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Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI), Universidad de Las Palmas de Gran Canaria, Edificio Central del Parque 
Científico y Tecnológico, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain   

A R T I C L E  I N F O   

Keywords: 
Offshore wind turbine 
Suction caisson foundation 
Monopile foundation 
Seismic response 
Boundary elements 
Finite elements 

A B S T R A C T   

Piles and suction caissons are the most common foundation solutions for fixed Offshore Wind Turbines at in-
termediate water depths. They are generally used as a single element, presenting large diameters and short aspect 
ratios. These specific dimensions drastically differ from the ones of classical applications (offshore platforms, 
bridges, tall buildings etc.). Thus, in this paper the validity of their modelling as beam elements for the particular 
problem of OWT is revised. The results of a soil-beam model, based on the integral Reciprocity Theorem in 
Elastodynamics and specific Green’s functions for the layered half-space for the soil behaviour coupled with 
Timoshenko’s beam Finite Elements, are benchmarked against the ones of a soil-shell model, based on Boundary 
Elements for the soil coupled with shell Finite Elements. The comparative study is conducted in terms of 
foundation characterization variables (impedance functions and kinematic interaction factors). Their influence 
on the OWT seismic response is also studied through a substructuring procedure. From the results, some ex-
pressions for determining the applicability range of the beam simplification are proposed as functions of the 
relative foundation-soil stiffness ratio. It is observed that this applicability range goes beyond that the one 
commonly considered. .   

1. Introduction 

Pile and suction caisson foundations (also known as buckets, suction 
piles or suction anchors depending on the context) are being used as 
foundations of fixed Offshore Wind Turbines (OWT). Such solutions are 
being considered at sites with shallow (10 to 30 meters) and interme-
diate water depths (30 to 60 meters) with single (monopile or mono-
bucket) or multiple foundation arrangements depending on both water 
depth and soil properties. 

As wind turbines becomes larger, the required piles and suction 
caissons becomes bigger in diameter: up to 8 meters for monopiles (XXL 
monopiles), up to 30 meters for caissons (Cotter, 2009), and even bigger 
for shallow composite caissons with internal skirts (see e.g. Jia et al., 
2018). Such diameters are much bigger than diameters used in other 
more classical projects (gas/oil platforms, bridges, buildings, etcetera), 
and therefore the use of models traditionally considered should be taken 
with care. The length L to diameter D ratios ranges are 3 < L/D < 10 for 
monopiles and 1 < L/D < 6 for suction caissons (Houlsby and Byrne, 
2005a; Houlsby and Byrne, 2005b). The buried part of both piles and 
caissons are constituted by steel shells of thickness around t/D ∼ 0.01 

(pile shaft) for monopiles and t/D ∼ 0.001 (caisson skirt) for suction 
caissons. 

The complete design of an OWT is a complex task which should fulfil 
many requirements (DNV, 2014). Although rough designs can be ob-
tained from simplified procedures at early stages, see e.g. (Arany et al., 
2017), final designs should be defined after using an integrated opti-
mization procedure which guarantees a safe and economical solution, 
see e.g. (Ashuri et al., 2014). In this sense, it is of fundamental impor-
tance an appropriate modelling which should also be computationally 
efficient due to the many evaluations needed during the design process. 
In the case of foundation modelling, recent works (Bhattacharya et al., 
2013; Bordón et al., 2019; Page et al., 2019), have highlighted its 
importance particularly for the prediction of first and second natural 
frequencies, which are relevant for performing the crucial fatigue ana-
lyses. In the case of seismic analyses, the frequency range usually goes 
far beyond the second natural frequency. The use of convenient 
simplifying hypotheses allows adopting simpler and cheaper models 
(ideally via closed-form formulae or calibrated fast models) at initial 
steps, whereas more rigorous, complex and detailed models should be 
considered at the final stages. 
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The present paper is concerned with the modelling of big diameter 
and short piles and suction caissons for seismic analyses of OWT sup-
ported by a single foundation element (monopile or monobucket). The 
focus is put on assessing the adequacy of different simplifying hypothesis 
which allow the use of more elementary models from which results are 
more easily obtained. To this end, a previously developed soil-beam 
coupled model (Álamo et al., 2016) is compared against a rigorous 
soil-shell model (Bordón et al., 2017). The former is a model which re-
duces the soil-structure interaction to a line (pile axis), and greatly re-
duces the number of degrees of freedom. The pile itself is modelled with 
Timoshenko finite elements, and the soil response is included via 
Green’s function for an arbitrary horizontally layered half-space, which 
avoid the discretisation of the free-surface and the layer interfaces, i.e. 
only pile axis nodes are present. The latter model reduces the soil- 
structure interaction to the shell mid-surface, which leads to a 
rigorous and general interaction model but it is also computationally 
costlier. The comparative study is performed in terms of impedances and 
kinematic interaction factors. In addition to this, results in terms of OWT 
variables are also compared in order to evaluate to what extent the 
differences in the foundation modelling are transmitted to the whole 
tower-supporting structure-foundation system. 

