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Abstract: Currently, there are more and more frequent studies focused on the evaluation of Alzheimer’s
disease (AD) from the automatic analysis of the speech of patients, in order to detect the presence
of the disease in an individual or for the evolutionary control of the disease. However, studies
focused on analyzing the effect of the methodology used to generate the spontaneous speech of the
speaker who undergoes this type of analysis are rare. The objective of this work is to study two
different strategies to facilitate the generation of the spontaneous speech of a speaker for further
analysis: the use of a human interviewer that promotes the generation of speech through an interview
and the use of an automatic system (an automatic interviewer) that invites the speaker to describe
certain visual stimuli. In this study, a database called Cross-Sectional Alzheimer Prognosis R2019
has been created, consisting of speech samples from speakers recorded using both methodologies.
The speech recordings have been studied through a feature extraction based on five basic temporal
measurements. This study demonstrates the discriminatory capacity between the speakers with AD
and the control subjects independent of the strategy used in the generation of spontaneous speech.
These results are promising and can serve as a basis for knowing the effectiveness and extension of
automated interview processes, especially in telemedicine and telecare scenarios.

Keywords: Alzheimer’s disease (AD); automatic voice recognition; automatic interviewer; tele-
care; telemedicine

1. Introduction

Alzheimer’s disease (AD) is, currently, the most common cause of neurodegenerative
dementia in the world [1,2]. It implies 70–76% of dementia cases in developed countries,
increasingly long-lived [1] where numbers threaten to triple by 2050. Memory loss appears
as one of the first symptoms, to which others such as difficulties with language use or
spatial and temporal disorientation are added. In more advanced stages, the ability to
carry out daily activities or even basic body functions, such as walking or swallowing [3],
decreases or disappears. Either way, when the first symptoms are revealed, the damage
caused is already irreparable and chronic.

No cure has been found up until now, nor is it possible to have a reliable diagnosis
in life. The diagnostic process remains complex, is inevitably carried out in the advanced
stages of the disease and is prolonged over time. Its use as a screening method is limited
since current methods are expensive and invasive [4]. For this reason, there is great interest
in finding biomarkers in more accessible parts of the body that are sensitive to AD before
the clinical onset of dementia, and which also allow the specific stages of the disease to be
monitored afterwards [5]. In such circumstances, developing eHealth 4.0 solutions based
on more accessible particular biomarkers would allow democratizing the evolutionary and
pharmacological control in an easy, fast, non-invasive and scalable way. It would provide
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objective parameters and facilitate medical specialist’s work. None of these techniques
would require an extensive infrastructure or availability of medical equipment and could
be used, if necessary, even remotely as a Telecare solution.

In this context, many studies have shown that speech analysis is a powerful indicator
of a patient’s cognitive status and that even the first symptoms can be found years before
a probable clinical diagnosis is stated [6,7]. Furthermore, it has been shown that some
specific communication problems, such as aphasia or anomie, depend on the stage of the
disease [4] and increase with the course of AD [8–10]. Another determinant is the emotional
responsiveness of the patients, which is also affected by the course of the disease causing
social and behavioral changes [11] that affect the ability to communicate.

In the last few years, techniques based on automatic processing of the voice signal from
its recording have found an important niche in language evaluation applied to identify
neurodegenerative diseases [12]. These techniques offer the possibility of quantifying
signal properties that are relevant to the description of a given pathology. Subsequently,
with the support of Automatic Learning techniques, the process of classifying the samples
is performed according to the results obtained. In this framework, the concept of Deep
Learning [13] appears as a more complex method of automatic learning which is also
making its way into the field [14]. The use of automatic grading methods that use linguistic
characteristics resulting from verbal emissions also has the advantage of being able to
apply automatically, avoiding the possible influence of an intermediary or interviewer.

