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Simple Summary: Despite the fact that fat-tailed sheep raised for meat production are well known
for being resilient to harsh environmental conditions such as pasture scarcity or low-quality feedstuffs,
no studies regarding feed restriction have been performed on fat-tailed dairy sheep. In this study,
prepartum feed restriction from week −5 to week −1 relative to parturition did not affect body
weight. Similarly, postpartum feed restriction from week 1 to week 5 relative to parturition did
not affect body weight. However, both prepartum and postpartum feed restrictions affected blood
metabolites and hormones, which decreased both colostrum and milk yields postpartum.

Abstract: This study aimed to investigate the effect of prepartum and postpartum feed restriction
on body weight (BW), blood metabolites, and hormones as well as colostrum and milk yields and
compositions in fat-tailed dairy sheep. In this study, 20 multiparous and pregnant ewes were
randomly allocated to either the control (Ctrl; n = 10) or the feed-restricted (FR; n = 10) groups from
week −5 to week 5 relative to parturition. Despite dry matter intake being decreased in the FR
group compared to the Ctrl throughout both prepartum and postpartum periods, no differences in
BW were detected between groups in any of the studied periods. Feed restriction increased both
free fatty acids and beta-hydroxybutyrate concentrations during both prepartum and postpartum
periods. Similarly, feed restriction increased triglyceride concentration postpartum. Additionally,
feed restriction increased insulin and growth hormone and decreased prolactin concentrations during
both prepartum and postpartum periods. Feed restriction caused a decreased colostrum yield and a
relative increase of the main colostrum components in the FR group. Similarly, milk yield decreased
in the FR group compared to the Ctrl group, although milk components were not affected. In
conclusion, feed restriction did not affect BW but decreased colostrum and milk yield in fat-tailed
dairy sheep.

Keywords: ewe; mammary gland; metabolism; parturition

1. Introduction

In developing countries, livestock systems located in tropical and sub-tropical regions
are heavily dependent on natural resources (i.e., pastures). In these countries, decreased
pasture availability and quality during the dry season have important consequences on the
performance and health of dairy ruminants [1], especially during the transition period (i.e.,
from the last weeks of prepartum to the first weeks postpartum). During this period, the
reduced feed intake capacity and the high demand for energy for fetal growth (i.e., prepar-
tum) and milk production (i.e., postpartum) present an important metabolic challenge for
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dairy ruminants [2]. In these conditions, energy intake does not meet energy requirements
for body maintenance, fetal growth, and milk production, which results in negative energy
balance (NEB) and high adipose tissue mobilization [3,4]. If adaptation to NEB fails, the
risk of metabolic disorders increases considerably, affecting not only animal performance
but also animal health and welfare [5]. In addition, insufficient energy intake during the
last weeks before parturition may affect the cell reorganization of the dry mammary gland
and, therefore, affect milk yield and composition in the next lactation [6].

Fat-tailed sheep are raised in semi-arid regions of Eastern and Southern Africa, Central
Asia, and numerous countries in the Middle East [7]. The common characteristic of all
fat-tailed sheep is the deposition of a substantial amount of fat in the tail. Fat-tailed sheep
are known for being highly resilient to harsh environmental conditions such as those
related to the dry season (i.e., water scarcity and low-quality pastures and feedstuffs).
According to the literature, fat depots are differently regulated in fat-tailed sheep compared
to other sheep breeds during periods of feed scarcity [7–9]. However, most of these studies
have been performed in sheep breeds used for meat production. The Lori-Bakhtiari and
Turkey-Qashqai are two fat-tailed sheep breeds that are mostly used for milk production,
although meat from this breed is also consumed. Consequently, both breeds are mostly
considered dairy breeds. Therefore, and to the best of our knowledge, this is the first study
performed regarding feed restriction in fat-tailed dairy sheep around parturition.

Based on the above-mentioned facts, the current study aimed to investigate the conse-
quences of pre- and postpartum feed restriction on body weight (BW), blood metabolites,
and hormones as well as colostrum and milk yield and composition in dairy fat-tailed
ewes. This study hypothesizes that feed restriction around parturition affects BW, blood
metabolites, and hormones as well as colostrum and milk yield and composition in fat-
tailed sheep.

2. Materials and Methods
2.1. Animals and Management

The present study was performed at the experimental farm of Yasouj University
(Yasouj, Iran). All animal procedures followed the ethical law on Animal Protection and
were approved by the Committee of Animal Experiments (Yasouj University, Yasouj, Iran)
under the procedure 950441007-13845. During the entire experiment, all ewes were visually
healthy and had no signs of diarrhea.

