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Abstract— Nowadays, High-Level Synthesis (HLS) methods 
and tools are a highly relevant area in the strategy of several 
leading companies in the field of System on Chips (SoCs) and 
Field Programmable Gate Arrays (FPGAs). HLS allows FPGA 
manufactures to widen the target market, smoothing the existing 
barriers that prevented potential users from adopting 
reconfigurable hardware technologies and easing the work of 
system developers, who benefit from integrated and automated 
design workflows, considerably reducing the “time to market” 
constrain. On the other hand, although many advances have been 
made in this research field, there are some uncertainties about 
the quality and performance of the designs that results from the 
use of HLS processes. Since HLS tools increase the level of 
abstraction, it is necessary to evaluate if the possible performance 
losses compensate the design time reduction. For these reasons, it 
is highly important to know how to write efficient code for HLS 
tools, being mandatory a good understanding of the HLS 
methods to achieve the best results. In this paper, an optimization 
of the HLS methodology by code refactoring using SDSoCTM 
(Software-Defined System-On-Chip) is presented. Several options 
were analyzed for each alternative through the code refactoring 
of a multiclass Support Vector Machine (SVM) classifier written 
in C, using the programmable logic of a Zynq®-7000 SoC device 
by Xilinx. Thus, a quantitative evaluation of the results achieved 
is presented order to provide designers with a methodology that 
will speed up their implementations. 

Keywords—High-Level Synthesis, HLS, SDSoC, Support vector 
mcahines, SVM, hardware friendly code, Zynq  

I.  INTRODUCTION 

High-level synthesis (HLS) methodologies allow hardware 
(HW) designers to increase the abstraction level and accelerate 
the automation for the synthesis and verification of the design 
process. The current raise in the complexity of the applications 
and the increment of the capabilities of silicon technologies, as 
well as the so called time to market constrain, will make HLS 
methodologies and tools of mandatory use in the near future 
[1]. Due to the multiple solutions that multiprocessor system-
on-chip (MPSoC) manufacturers are commercializing 
nowadays, it is strictly necessary to provide improvements in 
the development of techniques and methodologies that can 
deal with the multiple implementations possibilities by using a 
high-level design [2].  

Some implementations of SVM in FPGAs have been 
released in different applications, like imaging processing, 
automotive, medical applications and data signal processing 

among others. These implementations use different platforms 
depend on the application and the desired accuracy and 
timing. For readers who are interested in different 
implementations using different devices and including not 
only a training implementation but also a classification 
implementation, we recommend [3]. Another interesting 
research from the same authors is a SVM classifier for 
melanoma detection using a Zynq device (ZC7020) and HLS 
methodology, but in this case the dataset are not HSIs 
(HyperSpectral Images), the model used in that research 
generates an output of the class as 1 (melanoma), -1 (non-
melanoma) [4] and the implementation depend on directives 
used directly in Vivado HLS. Finally, it is relevant taking into 
account that in every implementation the communication 
between the software and the hardware part in an embedded 
system represents the bottleneck to save. For example, in [5] 
the different stages of a LS-SVM implementation using a 
Zynq device is approached separating the code of the 
algorithm is different parts, depend on the communications 
necessary for each part, then some parts are suitable to 
compute using the ARMs than implementing them in the PL 
part. 

In this paper, an evaluation of code refactoring and SDSoC 
design methodology and implementation is performed. To test 
the implementation design flow, the SVM codes are modified 
to increase the speedup. In Section 2, the most relevant 
specifications of the research work are described, like the 
device specifications (Zynq), SDSoC tool, and the basic SVM 
main features. In Section 3, a summary of the images and their 
features are detailed. In Section 4, a detailed explanation of 
code refactoring of the binary and the multiclass SVM 
classification algorithms is provided, together with an 
explanation of the methodology. This paper concludes 
including some results in Section 5 and exposing the 
conclusions in Section 6. 