The use of some kind of one-dimensional reduction, i.e. beam-like 
models, for foundation modelling is quite advantageous for obvious 
mathematical and computational reasons. The key of such models is how 
soil-structure interaction is considered. Pioneering works take the 
rigorous Mindlin’s solution and integrate it along the pile axis or pile 
shaft under certain assumptions (see e.g. Jiménez-Salas and Belzunce, 
1965; Thurman and D’Appolonia, 1965; Poulos and Davis, 1968). An 
alternative approach is the well-known Winkler model, where distrib-
uted springs and dashpots are connected along the pile axis (Novak 
et al., 1978; Gazetas and Dobry, 1984). Advanced approaches use some 
Green’s function under point or ring loading to introduce the soil 
response, and then this is coupled to beam finite elements in different 
ways (Kaynia and Kausel, 1982; Coda et al., 1999; Almeida and de Paiva, 
2004; Padrón et al., 2007). The soil-beam model used in this paper ex-
tends (Padrón et al., 2007) by considering an arbitrary horizontally 
layered half-space and Timoshenko finite elements. The aim of the 
present work is to study to what extent this soil-beam model, initially 
developed for pile foundations, is able to reproduce soil-structure 

interaction (impedances and kinematic interaction factors) for length 
to diameter ratios as low as 1, i.e. suction caissons. 

The paper is organized as follows. First, Section 2 presents the two 
different foundation models together with the substructuring model 
used to compute the OWT system response. Then, the comparison be-
tween the beam and shell models is conducted along the different parts 
of Section 3. The comparison starts in terms of the foundation response: 
static (Section 3.1) and and dynamic (Section 3.2) stiffness, and kine-
matic interaction factors (Section 3.3). Then, some expressions deter-
mining the upper frequencies below which the beam model accurately 
reproduces the foundation response are proposed in Section 3.4. The 
final part of the comparison, in terms of OWT variables, is done through 
the application example presented in Section 3.5. The paper ends listing 
the main conclusions drawn from the study in Section 4. 

2. Methodology 

2.1. Substructuring model 

The problem at hand is summarized in Fig. 1: an Offshore Wind 
Turbine connected to a submerged structure founded on a large diam-
eter and relatively short monopile or suction caisson subjected to 
vertically-propagating S waves. 

A two-dimensional (lateral behaviour) substructuring model is used 
for modelling the OWT dynamics. It comprises a simple concentrated 
mass at the hub representing the Rotor-Nacelle-Assembly (RNA), a suf-
ficient number of Euler–Bernoulli beam elements for taking into account 
the conical tower and the submerged part. The foundation dynamics is 
synthesized via frequency dependent springs and dashpots (impedance 
functions) connected to the submerged part base. The foundation energy 
filtering when impinged by a seismic action (vertically incident shear 
waves) is taken into account via kinematic interaction factors. An 
adequate representation of both impedances and kinematic interaction 
factors is vital for the study of OWT modal and seismic behaviour. 

The impedance functions relate the forces and moments and the 
displacements and rotations of the foundation at the mudline level. They 
are frequency-dependent complex functions whose real and imaginary 
parts represent respectively the stiffness and damping characteristics of 
the foundation. Given that the study focuses on the lateral behaviour, 

Fig. 1. Problem layout and substructuring model.  
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only horizontal KH, rocking KR and sway-rocking cross-coupling KHR 
impedance functions are considered in the substructuring formulation. 
However, the vertical stiffness term KV is also analysed in this work 
when studying the foundation-only response. 

The kinematic interaction factors represent the filtering effects of the 
foundation, and they are computed as the ratio between the displace-
ment or rotation at the foundation and the free-field motion at the 
mudline. The translational and rotational kinematic interaction factors 
are respectively denoted as Iu and Iθ. 

More details about the methodologies (soil-shell or soil-beam) used 
to evaluate the impedance functions and kinematic interaction factors 
are given in next sections. In both models, a time harmonic analysis at 
circular frequency ω is considered, and the soil is assumed to be a ho-
mogeneous linear elastic solid with following properties: shear modulus 
Gs, Poisson’s ratio νs, density ρs and hysteretic damping ratio ξs; being 
the complex effective shear modulus to be used G*

s = Gs(1 + i2ξs). 
The governing equations in the frequency-domain that are used to 

obtain the system response can be written as: 
([

Kss Ksb

Kbs Kbb + Kf

]

− ω2
[

Mss Msb

Mbs Mbb

]){
us

ub

}

=

{
0
Fb

}

(1)  

where u is the vector containing nodal in-plane lateral displacements 
and rotations, K and M are the stiffness and mass matrices of the system 
obtained by assembling the elementary ones, the indexes distinguish 
between all structural nodes (s) and the base (mudline level) one (b), Kf 

is the impedance matrix of the foundation, and Fb is the force and 
moment acting at the base of the structure due to the seismic excitation. 
This force vector can be computed from the impedance matrix and 
kinematic interaction factors as: 

Fb =
[
Kf]

{
Iu
Iθ

}

(2) 

For comparison purposes, the response of the system neglecting Soil- 
Structure Interaction (SSI) effects is also considered, i.e. rigid base 
assumption. In this case, the free field motion uff is directly introduced at 
the mudline node of the superstructure, while restricting its rotation. 
This simplification reduces Eq. (1) into: 

(
Kss − ω2Mss)us = −

(
Ksb − ω2Msb)ub, being : ub =

{
1
0

}

uff (3)  

2.2. Soil-shell model 

The monopile shaft and the suction caisson skirt are topologically 
similar, and the only differences are the dimensions of the foundation 
element. In both cases the thickness to diameter ratios t/D are well 
below 5%, being smaller in the case of suction caissons skirts (typically 
t/D ∼ 0.001) than in the case of monopile shafts (typically t/D ∼ 0.01). 
The consideration of a purely continuum three-dimensional solid model 
for the soil-foundation system is therefore unnatural and overly com-
plex. Instead, the monopile shaft or suction caisson skirt is more 
appropriately modeled as a shell, leading to a mixed dimensional model 
which considerably reduces the required number of degrees of freedom. 