This experiment used 20 multiparous and pregnant fat-tailed dairy ewes (Lori-Bakhtiari,
n = 10; Turkey-Qashqai, n = 10) with an average age 40.8 ± 6.2 months and BW 56 ± 1.8 kg,
which provided a power analysis = 0.85. The experimental period lasted from week −5
to week 5 relative to parturition. During the trial, all animals were kept in individual
pens (1.2 × 1.0 m) located in a closed barn. Each pen was equipped with individual drink
and feed containers. Animals were placed outdoor for sunlight, exercise, and hygiene
operations three h twice a week after morning feeding. Three days before the expected
parturition, ewes were transferred to a parturition pen (3.0 × 2.0 m) with clean straw
bedding and free access to water and feed. After the first week postpartum, animals
returned to the individual pens (1.2 × 1.0 m), where they stayed until the end of the
experimental period (i.e., week 5 relative to parturition).

From week −7 to week −5, all animals were fed with a total mixed ration (TMR)
diet formulated to fulfill 100% of the energy requirements recommended by the National
Research Council [10] for dry ewes (i.e., dry diet). At week −5, animals were randomly
allocated into one of the two experimental groups, including the control (Ctrl; n =10; Lori-
Bakhtiari, n = 5; Turkey-Qashqai, n = 5) and the feed-restricted (FR; n = 10; Lori-Bakhtiari,
n = 5; Turkey-Qashqai, n = 5) groups. From week −5 relative to parturition, ewes from the
Ctrl group received the dry diet. Ewes from the FR group were fed with different energy
levels from week −5 to week −1 relative to expected parturition. Thus, the FR group
was fed with a diet equivalent to 100, 50, 65, 80, and 100% of the energy content of the
dry diet at weeks −5, −4, −3, −2, and −1 relatives to expected parturition, respectively.
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After parturition, ewes from the Ctrl group were fed with a TMR diet formulated to fulfill
100% of the energy requirements recommended by the NRC [10] for early lactation ewes
(i.e., early lactation diet). Similarly, the FR group received a diet equivalent to 100, 50,
65, 80, and 100% of the energy content of the early lactation diet at weeks 1, 2, 3, 4, and
5 relatives to parturition respectively. Changes in the energy content of the FR group
increased progressively from 50% (week −4 and 1 relative to parturition) to 100% (week
−1 and week 5 relative to parturition) to prevent rumen and metabolic acidosis. During
the entire experimental period, the TMR was provided to the animals twice a day (0800 and
1700). In addition, animals had free access to drinking water and mineral blocks throughout
the entire experimental period. The chemical composition and ration ingredients of the dry
and early lactation diets are shown in Table 1.

Table 1. Diet composition and calculated nutrient composition of diets fed ewes during both pre-
and postpartum periods (dry matter basis).

Diets

Dry Diet Early Lactation Diet

Ingredients, DM %
Alfalfa hay 26.7 39.0
Barley 34.9 39.0
Wheat straw 35.5 22.0
Chemical Composition 1

DM 2, % 89.0 89.0
Calculated ME 2, Mcal/kg 2.13 2.23
CP 2, DM % 11.0 13.1
NDF 2, DM % 49.0 42.3
ADF 2, DM % 32.9 29.0
EE 2, DM % 2.10 2.31
Calcium, DM % 0.51 0.65
Phosphorous, DM % 0.24 0.27

1 Estimated using values obtained from the NRC [10]. 2 DM = Dry matter; ME = Metabolizable energy; CP = Crude
protein; NDF = Neutral detergent fiber; ADF = Acid detergent fiber; EE = Ether extract.

2.2. DMI, BW, Colostrum Yield, and Milk Yield

The individual feed intake was recorded daily by weighing the offered TMR and the
residual TMR of the next morning before feeding. Feed samples were collected to determine
the DM of the diets and calculate dry matter intake (DMI). The dry matter (DM) content
of the diets was determined according to the method described by the Association of
Official Analytical Chemists (procedure 934.01; [11]). Individual BW was recorded weekly.
Colostrum yield was estimated using the weight–suckling–weight method described by
Benson et al. [12] with slight modifications. Briefly, all lambs were kept separate from
dams and weighed before and after suckling. Then, the weight difference was added to
the weight of the remaining colostrum once it was hand-milked in order to calculate the
total colostrum yield. Similarly, to estimate the individual milk yield, lambs were weighed
before and after milk feeding. Then, the weight difference was added to the weight of the
remaining milk once it was hand-milked.

