
HLS code refactoring using SDSoC applied to
multiclass SVM classification of Hyperspectral Images

Abelardo Báez Quevedo, Himar Fabelo, Samuel Ortega, Gustavo M. Callicó, Roberto Sarmiento
Research Institute for Applied Microelectronics

(IUMA), University of Las Palmas de Gran Canaria
(ULPGC), Las Palmas de Gran Canaria (Spain)

{abaez, hfabelo, sortega, gustavo, roberto}@iuma.ulpgc.es

Abstract— Nowadays, High-Level Synthesis (HLS) methods
and tools are a highly relevant area in the strategy of several
leading companies in the field of System on Chips (SoCs) and
Field Programmable Gate Arrays (FPGAs). HLS allows FPGA
manufactures to widen the target market, smoothing the existing
barriers that prevented potential users from adopting
reconfigurable hardware technologies and easing the work of
system developers, who benefit from integrated and automated
design workflows, considerably reducing the “time to market”
constrain. On the other hand, although many advances have been
made in this research field, there are some uncertainties about
the quality and performance of the designs that results from the
use of HLS processes. Since HLS tools increase the level of
abstraction, it is necessary to evaluate if the possible performance
losses compensate the design time reduction. For these reasons, it
is highly important to know how to write efficient code for HLS
tools, being mandatory a good understanding of the HLS
methods to achieve the best results. In this paper, an optimization
of the HLS methodology by code refactoring using SDSoCTM
(Software-Defined System-On-Chip) is presented. Several options
were analyzed for each alternative through the code refactoring
of a multiclass Support Vector Machine (SVM) classifier written
in C, using the programmable logic of a Zynq®-7000 SoC device
by Xilinx. Thus, a quantitative evaluation of the results achieved
is presented order to provide designers with a methodology that
will speed up their implementations.

Keywords—High-Level Synthesis, HLS, SDSoC, Support vector
mcahines, SVM, hardware friendly code, Zynq

I. INTRODUCTION

High-level synthesis (HLS) methodologies allow hardware
(HW) designers to increase the abstraction level and accelerate
the automation for the synthesis and verification of the design
process. The current raise in the complexity of the applications
and the increment of the capabilities of silicon technologies, as
well as the so called time to market constrain, will make HLS
methodologies and tools of mandatory use in the near future
[1]. Due to the multiple solutions that multiprocessor system-
on-chip (MPSoC) manufacturers are commercializing
nowadays, it is strictly necessary to provide improvements in
the development of techniques and methodologies that can
deal with the multiple implementations possibilities by using a
high-level design [2].

Some implementations of SVM in FPGAs have been
released in different applications, like imaging processing,
automotive, medical applications and data signal processing

among others. These implementations use different platforms
depend on the application and the desired accuracy and
timing. For readers who are interested in different
implementations using different devices and including not
only a training implementation but also a classification
implementation, we recommend [3]. Another interesting
research from the same authors is a SVM classifier for
melanoma detection using a Zynq device (ZC7020) and HLS
methodology, but in this case the dataset are not HSIs
(HyperSpectral Images), the model used in that research
generates an output of the class as 1 (melanoma), -1 (non-
melanoma) [4] and the implementation depend on directives
used directly in Vivado HLS. Finally, it is relevant taking into
account that in every implementation the communication
between the software and the hardware part in an embedded
system represents the bottleneck to save. For example, in [5]
the different stages of a LS-SVM implementation using a
Zynq device is approached separating the code of the
algorithm is different parts, depend on the communications
necessary for each part, then some parts are suitable to
compute using the ARMs than implementing them in the PL
part.

In this paper, an evaluation of code refactoring and SDSoC
design methodology and implementation is performed. To test
the implementation design flow, the SVM codes are modified
to increase the speedup. In Section 2, the most relevant
specifications of the research work are described, like the
device specifications (Zynq), SDSoC tool, and the basic SVM
main features. In Section 3, a summary of the images and their
features are detailed. In Section 4, a detailed explanation of
code refactoring of the binary and the multiclass SVM
classification algorithms is provided, together with an
explanation of the methodology. This paper concludes
including some results in Section 5 and exposing the
conclusions in Section 6.