Such a model has been developed by the Authors (Bordón et al., 
2017) via a BEM-FEM approach which considers the interaction be-
tween the foundation and the soil as the interaction of a shell (FEM) and 
the surrounding soil (BEM), see Fig. 2. The main hypothesis of this 
model is thus the reduction of soil-shell interaction to the mid-surface of 
the shell. The present model is fully described for the case of Biot’s 
poroelastic soils in (Bordón et al., 2017), but a brief description of the 
this model for an elastic soil is outlined below. 

The soil domain Ωs is discretized by using the BEM, which is based on 
the use of Boundary Integral Equations (BIE) relating displacements uk 
and tractions tk throughout its boundary Γ = ∂Ωs. The boundary Γ 
consists of two parts: free-surface boundary Γfs, and shell mid-surface 
Γshm considered as a crack-like boundary (Γshm = Γ+

shm + Γ−
shm). The 

Singular BIE is used for collocating along the free-surface Γfs (Domí-
nguez, 1993): 

ci
lkui

k +

∫

Γ
t*lkuk dΓ =

∫

Γ
u*

lk tk dΓ (4)  

where l, k = 1,2, 3 and the Einstein summation convention is implied. 
The tensor ci

lk is the free-term at the collocation point, ui
k is the 

displacement at the collocation point, and u*
lk and t*lk are the elastody-

namic fundamental solutions in terms of displacements and tractions 
respectively. The Dual (Singular and Hypersingular) BIEs are used for 
collocating on the shell mid-surface Γshm: 

1
2
(
ui+

l + ui−
l

)
+

∫

Γ
t*lkuk dΓ =

∫

Γ
u*

lktk dΓ (5)  

Fig. 2. Foundation configuration and its modelling: (a) steel hollow pile in homogeneous half-space, (b) DBEM-FEM model (Bordón et al., 2017) (soil-shell inter-
action), (c) Integral model (Álamo et al., 2016) (soil-beam interaction). 
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1
2
(
ti+
l − ti−

l

)
+

∫

Γ
s*

lkuk dΓ =

∫

Γ
d*

lk tk dΓ (6)  

where ui+
k , ti+

k and ui−
k , ti−

k are displacements and tractions at the collo-
cation point along respectively the positive and negative crack faces, 
and d*

lk and s*
lk are obtained from the differentiation of u*

lk and t*lk (see e.g. 
Domínguez et al., 2000). In Eqs. 5,6, it has been assumed that the 
collocation point xi is located at a smooth boundary point 
(Γshm

(
xi) ∈ C

1) leading to the 1/2 factor present in them. This 
assumption is related to the required use of C 1 geometric continuity at 
collocation points for Hypersingular BIEs. In order to overcome this, the 
Multiple Collocation Approach (MCA) (Ariza and Domínguez, 2002) is 
used when collocating at a crack boundary point. Standard quadratic 
triangular (6 nodes) and quadrilateral (9 nodes) boundary elements are 
considered for the discretization. 

The shell region Ωsh is discretized by using the FEM. Shell finite el-
ements based on the degeneration from the three-dimensional solid are 
considered (Ahmad et al., 1970). The shear and membrane locking 
phenomena related to these elements are overcome by using the Mixed 
Interpolation of Tensorial Components (MITC) proposed by Bathe and 
co-workers. The MITC9 shell finite element (Bucalem and Bathe, 1993) 
is used in this work. The equilibrium equation for a given shell finite 
element l can be written as: 

K̃
(l)

a(l) − Q(l)t(l) = f(l) (7)  

where K̃
(l)

= K(l) − ω2M(l) is the resulting time harmonic stiffness matrix, 
a(l) is the vector of nodal displacements and rotations, Q(l) is the matrix 
transferring distributed mid-surface load t(l) to nodal loads, and f(l) is the 
vector of equilibrating nodal forces. 

A conforming mesh between the crack-like boundary and the shell 
mid-surface is considered. Then, the coupling is performed by imposing 
perfectly welding conditions through the following compatibility and 
equilibrium between shell finite element and crack-like boundary: 

u+
k = u−

k = ul
k (8a)  

t+k + t−k + tl
k = 0 (8b)  

where ul
k denotes the shell displacements and tlk the distributed mid- 

surface shell load. 
The seismic input is included in the formulation by following the 

classical decomposition of the total field into the superposition of the 
incident field (produced by the impinging seismic excitation) and the 
scattered field (produced by the foundation), see e.g. (Domínguez, 
1993): 

utot
k = uin

k + usc
k (9a)  

ttot
k = tin

k + tsc
k (9b)  

Since the displacements and tractions present in the BIEs have to be 
evanescent, they are substituted by the scattered field, which, under the 
previous assumption, is equivalent to subtracting the incident field from 
the total field. The considered incident field is a simple vertically inci-
dent shear wave, which has the following non-zero displacements and 
tractions: 

uin
1 =

1
2
(
e− iksx3 + eiksx3

)
(10a)  

tin
1 = Gsuin

1,3n3 (10b)  

tin
3 = Gsuin

1,3n1 (10c)  

where ks = ω/cs is the S wavenumber, cs =

̅̅̅̅̅̅̅̅̅̅̅̅

G*
s/ρs

√

is the shear wave 

velocity, nj is the unit normal at the boundary point, and eiωt has been 
omitted for brevity. 