II. TOOLS AND PLATFORMS 

A. Zynq SoC by Xilinx 

Zynq is a SoC provided by Xilinx [6]. All versions have 
the same PS features, a dual-core ARM Cortex A9 (ARMv7-A 
architecture), 32KB Level 1 cache for instructions, and 32KB 
Level 1 cache for data. The two cores share a 512KB L2 
cache, and a 256KB on-chip memory (OCM). The PL part can 

1 20th November

130



access the DDR memory, the OCM memory, and the L2 cache 
in the PS via AXI interfaces, with coherency behaviour 
through the Accelerated Coherency Port (ACP). The resources 
of the PL part depend on the version selected, in this paper 
two Zynq versions were selected, a ZC7020 in a Zedboard 
Evaluation Kit [7] and the ZC7045 in a Xilinx Zynq-7000 SoC 
ZC706 Evaluation Kit [8]. These devices prevent the designer 
from wasting too much hardware or software design time, 
increasing the communication performance between the two 
parts by using the provided communication interfaces, but 
sometimes some modifications are required to get a suitable 
HLS implementation. The transactions between the PL and the 
PS part suppose a relevant challenge for the designer and 
dramatically affect the final system performance. 

B. SDSoC by Xilinx 

SDSoC is a tool developed by Xilinx that provides the 
designer with the possibility of creating complete embedded 
systems from C or C++ code using Zynq devices as the target 
system. This kind of tools mean a new level over the 
traditional HLS tools and it is of interest in the research 
community [9], [10].  SDSoC includes a system compiler that 
analyses the code in order to determine the data flow between 
the PS and PL part and provides the designer the complete 
system; invokes Vivado to create the system and Vivado HLS 
to create the IPs for the desired accelerated functions, which 
includes the accelerated functions and the Data Movers IP for 
transaction data. In order to provide an efficient time 
implementation, the tool generates a thread for each 
accelerated function ensuring synchronization between 
software and hardware threads. The designer can configure the 
communication between PL and PS part in the code with 
SDSoC pragma directives to meet the application and solution 
constrains and adds Vivado HLS directives to create the 
desired accelerated IP. 

The methodology applied in this paper includes the 
methodology proposed by Xilinx [11] with some 
modifications creating a well-defined six-step design flow as 
shown in Fig. 1. After the code verified in ARM checking the 
results, the first step in the design flow is the profiling stage, 
in this step a profiling tool is needed to detect the functions 
that must be accelerated. This step can be carried out with 
different profiling tools, like Valgrind for memory usage and 
gprof for timing. 

Because SDSoC uses Vivado HLS, the next step includes 
the optimization suggested by the Vivado HLS and SDSoC 
guidelines. The next step consists of code refactoring, 
restructuring the source code for an improvement of the 
latency. In some cases this step is mandatory if an speedup is 
desired, and without this code refactoring step, the accelerator 
could not be affordable. This step is the main contribution of 
this paper, and it is explained in detail in section IV. 

The next step is to obtain the performance estimation 
provided by the tool, and check if the result is the desired one. 
In this step a detailed report of resources and speedup of 
accelerated functions is provided and an iteration can be done 

to improve the expected implementation. The final iteration of 
this step depends on the resources of the PL part, and the 
resources used will be shown in the HLS report obtained in the 
next step. 

 

Fig. 1. SDSoC Design Flow. 
 

This step is driven by constraints, SDSoC compiler 
directives and code refactoring, this step have a high impact in 
the quality of the final implementation. 

The designer can use also Vivado HLS directives with 
SDSoC directives. The directives give instructions to the 
compiler to meet the characteristics of the hardware 
architecture and the desired timing constrains (e.g. use of 
pipelines to implement loops, type of communication channels 
for data-flow implementations (Data Movers), FPGA 
resources to be used for variable storage, etc.). To improve the 
results is necessary to take into account the inferred 
implementation of the compiler tool.  

The final step lets the designer check the estimated 
performance in the board selected. SDSoC invokes Vivado 
HLS in order to generate the HDL implementation files for the 
accelerated functions in HDL (VHDL or Verilog), and several 
comprehensive synthesis reports. 

The information provided in the synthesis reports helps the 
designer to meet the performance and resource-usage 
requirements for a specific application. SDSoC also generates 
all the files needed to run the application in the embedded 
system, the bitstream for the PL part, the connection between 
PS and PL part (Data Movers), and the files of the OS in 
Linux or FreeRTOS with the executable binary (ELF) for 
running the application. This final step is mandatory due to the 
difference between the real and the estimated performance 
because real performance usually is lower than the estimated 
one. 

