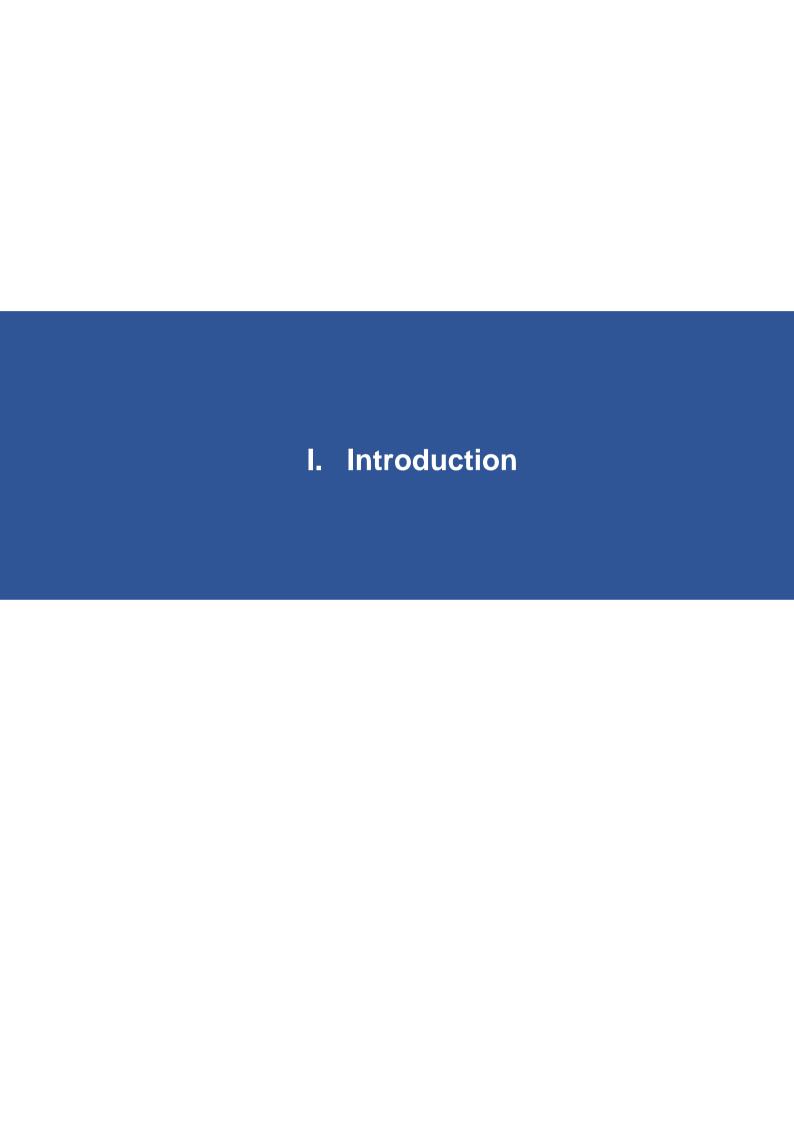


Bases para la planificación sostenible de áreas marinas en la Macaronesia

Identification of areas for Blue Growth

To cite this report: Shinoda, Deborah; Calado, Helena; Vergílio, Marta. 2019. 'Identification of Areas for Blue Growth: The development and application of a multicriteria analysis to support maritime spatial zoning'. University of Azores. Report prepared as part of PLASMAR Project (co-financed by ERDF as part of POMAC 2014-2020). 27 pp. Reproduction is authorised provided the source is acknowledged.

LEGAL NOTICE


This document has been prepared as part of PLASMAR Project (co-financed by ERDF as part of POMAC 2014-2020), however it reflects the views only of the authors, and the Project partners or POMAC 2014-2010 programme cannot be held responsible for any use which may be made of the information contained therein.

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License.