2.3. Colostrum, Milk, and Blood Collection

Colostrum samples (50 mL) were collected immediately at parturition. In addition,
milk samples (50 mL) were collected at 0800 and 1600 twice a week during the experimental
period. Both colostrum and milk samples were treated with Bronopol tablets (Broad
Spectrum Microtabs, Norwood, MA, USA) and then stored at −20 ◦C.

During the entire experimental period (from week −5 to week 5), blood samples were
collected weekly from the jugular vein using heparinized vacuum tubes (6 mL) at 0730.
All blood samples were kept in wet ice and then centrifuged at 3000× g for 20 min at
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4 ◦C (Hemle Labortechnik GmbH, Wehingen, Germany). Then, the plasma was aliquoted
(1.5 mL) and stored at −20 ◦C.

2.4. Variables Measured in Colostrum and Milk

Colostrum and milk samples were analyzed for fat, protein, lactose, solids not fat
(SNF) content, and density using a Lactoscan milk analyzer (Lactoscan S standard 1040,
Basic Models, Nova Zagora, Bulgaria). Fat-corrected milk (FCM; 6%) as well as milk energy
content (EVL; KJ/kg) were calculated based on the following equations as described by
Milis [13], and then, EVL was converted to Mcal/kg:

FCM (% 6, kg/d) = L (kg/d) × [0.472 + 0.0088 × F (g/kg)]

EVL (Mcal/kg) = 39 × F + 18.2 × SNF + 52.

2.5. Variables Measured in Plasma

The plasma concentration of glucose (#1500017), triglycerides (TG; #1500032), choles-
terol (#1500010), total protein (TP; #1500028), albumin (#101500), urea (#1400029), creatinine
(#1400009) as well as the plasma activity of lactate dehydrogenase (LDH; #122400), alanine
aminotransferase (GPT; # 1400019), and aspartate transaminase (GOT; #1400018) were
determined using an automatic chemical analyzer and commercial kits (Pars Azmoon,
Karaj, Iran). The intra-assay coefficients of variation were 1.5, 1.6, 0.9, 0.9, 1.3, 3.3, 3.2, 2.5,
3.6, and 2.4%, respectively. The inter-assay coefficients of variation were 0.9, 1.2, 1.1, 1.3,
1.5, 4.1, 1.8, 1.7, 1.9, and 2.2%, respectively.

Plasma free fatty acids (FFA; # FA115) and beta-hydroxybutyrate (BHB; #RB1007) con-
centrations were measured using commercial kits (Randox Laboratories Ltd., Crumlin, UK)
following the manufacturer’s instructions. The intra-assay coefficients of variation were
4.4 and 5.1%, respectively. The inter-assay coefficients of variation were 4.7 and 37%, re-
spectively. Insulin (# CSB-E17044Sh), growth hormone (GH; # CSB-EL009407Sh), prolactin
(# CSB-E13161Sh), and progesterone (#CSB-E13176Sh) concentrations were determined
using commercial ELISA kits (Cusabio, Houston, TX, USA) following the manufacturer’s
instructions. All ELISA kits used in this study were validated for being used in sheep
plasma. The intra-assay coefficients of variation were 6.7, 5.6, 5.3, and 4.9%, respectively.
The inter-assay coefficients of variation were 12.6, 15.2, 14.7, and 12.2%, respectively.

2.6. Statistical Analysis

The data were tested for normal distribution using the UNIVARIATE procedure of
SAS (Version 9.4, SAS Institute Inc., Cary, NC, USA). Two datasets were created based
on week relative to parturition. The prepartum dataset included all data collected from
week −5 to week −1. Similarly, the postpartum dataset included all data collected from
week 1 to week 5. Both datasets were evaluated using the MIXED procedure of SAS. The
model included feed restriction (Ctrl and FR), time (either from week −5 to week −1 or
from week 1 to week 5), and the interaction (feed restriction × time) as fixed effects. Breed
(Lori-Bakhtiari and Turkey-Qashqai) was set as a random effect, and the individual ewe
was set as a repeated subject. Significant effects were considered when p ≤ 0.05. Results
are presented as least squares means (LSM) ± standard error of the mean (SEM).