C. Support Vector Machines Classifier 

Support Vector Machines (SVMs) algorithm is a binary 
classification approach proposed by Vapnik in 1979 [12]. The 
main goal of this algorithm is to find a hyperplane that 
separates two classes according to its features with maximum 
margin. We are given a set of data 𝑥 (𝑥 ∈ ℝௗ) and labels 
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associated to this data (𝑦 ∈ ℝ). Each label provides 
information about data 𝑥, if 𝑦 = 1 the class is positive and if 
𝑦 = −1 the class is assumed to be negative. For example, if 
we are dealing with a diagnostic test, a positive class could 
mean 'disease' while a negative can represent 'non disease'. 
According to the input data 𝑥, we can write the following 
equation: 

𝑦ො = 𝑥 · 𝑤 + 𝑏 (1)

Where 𝑦ො is the predicted class for the instance 𝑥, and the 
parameters 𝑤 and 𝑏 define the maximum margin hyperplane 
(𝑤 ∈ ℝௗ and 𝑏 ∈ ℝ). These parameters, 𝑤 and 𝑏, are learned 
from a training set, consisting of tuples of data and labels 
(𝑥 , 𝑦). One of the main features of the SVM algorithm is that 
it can be easily generalized for non-linear data [13], which is 
useful for complex data where a linear separation hyperplane 
is not capable to separate data accurately. Similarly to other 
binary classifiers, SVM can be extended to a multiclass 
classifier by combining several binary classifiers [14]. 

SVMs are kernel-based supervised classifiers that have 
been widely used in the classification of HS (HyperSpectral) 
images [15]. In the literature, SVMs achieve good 
performance for classifying HS data, even when a limited 
number of training samples are available [16]. Due to its 
strong theoretical foundation, good generalization capabilities, 
low sensitivity to the curse of dimensionality, and ability to 
find global classification solutions, many researchers usually 
prefer SVMs instead of other classification algorithms for 
classifying HS images [17].  

In this paper, we cover the implementation of the SVM 
classification stage. The determination of the parameters from 
data is out of the scope of this work. In this sense, we 
employed an implementation of the basic SVM binary 
classifier to perform the experiments and optimizations. Then, 
a multiclass SVM classifier implementation based on the one-
vs-one method was used apply and evaluate the optimizations 
proposed with the binary algorithm. The pseudocode of the 
multiclass SVM algorithm is presented in Algorithm 1. This 
algorithm was split in 4 different stages: 1) Variables 
declaration and initialization; 2) Binary probability 
computation; 3) Multiclass probability computation; 4) Output 
classification map generation. 

III. IN-VIVO HS HUMAN BRAIN CANCER DATABASE  

In this work, the HS data employed to evaluate the 
performance of the implementations belong to an in-vivo HS 
human brain cancer database [18]. This database was 
generated intraoperatively using an HS acquisition system 
developed in [15] during the execution of the HELICoiD 
project [19]. Particularly, three HS images that belonged to 
three adult patients undergoing craniotomy for resection of 
intra-axial brain tumor at the University Hospital Doctor 
Negrin of Las Palmas de Gran Canaria (Spain) were 
employed. The patients had a confirmed grade IV 
glioblastoma tumor by histopathology. The study protocol and 
consent procedures were approved by the Comité Ético de 

Investigación Clínica-Comité de Ética en la Investigación 
(CEIC/CEI) of the University Hospital Doctor Negrin and 
written informed consent was obtained from all subjects. HS 
data from these images were labeled as tumor and normal 
tissue following the method explained in [20]. The HS dataset 
are formed by 128 (Fig. 2.a) spectral bands, respectively, 
covering the spectral range between 450 and 900 nm. Fig. 2.b 
shows the synthetic RGB representations of the HS cubes 
selected for this study. 

            1) Variables declaration and initialization 
𝑥 → 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 
𝑊 = [𝑤ଵଶ, 𝑤ଵଷ, … , 𝑤] → 𝑤 − 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 
𝐵 = [𝑏ଵଶ, 𝑏ଵଷ, … , 𝑏] → 𝑏𝑖𝑎𝑠 
𝑆𝑎 = [𝑆𝑎ଵଶ, 𝑆𝑎ଵଷ, … , 𝑆𝑎] → 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎 
𝑆𝑏 = [𝑆𝑏ଵଶ, 𝑆𝑏ଵଷ, … , 𝑆𝑏] → 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑏 

 

2) Binary probability computation: 
1 for 𝑖 = 1 to 𝑛௦௦ − 1 do 
2       for 𝑗 = 𝑖 + 1 to 𝑛௦௦ − 1 do 
3            𝑑 = 𝑤 · 𝑥 + 𝑏_𝑖𝑗 

4             𝑃 =
ଵ

ଵା
(ೕ·ೄೌೕశೄ್ೕ) 