TABLE OF CONTENTS

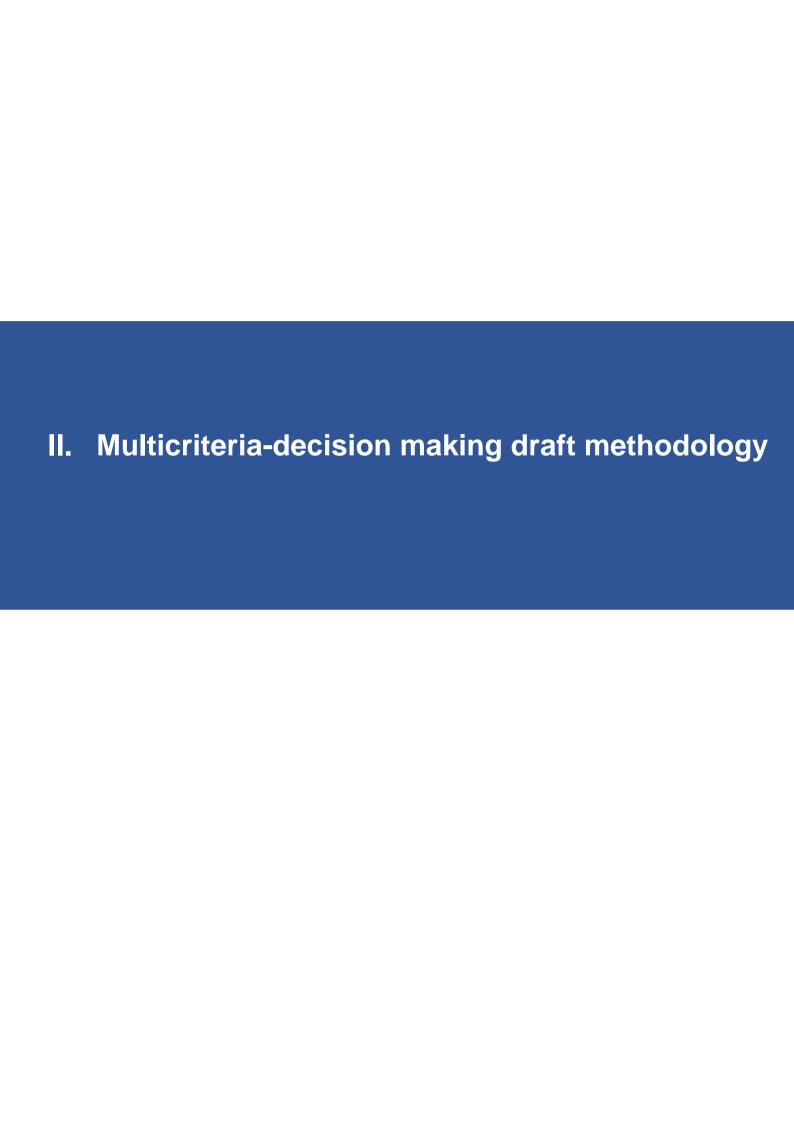
<u>l.</u>	INTRODUCTION	6
<u>1</u>	THE PLASMAR PROJECT	7
<u>II.</u>	MULTICRITERIA-DECISION MAKING DRAFT METHODOLOGY	8
<u>2</u>	PLASMAR MULTICRITERIA ANALYSIS	9
2.1	. METHODOLOGICAL FRAMEWORK	9
<u>3</u>	RESULTS	14
3.1	. AQUACULTURE	14
3.2	PISHERIES	15
3.3	MARITIME TRANSPORT	16
3.4	OFFSHORE WIND ENERGY	17
3.5	AGGREGATE EXTRACTION	18
3.6	MARITIME TOURISM	19
<u>4</u>	INDIMAR	20
<u>5</u>	REFERENCES	21
<u>AN</u>	INEX 1	22

1 The PLASMAR project

Aiming the development of methodologies to support Maritime Spatial Planning (MSP) and Blue Growth, the project PLASMAR "Setting the basis for sustainable maritime spatial planning in Macaronesia" has the goal to potentialize the development of marine activities in balance with the biogeographical specific characteristics of Macaronesia region (including in Portugal the Azores and Madeira archipelagos, and in Spain the Canary Islands). It also aims to support the achievement of the Good Environmental Status (GES) launched at the Marine Strategy Framework Directive (MSFD) (Directive 2008/56/EC).

The PLASMAR activity 2.1.2 "Pilot Zoning – identification of areas for Blue Growth development within ecosystem approach" intends to identify potential areas for the "blue growth" in Macaronesia. This task consists on developing a general methodology of zoning activities/sectors over the maritime space and implementing a pilot zoning for Macaronesia, which will be developed on INDIMAR platform.

The elaboration of a zoning proposal demands basis information. Hence, this data will be gathered, organized and produced in the following activities:


- i. Activity 2.1.1 "Finding the balance of Blue Growth Sustainable Development within Ecosystem Approach";
- ii. Activity 2.2.1 "Analyses of data & information availability, current and potential data holders/providers, in the scope of Maritime Spatial Planning";
- iii. Activity 2.3.1. "Marine monitoring methods needed to apply MSP ecosystem approach".

From the results obtained in the project, a zoning methodology will be stablished considering the following marine sectors:

- i. Aquaculture;
- ii. Fisheries;
- iii. Marine transportation;
- iv. Offshore renewable energy;
- v. Aggregate extraction;
- vi. Marine tourism.

The pilot zoning will identify the best suitable areas for specific maritime activities, in line with the maintenance of the GES, according to the information available in the Marine Distributed Data Infrastructure. This is a result of the Activity 2.2.1 of PLASMAR "Analyses of data & information availability, current and potential data holders/providers, in the scope of Maritime Spatial Planning".

In this sense, the different methodologies currently applied for Multi-Criteria Decision Making (MCDM) will be further developed in order to subsidize the methodology currently being developed in this project.

2 PLASMAR multicriteria analysis

In order to apply the methodology of weight calculation under the PLASMAR project, further detailed at the previous reports (Shinoda *et al.*, 2018; Shinoda *et al.*, 2019), an expert based survey was applied for each sector. The final methodology of this survey will be briefly developed in this section.

2.1 Methodological framework

Aiming the achievement of the Action 2.1.2. of PLASMAR, "Pilot Zoning – Identification of areas for Blue Growth development within ecosystem approach", a detailed methodology of weight calculation was proposed based on the Analytical Hierarchy Process (AHP).