II. TOOLS AND PLATFORMS

A. Zynq SoC by Xilinx

Zynq is a SoC provided by Xilinx [6]. All versions have
the same PS features, a dual-core ARM Cortex A9 (ARMv7-A
architecture), 32KB Level 1 cache for instructions, and 32KB
Level 1 cache for data. The two cores share a 512KB L2
cache, and a 256KB on-chip memory (OCM). The PL part can

1 20th November

130

access the DDR memory, the OCM memory, and the L2 cache
in the PS via AXI interfaces, with coherency behaviour
through the Accelerated Coherency Port (ACP). The resources
of the PL part depend on the version selected, in this paper
two Zynq versions were selected, a ZC7020 in a Zedboard
Evaluation Kit [7] and the ZC7045 in a Xilinx Zynq-7000 SoC
ZC706 Evaluation Kit [8]. These devices prevent the designer
from wasting too much hardware or software design time,
increasing the communication performance between the two
parts by using the provided communication interfaces, but
sometimes some modifications are required to get a suitable
HLS implementation. The transactions between the PL and the
PS part suppose a relevant challenge for the designer and
dramatically affect the final system performance.

B. SDSoC by Xilinx

SDSoC is a tool developed by Xilinx that provides the
designer with the possibility of creating complete embedded
systems from C or C++ code using Zynq devices as the target
system. This kind of tools mean a new level over the
traditional HLS tools and it is of interest in the research
community [9], [10]. SDSoC includes a system compiler that
analyses the code in order to determine the data flow between
the PS and PL part and provides the designer the complete
system; invokes Vivado to create the system and Vivado HLS
to create the IPs for the desired accelerated functions, which
includes the accelerated functions and the Data Movers IP for
transaction data. In order to provide an efficient time
implementation, the tool generates a thread for each
accelerated function ensuring synchronization between
software and hardware threads. The designer can configure the
communication between PL and PS part in the code with
SDSoC pragma directives to meet the application and solution
constrains and adds Vivado HLS directives to create the
desired accelerated IP.

The methodology applied in this paper includes the
methodology proposed by Xilinx [11] with some
modifications creating a well-defined six-step design flow as
shown in Fig. 1. After the code verified in ARM checking the
results, the first step in the design flow is the profiling stage,
in this step a profiling tool is needed to detect the functions
that must be accelerated. This step can be carried out with
different profiling tools, like Valgrind for memory usage and
gprof for timing.

Because SDSoC uses Vivado HLS, the next step includes
the optimization suggested by the Vivado HLS and SDSoC
guidelines. The next step consists of code refactoring,
restructuring the source code for an improvement of the
latency. In some cases this step is mandatory if an speedup is
desired, and without this code refactoring step, the accelerator
could not be affordable. This step is the main contribution of
this paper, and it is explained in detail in section IV.

The next step is to obtain the performance estimation
provided by the tool, and check if the result is the desired one.
In this step a detailed report of resources and speedup of
accelerated functions is provided and an iteration can be done

to improve the expected implementation. The final iteration of
this step depends on the resources of the PL part, and the
resources used will be shown in the HLS report obtained in the
next step.

Fig. 1. SDSoC Design Flow.

This step is driven by constraints, SDSoC compiler
directives and code refactoring, this step have a high impact in
the quality of the final implementation.

The designer can use also Vivado HLS directives with
SDSoC directives. The directives give instructions to the
compiler to meet the characteristics of the hardware
architecture and the desired timing constrains (e.g. use of
pipelines to implement loops, type of communication channels
for data-flow implementations (Data Movers), FPGA
resources to be used for variable storage, etc.). To improve the
results is necessary to take into account the inferred
implementation of the compiler tool.

The final step lets the designer check the estimated
performance in the board selected. SDSoC invokes Vivado
HLS in order to generate the HDL implementation files for the
accelerated functions in HDL (VHDL or Verilog), and several
comprehensive synthesis reports.

The information provided in the synthesis reports helps the
designer to meet the performance and resource-usage
requirements for a specific application. SDSoC also generates
all the files needed to run the application in the embedded
system, the bitstream for the PL part, the connection between
PS and PL part (Data Movers), and the files of the OS in
Linux or FreeRTOS with the executable binary (ELF) for
running the application. This final step is mandatory due to the
difference between the real and the estimated performance
because real performance usually is lower than the estimated
one.