In recent years, an almost exponential increase has been documented in the number
of investigations aimed at shedding light on speech analysis as a non-invasive biomarker
of AD [15]. Since the first lines appeared, 78% have been based on the use of conventional
parameters; mainly duration of deaf or sound segments, pitch, amplitude and periodicity, as
well as others obtained from analysis of the frequency and cepstral domains [16–18]. Also,
concepts such as speech quality or Emotional Temperature (ET) have been defined. Other
techniques such as Automatic Spontaneous Speech Analysis (ASSA) [19] are presented
as methods that encompass different combined voice qualities (durations, short time
energy and spectral centroid) and provide relevant information by classifying these data,
in most cases using Support Vector Machine, k-Nearest Neighbors, Linear Discriminant
Analysis [20] or Multi-Layer Perceptron [21] classifiers. Currently, studies also include
classical characteristics in emotional analysis such as pitch, intensity and variation of
frequency components and, more recently, ET [22]. They present methods like ASSA and
Emotional Speech Analysis (ESA) that, combined with ET and Spontaneous Speech (SS)
tasks, have achieved discrimination between patients with AD and healthy controls with
94% accuracy using an SVM classifier [23]. Numerous studies have also been published
on the basis of Voice Activity Detector (VAD) transcriptions [24] which, in addition to
an acoustic analysis of the voice or speech signal, offer lexical, semantic, punctuation or
syntactic analysis of the communicative process [25,26].

Since approximately 2012, more and more works in this line point to the need to
seek support in the non-linear and non-stationary aspects [15]. Some researchers have
proposed that subtle cognitive changes in the early and preclinical stages could be more
accurately detected by fractals. In some works they are presented in combination with
other non-conventional measures such as the Hurst exponent [27] or just in combination
with linear characteristics [28].

It is also important to outline that, so far, one of the main limitations has been the
scarcity and, in turn, diversity of samples available to train models for the evolutionary
control of AD.

Although there are databases of the most varied disciplines for the study of AD,
ranging from meta-analyzes focused on the genetic association with putative Alzheimer’s
disease [29] to others based on the olfactory system for the precocious in Parkinson’s
and Alzheimer’s [30], the reality is that the most of the located databases regarding the
speech recognition in AD lack the required amount of data to carry out a truly consis-
tent analysis and there is also the disadvantage of having been established according to
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different guidelines and criteria. Most localized databases focus on spontaneous speech
recordings [31–33], although there are others that invite the subject to perform tasks as
repetition or reading [20]. The recording of the samples is usually carried out in a timely
manner on a number of control subjects and AD patients classified according to different
degrees of severity: mild, moderate and severe [34–37]. Although less, some have carried
out longitudinal studies on the subjects [38,39] in order to find a relationship between the
progression of AD and language impairment.

As a review of the state of the art, localized databases that include recordings for
linguistic analysis of AD patients are listed in Table 1. Information is also included on the
type of interviewer used in them; human/automatic, and on the type of study over time:
longitudinal/transverse. This table includes other information such as the language used
by the subjects in the recordings, the classification of the participants (Healthy Control
(HC), Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD)) and the linguistic
tasks performed. It is important to clarify how we have classified the tasks used for the
recordings of each of the studies. In this way, we define: spontaneous speech (SS), which
includes telling stories, experiences, answering questions freely or describing images, inter
alia. Reading, repetition, counting or animal denomination tasks (cVF) are others that
appear in some studies, although less, and we understand that they are not related to the
concept of spontaneous speech, as we define it. We have used the term Mixed when both
SS and other tasks have been included in the study.

Table 1. Databases of recordings used for linguistic analysis of localized Alzheimer’s disease (AD) and types of study
according to the distribution in time of taking measurements and the type of interviewer used.

DataBase Interviewer Long/Transv Language Task
HC MCI AD

ReferencesM/F M/F M/F
SAIOTEK

Human Cross sectional Multilingual

SS 5 - 3 [19,40]
AZTIAHO SS 50 - 20 [23,28,41–44]

PGA-OREKA cVF 26/36 - 17/21 [45]
MINI-PGA SS 12 6 [46]

- Human Cross sectional Greek SS 30 - 30 [18]

Dem@care Human
Cross sectional Greek Mixed 4/15 12/31 3/24 [47]
Cross sectional French Mixed 6/9 11/12 13/13 [48–50]

- Human Cross sectional French Reading 14 14 14 [51]
- Human Cross sectional French SS 5 - 5 [52]