The PLASMAR action 2.2.1, "Identification of areas for Blue Growth", was the basis for the goal definition in this analysis. Furthermore, in order to comprehend the different maritime sectors addressed during the project as the blue growth sectors, the overall goal was subdivided into objectives. This subdivision aimed the identification of specific criteria and weights for each sector individually and the hierarchical structure proposed for this analysis can be observed in Figure 1 (Shinoda et al., 2019).

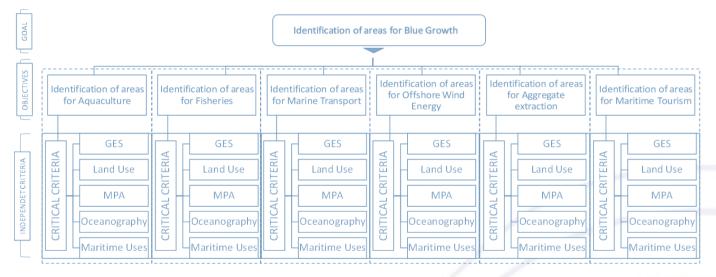


Figure 1: Final proposition of hierarchical structure for the PLASMAR analysis.

Furthermore, the logic of analysis within each cluster varied between impact and contribution. This classification was given after several discussions taken within PLASMAR group on the revision of the methodology. The logic of analysis can be observed in Figure 2.

The development and application of a multicriteria analysis to support maritime spatial zoning/ Subsidizing the identification of areas for Blue Growth

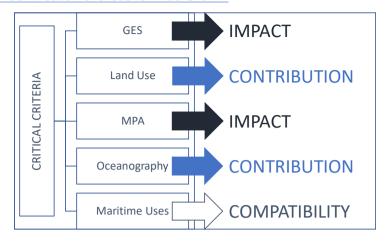


Figure 2: Logic taken for each cluster within the analysis.

The criteria adopted for the multicriteria analysis in this study were the PLASMAR data framework, in order to associate the aforementioned analysis with the spatial data developed in the scope of the project. During the development of the methodology updates were made in the PLASMAR data framework list and the latest version is presented in Table 1. Details on the selection of the parameters will be available soon at plasmar.eu.

Table 1: PLASMAR data framework adopted for the identification of areas for Blue Growth. In red the removed parameters, in green the ones added.

Group of parameters	Parameter	Sub-parameter		
		Marine Habitats		
		Coastal habitats		
		Benthic habitats		
	Descriptor 1: Biodiversity	Sensitive species distribution/migrations		
	– Habitats and Species	Mammals		
AASED G		Birds		
MSFD Good		Turtles		
Environmental		Cephalopod		
Status criteria elements	Descriptor 2	Non-indigenous species		
elements	Descriptor 3	The population of commercial fish species		
	Descriptor 4	Elements of food webs		
		Chlorophyll a		
	Descriptor 5: Human-	Dissolved oxygen		
	induced eutrophication	Nutrients		
		Water transparency		

	Descriptor 6	The sea floor integrity (physical loss & disturbance)		
	Descriptor 7	Permanent alteration of hydrographical conditions		
	Descriptor 9	Concentrations of contaminants – heavy		
	Descriptor 8	metals and other contaminates		
	Descriptor 9	Contaminants in seafood - assessed data, not time series		
	Descriptor 10	Marine litter		
	Descriptor 11	Energy, including underwater noise data		
	Nationally designated area	es (CDDA by EEA) *		
MPA	Natura 2000 *			
	No take zone*			
		Urban areas		
		Industrial areas		
	CORINE data set on land cover	Port areas		
		Agriculture		
Land use/cover		Forest		
		Beaches, dunes, sands		
		Airports		
	Distance to the coast			
	Point and lineal coastal pressures			
	Overall ocean temperature			
	Sea surface/sea bottom temperature			
	Sea salinity			
	Mixed layer thickness			
Oceanography				
Oceanography	Currents			
Oceanography	Currents Waves			
Осеановтарну	Waves			
Осеановтарну	Waves Depth/bathymetry			
Осеановтарну	Waves Depth/bathymetry Wind			
Осеановтарну	Waves Depth/bathymetry			
Осеановгарну	Waves Depth/bathymetry Wind Aquaculture facilities Maritime traffic lanes			
	Waves Depth/bathymetry Wind Aquaculture facilities			
Maritime	Waves Depth/bathymetry Wind Aquaculture facilities Maritime traffic lanes Fishery areas Submarine outfalls	dging/sand extraction		
Maritime	Waves Depth/bathymetry Wind Aquaculture facilities Maritime traffic lanes Fishery areas Submarine outfalls Aggregate extraction: Drece	dging/sand extraction		
	Waves Depth/bathymetry Wind Aquaculture facilities Maritime traffic lanes Fishery areas Submarine outfalls Aggregate extraction: Drece Whale watching	dging/sand extraction		
Maritime	Waves Depth/bathymetry Wind Aquaculture facilities Maritime traffic lanes Fishery areas Submarine outfalls Aggregate extraction: Drece	dging/sand extraction		

Artificial reefs
Seaweed cultivation
Diving
Nautical sports: Windsurfing and surf
Wreck
Dumping

^{*} these parameters were considered as the group "Maritime Protected Areas" in the AHP analysis.