2.3. Soil-beam model 

For a further reduction in the number of degrees of freedom of the 
problem, the monopile shaft or suction caisson skirt can be simplified to 
a unidimensional beam element. By doing so, the soil-foundation 
interface is concentrated into the beam axis and the behaviour at each 
point of the foundation element is defined by the cross-section dis-
placements and rotations and the resultant of the interaction tractions 
along the ring. Evidently, this kind of model is not able to capture the 
local effects produced at the soil-shell interface, but they can accurately 
approximate the global response of the foundation (especially for 
medium-to-large aspect ratios). 

A numerical model with these features was proposed by the Authors 
in a previous work (Álamo et al., 2016) for the analysis of pile founda-
tions. In addition to the reduction in the number of degrees of freedom 
achieved by the omission of the soil-shell interface, the developed model 
makes use of Green’s functions for the layered half space instead of the 
previous full-space fundamental solution. Thus, the discretization of the 
soil free-surface and any strata interface is avoided as the Green’s 
functions already satisfy the boundary conditions of those contours. As 
result, an efficient numerical model is obtained in which the only vari-
ables correspond to the mid-line of the foundation element. In the 
following, the basis of the model formulation are outlined. For a more 
detailed description, the original work (Álamo et al., 2016) is referred. 

The soil region Ωs is assumed to be formed by, in general, a group of 
horizontal layers overlying a half space. The presence of the foundation 
element is represented through a load line Γb over which the distributed 
soil-foundation interaction forces act, being these the only body forces in 
the soil domain. Due to the treatment of the foundation as a load line, 
the only boundary of the soil domain correspond to the free-surface Γfs. 
Considering that its zero-traction boundary condition is already satisfied 
by both the Green’s functions and the unknown state, the Singular BIE 
for internal points of the soil domain can be reduced to: 

ui
l =

∫

Γb

ũ*
lkqk dΓb (11)  

where ̃u*
lk is the displacement Green’s function for the layered half space 

proposed by Pak and Guzina (Pak and Guzina, 2002) and qk are the 
distributed interaction forces acting over the soil. In order to numeri-
cally evaluate the line integral, classic lineal (2 nodes) elements are 
considered. Also, a particular non-nodal collocation strategy over four 
points of the fictitious soil-shell interface is required in order to avoid 
the singularity of the Green’s function (see Álamo et al., 2016 for more 
details). 

The finite element modelling of the foundation piece is done by using 
two-noded beam elements. Cubic and quadratic shape functions that 
satisfy the Timoshenko’s beam static equation (Friedman and Kosmatka, 
1993) are used for the lateral behaviour, while linear shape functions are 
used to model the distributed interaction forces and axial displacements. 
The equilibrium equation for a given beam element l can be written as: 

K̃
(l)

a(l) − Q(l)q(l) = f(l) (12)  

Note that the terms of this equation are the beam-counterparts of the 
ones presented in Eq. (7), being q(l) the vector defining the nodal values 
of the distributed interaction forces acting over the foundation element. 

Conforming meshes are considered to discretize the soil load line and 
the foundation element. Thus, the coupling between both regions can be 
easily done by, again, imposing compatibility and equilibrium condi-
tions in terms of displacements and interaction forces, respectively: 

uk = ul
k (13a) 

G.M. Álamo et al.                                                                                                                                                                                                                               



Computers and Geotechnics 134 (2021) 104107

5

qk + ql
k = 0 (13b)  

where ul
k denotes the beam displacements and ql

k the distributed inter-
action forces acting over the beam. 

Finally, and following the same strategy than in the previous soil- 
shell model, the seismic excitation is introduced by superposing the 
incident and scattered fields. Note that, owing to the reduced expression 
of the Singular BIE, in the soil-beam model only the displacement terms 
of the incident field are necessary. 

3. Results and discussion 

In this section, a comprehensive comparative study between results 
from both models is given. It includes the necessary ingredients for 
comparing the foundation characterization (impedances and kinematic 
interaction factors) as well as the final OWT variables of interest 
(bending moments, shear forces, displacements and rotations). 

The study covers the following parameters: length to diameter ratio: 
L/D = {1,…,10}, thickness to diameter ratio: t/D =

{0.001,0.01,0.02}, and foundation shear modulus to soil shear 
modulus ratio: Gf/Gs = {1000,4000,16000}. 

For this class of foundations in homogeneous soils this set of pa-
rameters completely defines the problem. Nonetheless, Doherty et al. 
(2005) found that the relative stiffness between the foundation lateral 

shell (bucket skirt or pile shaft) and the soil can effectively be synthe-
sized via a dimensionless parameter JDoherty = (Ef t)/(GsR) which relates 
shell membrane stiffness and soil stiffness (Ef is the Young’s modulus of 
the foundation and R is the radius of the foundation cross-section). It 
allows an approximate but useful reduction of the number of defining 
parameters. For convenience’s sake, this dimensionless parameter is 
defined as J = (Gf t)/(GsD) in the present paper, which differs from the 
original by the factor JDoherty/J = 4(1+νf) (constant since νf = 0.25 in all 
cases). Although the work of Doherty et al. (2005) is limited to static 
stiffnesses, it is shown in Appendix A that, in general, J remains as a 
useful parameter in dynamics for frequencies ao = fD/cs < 0.3 and 
t/D ≤ 0.05. 