3. Results

In the present study, none of the animals showed dystocia at parturition and did not
show symptoms related to metritis and mastitis during the entire experimental period.
Pregnancy length was 151 ± 1.13 and 152 ± 1.12 days in the Ctrl and FR group, respectively
(data shown as mean ± standard deviation). In this study, all ewes gave birth to a single
lamb. No differences in birth BW were detected between singleton lambs born from the FR
group and those born from the Ctrl group (4.35 ± 0.36 and 4.80 ± 0.37 kg BW, respectively;
p > 0.05). From week 1 to week 5, all animals (i.e., ewes and lambs) were visually healthy.
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3.1. DMI and BW

As shown in Figure 1A, an interaction between feed restriction and time was detected
for DMI during both prepartum and postpartum periods (p ≤ 0.05). The induced feed
restriction decreased DMI in the FR group compared to the Ctrl group during both prepar-
tum and postpartum periods (p ≤ 0.05). As expected, no differences in DMI were detected
between the Ctrl and FR groups at week −5 relative to parturition (p > 0.05). However, DMI
was lower in the FR group than in the Ctrl group at weeks −4, −3, −2, and −1 relative to
parturition (p ≤ 0.05). During the postpartum period, no differences in DMI were observed
between groups at week 1 and week 5 postpartum (p > 0.05). However, DMI was lower in
the FR group than in the Ctrl group at weeks 2, 3, and 4 postpartum (p ≤ 0.05).

As observed in Figure 1B, neither feed restriction nor time prepartum affected BW
(p > 0.05). After parturition, BW decreased continuously in both the Ctrl and FR groups
until the end of the postpartum period (p ≤ 0.05), although no differences were detected
between groups (p > 0.05).

Figure 1. DMI (A) and BW (B) in control ewes (Ctrl, n = 10; o) and feed-restricted ewes (FR, n = 10;
�), during both prepartum (week −5 to week −1) and postpartum (week 1 to week 5) periods. Different
lowercase letters (a,b) indicate significant differences (p ≤ 0.05) between time points within the Ctrl
group. Different uppercase letters (A–D) indicate significant differences (p ≤ 0.05) between time points
within the FR group. * Indicates a significant difference (p ≤ 0.05) between the control and FR groups
within each time point. Results are expressed as least square means ± standard error of the mean.

3.2. Blood Metabolites

Table 2 shows the blood metabolites concentrations of the Ctrl and FR groups during
both prepartum and postpartum periods. In the present study, glucose, TP, urea, albumin,
creatinine, cholesterol, GOT, GPT, and LDH were not affected by either feed restriction or
time during either the prepartum or the postpartum periods (p > 0.05).

During both prepartum and postpartum periods, FFA concentrations (Figure 2A)
were affected by feed restriction (p ≤ 0.05) and time (p ≤ 0.05). In both periods, FFA
concentrations were higher in the FR group than in the Ctrl group (p ≤ 0.05). During the
prepartum period, both groups had increased FFA concentrations (p ≤ 0.05). During the
postpartum period, FFA concentrations remained constant in the Ctrl group (p > 0.05). In
contrast, the FR group had decreased FFA concentrations from week 1 to week 3, which
was followed by a slight increase at week 4 and a decrease at week 5 (p ≤ 0.05).

During both prepartum and postpartum periods, BHB concentrations (Figure 2B) were
affected by feed restriction (p ≤ 0.05) and time (p ≤ 0.05). During the prepartum period,
BHB concentrations were higher in the FR group than in the Ctrl group (p ≤ 0.05). Both
groups had increased BHB concentrations from week −5 to week −1 during the prepartum
period (p ≤ 0.05). In the postpartum period, BHB concentrations were higher in the FR
group than the Ctrl group (p ≤ 0.05). During the postpartum period, BHB concentrations
remained constant in the Ctrl group (p > 0.05). In contrast, the FR group had decreased
BHB concentrations from week 1 to week 2 followed by a slight increase from week 2 to
week 4 when FFA concentrations decreased again until week 5 (p ≤ 0.05).
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During the prepartum period, TC concentrations (Figure 2C) were not affected by
either feed restriction (p > 0.05) or time (p > 0.05). During the postpartum period, TG
concentrations were affected by feed restriction (p ≤ 0.05) and time (p ≤ 0.05). Triglyceride
concentrations were higher in the FR group than in the Ctrl group (p ≤ 0.05). In both
groups, TG concentrations remained constant from week 1 to week 4 and increased in week
5 (p ≤ 0.05).

Table 2. Plasma metabolites concentrations in the control (Ctrl; n = 10) and feed-restricted (FR; n = 10) groups prepartum
(from week −5 to week −1) and postpartum (from week 1 to week 5). Least square means and standard error of the mean
(SEM) are presented in this table.