5            𝑃 = 1 − 𝑃_𝑖𝑗 
6      end 
7 end 

3) Multiclass probability computation: 

8 𝑃𝑐ଵ = ⋯ = 𝑃𝑐 =
ଵ

ೌೞೞ
 

9 for 𝑖 = 1 to 𝑛௦௦ do 
10      𝑄 = ∑ 𝑃

ଶೌೞೞ
ஷ  

11      𝑄 = 𝑄 = −𝑃 ∗ 𝑃 
12      𝑄𝑝 = ∑ 𝑄 ∗ 𝑝

ೌೞೞ
ୀଵ  

13 end 
14 𝑝்𝑄𝑝 = ∑ 𝑄𝑝 ∗ 𝑝

ೌೞೞ
ୀ  

4) Output classification map generation: 
15 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1 to 100 do 
16      if ∀ 𝑖 ∈ 𝑛௦௦| 𝑄𝑝 − 𝑝்𝑄𝑝 < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛; 𝒃𝒓𝒆𝒂𝒌 
17      for 𝑖 = 1 to 𝑛௦௦ do 

18            𝑑𝑖𝑓𝑓 =
ିொାொ

ொ
 

19            𝑃 = 𝑃 + 𝑑𝑖𝑓𝑓 

20            𝑝்𝑄𝑝 =
ொାௗ∗(ௗ∗ொାଶ∗ொ)

(ଵାௗ)మ
 

21            for 𝑗 = 1 to 𝑛௦௦ do 

22                 𝑄𝑝 =
ொೕାௗ∗ொೕ

ଵାௗ
 

23                  𝑃𝑐 =
ೕ

ଵାௗ
 

24            end 
25      end 
26 End 
27 𝑃𝑐 = [𝑃𝑐ଵ, 𝑃𝑐ଶ, … , 𝑃𝑐] → 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

Algorithm 1: Multiclass SVM Classification algorithm 

 

 

 

 
(a) (b) 

Fig. 2. HS in-vivo brain human database. (a) Example of the spectral 
signatures of the HS dataset. (b) Synthetic RGB representations of the HS 
images, where the data were labelled and extracted to conform the HS 
database employed in this work. From up to bottom: OP8C1, OP12C1 and 
OP20C1. 
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IV. CODE REFACTORING 

The starting point of this work are two different software 
implementations of the SVM classifier. The first one is an own 
implementation of a binary SVM classifier, and the second 
one is a one-vs-one multiclass SVM classifier. The first 
version of the binary classifier was written in C++ language 
and modified in plain C following a hardware friendly way, 
however, the one-vs-one classifier was written in plain C but 
in a non-hardware friendly way. One of the goals in this 
research is to take advantage of the methodology used for the 
binary classifier in the one-vs-one classifier.  

The main goal of this work is to avoid an excessive 
number of modifications that are dependent on the tool, in 
order to reuse the code in the future with different HLS tools. 
The reference code has been modified until the final 
implementation showed clear indications of reaching the 
performance objectives. After each change or restructuration 
in the code, a serial verification was performed in order to 
check the results. These modifications were applied to the 
binary classifier code. Once the optimal modification was 
reached, the same methodology to the one-vs-one classifier 
code was applied.   

A. Improving on transferring data 

If the accelerated function only process one pixel in each 
iteration, not speedup is obtained even with the pragmas of the 
tool. In order to improve the acceleration of the classification 
function, several pixels are transferred between PS and PL 
part in the same clock cycle. Due to the 533 MHz DDR3 
SODIMM bandwidth constrain, an optimal amount of data 
must be selected in order to avoid wasted data cycles. Because 
the implemented system not always can achieve the total 
bandwidth, it is necessary to find the highest data transfer near 
to the bandwidth constrain. It is necessary to take into account 
that the amount of pixels is not always an integer multiple of 
the optimal amount of pixels for a data cycle, so zero padding 
is a good option to avoid calculating non-existent values. Fig. 
3 shows the re-factored code applied in order to improve the 
transferred data using the proposed modification, where 
BLOCKSIZE is the amount of pixels in each data transfer, 
BANDS is the number of bands values for each pixel, PIXELS 
is the number of pixels in the image and 
inputInter/outputInter are the arrays for intermediate 
input/output data transfer.  