*TRANSC Human Longitudinal - SS 184 * - 214 * [53]
ClinicalTrials.gov Human Longitudinal English SS 27 14 - [54]

- Human Cross sectional English SS 46 - 26 [55]
WRAP Human Longitudinal English SS 200 - 64 [56]

Pitt (DB) Human Longitudinal English SS 74 19 169

[31–33,39,57–61]
Kempler (DB) Human Cross sectional English SS - - 6

Lu (DB) Human Cross sectional Mandarin SS - - 52
Lu (DB) Human Cross sectional Taiwanese SS - - 16

PerLA (DB) Human Cross sectional Spanish SS - - 21
ACADIE Human Longitudinal English SS - - 95 [62]

AMI Human Cross sectional English SS 20 - 20 [61]
CCC Human Cross sectional English SS 10 - 55 [60,63]
ILSE Human Longitudinal German SS 80 13 5 [64]

CREA-IMSERSO Human Cross sectional Spanish Reading - - 21 [65]
- Human Cross sectional Spanish Reading 82 - 45 [66]
- Human Cross sectional Spanish Mixed 29 - 34 [25,67]

Cinderella Human Cross sectional Portuguese SS 20 20 20 [68]
OPLON Human Cross sectional Italian Mixed 48 48 [69]
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Table 1. Cont.

DataBase Interviewer Long/Transv Language Task
HC MCI AD

ReferencesM/F M/F M/F
- Human Cross sectional Iranian SS 15/15 - 16/14 [70]
- Automated Cross sectional Japanese SS 7/3 - 9/1 [17]
- Human Cross sectional Japanese SS 73/200 [71]

BELBI Human Cross sectional Serbian SS - - 12 [72]
BEA Human Cross sectional Hungarian SS 13/23 16/32 - [26,73–75]

- Human Cross sectional Turkish SS 31/20 - 18/10 [16]
- Human Cross sectional French SS 29 - 29 [76]
- Human Cross sectional Persian SS 0/6 - 0/6 [77,78]

Others studies using unknown databases

[79–83]

DB: DementiaBank, PC: Pitt Corpus, CCC: Carolina Conversation Collection, ILSE: Interdisciplinary Longitudinal Study of Adult
Development and Aging, ACADIE: Atlantic Canada Alzheimer’s Disease Investigation of Expectations, WRAP: Wisconsin Registry for
Alzheimer’s Prevention, BEA: Hungarian Spoken Language Database. * Transcriptions, no participants.

Automatic Interviewers

A common denominator in the collection of voice samples in the AD study is to resort
to a person who leads the interview, usually by encouraging the subject to recall past
memories or answer questions [32,33], read texts [84] or describe a photo [85], although
some have already included computer avatars in their work [71,74] which would make
the results more objective and less dependent on human factors such as the ability of
the interviewer to direct the interview. In any case, a common and objective method of
recording speech for AD patients seems necessary.

Several research efforts have identified relevant advantages in computer-assisted com-
munication compared to human interaction. Among these advantages, we identify that
the participant feels more anonymity while being interviewed. These assisted communica-
tion systems are being equipped increasingly, among others, with communication skills
that facilitate communication by using vision and prosodic analysis to implement active
listening behaviours, smiles, head movements and postural mimicry. They use non-verbal
strategies and show empathy so that the interviewed subject can feel comfortable and the
conversation can go more smoothly. This fact helps to generate feelings of sympathy and
trust in the interviewee [86]. In any case, it is necessary for the automatic interviewer to be
able to perceive the human behaviour in order to process it, understand it and react to it. It
is also essential that these skills do not work in isolation and that they allow integration
into other systems, so that they learn from human interaction as they are used.