The rest of dimensionless parameters that define the studied prob-
lems are: hysteretic damping ratios of foundation ξf = 2% and soil ξs =

5% materials, foundation soil density ratio ρf/ρs = 3.9, and soil Pois-
son’s ratio νs = 0.49 (saturated soil). 

3.1. Static stiffnesses 

Static stiffnesses are relevant for the calculation of the fundamental 
frequency of OWTs since it is usually small, typically f1 ∼ 0.3 Hz (Kay-
nia, 2018). For seismic analyses, however, the use of static stiffnesses is 
generally not recommended. 

Fig. 3 shows the vertical, horizontal, rocking and sway-rocking cross- 

Fig. 3. Comparison between static stiffnesses.  
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coupling stiffness components for most of the cases studied. One case per 
t/D has been removed since they have similar values of J (and similar 
graphs) to other cases. This way, the stiffness components are distrib-
uted along columns, and the relative stiffnesses between foundation and 
soil are distributed along rows. Each graph shows L/D in abscissas, and 
contains the results from both models. In addition to the aforementioned 
Poisson’s ratio νs = 0.49 (saturated soil), a value of νs = 0.3 has been 
also considered in this section because the soil is expected to behave 
more similar to the drained solid in the static regime. However, the 
influence of the Poisson’s ratio in the comparison between the two 
models is negligible. The beam model leads to similar results to the shell 
model except for very small values of J. This phenomenon is reasonable 
since the validity of the beam–soil continua is kept as long as the 
foundation behaves as a structural member, which happens when there 
exists stiffness contrast between this element and the soil. On the other 
hand, the applicability of the beam model regarding the length to 
diameter ratio (L/D) is surprisingly good even at L/D = 1. 

In order to give a measure of the fidelity of the soil-beam model, the 
relative error between both models is given in Fig. 4. Each graph has 
now the parameter J in abscissas, so that all different cases of t/D and 
Gf/Gs are represented. Each length to diameter ratio is represented using 
a different color: L/D = 2 (black), L/D = 4 (red), L/D = 6 (blue), L/D =

8 (green) and L/D = 10 (orange); and each thickness to diameter ratio is 
shown with a different point type: t/D = 0.001 (plus), t/D = 0.01 (cross) 
and t/D = 0.02 (square). In all cases, it is roughly observed that error 

decreases as J increases, except for rocking and sway-rocking cross- 
coupling stiffnesses for L/D = 2. The vertical stiffness shows a gradual 
reduction of the error as L/D increases, whereas the lateral mode stiff-
nesses show little differences in the behaviour for L/D ≥ 4. Overall, the 
beam model achieves errors below 5% for the lateral mode stiffnesses 
and errors below 10% for the vertical stiffness when J ≥ 10 and L/D ≥ 4. 

3.2. Impedance functions 

The use of dynamic stiffnesses (also known as impedance functions) 
allows a much more general linear SSI analysis. They can be used for the 
calculation of OWT natural frequencies, as well as seismic analyses via 
the substructuring procedure. In this section, the comparison between 
beam and shell models is extended to impedance functions. The 
frequency-dependent differences between the two models are quantified 
through the relative error defined in Eq. (14). The proposed expression 
compares the absolute value of the complex difference between the 
result X obtained by the shell or beam approaches with respect to the 
maximum value obtained by the reference model (i.e., soil-shell 
approach) in the studied frequency range. This definition is preferred 
over a frequency-by-frequency relative comparison in order to avoid 
peak values of the error around the frequencies in which the reference 
result approaches to zero. 

Fig. 4. Relative errors for static stiffnesses (νs = 0.49).  

Fig. 5. Comparison between dynamic stiffnesses: L/D = 6, t/D = 0.01 and Gf/Gs = 4000 (J = 40).  
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Δ(ao) =
|Xbeam(ao) − Xshell(ao)|

max
a0∈[0,0.5]

[
Xshell(ao)

] (14) 

Fig. 5 shows the impedance curves (real and imaginary parts) as well 
as the relative error for the illustrative case with L/D = 6, t/D = 0.01 
and Gf/Gs = 4000, i.e. J = 40. All other cases are included as supple-
mentary data. For all stiffness components, the error between the beam 
and the shell models is approximately constant initially, and then it 
starts to increase with the frequency. Such effect is physically justifiable 
in terms of the comparison between soil wavelength and foundation 
diameter. For frequencies leading to wavelengths comparable to the 
foundation diameter, the reduction to a load line performed by the beam 
model becomes inadequate. Thus, it is reasonable that this model starts 

to fail beyond a quarter-wavelength per diameter (ao ≥ 0.25). In order 
to give a more concise measure of this limiting frequency, two limiting 
frequencies alim

o,5% and alim
o,10% are defined when the error reaches respec-

tively 5 and 10 per cent. 
Fig. 6 shows the values of alim

o,5% and alim
o,10% (calculated as in the pre-

vious illustrative case) for all cases under study. The line and point styles 
are also similar to the preceding section. The previously mentioned limit 
of ao ≥ 0.25 (associated with a quarter-wavelength per foundation 
diameter) is a valid indicative value for obtaining errors below 5%, 
although only when J ≥ 10. In the vertical and rocking components, 
some alim

o,5% are located below 0.2. This erratic behaviour is nonetheless 
due to the presence of a peak in the beginning of these error curves 
which lightly exceed the 5% (see supplementary data). This is further 
demonstrated by observing that alim

o,10% do not show this behaviour. 