B. Improving on processing data 

The classification function has a temporal dependency 
because the actual value at each iteration depends on its value 
in the previous iteration. Each classification value for a pixel 
(clValue) is calculated adding the bias data and then 
accumulating the result of multiplying the weight of every 
band obtained in the training classification (bandWeight), by 
the value of the pixel in that band (bandWeight). So pipelining 
is not possible to be used in the function given in (2), and 
pipeline pragma do not improve the speedup. 

 clValuebandValue · bandWeight 

int nElemBlocks = BLOCKSIZE * BANDS; 
int lastElement = BANDS * PIXELS; 
int currentPixel = 0; 
 
for (int currentElement = 0;   
     currentElement < lastElement;  
     currentElement += nElemBlocks){ 
   
  for (int element = 0; 
       element < nElemBlocks; 
       element++){     
     
    if(currentElement+element<lastElement){ 
      inputInter[element] =  
      inputData[currentElement + element]; 
    }else{          
      inputInter[element] = 0; 
    } 
  } 
  svmClassifyHW(inputInter, bias, weights, 
                outputInter); 
  for(int pixelIndex = 0; 
      pixelIndex < BLOCKSIZE; 
      pixelIndex++){ 
     
    if(currentPixel + pixelIndex < PIXELS){  
       output[currentPixel + pixelIndex] =  
              outputInter[pixelIndex]; 
    } 
  } 
  currentPixel += BLOCKSIZE; 
} 

Fig. 3. Modified code for transferring a block of pixels. 

To improve the execution of this function, to calculate 
clValue, instead of using just one accumulator, several 
intermediate accumulators are implemented. At the end, the 
final value for clValue is the addition of the intermediate 
accumulators. Fig. 4 shows the modified code applied in order 
to improve the processing data using the proposed 
modification. In this figure lets the pipelining implementation 
to use 8 accumulators, where BLOCKSIZE is the number of 
pixels for each data transfer, BANDS is the amount of bands for 
each pixel, intputData[n] is the array with the pixel values, 
outputVector[n] is the array with the classification results, 
weights[n] is the array with the weights for the 
classification and inter[m] is the array for intermediate 
accumulators. 

for( int i = 0; i < BLOCKSIZE; i++){ 
  for (int k = 0; k < 8; k++){ 
    #pragma HLS pipeline 
    inter[k] = 0; 
  } 
  for (int m=0; m < BANDS/8; m++){ 
    for (int j=0; j<8; j++){ 
      #pragma HLS pipeline 
      inter[j] += inputData[i*BANDS + m*8 +j]  
                  * weights[m*8 + j]; 
    } 
  } 
  outputVector[i] = biasData + inter[0]  + 
                    inter[1] + inter[2]  + 
                    inter[3] + inter[4]  +  
                    inter[5] + inter[6]  +   
                    inter[7] 
} 

Fig. 4. Modified code to parallelize the data processing in groups of 8. 
 

Fig. 5 shows a diagram of the improving on transferring 
and processing data where P is the number of pixels, Pn is the 
block of pixels processed in each data transfer, Bn is the block 
of bands in which is divided the total bands value for each 
pixel, An represent the intermediate accumulators, and A is the 
final accumulator for that pixel. 
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C. Including redundant data inside accelerated function 

Every time the classification is called, bias and weights are 
transferred via the data-mover IP to the accelerated function in 
the PL part.  

Classification data type is double (4 bytes, 32 bits), 
therefore every time (2) is called, bias and the corresponding 
weight needs to be transferred for computation for each pixel 
in the image. If SVM training is done before, weights will not 
change, hence weights and bias can be included in the IP 
reducing the data transfer and improving the speedup.  

 
Fig. 5. Diagram of pixels and bands parallelized.  

V. RESULTS 

All the results were obtained on board, no estimate 
performance was used in these results. In summary about 70 
implementations were tested in order to obtain accurate 
results. Each implementation had an iteration of 100 
classifications on board to obtain a reliable average. Linux 
was used as OS in all the implementations for controlling and 
verification purposes. The speedup was calculated calling the 
classification twice, the first one in software without any 
modification at all and the second one in hardware, with all 
the modifications incorporated.  

The first result obtained without the code refactoring 
shows a speedup of 0.67×, this result was the main reason to 
change the code in order to find a better implementation. 