C. Support Vector Machines Classifier

Support Vector Machines (SVMs) algorithm is a binary
classification approach proposed by Vapnik in 1979 [12]. The
main goal of this algorithm is to find a hyperplane that
separates two classes according to its features with maximum
margin. We are given a set of data 𝑥 (𝑥 ∈ ℝௗ) and labels

1.5 FPGA design

131

associated to this data (𝑦 ∈ ℝ). Each label provides
information about data 𝑥, if 𝑦 = 1 the class is positive and if
𝑦 = −1 the class is assumed to be negative. For example, if
we are dealing with a diagnostic test, a positive class could
mean 'disease' while a negative can represent 'non disease'.
According to the input data 𝑥, we can write the following
equation:

𝑦ො = 𝑥 · 𝑤 + 𝑏 (1)

Where 𝑦ො is the predicted class for the instance 𝑥, and the
parameters 𝑤 and 𝑏 define the maximum margin hyperplane
(𝑤 ∈ ℝௗ and 𝑏 ∈ ℝ). These parameters, 𝑤 and 𝑏, are learned
from a training set, consisting of tuples of data and labels
(𝑥 , 𝑦). One of the main features of the SVM algorithm is that
it can be easily generalized for non-linear data [13], which is
useful for complex data where a linear separation hyperplane
is not capable to separate data accurately. Similarly to other
binary classifiers, SVM can be extended to a multiclass
classifier by combining several binary classifiers [14].

SVMs are kernel-based supervised classifiers that have
been widely used in the classification of HS (HyperSpectral)
images [15]. In the literature, SVMs achieve good
performance for classifying HS data, even when a limited
number of training samples are available [16]. Due to its
strong theoretical foundation, good generalization capabilities,
low sensitivity to the curse of dimensionality, and ability to
find global classification solutions, many researchers usually
prefer SVMs instead of other classification algorithms for
classifying HS images [17].

In this paper, we cover the implementation of the SVM
classification stage. The determination of the parameters from
data is out of the scope of this work. In this sense, we
employed an implementation of the basic SVM binary
classifier to perform the experiments and optimizations. Then,
a multiclass SVM classifier implementation based on the one-
vs-one method was used apply and evaluate the optimizations
proposed with the binary algorithm. The pseudocode of the
multiclass SVM algorithm is presented in Algorithm 1. This
algorithm was split in 4 different stages: 1) Variables
declaration and initialization; 2) Binary probability
computation; 3) Multiclass probability computation; 4) Output
classification map generation.

III. IN-VIVO HS HUMAN BRAIN CANCER DATABASE

In this work, the HS data employed to evaluate the
performance of the implementations belong to an in-vivo HS
human brain cancer database [18]. This database was
generated intraoperatively using an HS acquisition system
developed in [15] during the execution of the HELICoiD
project [19]. Particularly, three HS images that belonged to
three adult patients undergoing craniotomy for resection of
intra-axial brain tumor at the University Hospital Doctor
Negrin of Las Palmas de Gran Canaria (Spain) were
employed. The patients had a confirmed grade IV
glioblastoma tumor by histopathology. The study protocol and
consent procedures were approved by the Comité Ético de

Investigación Clínica-Comité de Ética en la Investigación
(CEIC/CEI) of the University Hospital Doctor Negrin and
written informed consent was obtained from all subjects. HS
data from these images were labeled as tumor and normal
tissue following the method explained in [20]. The HS dataset
are formed by 128 (Fig. 2.a) spectral bands, respectively,
covering the spectral range between 450 and 900 nm. Fig. 2.b
shows the synthetic RGB representations of the HS cubes
selected for this study.

 1) Variables declaration and initialization
𝑥 → 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦
𝑊 = [𝑤ଵଶ, 𝑤ଵଷ, … , 𝑤] → 𝑤 − 𝑣𝑒𝑐𝑡𝑜𝑟𝑠
𝐵 = [𝑏ଵଶ, 𝑏ଵଷ, … , 𝑏] → 𝑏𝑖𝑎𝑠
𝑆𝑎 = [𝑆𝑎ଵଶ, 𝑆𝑎ଵଷ, … , 𝑆𝑎] → 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎
𝑆𝑏 = [𝑆𝑏ଵଶ, 𝑆𝑏ଵଷ, … , 𝑆𝑏] → 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑏

2) Binary probability computation:
1 for 𝑖 = 1 to 𝑛௦௦ − 1 do
2 for 𝑗 = 𝑖 + 1 to 𝑛௦௦ − 1 do
3 𝑑 = 𝑤 · 𝑥 + 𝑏_𝑖𝑗

4 𝑃 =
ଵ

ଵା
(ೕ·ೄೌೕశೄ್ೕ)

5 𝑃 = 1 − 𝑃_𝑖𝑗
6 end
7 end

3) Multiclass probability computation:

8 𝑃𝑐ଵ = ⋯ = 𝑃𝑐 =
ଵ

ೌೞೞ

9 for 𝑖 = 1 to 𝑛௦௦ do
10 𝑄 = ∑ 𝑃

ଶೌೞೞ
ஷ

11 𝑄 = 𝑄 = −𝑃 ∗ 𝑃
12 𝑄𝑝 = ∑ 𝑄 ∗ 𝑝

ೌೞೞ
ୀଵ

13 end
14 𝑝்𝑄𝑝 = ∑ 𝑄𝑝 ∗ 𝑝

ೌೞೞ
ୀ

4) Output classification map generation:
15 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1 to 100 do
16 if ∀ 𝑖 ∈ 𝑛௦௦| 𝑄𝑝 − 𝑝்𝑄𝑝 < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛; 𝒃𝒓𝒆𝒂𝒌
17 for 𝑖 = 1 to 𝑛௦௦ do

18 𝑑𝑖𝑓𝑓 =
ିொାொ

ொ

19 𝑃 = 𝑃 + 𝑑𝑖𝑓𝑓

20 𝑝்𝑄𝑝 =
ொାௗ∗(ௗ∗ொାଶ∗ொ)

(ଵାௗ)మ

21 for 𝑗 = 1 to 𝑛௦௦ do

22 𝑄𝑝 =
ொೕାௗ∗ொೕ

ଵାௗ

23 𝑃𝑐 =
ೕ

ଵାௗ

24 end
25 end
26 End
27 𝑃𝑐 = [𝑃𝑐ଵ, 𝑃𝑐ଶ, … , 𝑃𝑐] → 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

Algorithm 1: Multiclass SVM Classification algorithm

(a) (b)

Fig. 2. HS in-vivo brain human database. (a) Example of the spectral
signatures of the HS dataset. (b) Synthetic RGB representations of the HS
images, where the data were labelled and extracted to conform the HS
database employed in this work. From up to bottom: OP8C1, OP12C1 and
OP20C1.

1 20th November

132

IV. CODE REFACTORING

The starting point of this work are two different software
implementations of the SVM classifier. The first one is an own
implementation of a binary SVM classifier, and the second
one is a one-vs-one multiclass SVM classifier. The first
version of the binary classifier was written in C++ language
and modified in plain C following a hardware friendly way,
however, the one-vs-one classifier was written in plain C but
in a non-hardware friendly way. One of the goals in this
research is to take advantage of the methodology used for the
binary classifier in the one-vs-one classifier.

The main goal of this work is to avoid an excessive
number of modifications that are dependent on the tool, in
order to reuse the code in the future with different HLS tools.
The reference code has been modified until the final
implementation showed clear indications of reaching the
performance objectives. After each change or restructuration
in the code, a serial verification was performed in order to
check the results. These modifications were applied to the
binary classifier code. Once the optimal modification was
reached, the same methodology to the one-vs-one classifier
code was applied.

A. Improving on transferring data

If the accelerated function only process one pixel in each
iteration, not speedup is obtained even with the pragmas of the
tool. In order to improve the acceleration of the classification
function, several pixels are transferred between PS and PL
part in the same clock cycle. Due to the 533 MHz DDR3
SODIMM bandwidth constrain, an optimal amount of data
must be selected in order to avoid wasted data cycles. Because
the implemented system not always can achieve the total
bandwidth, it is necessary to find the highest data transfer near
to the bandwidth constrain. It is necessary to take into account
that the amount of pixels is not always an integer multiple of
the optimal amount of pixels for a data cycle, so zero padding
is a good option to avoid calculating non-existent values. Fig.
3 shows the re-factored code applied in order to improve the
transferred data using the proposed modification, where
BLOCKSIZE is the amount of pixels in each data transfer,
BANDS is the number of bands values for each pixel, PIXELS
is the number of pixels in the image and
inputInter/outputInter are the arrays for intermediate
input/output data transfer.

