactions by their
capacity to photogenerate charge carriers.

Photocatalysis has progressed slowly and has established itself in the worldwide market
in certain applications. Small-capacity reactors, paints and cements to decontaminate and
disinfect are some examples. Despite this progress, the synthesis of even better materials is
needed to increase activity and reduce costs and, thus, achieve a solid commercial development.

The aim of the Special Issue “Nano-Photocatalytic Materials: Possibilities and Chal-
lenges” was to collect the latest contributions that aim to overcome the drawbacks that
photocatalysis still exhibits and that prevent its large-scale development.

Most works focused on the development of better materials, referring mainly to an in-
crease in the time of photogenerated charge separation and to the widespread useful range
of the spectrum for degradation. These materials were mainly tested for the degradation of
dyes and emerging compounds, although some references worked with gases and others
developed new synthesis pathways.

Enesca and L. Andronic [1] stated in a mini-review that improvements in the structures
of the photocatalysts could lead to the optimization of energy consumption and the sus-
tainability of the process. In addition, they claimed an urgent need for standarization of the
photoactivity results in order to be able to carry out serious comparison studies that could
place photocatalysis in large-scale implementation. Catalysts composed by heterostruc-
tures have caught the attention of the recent works in order to improve charge separation
and light absorption. Four different mechanisms are possible in the heterostructures: p-n
junctions, Schottyky junctions, type II heterostructures and Z-scheme heterostructures. H.
Zhang et al. [2] studied the effect of different crystal phase contents in the photoactivity
of TiO2 nanofibers obtained by electrospinning. Anatase-rutile junctions give place to a
type II band alignment facilitating efficient electron–hole separation. A.A. Yaqoob et al. [3]
reported a review about the sate-of-the-art of GO-based ZnO nanocomposites. This review
focused on synthesis procedures and photoactivity mechanism from a critical point of view;
the potential for applications considering stability, reusability and recyclability was also
discussed. GO-based ZnO, type II heterostructure, exhibits favorable characteristics in
both visible-light absorption and charge separation. Y.C. Liang and Y.C. Liu [4] reported
the synthesis of core-shell structures based in TiO2 nanorods and a visible sensitizer, a
narrow bandgap oxide. TiO2 nanorods were synthesized by hydrothermal method and
covered by ZnFe2O4 by sputtering deposition. The junction of TiO2 and ZnFe2O4 leads
to the formation of type II band structure. Sensitization has been considered an efficient
approach for developing visible-light-responsive photocatalysts. On the other hand, J.J.
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Murcia et al. [5] opted for dye sensitization with quinizarin and Zinc protoporphyrin. The
sensitizers were incorporated during the sol-gel synthesis of TiO2 powder, which, after-
wards, was submitted to an alkaline treatment to obtain TiO2 nanotubes. They concluded
that the sensitization is not always beneficial for the degradation of pollutants; for example,
positive results were obtained for methyl orange but not for phenol. J. Yang et al. [6] also
synthesized nanotubes that exhibited good activity for the degradation of methyl orange.
However, the synthesis method was different: in this case, a Ti foil was subjected to alkaline
hydrothermal treatment.

Another alternative to obtain visible-light-assisted reactions is through the combina-
tion of semiconductor and noble metal nanoparticles; these are the so-called plasmonic
photocatalysts. Z. Wei et al. [7] discussed the influence of the morphotolgy of the TiO2-
based photocatalyst to control electron transfer to noble metal nanoparticles (gold, silver or
platinum). The efficiency under visible irradiation also is conditioned by the nature, oxida-
tion state and photoabsorption properties (plasmon resonance) of the metal. Although in
studies of contaminant degradation, there is not a single better noble metal for whatever the
conditions, in the case of antibacterial applications, silver was exhibited to be the best one.
A. Wafi et al. [8] obtained nitrogen-doped TiO2 catalysts with silver photodepostited on its
surface that exhibited good activity results in both degradation of organic compounds and
disinfection tests.

All of the previously mentioned works described simple synthesis methods. Accord-
ing to A. Belet et al. [9], sol-gel synthesis of TiO2-based materials is suitable to obtain the
most promising photocatalysts for a scaled-up application due to their simplicity and cost.
They studied both organic and aqueous synthesis pathways, with those materials obtained
with organic solvents being more active. In addition, the photocatalysts were deposited as
thin films on glass slides by dip-coating procedure. The support of photoactive materials
brings significant savings in respect to the removal of the catalyst from the reaction media.

There is great concern about the degradation of pharmaceutically active compounds
such as antibiotics: these are not degraded in conventional wastewater treatment plants
and they are discharged into the environment. Photocatalysis has shown its power in this
challenge, and several works of this Special Issue test their materials with this kind of probe
molecule [1,9–11]. J. Patel et al. [10] synthesized ZnS quantun dots doped with manganese
to degrade a fluoroquinolone antibiotic, norfloxacin, while H. Zhang et al. [11] combined
a UiO-66-NH2 metal–organic framework (MOF) with g-C3N4 and CdS to eliminate tetra-
cycline. MOFs have attracted increasing attention due to their many advantages, such as
high specific surface area, tunable porous structure and large number of active sites.

Photocatalysis is a technique that, on many occasions, needs to be combined with
other physical processes to improve the pollutant removal efficiency. In this sense, P. Pham
et al. [12] synthesized materials with adsorptive and photochemical properties. These
materials are based on magnetite (MNP) covered by humic acid substances (HA). The
magnetite also serves as a non-active support that favors photocatalyst recovery from
reaction media due to its magnetic characteristics. The article explores the photocatalytic
mechanisms of HA-MNP to treat water contaminated with As(III).

The reactions promoted by photocatalysis can constitute new synthesis pathways.
G. Zuo et al. [13] studied the synthesis of hydrogen peroxide under visible light with
heterostructures that consisted of graphitic carbon nitride (CN) and a Au co-catalyst. They
focused on the modification of this heterostructure with β-cyclodextrin to improve the
hydrophobicity as well as oxygen adsorption of CN. Those improvements led to increasing
efficiency because H2O2 was directly formed via a two-electron oxygen reduction reaction.

Finally, two works dealt with the degradation of gaseous contaminants, specifically
those exhausted from automobiles that are important contributors to urban air pollution.
Both studies were carried out with the reference commercial photocatalyts, Aeroxide TiO2
P25. M.J. Hernández Rodríguez et al. [14] focused on mechanism issues. They observed
that the presence of palladium particles on the TiO2 surface favors NO removal. This is
because palladium particles modify the interaction of water molecules with the catalyst
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surface. On the other hand, G. Luo et al. [15] carried out a study from a practical point of
view. TiO2 was sprayed in pervious concrete that was tested with real automobile exhaust
source and NOx and hidrocarbons were monitored.

The Special Issue gives an overview of the material strategies used in photocatalysis,
its fundamental applications in the degradation of pollutants from aqueous and gaseous
effluents and the development of new synthesis pathways. The guest editors are very
satisfied with the contributions received and finally published.
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