Once the code was improved by changing the amount of 
pixels per clock cycle and improving on the processing data, 
and selecting 100 MHz for Data Movers IP and 100 MHz for 
accelerated function, it was shown the cycles between 1.15× 
and 1.41×, as can be seen in Fig. 6. It is worth noticing that the 
speedup decreases once the blocksize (number of pixel per 
clock cycle) increases above 128 pixels. In this picture a 
comparison with and without the modification can be se 

Fig. 6. Speedup changing the amount of pixels per clock cycle (100MHz for 
Data Movers Data Moversand accelerated function) 

  

 Increasing the frequency for Data Movers and for 
accelerated function to 200 MHz shows a speedup of 1.61×. 
Including weights and bias inside the accelerated function and 
keeping the 200 MHz for Data Movers and accelerated IP 
showed a speedup of 2.35×. Finally, keeping all the 
configurations, 200 MHz for Data Movers and accelerated 
function, including weights and bias in the accelerated 
function, and changing the data type from double to float 
showed a speedup of 2.89×. 

Fig. 7 shows a speedup comparison applying all the above 
modifications, and using different pixels per data cycle and 
different partitions for bands value. In the best case, with the 
code refactoring and changing the data type, the highest 
speedup achieved is 2.89× with a blocksize of 64 pixels per 
data cycle and partitioning the bands value by 16.  

 
Fig. 7. Speedup changing the amount of pixel per clock cycle and partitions 

per bands value (200 MHz for Data Movers and accelerated function) 
 

Finally the same methodology was applied to the 
multiclass SVM classifier. In this case the code was divided in 
4 stages (see 0), and once the performance analysis was 
obtained two versions were implemented, the full one 
(including all the stages in the PL part) and the separated one 
implementing only the most intensive computational stage in 
the PL part. In the second case, the stage implemented on the 
PL part was number 1. This difference allows us to compare 
the speedup versus the resources occupied in the PL part and 
the power consumption. 

Table I shows the time consumption and speed up using 
the Zedboard (ZC7020) for SW and HW implementation and 
in both cases the full implementation, and the separated one. 

TABLE I.  CYCLES AND SPEEDUP FOR BOTH IMPLEMENTATIONS (F= 
FULL, S=SEPARATED) 

Image Pixels×bands Type SW Cycles HW Cycles Speedup 

Op8C1 251,532×128 F 6,709,635,352 4,772,617,172 1.40× 
S 9,169,489,664 4,160,169,766 2.20× 

Op12C1 219,232×128 F 5,883,668,448 4,186,056,302 1.40× 
S 7,996,559,609 3,623,266,697 2.20× 

Op20C1 124,033×128 F 3,324,090,523 2,366,485,944 1.40× 
S 4,522,192,859 2,052,877,331 2.20× 
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Table II shows the resources occupied using the ZC706 
(ZC7045) and the Zedboard (ZC7020) for both cases, full and 
separated implementation. In all cases the selected frequency 
for PL part is 100 MHz. 

Finally, Table III shows the power consumption for ZC706 
and Zedboard using both implementations. As can be seen 
comparing the results, it is a good idea separate the code, since 
consumes less power than the full one, use less resources and 
obtain better latency. 

TABLE II.  RESOURCES CONSUMPTION FOR BOTH IMPLEMENTATIONS (F= 
FULL, S=SEPARATED) 

Board ZedBoard (ZC7020) ZC706 (ZC7045) 
Type F S F S 
LUT (%) 67.22 20.22 16.68 4.84 
LUTRAM (%) 5.32 4.30 1.27 1.00 
FF (%) 33.72 14.18 7.45 2.76 
BRAM (%) 4.64 6.07 1.19 1.56 
DSP (%) 49.55 15.45 12.11 3.78 
BUFG (%) 9.38 9.38 9.38 9.38 
MMCM (%) 25.00 25.00 12.50 12.50 

TABLE III.  POWER CONSUMPTION (W) FOR BOTH IMPLEMENTATIONS (F= 
FULL, S=SEPARATED) 

Board ZedBoard (ZC7020) ZC706 (ZC7045) 
Type F S F S 
Dynamic Power 2.424 1.890 2.618 1.911 
Static Power 0.171 0.152 0.224 0.219 
Total 2.595 2.042 2.843 2.13 

VI. CONCLUSIONS 

The results obtained in this work demonstrates the major 
benefits of writing an efficient code for HLS tools, in this case 
SDSoC, to improve an accelerated version of a SVM 
classifier. This methodology can be replicated in other tools in 
order to validate the inferred system, as only few tool 
directives have been used. It is recommended to include in the 
accelerated function all the redundant data in order to decrease 
the interfaces between PS and PL parts, thus improving 
significantly the speedup of the system. 
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