Variables 1

Prepartum Postpartum

Groups Fixed Effects 2 Groups Fixed Effects 2

Ctrl FR SEM Feed
Restriction Time F × T Ctrl FR SEM Feed

Restriction Time F × T

Glucose, mg/dL 49.4 54.7 1.68 0.21 0.80 0.77 56.5 57.9 1.76 0.66 0.71 0.60
TP, g/dL 4.50 5.08 0.20 0.12 0.98 0.20 4.68 4.80 0.21 0.70 0.17 0.78

Urea, mg/dL 9.70 9.49 0.90 0.73 0.44 0.88 10.6 9.45 0.85 0.49 0.27 0.38
Albumin, g/dL 2.97 2.93 0.11 0.95 0.26 0.97 2.92 2.93 0.11 0.93 0.61 0.25

Creatinine, mg/dL 1.07 0.91 0.08 0.28 0.50 0.10 1.28 1.04 0.08 0.10 0.53 0.22
FFA, mg/dL 13.8 17.8 2.26 ≤0.01 ≤0.01 0.18 9.32 16.7 3.11 0.05 ≤0.01 0.10
BHB, mg/dL 8.02 11.5 1.20 ≤0.01 ≤0.01 0.22 5.93 10.1 1.46 ≤0.01 0.02 0.18
TG, mg/dL 62.5 63.0 0.64 0.58 0.23 0.40 61.5 64.4 0.99 0.04 0.01 0.24

Cholesterol, mg/dL 31.8 32.1 1.52 0.91 0.43 0.87 33.9 29.8 1.57 0.20 0.97 0.32
GOT, U/L 63.8 76.2 5.17 0.20 0.73 0.81 83.1 69.2 5.95 0.22 0.98 0.35
GPT, U/L 18.8 20.5 1.90 0.53 0.19 0.64 19.9 16.6 1.70 0.40 0.61 0.45
LDH, U/L 329 415 29.7 0.25 0.39 0.98 481 529 42.4 0.65 0.92 0.33

1 TP = Total Protein; FFA = Free fatty acids; BHB = Beta-hydroxybutyrate; TG = Triglycerides; GOT = Glutamic oxaloacetic transaminase;
GPT = Glutamate–pyruvate transaminase; LDH = Lactate dehydrogenase. 2 F × T = Feed Restriction × Time interaction.

Figure 2. Plasma free fatty acids (A), beta-hydroxybutyrate (B), and triglycerides (C) in control (Ctrl, n = 10; o) and
feed-restricted ewes (FR, n = 10; �), during both prepartum (week −5 to week −1) and postpartum (week 1 to week 5)
periods. Different lowercase letters (a,b) indicate significant differences (p ≤ 0.05) between time points within the Ctrl
group. Different uppercase letters (A–C) indicate significant differences (p ≤ 0.05) between time points within the FR group.
Results are expressed as least square means ± standard error of the mean.
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3.3. Blood Hormones

Table 3 shows the blood hormone concentrations of the Ctrl and FR groups during
both prepartum and postpartum periods. An interaction between feed restriction and time
was detected for insulin concentrations (Figure 3A) during both prepartum and postpartum
periods (p ≤ 0.05). During the prepartum period, insulin concentrations were lower in the
FR group compared to the Ctrl group in week −2 (p ≤ 0.05). No differences were detected
between groups during the rest of the prepartum period (p > 0.05). During the postpartum
period, the FR group showed lower insulin concentrations than the Ctrl group at weeks
3 and 4 (p ≤ 0.05). No differences between groups were detected at weeks 1, 2, and 5
(p > 0.05).

An interaction between feed restriction and time was detected for GH concentrations
(Figure 3B) during both prepartum and postpartum periods (p ≤ 0.05). During the prepar-
tum period, no differences between groups were detected at week −5 (p > 0.05). However,
the FR group showed higher GH concentrations than the Ctrl group during the rest of the
prepartum period (p ≤ 0.05). During the postpartum period, no differences were detected
between groups at weeks 1, 2, and 3 (p > 0.05). However, the FR group showed higher GH
concentrations than the Ctrl group at weeks 4 and 5 relative to parturition (p ≤ 0.05).