Furthermore, it is important to highlight that the parameters for each maritime sector were classified based on its significance by PLASMAR experts. The importance of each parameter was classified as "low", "medium" and "high", and only the classifications "medium" and "high" were included in the AHP analysis as the critical criteria for analysis (Figure 3). The pairwise comparison models for each sector can be found in Annex 1.

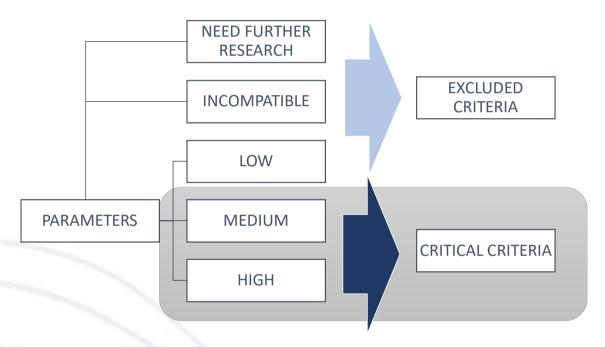


Figure 3: Significance analysis on PLASMAR parameters.

Regarding the expert's consultation, it was initially applied on experts internal to PLASMAR project, mostly on a group-based consensus decision. This approach aimed not only the achievement of weights, but also the test and adaptations, if necessary, of the analysis for each specific sector.

Furthermore, this consultation aimed to be complemented by experts external to the PLASMAR project. This consultation took place at the Azores and the selection was based on the governmental experts' database. Nonetheless, it is important to highlight the need to expand this survey in the future to the entire Macaronesia and to a wide range of stakeholder's for further representativity in the results.

Regarding the methodology employed for the final weight definition, Escobar and Moreno-Jiménez (2007), citing Aczel and Saaty (1983) and Saaty (1980), observes that several aggregation procedures are proposed on literature, nonetheless the most commonly adopted is the geometric mean once it satisfies the unanimity condition (Pareto principle) and homogeneity condition.

Furthermore Ossadnik et al. (2016) highlights the need to consider the group structure in the aggregation technique. The author observes that in the case the group structure is homogeneous and decision makers are willing to act like a single individual, the aggregation of individual judgments (AIJ) is recommended. Considering that the stakeholders' selection was taken on a sectoral basis and that it only considers experts on the specific field, the AIJ will be considered in this analysis.

3 Results

The weight definition of each maritime sector will be further discussed in this section.

3.1 Aquaculture

PLASMAR expert consultation was taken to one individual, added to two experts consulted individually at the Azores. The geometric mean was taken for each entrance of the comparison matrices. The final weights can be observed in Table 2.

The parameters that present the highest values for this sector are on the Good Environmental Status and Oceanography clusters, they are: Biodiversity (Benthic habitats), Overall ocean temperature, Biodiversity (birds), and currents. The parameters that presented the lowest values are: Marine Protected Areas and several CORINE-based coastal land uses, they are: agriculture, port areas and industrial areas.

Table 2: Aquaculture sector final weight.

Cluster	Criteira	PLASMAR	EXTERNAL 1	EXTERNAL 2	Final weight
Good Env	ironmental Status				
	Biodiversity (Benthic habitats)	10 .62877	3.9152	19.6484	13.25018
	Biodiversity (Mammals)	4. 226503		9.96 <mark>9633</mark>	5.365483
	Biodiversity (Birds)	4. 238919	<mark>3</mark> .943961	7.5 <mark>75267</mark>	6.944937
	Non-indigenous species	4.764705	6.265497	4.470628	6.377168
	Eutrophication (Dissolved oxygen)	1.81068	8. ₁₀₁₂₅	1.463114	3.668818
	Eutrophication (Nutrients)	2 .562569	12.83415	1.463114	4.917574
	The sea floor integrity	0.834	2.537105	5.333005	2.824793
	Marine litter	0.761368	19.31566	6.451492	6.43137
Maritime	Protected Areas	2.127927	0.718787	1.371442	1.27996
Coastal La	and Use				
	CORINE (Urban areas)	1.772627	0.828369	3.05608	2.098576
	CORINE (Industrial areas)	0.734281	0.555149	4.858634	1.571685
	CORINE (Port areas)	0.308705	2.570147	2.22978	1.508314
	CORINE (Agriculture)	0.433225	1.906039	1.040984	1.129357
	Distance to the coast	2.42539	4.223543	0.460646	2.184135
	Point and lineal coastal presures	1.232889	4.223543	1.292051	2.413014
Oceanogr	aphy				
	Overal ocean temperature	15.69744	8.71511	0.97591	6.946318
	Currents	9.541 356	3.548124	3.899662	6.937667
	Waves	5 .957021	1.427845	4.065677	4.256015
	Depth/bathymetry	2 .522382	1.427845	9.275698	4.134907
	Wind	1.37642	1.427845	2.866862	2.362732
Current M	Naritime Uses				
	Maritime traffic lanes	1.01848	4.82989	3.591831	3.545116
	Aquaculture facilities	2.844428	2.49131	0.420369	1.847995
	Submarine outfalls	4.822617	1.328047	2.267353	3.090946
	Artificial reefs	8.886995	0.545758	0.976185	2.305397
	Seaweed cultivation	8.47031	0.89905	0.976185	2.607541

3.2 Fisheries

In the fisheries sector the survey was taken within the PLASMAR experts' group only, through a consensus-based decision. It is highly advisable to consult external experts in the future. The PLAMSAR weights can be observed in Table 3.