In general, there are systems that already work to reduce the barriers of interviewers
and virtual systems that interact with humans. They are implementing automatic speech
recognition systems [87], facial expression recognition [88] and natural language gener-
ation [89]. All the standardization efforts have tried to consolidate all the systems. For
example, SAIBA [90] is a framework to generate empathic conversations. On the other
hand, there are LiteBody and DTAsk that aim at creating social-emotional relationships
with users through verbal and non-verbal social behaviours [91]. GRETA [92] is a conver-
sational agent that complies with SAIBA, and focuses less on the interaction of natural
language and more on the generation and performance of non-verbal affective behaviours.
It applies a complex facial generation model, in particular. The project SEMAINE [93] aims
to integrate various research technologies, including some of the above, into the creation of
a virtual listener. The focus would be on perception and reverse channeling rather than
deep representations of dialogue. There are even tools that allow the creation of virtual
humans that interact with people in a conversation [94]. An example of an automatic
interviewer that is based on a virtual human and employs multiple resources to make
communication as human as possible is SimSensei Kiosk [86].

Either way, few works have focused on applying these strategies to AD. Although
there is evidence of some solutions such as SimpleC built by IBM [95] that replace purely
human variables (such as the interviewer’s empathy with the subject), these remain rare.



Appl. Sci. 2021, 11, 3228 5 of 18

It has not yet been demonstrated to what extent, for the same subject, the parameters
obtained from a human or automatic interviewer can vary or how this fact could fit into
the current reality.

Within the framework of the detection and evolutionary control of AD based on voice
recordings and their automatic processing, this work intends to objectively determine the
discriminatory capacity (healthy and pathological AD voices) of two different recording
strategies, specifically by obtaining the samples through human and automatic interviewers.

2. Materials and Methods

This section describes the materials and methodology we have used to determine
the discriminatory capacity of the voice of AD patients and HC subjects under the two
proposed scenarios: the human interviewer and the automatic interviewer.

A database has been created to accomplish the study which we have called Cross-
Sectional Alzheimer Prognosis R2019, and which has been used to compare both types
of samples. In Section 2.2.1 the way the recordings were made is properly explained.
Subsequently, voice processing and feature extraction based on speech times have been
performed. Using a series of descriptive statistical measures and then applying a statistical
analysis based on the Wilcoxon Summation Test [96], two parallel studies were suggested
to determine the discriminatory capacity of each interviewer.

2.1. Methods

To find out to what extent the type of interviewer influences the difference of healthy
and pathological AD voices, the Cross-Sectional Alzheimer Prognosis R2019 database
has been created. In it, on each of the subjects recorded, both AD and HC patients, two
types of interviews were done and, therefore, two different types of recordings. The first
type of recording is characterized by having been carried out by an automatic interviewer
(Prognosis software, see Section 2.2.3). The second type of recording, as is widely done in
the field, has been realized by a member of the research team. Hereafter, we will define
the first type of recordings as induced speech samples, and those obtained through the
human interviewer will be defined as spontaneous speech samples. It is interesting to
clarify that all recordings have always been made in the environment of the patients and
the HC subjects, so that the result can be as realistic as possible.

After collecting recordings of both types for all subjects, a Voice Activity Detector
(VAD) was applied to the samples using Matlab® software (Figure 1). As a result of this
process, different speech and silence sequences are obtained and stored in a matrix, where
the initial and final time of each sound fragment Si is indicated.

Figure 1. Voice Activity Detector (VAD) applied on voice signal.
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The voice signal is characterized using different descriptive statistics estimators of the
duration of the different sound fragments in which it is divided the speech of a speaker.
The different features are described below.

- Average speech time tS: describes the average speech time of the different sound
fragments which can be identifier in a sample of speech of a speaker. It is estimated [97]
from the arithmetic mean of the duration of all the sound fragments in a single recording.

tS =
∑N

i=1 tSi

N
(1)

In which tSi is the time duration of each sound fragments (S1, S2, . . . , SN) is which
is divided each speech recording {Si}.

- Variance of speech time
(

σ2
tS

)
: describes the variation of the different sound frag-

ments in a recording. It is estimated [98] using the following estimator of the variance:

σ2
tS
=

∑N
i=1
(
tSi − tS

)2

N − 1
(2)

- Skewness of speech time µ̃tS3 : This measure allows characterizing the behavior
of the probability distribution function of the duration of the different sound fragments.
This measure quantifies [99] the lack of symmetry of the average duration of the voice
fragments. In this way, when the studied samples follow a normal distribution, the value
of µ̃tS3 will be zero. Positive or negative values of µ̃tS3 indicate data skewed to the right of
their distribution curve or to the left, respectively. Skewness of speech time is calculated
using the following estimator:

µ̃tS3 =
∑N

i=1 (tSi − tS)
3

N·
( √

σ2
tS

)3 (3)

where tSi is the time duration of each sound fragments, tS is the average speech time, σ2
tS

is the variance of speech time, and N is the number of sound fragments in the sample
of speech.