An interaction between feed restriction and time was detected for prolactin concentra-
tions (Figure 3C) during both the prepartum and postpartum periods (p ≤ 0.05). During
the prepartum period, no differences were detected between groups at weeks −5 and −1
(p > 0.05). However, the FR group showed lower prolactin concentrations than the Ctrl
group at weeks −4, −3, and −2 (p ≤ 0.05). During the postpartum period, prolactin concen-
trations were similar between groups at week 1 (p > 0.05). However, the FR group showed
lower prolactin concentrations than the Ctrl group during the rest of the postpartum period
(p > 0.05).

Progesterone concentrations were only affected by the time during the prepartum
period (p ≤ 0.05). During that period, progesterone concentrations decreased progressively
from week −5 (4.21 ± 0.22 and 4.03 ± 0.44 ng/mL in the Ctrl and FR groups, respectively)
to week −1 (2.42 ± 0.43 and 2.24 ± 0.23 ng/mL in the Ctrl and FR groups, respectively)
(p ≤ 0.05). During the postpartum period, progesterone concentrations were not affected
by either feed restriction (p > 0.05) or time (p > 0.05).

Table 3. Plasma hormones concentrations in the control (Ctrl; n = 10) and feed-restricted (FR; n = 10) groups prepartum
(from week −5 to week −1) and postpartum (from week 1 to week 5). Least square means and standard error of the mean
(SEM) are presented in this table.

Prepartum Postpartum

Variables 1

Groups Fixed Effects 2 Groups Fixed Effects 2

Ctrl FR SEM Feed
Restriction Time F × T Ctrl FR SEM Feed

Restriction Time F × T

Insulin, pmol/L 10.0 9.65 0.32 0.05 0.18 0.03 9.32 7.83 0.49 ≤0.01 0.22 0.04
GH, ng/mL 0.48 0.58 0.02 ≤0.01 ≤0.01 ≤0.01 0.75 0.83 0.03 ≤0.01 ≤0.01 ≤0.01
PRL, ng/mL 115 106 3.92 ≤0.01 ≤0.01 ≤0.01 132 86.1 4.61 ≤0.01 ≤0.01 ≤0.01
P4, ng/mL 3.16 3.17 0.29 0.97 ≤0.01 0.18 0.28 0.29 0.16 0.32 0.68 0.14

1 GH = Growth hormone; PRL = Prolactin; P4 = Progesterone. 2 F × T = Feed Restriction × Time interaction.
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Figure 3. Plasma insulin (A), growth hormone (B), and prolactin (C) in control (Ctrl, n = 10; o) and feed-restricted ewes (FR,
n = 10; �), during both prepartum (week −5 to week −1) and postpartum (week 1 to week 5) periods. Different lowercase
letters (a,b) indicate significant differences (p ≤ 0.05) between time points within the Ctrl group. Different uppercase letters
(A–D) indicate significant differences (p ≤ 0.05) between time points within the FR group. * Indicates a significant difference
(p ≤ 0.05) between the control and FR groups within each time point. Results are expressed as least square means ±
standard error of the mean.

3.4. Colostrum Yield and Composition

As described in Table 4, feed restriction reduced colostrum yield in the FR group
compared to the Ctrl group (p ≤ 0.05). Fat, lactose, protein, and SNF percentages in
colostrum were higher in the FR group than in the Ctrl group (p ≤ 0.05).

Table 4. Colostrum yield and composition in the control (Ctrl; n = 10) and feed restricted (FR; n = 10)
groups. Least square means and standard error of the mean (SEM) are presented in this table.

Variables
Groups Fixed Effects

Ctrl FR SEM Feed Restriction

Colostrum yield,
kg 4.45 3.16 0.45 0.05

Fat, % 9.48 13.9 1.50 0.03
Lactose, % 13.1 14.9 0.87 0.04
Protein, % 9.52 10.7 0.58 0.05
SNF 1, % 26.9 30.1 1.60 0.04

1 SNF = Solids not fat.
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3.5. Milk Yield and Composition

Milk yield was lower in the FR group compared to the Ctrl group until the end of the
experimental period (p ≤ 0.05; Table 5). In the Ctrl group, milk yield constantly decreased
until the end of the experimental period (p ≤ 0.05). In the FR group, milk yield decreased
from week 1 to week 3 (p ≤ 0.05), while milk yield increased from week 3 to week 5
(p ≤ 0.05). Fat, lactose, and protein percentages and SNF and EVL were not affected by
either feed restriction or time postpartum (p > 0.05) in both the Ctrl and FR groups.

Table 5. Milk yield and composition during the first 5 weeks of lactation in the control (Ctrl; n = 10)
and feed-restricted (FR; n = 10) groups. Least square means and standard error of the mean (SEM)
are presented in this table.