The parameters that present the highest values for this sector are on the Good Environmental Status cluster, they are: The population of commercial fish species, elements of food web, biodiversity (Marine and coastal habitats). The parameters that presented the lowest values are: Fisheries/Area efforts, the CORINE port-areas, and several oceanographic parameters.

Table 3: Fisheries sector final weight.

Cluster	Criteira	PLASMAR
Good En	vironmental Status	_
	Biodiversity (Marine and coastal habitats)	13.50171
	Biodiversity (Mammals)	1.405155
	Biodiversity (Birds)	1.429261
	Biodiversity (Turtles)	3.105014
	The population of commercial fish species	17.06702
	Elements of food webs	17.06702
	The sea floor integrity	9.39556
	Marine litter	4.722678
Maritime	Protected Areas	4.053757
Coastal L	and Use (CORINE: port areas)	0.499363
Oceanog	raphy (depth/bathymetry)	
	Overal ocean temperature	0.430414
	Sea surface/sea bottom temperature	0.409481
	Sea salinity	0.409481
	Mixed layer thickness	0.409481
	Currents	2.871043
	Waves	2.983245
	Depth/bathymetry	0.723811
	Wind	2.983245
Current l	Maritime Uses	
	Aquaculture facilities	3 .823518
	Fishery areas/efforts	0.335123
	Submarine outfalls	0.934775
	Research area	3 .541501
	Artificial reefs	3.541501
	Diving	3.541501
	Dumping	0.815354

3.3 Maritime Transport

In the maritime transport sector, the survey was taken within the PLASMAR experts' group, through a consensus-based decision. Furthermore, one external expert at the Azores was consulted. The geometric mean was taken for each entrance of the comparison matrices. The final weights can be observed in Table 4.

The parameters that present the highest values for this sector are: Aquaculture facilities and Depth/bathymetry. The parameters that presented the lowest values are on the Good Environmental Status and Coastal land use cluster, they are: Eutrophication (nutrients), eutrophication (dissolved oxygen), the seafloor integrity, CORINE (airports).

Table 4: Maritime transport sector final weight.

				Final
Cluster	Criteira	PLASMAR	EXTERNAL 1	weight
Good Env	vironmental Status	_	_	Weight
	Biodiversity (Mammals)	6.333007	0.895937	2.982789
	Biodiversity (Turtles)	1.863281	0.895937	1.594165
	Non-indigenous species	3.09592	1.764463	2.836669
	Eutrophication (Dissolve	1.58434	0.198701	0.662946
	Eutrophication (Nutrien	1.162654	0.211979	0.625236
	Eutrophication (Water t	1.264903	0.534122	1.014704
	The sea floor integrity	0.827222	0.46896	0.757921
	Concentrations of conta	4.811293	0.946389	2.564851
	Marine litter	2.934205	2.97864	3.674495
	Energy, including under	12.27 897	1.886289	6.155986
Maritime	Protected Areas	2.436491	2.306233	2.552231
Coastal L	and Use			
	CORINE (Industrial area	0.48936	14.82421	3.381703
	CORINE (Port areas)	1.982018	21.59208	8.244512
	CORINE (Airports)	0.158439	3.176459	0.890233
	Distance to the coast	0.519643	5.439121	2.093203
Oceanog	raphy			
	Waves	3 .512245	4.67562	4.964289
	Depth/bathymetry	17.60892	11.3 6778	17.38863
	Wind	1.553442	1.905376	2.109995
Current I	Maritime Uses			
	Aquaculture facilities	18.61091	12.75476	19.82464
	Aggregate extraction (dr	11.14 581	3.71745	8.030307
	Nautical sports (Windsu	2 .913463	1.066287	2.234476
	Fishery areas/efforts	2.913463	6.393203	5.416014

3.4 Offshore Wind Energy

The offshore wind energy sector survey was taken to one individual within PLASMAR experts, added to two experts consulted individually at the Azores. The geometric mean was taken for each entrance of the comparison matrices. The final weights can be observed in Table 5.

The parameters that present the highest values for this sector are: Biodiversity (birds) and Marine Protected Areas. The parameters that presented the lowest values are: Marine Protected Areas and several CORINE-based coastal land uses, they are: Fishery area/efforts, seaweed cultivation, aquaculture facilities and biodiversity (cephalopods).

Table 5: Offshore wind energy sector final weight.