- Kurtosis of speech time (Kurtts): This is other measure which allows characterizing
other aspects of the behavior of the probability distribution function of the duration of
the different sound fragments. This measure states the quantity of sound fragments in a
recording with a duration that is close to the average duration (h). The larger Kurtts is, the
steeper its distribution curve will be. Kurtts is calculated [99] using the following estimator:

Kurtts =
∑N

i=1
(
tSi − tS

)4

N·
( √

σ2
tS

)4 − 3 (4)

- Index of speech time(Indts): describes the relationship between the total time the
subject is speaking to the total duration of the recording. It is calculated as the division
between the total time of speech sequences by the total recording time of the sample.

Indts =
∑N

i=1 tSi

TTOTAL
(5)

in which tSi is the time duration of each sound fragments (S1, S2, . . . , SN) is which is
divided a speech recording and TTOTAL is the duration of the speech recording.

In order to know exactly which of the above variables are AD-discriminatory and
which are not for each interviewer, a descriptive statistical analysis and a non-parametric
study based on the Wilcoxon Summation Test [100], has been done, since the samples do
not show a normal distribution [101]. The Stata® software was used for the statistical study.
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2.2. Materials
2.2.1. Databases

The Cross-Sectional Alzheimer Prognosis R2019 database is a database created to test
how discriminating a voice sample of AD can be based on the type of interviewer used in
the recording. Based on this, for each subject, AD or HC patient, this database has both
spontaneous and induced speech samples, all collected in a single session.

It should be noted that for the production of speech in the subjects we have not looked
for a pre-designed sentence structure, or balanced sentences, but we have recorded sponta-
neously generated speech. In this sense, there is no design of sentences, but recollection is
used through stimuli in the participants: in the case of the human interviewer, by inviting
the subject to speak, and in the case of the automatic interviewer, through videos and
images, with the aim of producing reminiscences in the subjects that evoke memories.

The tools used to proceed with the recording have been a laptop, headset with micro-
phone [102] and, in the case of automatic interviews, the Prognosis software
(see Section 2.2.3). Specifically, four different recordings are obtained for each subject,
three of induced speech and one of spontaneous speech. They were recorded at a sampling
rate of 44,100 Hz. The recording file type used was WAV.

The total number of people recorded was 87, of whom 41 were AD patients and 46 HC
subjects, all over 65 years of age. The total number of women recorded is 56 compared
to 31 men. As for the distribution according to the degree of the disease we have that of
the 41 patients with AD, 15 correspond to the moderate degree and 26 to the mild degree.
Table 2 as well as Figures 2–4 represent the distribution of the people recorded according to
sex, presence or absence of AD and the comparison between the different degrees analyzed
(HC subjects, mild or moderate patients).

Table 2. Distribution of the people recorded according to sex, presence or absence of AD and the
comparison between the different degrees analyzed (HC subjects, mild or moderate patients).

Polulation Women Men

Healthy control 46 23 23

AD patients
Mild 26 19 7

Moderate 15 3 12
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2.2.2. Human Interviewer

The recordings of the samples were carried out by one member of the investigation
team using an Intel Core i5, 12 GB RAM. 250 Gb SSD laptop, where different recordings have
been stored. Furthermore, Audacity® software has been used to carry out the recording
and the Ozone Rage ST [102] headset with microphone. When conducting the interview,
each of the subjects has been asked or encouraged to talk about what they want, about
a free topic, with the objective of achieving a spontaneous speech recording that varies
between 30 s and 2 min.