Variables
Groups Fixed Effects 2

Ctrl FR SEM Feed Restriction Time F × T

Milk yield, kg ≤0.01 ≤0.001 ≤0.001
week 1 1.28 a,* 0.89 A 0.09
week 2 1.29 a,* 0.50 B 0.09
week 3 1.19 a,b,* 0.57 B,C 0.08
week 4 1.14 b,* 0.66 C 0.08
week 5 1.02 b 0.76 D 0.13
Fat, % 0.86 0.13 0.70
week 1 3.64 4.03 0.59
week 2 3.27 3.82 0.47
week 3 4.68 3.93 0.84
week 4 4.22 4.58 0.51
week 5 5.26 4.96 0.65

Lactose, % 0.96 0.84 0.66
week 1 5.96 5.98 0.89
week 2 5.89 6.00 1.63
week 3 5.94 5.86 1.22
week 4 5.94 5.95 1.95
week 5 5.82 5.87 1.50

Protein, % 0.78 0.80 0.81
week 1 4.07 3.99 1.22
week 2 3.97 4.01 1.05
week 3 3.99 3.95 0.77
week 4 4.05 3.97 1.31
week 5 3.88 3.92 0.99

1 SNF, % 0.96 0.76 0.27
week 1 10.8 10.9 1.70
week 2 10.7 11.1 1.14
week 3 10.8 10.7 1.91
week 4 10.9 10.8 1.77
week 5 10.6 10.7 1.77

EVL, Mcal/kg 0.59 0.22 0.57
week 1 0.82 0.86 0.04
week 2 0.78 0.85 0.04
week 3 0.86 0.84 0.04
week 4 0.78 0.91 0.05
week 5 0.96 0.94 0.06

Lowercase superscripts (a,b) indicate significant differences (p ≤ 0.05) between time points within Ctrl group.
Uppercase superscripts (A–D) indicate significant differences (p ≤ 0.05) between time points within FR group.
* Indicates a significant difference (p ≤ 0.05) between experimental groups for a specific time point. 1 SNF = Solids
not fat; EVL = Energy value of milk. 2 F × T = Feed Restriction × Time interaction.

4. Discussion

In the next decades, dairy ruminants raised in tropical and arid regions will need to
cope with more adverse climate conditions and longer periods characterized by droughts
and pasture scarcity. These facts will have a direct impact on the health status and perfor-
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mance of dairy ruminants. Consequently, several studies have been performed to assess
the consequences of feed restriction on health and performance in dairy cows [14,15],
sheep [16–18], and goats [19–21]. To the best of our knowledge, the present study is the
first investigating the effects of feed restriction during both prepartum and postpartum
periods on BW, blood metabolites, and hormones as well as colostrum and milk yield and
composition in fat-tailed dairy ewes.

In this study, the induced feed restriction reduced DMI in the FR group compared
to the Ctrl group during both prepartum and postpartum periods. Despite the reduced
DMI, no differences in BW were detected between groups during both prepartum and
postpartum periods. Fat-tailed sheep are well known for being highly resilient to harsh
environmental conditions, water scarcity, and seasonal weight loss. As described by Wilkes
et al. [22], Damara sheep, a fat-tailed breed used for meat production, has a higher capacity
to obtain more nutrients from low-quality diets than common sheep breeds such as Merino.
In addition to the digestive capacity of this breed, another study from the same group
also concluded that Damara sheep have higher tolerance to feed restriction and different
fat mobilization regulation compared to Merino sheep [7]. As no differences in BW were
detected in the present study, it seems that the animals in the FR group were able to adapt
to the short-term feed restriction during both the prepartum and postpartum periods.