Cluster	Criteira	PLASMAR	EXTERNAL 1	EXTERNAL 2	Final weight
Good Env	ironmental Status				
	Biodiversity (Benthic habitats)	21 .22567	2.51293	1.209612	5.176694
	Biodiversity (Mammals)	7.0 18654	3.597172	3.605939	5.556526
	Biodiversity (Birds)	12.20 373	15.30534	4.682695	12.70951
	Biodiversity (Cephalopods)	1.535602	2.969774	0.665879	1.820437
	Non-indigenous species	3.141943	5.442448	3.605939	4.699876
	Population of commercial fish species	6.818524	5.522201	2.36893	5.545243
	Energy,including underwater noise data	9.994481	2.366771	3.332337	5.62561
Maritime	Protected Areas	8.3 03117	11.52389	13.64338	12.7029
Coastal La	and Use				
	CORINE	1.264053	7.379031	2.197259	3.332543
	Distance to the coast	1.264053	7.379031	10.98629	5.698569
Oceanogr	aphy				
	Depth/bathymetry	8 .848371	0.576312	6.535914	3.933975
	Wind	8.848371	2.881559	13.07183	8.475491
Current N	Naritime Uses				
	Aquaculture facilities	0.531953	1.042477	4.87057	1.668405
	Fishery areas/efforts	0.25144	1.179214	4.87057	1.344143
	Maritime traffic lanes/intesivity maps	2.416032	5.058539	4.87057	4.756717
	Aggregate extraction (Dredging / Sand e	0.71665	2.862885	4.87057	2.589169
	Cables	1.95386	6.466882	4.87057	4.904431
	Military area	3.219411	15.2062	4.87057	8.042388
	Seaweed cultivation	0.444087	0.727347	4.87057	1.417376

3.5 Aggregate Extraction

In the aggregate extraction sector, the survey was taken within the PLASMAR experts' group, through a consensus-based decision. Furthermore, external experts at the Azores were consulted individually. The geometric mean was taken for each entrance of the comparison matrices. The final weights can be observed in Table 6.

The parameters that present the highest values for this sector are: Marine Protected Areas and CORINE (beaches, dunes and sand). The parameters that presented the lowest values are: Biodiversity (mammals) and energy.

Table 6: Aggregate extraction sector final weight.

Cluster	Criteira	PLASMAR	EXTERNAL 1	EXTERNAL 2	Final weight
Good En	vironmental Status				
	Biodiversity (Benthic Habitats)	7.652249	11.96397	23.32034	14.97
	Biodiversity (Mammals)	0.774352	7.2265	2.723949	2.59
	The population of commercial fish species	1.660048	8.129251	5.916462	4.62
	The sea floor integrity	11.62513	1.707446	6.188571	5.63
	Permanent alteration of hydrographical conditions	3.945016	31.78874	2.741798	7.92
	Energy, including underwater noise data	2.153626	3.40834	2.228733	2.66
Maritime	Protected Areas	38.07021	8.219503	30.47012	30.10
Coastal L	and Use (CORINE: beaches, dune and sand)	22.25836	21.31769	11.47088	21.68
Oceanog	raphy (depth/bathymetry)	11.861	6.238563	14.93914	9.84

3.6 Maritime Tourism

The maritime tourism sector did not present until the date of this report any expert consultation. It is recommended to apply the consultation to PLASMAR experts' group and to external experts', as recommended in this methodology.

The development and application of a multicriteria analysis to support maritime spatial zoning/ Subsidizing the identification of areas for Blue Growth

4 INDIMAR

The weights developed through this methodology intend to feed the INDIMAR platform (http://www.geoportal.ulpgc.es/indimar/). The final weights given by the multicriteria analysis will be adopted in the platform in order to spatially analyse each sector in Macaronesia.

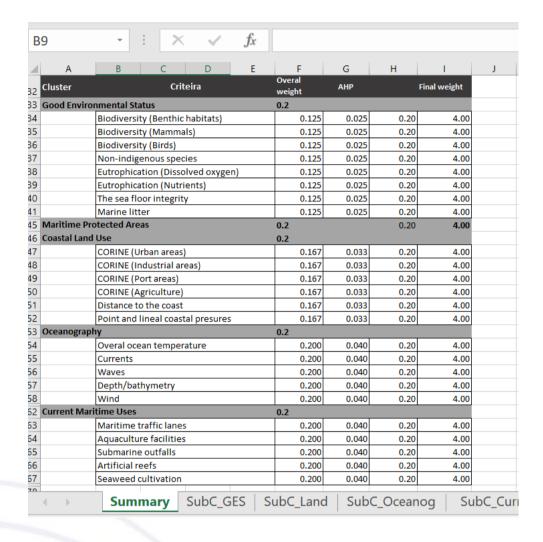
It is important to notice that each cluster of parameters presented specific negative and positive classifications given in the significance analysis taken in the previous phase. This classification might be translated in INDIMAR through the colour classification existent for each parameter.

Furthermore, it is important to observe that each sector might present specific spatial data demands that might be considered in the spatialization.

5 References

Escobar, M. T. and Moreno-Jiménez, J. M. (2007) 'Aggregation of Individual Preference Structures in Ahp-Group Decision Making', *Group Decision and Negotiation*, 16, pp. 287–301. doi: 10.1007/s10726-006-9050-x.