2.2.3. Automatic Interviewer

The obtained samples of the automatic interviewer are gained by the Prognosis
software. The main objective of this software is to make recordings based on the “automatic
interviewer”. In order to obtain these samples of induced speech and to incite the subjects
to speak, a series of videos have been used as stimulus, taking into account that the common
denominator of all the participants is age and that they are all over 65 years old. In the
Portal Memoria Digital de Canarias of the University Library of the ULPGC [103] there is
a wide repertoire of reports and old news, among others, that we have used to provoke
reminiscences in the subjects. Currently, there are numerous studies that demonstrate the
effectiveness of the use of multimedia tools, such as videos, to make subjects who suffer
from dementia or AD communicate or express themselves more easily [104–107], and
they are also especially interesting when they are personalized or provoke reminiscences
of moments lived. Based on this, we have expressly selected from the repository those
videos that reflect past times and that, therefore, we consider that could somehow awaken
memories in the participants.

The program is divided into three phases (see Figure 5). The first phase corresponds
to the registration of the participant’s data. The interviews are anonymous but some
participant’s data are recollected: degree of AD (control, mild, moderate, or severe), sex
and age.

The second stage corresponds to the recording of a sustained vowel (/aa/). The
software invites the speaker, through a video, to produce a sustained vowel. The software
shows a short motivational video where one of the investigators of the project explains
how the recording is going to be and how the subjects should act. Finally, as indicated in
this video, the subject must pronounce the vowel /aa/ in a sustainable way for 8 s, which
will be recorded automatically. Recordings of sustained vowels have not been specifically
used for this work, although they are reserved in the database for future studies.
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In the third phase, three samples of induced speech are recorded for the speaker. For
the recording of each sample, firstly the software reproduces a video inviting the speaker to
describe the video that it is going to reproduce (see Figure 6). Next, the software reproduces
a video, which is expected to generate fond memories of childhood or youth in the speaker
(see Figure 7), and later the software will play another video inviting the speaker to describe
the video. The description made by the speaker is automatically recorded. This recording
has a duration of 30 s. It is expected to be able to generate reminiscences in the speaker
which generate interest in the speaker by sharing their experiences and memories. Three
videos have a duration of approximately between 30 s and 2 min, and they are randomly
selected from a video repository provided by the software.
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Once each recorded period is finished, the software is also designed to detect if the
collected sample collected contains audio from the participant or if, by contrast, only silence
has been recorded. In case the participant has not spoken during the recording, a short
video will be shown again where the same team researcher indicates this situation and
encourages the subject to speak. Since in that case no sample would have been obtained,
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this deficiency is compensated by playing a new video. Once the recordings are finished,
the researcher reappears on screen and thanks the subject for participating in the study.

3. Results

The descriptive statistics of each measure have been studied for each of the populations
(HC and AD), differentiating in the methodology for the interview (human and automatic
interviewer). The results are show in Table 3.

Table 3. Descriptive statistical results: mean values (µ) and standard deviation (σ).

HC AD

Variable
Human

Interviewer
µ (σ)

Automatic
Interviewer

µ (σ)

Human
Interviewer

µ (σ)

Automatic
Interviewer

µ (σ)

tS 1.79 (0.53) 1.8 (0.76) 1.42 (0.39) 1.36 (0.45)
σ2

tS
1.6 (1.32) 1.33 (1.40) 0.93 (0.47) 0.9 (1.01)

µ̃tS3 0.81 (0.56) 0.49 (0.59) 0.9 (0.46) 0.47 (0.64)
Kurtts 3.3 (1.52) 2.3 (1.1) 3.37 (1.41) 2.35 (1.17)
Indts 0.71 (0.1) 0.7 (0.12) 0.48 (0.14) 0.47 (0.18)

Base on the obtained data in characteristics extraction process, Table 4 shows boxplots
of samples analyzed for each of the five variables under study.

Table 4. Boxplots for the five temporary variables.

Variable Human Interviewer Automatic Interviewer
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Table 4. Cont.

Variable Human Interviewer Automatic Interviewer
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Subsequently, in order to know with each interviewer which variables are capable of
discriminating AD from HC, a non-parametric analysis based on the Wilcoxon Summation
Test has been made. The results are shown in Table 5.

Table 5. Results of Wilcoxon Summation Test.