B. Improving on processing data

The classification function has a temporal dependency
because the actual value at each iteration depends on its value
in the previous iteration. Each classification value for a pixel
(clValue) is calculated adding the bias data and then
accumulating the result of multiplying the weight of every
band obtained in the training classification (bandWeight), by
the value of the pixel in that band (bandWeight). So pipelining
is not possible to be used in the function given in (2), and
pipeline pragma do not improve the speedup.

 clValuebandValue · bandWeight

int nElemBlocks = BLOCKSIZE * BANDS;
int lastElement = BANDS * PIXELS;
int currentPixel = 0;

for (int currentElement = 0;
 currentElement < lastElement;
 currentElement += nElemBlocks){

 for (int element = 0;
 element < nElemBlocks;
 element++){

 if(currentElement+element<lastElement){
 inputInter[element] =
 inputData[currentElement + element];
 }else{
 inputInter[element] = 0;
 }
 }
 svmClassifyHW(inputInter, bias, weights,
 outputInter);
 for(int pixelIndex = 0;
 pixelIndex < BLOCKSIZE;
 pixelIndex++){

 if(currentPixel + pixelIndex < PIXELS){
 output[currentPixel + pixelIndex] =
 outputInter[pixelIndex];
 }
 }
 currentPixel += BLOCKSIZE;
}

Fig. 3. Modified code for transferring a block of pixels.

To improve the execution of this function, to calculate
clValue, instead of using just one accumulator, several
intermediate accumulators are implemented. At the end, the
final value for clValue is the addition of the intermediate
accumulators. Fig. 4 shows the modified code applied in order
to improve the processing data using the proposed
modification. In this figure lets the pipelining implementation
to use 8 accumulators, where BLOCKSIZE is the number of
pixels for each data transfer, BANDS is the amount of bands for
each pixel, intputData[n] is the array with the pixel values,
outputVector[n] is the array with the classification results,
weights[n] is the array with the weights for the
classification and inter[m] is the array for intermediate
accumulators.

for(int i = 0; i < BLOCKSIZE; i++){
 for (int k = 0; k < 8; k++){
 #pragma HLS pipeline
 inter[k] = 0;
 }
 for (int m=0; m < BANDS/8; m++){
 for (int j=0; j<8; j++){
 #pragma HLS pipeline
 inter[j] += inputData[i*BANDS + m*8 +j]
 * weights[m*8 + j];
 }
 }
 outputVector[i] = biasData + inter[0] +
 inter[1] + inter[2] +
 inter[3] + inter[4] +
 inter[5] + inter[6] +
 inter[7]
}

Fig. 4. Modified code to parallelize the data processing in groups of 8.

Fig. 5 shows a diagram of the improving on transferring
and processing data where P is the number of pixels, Pn is the
block of pixels processed in each data transfer, Bn is the block
of bands in which is divided the total bands value for each
pixel, An represent the intermediate accumulators, and A is the
final accumulator for that pixel.

1.5 FPGA design

133

C. Including redundant data inside accelerated function

Every time the classification is called, bias and weights are
transferred via the data-mover IP to the accelerated function in
the PL part.

Classification data type is double (4 bytes, 32 bits),
therefore every time (2) is called, bias and the corresponding
weight needs to be transferred for computation for each pixel
in the image. If SVM training is done before, weights will not
change, hence weights and bias can be included in the IP
reducing the data transfer and improving the speedup.

Fig. 5. Diagram of pixels and bands parallelized.

V. RESULTS

All the results were obtained on board, no estimate
performance was used in these results. In summary about 70
implementations were tested in order to obtain accurate
results. Each implementation had an iteration of 100
classifications on board to obtain a reliable average. Linux
was used as OS in all the implementations for controlling and
verification purposes. The speedup was calculated calling the
classification twice, the first one in software without any
modification at all and the second one in hardware, with all
the modifications incorporated.

The first result obtained without the code refactoring
shows a speedup of 0.67×, this result was the main reason to
change the code in order to find a better implementation.