Metabolic status as well as hormonal regulation are two crucial factors involved in
the mammary gland development during the dry period in sheep [23]. In addition, dairy
ruminants around parturition are often under NEB due to the reduced feed intake capacity
and the increased energy output [5]. Under this condition, large amounts of body reserves
are mobilized to meet the energy requirements, which affect the concentrations of diverse
metabolites and hormones in the bloodstream [24–26]. Due to these facts, prepartum and
postpartum feed restrictions were expected to intensify NEB and consequently affect to a
larger extend both the metabolic status and the hormonal regulation around parturition. In
the present study, FFA and BHB were the only blood metabolites that increased in the FR
group during both prepartum and postpartum periods. Moreover, blood TG concentrations
were increased in the FR group postpartum. Increased FFA, BHB, and TG concentrations
indicate a more intense fat mobilization in the FR group than the Ctrl group, which is in
agreement with previous results observed in dairy sheep under feed restriction [27,28]. As
described by Kalyesubula et al. [29], extensive fat mobilization decreases the concentra-
tion of VLDL, which increases the continuous accumulation of TG and cholesteryl esters
in the hepatocytes. As a result of the fat accumulation, hepatocytes are damaged, and
they release enzymes such as GOT, GPT, and LDH into the bloodstream [30]. As none
of the liver enzymes (i.e., GOT, GPT, and LDH) were affected by either the prepartum
or the postpartum feed restriction, it can be hypothesized that either the extend of fat
mobilization observed in the FR group was moderate and had no negative consequences
on the liver functionality, or the fat-tailed sheep has an exceptional capacity to mobilize fat
without disturbing liver functionality. Although no differences in glucose concentrations
were observed during the entire experimental period, feed restriction decreased insulin
concentrations during both prepartum and postpartum periods. This might be related
to the increased physiological responsiveness to circulating insulin caused by a reduced
energy intake (i.e., carbohydrates). Under these conditions, reduced insulin concentrations
in the FR group might trigger a similar physiological response to the one observed in
the Ctrl group. Additionally, feed restriction caused increased GH concentrations during
both prepartum and postpartum periods. As described in humans, states of either NEB
or starvation result in increased GH resistance and increasing GH concentrations in the
bloodstream [31]. According to diverse studies, increased GH during NEB is thought to
preserve glucose homeostasis by antagonizing the systemic actions of insulin and promot-
ing lipolysis and lipid oxidation [32,33]. This fact could explain the lack of differences in
glucose concentrations between groups, as well as the increased FFA concentrations, and
the decreased insulin concentrations observed in the FR group.
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As showed by Ollier et al. [34] in dairy cows, reduced energy intake (i.e., dry hay)
rapidly decreased circulating prolactin concentration compared to cows fed a normal late
lactation diet. As described by these authors, reduced prolactin concentration caused
a reduction in milk yield, which is in agreement with previous studies performed in
dairy cows [35,36]. Despite the lack of literature about the effect of feed restriction on
prolactin concentrations in fat-tailed dairy sheep, it seems that similar to dairy cows,
prolactin concentrations decrease when these animals are under feed restriction, decreasing
colostrum and milk yield. Prolactin is a key regulator of the mammary gland renewal
and development as well as lactation [37]. The renewal of the mammary cells, which is
crucial for next lactation, occurs during the dry period [38]. Changes due to feeding level
might affect mammary gland reorganization and therefore have severe consequences in
colostrogenesis and lactogenesis during this period. Colostrogenesis is defined as the
prepartum transfer of components from the maternal circulation into mammary secretions,
which starts several weeks before parturition and ceases abruptly immediately before
parturition [39,40]. As described by Castro et al. [41], nutritional deficiencies in sheep
and goats during the dry period have negative consequences on colostrum synthesis.
Based on these facts, it seems that despite the FR group receiving the same diet as the
Ctrl group at week −5 and week −1 relative to parturition, the induced feed restriction
during weeks −4, −3, and −2 relative to parturition was sufficient to affect colostrogenesis,
reducing colostrum yield. Furthermore, it seems that the reduced colostrum yield caused a
relative up-concentration of the major components in colostrum, which could explain the
increased fat, lactose, protein, and SNF percentages obtained in the FR group. Similarly,
milk yield was also lower in the FR group than in the Ctrl group during the first five
weeks postpartum, including week 1 and week 5 relative to parturition when the FR group
received 100% of the diet offered to the Ctrl group. In agreement with these findings,
several studies have described how the feed restriction during prepartum affects milk yield
in diverse dairy sheep breeds such as Ghezel [18], Shropshire [42], and Santa Ines [43]. Even
though fat-tailed sheep are well known for their ability to not decrease BW during periods
of either feed restriction or pasture scarcity, it seems that feed restriction prepartum in
fat-tailed dairy sheep affected the mammary gland reorganization and decreased colostrum
yield as well as milk yield during the first five weeks postpartum.

5. Conclusions

The present study concludes that feed restriction in fat-tailed dairy sheep does not
affect BW during both prepartum and postpartum periods. However, feed restrictions
through prepartum and postpartum affect blood metabolites (i.e., free fatty acids, beta-
hydroxybutyrate, and triglyceride concentrations) and hormones (i.e., insulin, growth
hormone, and prolactin concentrations), which in turn decreases colostrum and milk
yields postpartum.
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