Fig. 6. Limiting frequencies alim
o,5% (error <5%) and alim

o,10% (error <10%) of dynamic stiffnesses.  

Fig. 7. Comparison between kinematic interaction factors: L/D = 6, t/D = 0.01 
and Gf/Gs = 4000 (J = 40). 

Fig. 8. Limiting frequencies alim
o,5% (error <5%) and alim

o,10% (error <10%) of ki-
nematic interaction factors. 
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3.3. Kinematic interaction factors 

In this section, the discrepancies between both models are studied for 
the kinematic interaction factors Iu and Iθ (foundation with unrestrained 
head). These represent the filtering produced by the foundation in terms 
of displacements and rotations at the head of the foundation (z = 0) 
when subjected to an incident wave field. In this case, the study is 
limited to vertically incident shear waves, which are typically the most 
relevant ones. 

Fig. 7 shows the kinematic interaction factors Iu and Iθ (real and 
imaginary parts) as well as the relative error (defined as in the previous 
section) for the illustrative case with L/D = 6, t/D = 0.01 and Gf/Gs =

4000, i.e. J = 40. All other cases are included as supplementary data. A 
good agreement between both models is observed, although higher 
discrepancies in the form of horizontal translation appear as the fre-
quency increases. Thus, the error curves not only increase with the 
frequency, but also show several peaks and valleys. As in the case of 
impedance functions, it is possible to define two limiting frequencies 
alim

o,5% and alim
o,10% when the error reaches respectively 5 and 10 per cent. 

Fig. 8 shows the values of alim
o,5% and alim

o,10% for all cases under study. 
The limiting frequencies are roughly alim

o,5% ∼ alim
o,10% ∼ 0.1 for L/D = 2, 

whereas for L/D > 2 and J > 10 these are alim
o,5% ∼ 0.1 ÷ 0.2 and 

alim
o,10% ∼ 0.15 ÷ 0.5. There is no clearly defined trend for the limiting 

frequencies due to the presence of the previously mentioned peaks. 
Nonetheless, it is reasonable to use the conventional quarter-wavelength 
limiting frequency (alim

o = 0.25) for the integral model regarding kine-
matic interaction factors, which achieves errors up to approximately 
10% for L/D > 2 and J > 10. 

3.4. Expressions for the limiting frequencies 

From the results presented in the previous sections, ready-to-use 
formulas are obtained in order to estimate the limiting frequencies 
that ensure a certain error when using the beam model. A quadratic 
polynomial in terms of the logarithm of the foundation-soil relative 
stiffness parameter J is assumed for approximating the limiting 
frequencies: 

alim
o,e ≈ c0 + c1logJ + c2(logJ)2 (15) 

Tables 1 and 2 give the values of coefficients ci for the two maximum 
errors of 5% and 10% respectively. Expressions are presented for all 
impedance functions and kinematic interaction terms with the exception 
of the sway-rocking cross-coupling impedance. This component is not 
included as it is generally less restrictive than either the lateral or 
rocking impedances (making no sense to use the former without the 
latter). Note that linear (c2 = 0) or constant (c1 = c2 = 0) expressions 
are preferred when they can be used without a significant loss in accu-
racy with respect to the quadratic formula. 

The expressions provided by Tables 1 and 2 are not recommended for 
values of J outside the studied interval [1,400]. Also, for some compo-
nents, the proposed formulas are not adequate for certain limit scenarios 
(such as low foundation-soil stiffness contrast), which are indicated in 
the last column of each table. The proposed formulas (lines) together 
with the previous results (points) are shown in Fig. 9. In each graphical 
area, the limiting frequency is plotted against the dimensionless 

Table 1 
Coefficients for the expressions of the limiting frequencies. Error <5%.   

c0  c1  c2  Not applicable for 

KV  0.2584 − 0.0332 0.0054 J < 4,L/D < 4  
KH  0.0322 0.0881 − 0.0111 J < 4  
KR  1.2758 − 0.4636 0.0455 J < 16,L/D < 4,Gf/Gs < 4000  
Iu  0.1135 − 0.0282 0.0065 L/D < 6 (use alim

o ≈ 0.084)  
Iθ  0.0343 0.0157 0 L/D < 6 (use alim

o ≈ 0.066)   

Table 2 
Coefficients for the expressions of the limiting frequencies. Error <10%.   

c0  c1  c2  Not applicable for 

KV  0.2664 0.0041 0 - 
KH  0.2760 0 0 J < 4  
KR  0.9667 − 0.2693 0.0262 J < 10,Gf/Gs < 4000  
Iu  0.5248 − 0.0462 0.0026 L/D < 6 (use alim

o ≈ 0.13 [L/D = 2] or 0.32 [L/D = 4])  
Iθ  0.0414 0.0335 0 L/D < 4 (use alim

o ≈ 0.10)   

Fig. 9. Comparison between the obtained limiting frequencies (points) and their proposed expressions (lines).  
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parameter J. Each column corresponds to a different foundation vari-
able, while each row corresponds to a different maximum permitted 
error. Note that the points outside the applicability range of the obtained 
expressions are not included in the figure. For the kinematic interaction 
factors, the alternative values for the points outside the applicability 
range are also shown in red and purple colours. 