Human Interviewer Automatic Interviewer

Variable z Prob |z| z Prob |z|

tS 3.05 0.002 5.77 0
σ2

tS
2.79 0.005 3.94 0

µ̃tS3 −0.57 0.565 0.47 0.637
Kurtts −0.80 0.418 0.65 0.515
Indts 5.87 0 9.64 0

In this case, the probability of z must be less than 0.05%, or the error below 95%, so that
the result of any of the variables studied can be accepted as discriminatory. In other words,
this implies that a variable will be considered discriminatory when the null hypothesis that
there is no difference between the study variables is rejected.

As can be seen in Table 5, the variables tS, σ2
tS

and Indts confirm that there is a
difference between HC and AD subjects, since the probability of z is less than 0.05%, for
both methodologies.

4. Discussion

Databases are a fundamental aspect of any research since only on the basis of them
we can develop our experimental studies and analyses. In this work, we have located
and classified a series of databases related to language use in AD patients in order to
understand better their role and current situation in the field. From a thorough review of
the state of the art, we have found, in addition to a shortage in the number of localized
databases, a great diversity in how the recordings of the subjects are made. We have, for
example, aspects related to the recording process, to the automation of the interviews
or to the linguistic tasks performed by the subjects that differ much from one study to
another. Although aspects like those mentioned above influence the recordings, they are
not the only ones; there are many other variables as the language, the environment or
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simply the pre-processing methods used which make each database obtainable under
different conditions.

However, it should be mentioned that there is a certain inclination as regards the type
of linguistic task performed, and up to 80% of the cases analyzed use spontaneous speech
in their recordings, understanding spontaneous speech as those tasks in which questions
are asked to the subject and give a limited, relatively long time to express themselves freely.
Nevertheless, we do not have clear evidence as to whether other linguistic tasks, such as
reading, could provide us with more or less information or even be complementary to
each other. On the other hand, we have been able to observe that only 18% of the located
databases correspond to longitudinal studies. This type of study is of special interest
because it allows the analysis of the time variable on the samples, which is undoubtedly a
reflection of the progressive deterioration of language that these patients suffer. Among
the databases located, it should be noted that only one of them automated the interview
process with the subject by means of computerized avatars. However, we are not aware of
how this fact can effectively affect the final results.

The Cross-Sectional Alzheimer Prognosis R2019 database has been created in order to
find out how the automating process of interviews affects the taking of samples and the
results of subsequent statistical analyses. This database consists of two types of recordings:
spontaneous speech (human interviewer) and induced speech (automatic interviewer). In
this sense, it is worth highlighting two main advantages of the database used. In the first
place, it is a database in which two clear methodologies are collected to record the voice
for the purposes indicated in this study. We have the same subject who participates in
both types of recordings. The second advantage resides in the potential of these registers
which, based on the pertinent analyzes carried out, allow us to discover to what extent
these methodologies are validated, the automatic one in particular.

A descriptive statistical analysis and a non-parametric statistical study of the different
variables (tS, σ2

tS
and Indts ) has been realized, which allow characterizing the different

sound fragments of a speech sample.
As a first step, by means of the descriptive statistical analysis, we have probed that for

both kinds of interviewer, durations of the different sound fragments of a speech sample,
and their variability, in HC subjects have been always higher than those related to AD pa-
tients. In a second round, the Wilcoxon Summation Test has been applied to these variables
(tS, σ2

tS
and Indts ) in order to verify whether the variables have discriminatory capacity

to differentiate between HC and AD subjects, and the dependence on the methodology
used in the interviewer (human interviewer and automatic interviewer). As a result, the
probabilities (z) obtained for each of these variables show that the proposed measures have
discriminatory capacity independent of the methodology applied in the interviewer.

By its part, it can be seen from Table 4 that the Indts variable has a high discriminatory
potential for the case of both automatic interviewer and human interviewer. For the rest of
variables it can be seen that in all cases values of samples overlap to a greater or lesser extent.
However, this fact does not apply to the Indts variable where, apart from not overlapping
values, the mean for each population is clearly different regardless of the interviewer used.
For the human interviewer there are approximately 0.8 s for the control subjects and about
0.55 s for AD patients. For its part, using the automatic interviewer we have a mean close to
0.7 s for HC subjects and a value of 0.5 s for each AD population. Regarding the dispersion
of the data, it can be said that is greater in the case of the automatic interviewer that in the
case of the human interviewer.