Ossadnik, W., Schinke, S. and Kaspar, R. H. (2016) 'Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis'. Springer Netherlands, pp. 421–457. doi: 10.1007/s10726-015-9448-4.


Shinoda, Deborah; Calado, Helena; Vergílio, Marta; Kramel, Diogo; Caña Varona, Mario. (2018) 'Identification of Areas for Blue Growth: Detailed MCDA Draft Methodology'. *University of Azores*. Report prepared as part of PLASMAR Project (co-financed by ERDF as part of POMAC 2014-2020). 30 pp.

Shinoda, Deborah; Calado, Helena; Vergílio, Marta. (2019) 'Identification of Areas for Blue Growth: Advances on the MCDA Methodology'. *University of Azores*. Report prepared as part of PLASMAR Project (co-financed by ERDF as part of POMAC 2014-2020). 19 pp.

Annex 1

1. PLASMAR pairwise comparison model for Aquaculture Finfish

Excel table name: PLASMAR pairwise comparison model_ FINAQUAC

2. PLASMAR pairwise comparison model for Fisheries

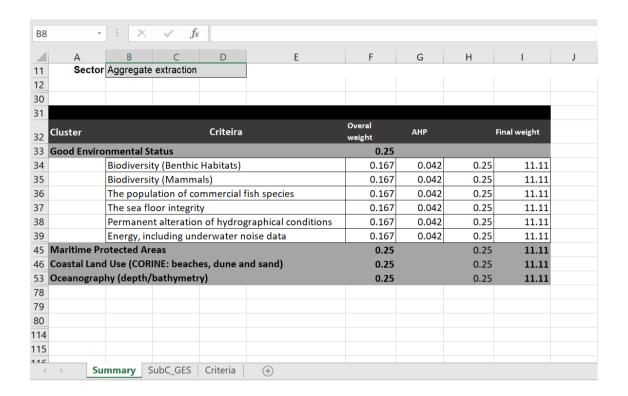
Excel table name: PLASMAR pairwise comparison model_ FISH

B8	· : × ✓ fx					
A	B C D E	F	G	Н	1	J
31						
Cluster	Criteira	Overal weight	AHP	Fi	nal weight	
33 Good En	vironmental Status	0.2				
34	Biodiversity (Benthic habitats)	0.125	0.025	0.20	4.17	
5	Biodiversity (Mammals)	0.125	0.025	0.20	4.17	
6	Biodiversity (Birds)	0.125	0.025	0.20	4.17	
37	Biodiversity (Turtles)	0.125	0.025	0.20	4.17	
8	The population of commercial fish species	0.125	0.025	0.20	4.17	
89	Elements of food webs	0.125	0.025	0.20	4.17	
10	The sea floor integrity	0.125	0.025	0.20	4.17	
11	Marine litter	0.125	0.025	0.20	4.17	
5 Marine I	Protected Areas	0.2		0.20	4.17	
6 Coastal I	Land Use (port areas)	0.2		0.20	4.17	
Oceanog	graphy	0.2				
54	Sea surface temperature	0.125	0.025	0.20	4.17	
5	Sea bottom temperature	0.125	0.025	0.20	4.17	
6	Sea salinity	0.125	0.025	0.20	4.17	
7	Mixed layer thickness	0.125	0.025	0.20	4.17	
8	Currents	0.125	0.025	0.20	4.17	
9	Waves	0.125	0.03	0.20	4.17	
50	Depth/bathymetry	0.125	0.03	0.20	4.17	
51	Wind	0.125	0.03	0.20	4.17	
3 Current	Maritime Uses	0.2				
54	Aquaculture facilities	0.167	0.033	0.20	4.17	
55	Fishery areas/efforts	0.167	0.033	0.20	4.17	
66	Submarine outfalls	0.167	0.033	0.20	4.17	
57	Research area	0.167	0.033	0.20	4.17	
8	Artificial reefs	0.167	0.033	0.20	4.17	
59	Diving	0.167	0.033	0.20	4.17	
79						
4 >	Summary SubC_GES Sub	C_Ocean	og S	ubC_Curr	ent Marit	ime