3.5. Application example 

In order to illustrate the accuracy of the soil-beam model to repro-
duce the response of the OWT-foundation system, a practical example is 
briefly presented in this section. The system is based on the reference 
NREL-5 MW OWT model (Jonkman et al., 2009). The tower is 70 m high 
and it has a hollow cross-section with variable diameter from 6 m at its 
base to 3.87 m at the hub height, whereas a constant thickness to 
diameter ratio of 0.45% is assumed. The supporting structure is a 20 m 
high, 6 m diameter and thickness ratio of 1% tubular member. No 
transition piece between supporting structure and tower is considered in 
the analyses. The foundation presents the same diameter (D = 6 m) and 

thickness ratio (t/D = 1%) as the supporting structure. An intermediate 
embedment length ratio L/D = 6 is assumed in this example. The whole 
structure (tower, supporting monopile and foundation) is considered to 
be made of steel with: Young’s modulus Ef = 210 GPa, density ρf = 7850 
kg/m3 and Poisson’s ratio νf = 0.25. For the superstructure a hysteretic 
damping coefficient ξf = 2.5% is considered. 

The soil properties are selected in order to reproduce a saturated 
media through elastic equivalent properties: density ρs = 2000 kg/m3, 
Poisson’s ratio νs = 0.49 and hysteretic damping coefficient ξs = 5%. 
Different foundation-soil stiffness ratios J = 10,40 and 160 are assumed 
in order to cover the range studied in the previous sections. These values 
correspond to soils whose shear wave velocities are approximately cs =

200, 100 and 50 m/s, respectively. 
In coherence with the obtained kinematic interaction factors, the 

considered seismic excitation is a vertically incident shear wave. The 
free-field displacement is denoted as uff , while its acceleration is üff . 

Fig. 10 shows the Frequency Response Functions (FRF) of several 
representative variables of the OWT system. The second and third rows 
present the FRF of the displacement and rotation atop the turbine tower 

Fig. 10. Frequency Response Functions for representative variables of the OWT system. Comparison between the different models.  
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with respect to the free-field displacement. On the other hand, the fourth 
and fifth rows illustrate the shear force and bending moment at the base 
of the supporting structure (mud-line level) with respect to the free-field 
acceleration. The results obtained by assuming a fixed-base model (no 
SSI) are compared with the ones obtained through the substructuring 
procedure (see Section 2.1) using both the soil-shell or soil-beam models 
to characterize the foundation. In order to help in interpreting the re-
sults, the first row shows the limiting frequencies (corresponding to a 
maximum relative error between the shell and beam models less than 
10%) for all of the foundation variables involved in the problem at hand. 
Each column of the figure corresponds to a different soil-foundation 
relative stiffness ratio. Frequencies up to 20 Hz are considered as a 
wide frequency range for the energy content of the seismic excitation. 

The results presented in Fig. 10 show a clear influence of the SSI 
effects on all studied variables. In general terms, introducing the foun-
dation behaviour results in a higher response of the system for small 
frequencies (< 5 Hz), and a lower response for higher frequencies. The 
shifting of the system natural frequencies toward lower values produced 
by the SSI effects is also seen in the obtained results. 

The accuracy of using the beam model instead of the shell one can be 
also tested by comparing their results in Fig. 10. A good agreement 
between both models is found for all variables. Some discrepancies are 
produced for frequencies above certain limiting frequencies. The hori-
zontal impedance term seems to be the most important one, followed by 
the limit corresponding to the lateral kinematic interaction factor. 
However, these differences between the soil-shell and soil-beam models 

are not significant for the example case studied (note the logarithmic 
scale in the forces at the base variables). Thus, the results show that the 
real factor that limits the use of the soil-beam model is the maximum 
value of the dimensionless frequency ao = 0.5, i.e., foundation diameter 
equal to half of the wavelength. This restriction makes the soil-beam 
model to be used with caution for seismic analyses of large diameter 
foundations in extremely soft soils. The validity of the beam model in 
this scenario will strongly depend on the frequency content of the 
excitation, and the evolution with frequency of the studied FRF. 

4. Conclusions 

This paper presents a comparison between soil-shell and soil-beam 
models for the dynamic characterization of OWT foundation elements 
(piles or suction caissons) and the seismic analysis of the complete 
system. The reference results are computed with the first model, that 
uses Boundary Elements to model the soil behaviour coupled with shell 
Finite Elements to represent the foundation element. On the other hand, 
the soil-beam model is based on the integral expression of the Reci-
procity Theorem together with advanced Green’s functions for the soil 
modelling, while the structural behaviour of the foundation is handled 
via beam Finite Elements. For the analyses, soil and foundation 
geometrical and material properties typical of this singular construction 
are assumed. 

First, the comparison is made in terms of the foundation character-
ization variables: static stiffness, impedance functions and kinematic 

Fig. 11. Validity of J for characterizing the relative foundation-soil stiffness in the computation of impedance functions.  
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interaction factors. A dimensionless analysis is made in order to present 
more general results. The main conclusions drawn from this study are:  

• The dimensionless parameter J proposed by Doherty et al. (2005) to 
define the relative stiffness between the foundation and soil in static 
can be also applied for dynamic analyses.  

• In general terms, the soil-beam model accurately reproduces the 
global foundation response with respect to the rigorous soil-shell 
model. The agreement is quite good even for foundations with 
small aspect ratios.  

• The accuracy of the beam model is reduced for high frequencies and 
low foundation-soil stiffness contrast.  

• Closed-form expressions are proposed in order to estimate the 
applicability range, in terms of maximum dimensionless frequency, 
of the beam simplification. Those are functions of the foundation-soil 
relative stiffness parameter J and depend on the foundation variable 
to compute and maximum admissible error. 