In any case, both interviewers offer good results. In the case of the automatic inter-
viewer, there are fewer studies that allow us to quantify its effectiveness compared to the
human one. The good results obtained in this first approach serve as a baseline for us
to continue working in this line, applying different tests, such as the parametric ones, or
analyzing other variables that could be not only temporary.
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5. Conclusions

In this work we have carried out a search and review of the state of the art on the
different strategies that have been followed so far in the recording of subjects for the
linguistic analysis of AD. Currently, although the repository of localized databases is
not as extensive as would be desired, we have been able to note the great diversity of
strategies followed in the creation of these databases and the lack of a common criteria.
This common criterion would imply knowing what kind of tasks carried out by the subject
are more interesting, who, how, where and when these interviews take place and the
possible influence of these factors on the recording. Up until now, there has been no clear
evidence of which is more beneficial for the purpose: the detection and/or evolutionary
control of AD. For its part, we have been able to verify that there is a significant lack of
longitudinal databases. When recording, the contribution of longitudinal databases is
particularly interesting, which would allow us to capture the progressive deterioration that
these patients suffer.

Another important aspect is the automation of the recording process as such. Few
works have focused on applying automatic strategies, at least applied to AD. This includes,
for example, the automation of neuropsychological tests or patient interviews that are
currently still administered manually. In this case, although there is evidence that at
least one of the databases we have located conducts guided interviews with computer
avatars, little is known about the benefits of automating these processes. Therefore, it
seems interesting to check and go deeper into the extent to which, for the same subject, the
parameters obtained could vary depending on the type of interviewer.

In this paper, two concepts have been defined to understand the specific benefits
of these automatic techniques compared to their manual counterparts: induced speech
(obtained from the automatic interviewer) and spontaneous speech (obtained from a human
interviewer). Based on them, a database called Cross-Sectional Alzheimer Prognosis R2019
has been created, in which samples of both types have been taken. From the processing
of these samples and their subsequent statistical analysis, the results obtained prove to be
discriminatory regardless of the recording strategy, whether a person has been employed
as an interviewer or whether the recordings have been obtained automatically from the
Prognosis software. Although the results obtained are promising, the scarcity of this type
of study implies a clear need to continue working on evidence that is increasingly strong
and allows for a higher level of interpretation.

From the promising results obtained, the door is also opened to carry out a thorough
study in which the Cross-Sectional Alzheimer Prognosis R2019 database is expanded,
complemented and improved. As future lines, we propose the possibility of combining the
analysis of speech raised in this work by expanding the database, not only to new partici-
pants, but also to new data that can likely be correlated with AD, such as an educational or
pharmacological factor, as well as other data of a geographical and social nature.

It also seems interesting to be able to extend this type of study to new techniques
proposed in the field of voice recognition, in which ideas based on the study of samples
obtained in real noisy environments such as social gatherings, streets, cafes and restaurants
are raised [108]. Likewise, an interesting line to take into account in this regard is given by
the current challenges posed to address a voice recognition scenario capable of providing
speech enhancement, speaker diarization and speech recognition modules, for example, by
means of recognition modules based on multispeaker speech recognition for unsegmented
recordings [109].

Mainly this study aims to open the door to an evaluation methodology based on
non-invasive, objective, collaborative and easily replicable techniques. Added to that, it
is also important to mention the high acceptance by patients as an important advantage.
With a view to the future, all these conditions together would help to make real online
remote evaluations of sample acquisition, which is useful not for medical diagnosis but for
evolutionary control, pharmacological control or early detection of AD, among others.
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Although the automatic methods that have been applied to date are obviously not
sophisticated enough, it seems clear that, in the future, greater knowledge in this area could
contribute to the scalability of this type of language test, which has been applied manually
until now and with the economic, social or health limitations that this involves. There is
also a wide field of study in which not only could examinations be automated from an
acoustic point of view but also taking into consideration other cognitive aspects such as
semantics or lexicon. In any case, deepening the automation of these processes would give
more possibilities to new techniques, currently on the rise, such as Telecare.
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