HM-LM-AM Inequalities

Ángel Plaza

To cite this article: Ángel Plaza (2021) HM-LM-AM Inequalities, Mathematics Magazine, 94:2, 148-148, DOI: 10.1080/0025570X.2021.1867451

To link to this article: https://doi.org/10.1080/0025570X.2021.1867451

Published online: 08 Apr 2021.

Article views: 250

View related articles

View Crossmark data
Let \(a, b \in \mathbb{R} \), with \(a \neq b \). The harmonic, logarithmic, and arithmetic means of \(a \) and \(b \) are respectively defined by \(H(a, b) = \frac{2}{\frac{1}{a} + \frac{1}{b}} = \frac{2ab}{a+b} \), \(L(a, b) = \frac{b-a}{\ln b - \ln a} \), and \(A(a, b) = \frac{a+b}{2} \).

Theorem. For \(0 < a < b \), \(\frac{2}{a+b} < \frac{\ln b - \ln a}{b-a} < \frac{a+b}{2ab} \), which may be written as \((AM)^{-1} < (LM)^{-1} < (HM)^{-1}\).

Proof. Let us consider functions \(\frac{2}{a+b} \), \(\frac{1}{x} \), and the linear interpolation between points \((a, \frac{1}{a})\) and \((b, \frac{1}{b})\).

![Graph showing the functions and the linear interpolation.]

For \(x \in (0, (b-a)/2) \), \(\frac{1}{a+x} + \frac{1}{b-x} \geq \frac{4}{a+b} \) by the AM-HM inequality.

Then, by the mean value theorem for definite integrals there exists \(c \in (a, (a+b)/2) \) such that \(\frac{1}{c} = \frac{\ln b - \ln a}{b-a} \).

Summary. We demonstrate visually the inequalities among the harmonic mean, the logarithmic mean and the arithmetic mean of two positive numbers.

ÁNGEL PLAZA (MR Author ID: 350023, ORCID: 0000-0002-5077-6531) received his master’s degree from Universidad Complutense de Madrid in 1984 and his Ph.D. from Universidad de Las Palmas de Gran Canaria in 1993, where he is a Full Professor in Applied Mathematics.