3. PLASMAR pairwise comparison model for Marine Transport

Excel table name: PLASMAR pairwise comparison model_ TRASNPORT

B8		· × < fx					
4	Α	B C D E	F	G	Н	1	J
0							
1							
2 Clu	ıster	Criteira	Overal weight	АНР		Final weight	
3 Go	od Enviro	nmental Status	0.2				
4		Biodiversity (Mammals)	0.100	0.020	0.20	4.55	
5		Biodiversity (Turtles)	0.100	0.020	0.20	4.55	
6		Non-indigenous species	0.100	0.020	0.20	4.55	
7		Eutrophication (Dissolved oxygen)	0.100	0.020	0.20	4.55	
8		Eutrophication (Nutrients)	0.100	0.020	0.20	4.55	
39		Eutrophication (Water transparency)	0.100	0.020	0.20	4.55	
10		The sea floor integrity	0.100	0.020	0.20	4.55	
11		Concentrations of contaminants (heavy metals and	0.100	0.020	0.20	4.55	
2		Marine litter	0.100	0.020	0.20	4.55	
13		Energy, including underwater noise data	0.100	0.020	0.20	4.55	
15 M a	ritime Pr	otected Areas	0.2		0.20	4.55	
16 Co a	astal Land	Use	0.2				
17		CORINE (Industrial areas)	0.250	0.050	0.20	4.55	
18		CORINE (Port areas)	0.250	0.050	0.20	4.55	
19		CORINE (Airports)	0.250	0.050	0.20	4.55	
0		Distance to the coast	0.250	0.050	0.20	4.55	
3 O cc	eanograp	hy	0.2				
54		Waves	0.333	0.067	0.20	4.55	
55		Depth/bathymetry	0.333	0.067	0.20	4.55	
66		Wind	0.333	0.067	0.20	4.55	
52 Cui	rrent Mar	itime Uses	0.2				
53		Aquaculture facilities	0.250	0.050	0.20	4.55	
54		Aggregate extraction (dredging/sand extraction)	0.250	0.050	0.20	4.55	
55		Nautical sports (Windsurfing/surf)	0.250	0.050	0.20	4.55	
56		Fishery areas/efforts	0.250	0.050	0.20	4.55	
75							
10		Summary SubC GES SubC La					rren


4. PLASMAR pairwise comparison model for Offshore Wind Energy

Excel table name: PLASMAR pairwise comparison model_ ENERGY

B8		T	×	\checkmark f_x								
4	Α	В	С	D		Ε		F	G	Н	1	J
31												
32	Cluster			Criteira	a			Overal weight	АНР		Final weight	
33 (Good Envi	ronmental S	tatus					0.2				
34		Biodiversity (Benthic habitats)						0.142857	0.029	0.20	5.26	
35		Biodiversity (Mammals)						0.142857	0.029	0.20	5.26	
36		Biodiversity (Birds)						0.142857	0.029	0.20	5.26	
37		Biodiversity (Cephalopods)						0.142857	0.029	0.20	5.26	
38		Non-indigenous species						0.142857	0.029	0.20	5.26	
39		Population of commercial fish species						0.142857	0.029	0.20	5.26	
40		Energy,including underwater noise data						0.142857	0.029	0.20	5.26	
45 I	Maritime Protected Areas							0.2		0.20	5.26	
46 (Coastal La	nd Use						0.2				
47		CORINE						0.500	0.100	0.20	5.26	
48		Distance to the coast						0.500	0.100	0.20	5.26	
54 (Oceanogra	ıp <u>hy</u>						0.2				
55		Depth/bathymetry						0.500	0.100	0.20	5.26	
56		Wind						0.500	0.100	0.20	5.26	
63 (Current M	aritime Uses						0.2				
64		Aquaculture facilities						0.143	0.029	0.20	5.26	
65		Fishery areas/efforts						0.143	0.029	0.20	5.26	
66		Maritime traffic lanes/intesivity maps						0.143	0.029	0.20	5.26	
67		Aggregate extraction (Dredging / Sand extraction)					on)	0.143	0.029	0.20	5.26	
68		Cables						0.143	0.029	0.20	5.26	
69		Military area						0.143	0.029	0.20	5.26	
70		Seaweed cultivation						0.143	0.029	0.20	5.26	
79												

5. PLASMAR pairwise comparison model for Aggregate Extraction

Excel table name: PLASMAR pairwise comparison model_ MINERAL

6. PLASMAR pairwise comparison model for Diving in Maritime Tourism

Excel table name: PLASMAR pairwise comparison model_ TOURdive

J54	4	· : ;	×	fx						
4	Α	В	С	D	Е	F	G	Н	1	J
30										
31										
32	Cluster Criteira					Overal weight	AHP			
33	Good Envi	ronmental S	tatus			0.2				
34		Biodiversi	ty (Benthi	ic habitats)		0.200	0.040	0.20	7.14	
35		Biodiversi	ty (Mamn	nals)		0.200	0.040	0.20	7.14	
36		Non-indig	enous spe	ecies		0.200	0.040	0.20	7.14	
37		Elements	of food w	eb		0.200	0.040	0.20	7.14	
38		The seaflo	or integri	ty		0.200	0.040	0.20	7.14	
45	Maritime F	Maritime Protected Areas						0.20	7.14	
46	Coastal La	nd Use				0.2				
47		CORINE (Urban areas)				0.333	0.067	0.20	7.14	
48		CORINE (P	CORINE (Port areas)				0.067	0.20	7.14	
49		Distance t	o the coa	st		0.333	0.067	0.20	7.14	
53	Oceanogra	phy				0.2				
54		Overal oce	ean tempe	erature		0.333	0.067	0.20	7.14	
55		Sea surfac	e/Sea bot	tom tempe	erature	0.333	0.067	0.20	7.14	
56		Currents				0.333	0.067	0.20	7.14	
62	Current Ma	aritime Uses	3			0.2				
63		Artificial reefs					0.100	0.20	7.14	
64	Wreck					0.500	0.100	0.20	7.14	
78										
79										
4	>	Summary	SubC_G	SES Sub	C_Land	SubC_Ocea	nog Si	ubC_Currer	nt Maritime	Uses