An application example is also presented, in which the seismic 
response of a 5 MW OWT including SSI effects is computed via a sub-
structuring procedure. The FRF of key structural variables obtained by 
both models (shell and beam) are compared, and the main conclusions 
drawn from this example are the following:  

• The soil-structure interaction effects significantly change the seismic 
response of the OWT system.  

• The foundation variable whose modelling has more impact on the 
obtained results is the lateral impedance term, followed by the 
lateral kinematic interaction factor.  

• Below the proposed limiting frequencies, virtually the same results 
are obtained regardless using the beam or shell model. 

• Even above these limits, the foundation beam model accurately re-
produces the OWT response in an acceptable frequency range for 
seismic analyses. The upper bound corresponds to the frequency for 
which the foundation diameter coincides with half wavelength.  

• This restrains the use of the beam model for extremely soft soils if the 
high frequency content of the excitation is important. But for typical 
scenarios, the foundation beam simplification is a valid option for 
reproducing the OWT seismic response, making it a valuable tool 
especially for design or optimization steps. 
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Appendix A. Validity of J as characteristic dimensionless parameter for dynamic analyses 

The dimensionless parameter J was proposed by Doherty and Deeks (2003) to characterize the relative stiffness between the foundation and soil for 
static analyses. In this appendix, its use in dynamic regime is tested by computing the impedance functions and kinematic interaction factors for 
several configurations and comparing the results obtained for the same value of J. 

Five shell thickness ratios t/D = {0.001,0.01,0.02,0.05,0.1} are combined with a continuum range of values for the ratio between the foundation 
and soil shear modulus Gf/Gs in order to cover a comparable J interval. For brevity’s sake, only results for a configuration with aspect ratio L/D = 6 are 
presented. The rest of dimensionless properties are equal to the ones defined in Section 3. 

Fig. 11 plots the impedance functions against the parameter J for the studied configurations. Real and imaginary components are presented in pairs 
for several dimensionless frequencies distributed in rows. Each column correspond to different impedance modes. The results show that the parameter 
J can be used to represent the relative foundation-soil stiffness for the static and low frequency scenarios. For higher frequencies the results are sensible 
to the thickness ratio if its value if larger than 2%, especially the vertical and lateral modes. However, the foundation elements for OWT structures 
typically present thickness ratios below this value, so the parameter J can be safely used to represents the foundation-soil stiffness contrast. 

Fig. 12 shows now the results in terms of kinematic interaction factors. The real and imaginary components of the lateral and rotational terms are 
presented in pairs of rows. Each column correspond to different dimensionless frequencies (static values are omitted as their results are trivial). As 
commented before, for thickness ratios below 5%, the behaviour of the different configuration is determined by the J parameter. Thus, it can be also 
used to characterize the foundation-soil relative stiffness when studying the foundation kinematic response. 

Appendix B. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.compgeo.2021.104107. 

References 

Ahmad, S., Irons, B.M., Zienkiewicz, O.C., 1970. Analysis of thick and thin shell 
structures by curved finite elements. Int. J. Numer. Meth. Eng. 2 (3), 419–451. 
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2016. Efficient numerical model for the computation of impedance functions of 
inclined pile groups in layered soils. Eng. Struct. 126 (1), 379–390. 

Almeida, V.S., de Paiva, J.B., 2004. A mixed BEM-FEM formulation for layered soil- 
superstructure interaction. Eng. Anal. Boundary Elem. 28 (9). 

Arany, L., Bhattacharya, S., Macdonald, J., Hogan, S.J., 2017. Design of monopiles for 
offshore wind turbines in 10 steps. Soil Dyn. Earthq. Eng. 92, 126–152. 

Ariza, P., Domínguez, J., 2002. General BE approach for three-dimensional dynamic 
fracture analysis. Eng. Anal. Boundary Elem. 26, 639–651. 

Ashuri, T., Zaaijer, M.B., Martins, J.R.R.A., van Bussel, G.J.W., van Kuik, G.A.M., 2014. 
Multidisciplinary design optimization of offshore wind turbines for minimum 
levelized cost of energy. Renewable Energy 68, 893–905. 

Bhattacharya, S., Nikitas, N., Garnsey, J., Alexander, N.A., Cox, J., Lombardi, D., 
Wood, D.M., Nash, D.F.T., 2013. Observed dynamic soil–structure interaction in 
scale testing of offshore wind turbine foundations. Soil Dyn. Earthq. Eng. 54, 47–60. 
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Jiménez-Salas, J.A., Belzunce, J.A., 1965. Theoretical solution of stress distribution in 
piles. In: Proceedings of the VI International Conference on Soil Mechanics and 
Foundation Engineering. 

Jonkman, J., Butterfield, S., Musial, W., Scott, G., 2009. Definition of a 5-MW Reference 
Wind Turbine for Offshore System Development. Technical Report NREL/TP-500- 
38060, National Renewable Energy Laboratory. 

Kaynia, A., Kausel, E., 1982. Dynamic stiffness and seismic response of pile groups. 
resreport R82–03, Massachusetts Institute of Technology. 

Kaynia, A.M., 2018. Seismic considerations in design of offshore wind turbine. Soil Dyn. 
Earthq. Eng. 

Novak, M., Nogami, T., Aboul-Ella, F., 1978. Dynamic soil reactions for plane strain case. 
J. Eng. Mech. Division (ASCE) 104, 953–959. 
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