Once the code was improved by changing the amount of
pixels per clock cycle and improving on the processing data,
and selecting 100 MHz for Data Movers IP and 100 MHz for
accelerated function, it was shown the cycles between 1.15×
and 1.41×, as can be seen in Fig. 6. It is worth noticing that the
speedup decreases once the blocksize (number of pixel per
clock cycle) increases above 128 pixels. In this picture a
comparison with and without the modification can be se

Fig. 6. Speedup changing the amount of pixels per clock cycle (100MHz for
Data Movers Data Moversand accelerated function)

 Increasing the frequency for Data Movers and for
accelerated function to 200 MHz shows a speedup of 1.61×.
Including weights and bias inside the accelerated function and
keeping the 200 MHz for Data Movers and accelerated IP
showed a speedup of 2.35×. Finally, keeping all the
configurations, 200 MHz for Data Movers and accelerated
function, including weights and bias in the accelerated
function, and changing the data type from double to float
showed a speedup of 2.89×.

Fig. 7 shows a speedup comparison applying all the above
modifications, and using different pixels per data cycle and
different partitions for bands value. In the best case, with the
code refactoring and changing the data type, the highest
speedup achieved is 2.89× with a blocksize of 64 pixels per
data cycle and partitioning the bands value by 16.

Fig. 7. Speedup changing the amount of pixel per clock cycle and partitions

per bands value (200 MHz for Data Movers and accelerated function)

Finally the same methodology was applied to the
multiclass SVM classifier. In this case the code was divided in
4 stages (see 0), and once the performance analysis was
obtained two versions were implemented, the full one
(including all the stages in the PL part) and the separated one
implementing only the most intensive computational stage in
the PL part. In the second case, the stage implemented on the
PL part was number 1. This difference allows us to compare
the speedup versus the resources occupied in the PL part and
the power consumption.

Table I shows the time consumption and speed up using
the Zedboard (ZC7020) for SW and HW implementation and
in both cases the full implementation, and the separated one.

TABLE I. CYCLES AND SPEEDUP FOR BOTH IMPLEMENTATIONS (F=
FULL, S=SEPARATED)

Image Pixels×bands Type SW Cycles HW Cycles Speedup

Op8C1 251,532×128 F 6,709,635,352 4,772,617,172 1.40×
S 9,169,489,664 4,160,169,766 2.20×

Op12C1 219,232×128 F 5,883,668,448 4,186,056,302 1.40×
S 7,996,559,609 3,623,266,697 2.20×

Op20C1 124,033×128 F 3,324,090,523 2,366,485,944 1.40×
S 4,522,192,859 2,052,877,331 2.20×

1 20th November

134

Table II shows the resources occupied using the ZC706
(ZC7045) and the Zedboard (ZC7020) for both cases, full and
separated implementation. In all cases the selected frequency
for PL part is 100 MHz.

Finally, Table III shows the power consumption for ZC706
and Zedboard using both implementations. As can be seen
comparing the results, it is a good idea separate the code, since
consumes less power than the full one, use less resources and
obtain better latency.

TABLE II. RESOURCES CONSUMPTION FOR BOTH IMPLEMENTATIONS (F=
FULL, S=SEPARATED)

Board ZedBoard (ZC7020) ZC706 (ZC7045)
Type F S F S
LUT (%) 67.22 20.22 16.68 4.84
LUTRAM (%) 5.32 4.30 1.27 1.00
FF (%) 33.72 14.18 7.45 2.76
BRAM (%) 4.64 6.07 1.19 1.56
DSP (%) 49.55 15.45 12.11 3.78
BUFG (%) 9.38 9.38 9.38 9.38
MMCM (%) 25.00 25.00 12.50 12.50

TABLE III. POWER CONSUMPTION (W) FOR BOTH IMPLEMENTATIONS (F=
FULL, S=SEPARATED)

Board ZedBoard (ZC7020) ZC706 (ZC7045)
Type F S F S
Dynamic Power 2.424 1.890 2.618 1.911
Static Power 0.171 0.152 0.224 0.219
Total 2.595 2.042 2.843 2.13

VI. CONCLUSIONS

The results obtained in this work demonstrates the major
benefits of writing an efficient code for HLS tools, in this case
SDSoC, to improve an accelerated version of a SVM
classifier. This methodology can be replicated in other tools in
order to validate the inferred system, as only few tool
directives have been used. It is recommended to include in the
accelerated function all the redundant data in order to decrease
the interfaces between PS and PL parts, thus improving
significantly the speedup of the system.

ACKNOWLEDGMENT

This work is supported by the Spanish Ministry of Science
and Innovation as part of the I+D+I Plan support programs in
the context of PLATINO: Plataforma HW/SW distribuida para
el procesamiento inteligente de informacion sensorial
heterogenea en aplicaciones de supervision de grandes
espacios naturales (TEC2017-86722-C4-1-R) and ITHaCA:
IdenTificacion Hiperespectral de tumores CerebrAles
(ProID2017010164).

REFERENCES
[1] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, “Are We

There Yet? A Study on the State of High-level Synthesis,” IEEE
Trans. Comput. Des. Integr. Circuits Syst., pp. 1–1, 2018.

[2] R. Nane et al., “A Survey and Evaluation of FPGA High-Level
Synthesis Tools,” IEEE Trans. Comput. Des. Integr. Circuits Syst.,
2016.

[3] S. M. Afifi, H. Gholamhosseini, and R. Sinha, “Hardware
Implementations of SVM on FPGA : A State-of-the-Art Review of
Current Practice,” Int. J. Innov. Sci. Eng. Technol., 2015.

[4] S. Afifi, H. GholamHosseini, and R. Sinha, “A low-cost FPGA-
based SVM classifier for melanoma detection,” in 2016 IEEE EMBS
Conference on Biomedical Engineering and Sciences (IECBES),
2016, pp. 631–636.

[5] M. Ning, W. Shaojun, P. Yeyong, and P. Yu, “Implementation of
LS-SVM with HLS on Zynq,” in Proceedings of the 2014
International Conference on Field-Programmable Technology, FPT
2014, 2015.

[6] Xilinx, “Zynq-7000 All Programmable SoC Data Sheet: Overview,”
Ds190, 2017.

[7] “ZedBoard (ZynqTM Evaluation and Development) Hardware User’s
Guide,” 2014.

[8] Xilinx, “ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All
Programmable SoC User Guide,” 2018. [Online]. Available:
https://www.xilinx.com/support/documentation/boards_and_kits/zc
706/%0Aug954-zc706-eval-board-xc7z045-ap-soc.pdf. [Accessed:
03-Feb-2018].

[9] M. Cacciotti, V. Camus, J. Schlachter, A. Pezzotta, and C. Enz,
“Hardware Acceleration of HDR-Image Tone Mapping on an
FPGA-CPU Platform Through High-Level Synthesis,” in
International System on Chip Conference, 2019.

[10] M. Kowalczyk, D. Przewlocka, and T. Krvjak, “Real-Time
Implementation of Contextual Image Processing Operations for 4K
Video Stream in Zynq UltraScale+ MPSoC,” in Conference on
Design and Architectures for Signal and Image Processing, DASIP,
2018.

[11] Xilinx, “SDSoC Environment User Guide UG1027,” 2017.
[Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2
017%0A_4/ug1027-sdsoc-user-guide.pdf. [Accessed: 03-Feb-2018].

[12] V. N. Vapnik and S. Kotz, Estimation of dependences based on
empirical data. Springer, 2006.

[13] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proceedings of the fifth annual
workshop on Computational learning theory - COLT ’92, 1992.

[14] C. Hsu and C. Lin, “A comparison of methods for multiclass
support vector machines,” Neural Networks, IEEE Trans., 2002.

[15] G. Mountrakis, J. Im, and C. Ogole, “Support vector machines in
remote sensing: A review,” ISPRS J. Photogramm. Remote Sens.,
vol. 66, no. 3, pp. 247–259, May 2011.

[16] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for
hyperspectral image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 43, no. 6, pp. 1351–1362, Jun. 2005.

[17] Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of
spectral imaging technology in biomedical engineering:
achievements and challenges,” J. Biomed. Opt., vol. 18, no. 10, p.
100901, Oct. 2013.

[18] H. Fabelo et al., “In-Vivo Hyperspectral Human Brain Image
Database for Brain Cancer Detection,” IEEE Access, pp. 1–1, 2019.

[19] H. Fabelo et al., “HELICoiD project: a new use of hyperspectral
imaging for brain cancer detection in real-time during neurosurgical
operations,” in Hyperspectral Imaging Sensors: Innovative
Applications and Sensor Standards 2016, 2016.

[20] H. Fabelo et al., “An intraoperative visualization system using
hyperspectral imaging to aid in brain tumor delineation,” Sensors,
vol. 18, no. 2, p. 430, Feb. 2018.

1.5 FPGA design

135

