Unraveling the Causes of the Instability of Au\(_n\)(SR)\(_x\) Nanoclusters on Au(111)

Pilar Carro,* Luis Miguel Azofra, Tim Albrecht, Roberto C. Salvarezza, and Evangelina Pensa*

Cite This: https://doi.org/10.1021/acs.chemmater.1c00816

Read Online

ACCESS | Metrics & More | Article Recommendations | Supporting Information

ABSTRACT: Properties of small metal nanoclusters rely on the exact arrangement of a few atoms. Minor structural changes can rapidly destabilize them, leading to disintegration. Here, we evaluate the energetic factors accounting for the stabilization and integrity of thiolate-capped gold nanoclusters (AuNCs). We found that the core-cohesive and shell-binding energies regulate the disintegration process on a solid substrate by investigating the different energetic contributions, as shown here in a combined experimental and theoretical study. As the AuNC size increases, the core-cohesive energy and shell stability (imposed by S-Au and hydrocarbon chain interactions) counterbalance the AuNC−substrate interaction and slow down the AuNC disintegration. Thus, the decomposition can not only be understood in terms of desorption and transfer of the capping molecules to the support substrate but conversely, as a whole where ligand and core interactions play a role. Taken together, our experimental and theoretical results serve as guidelines for enhancing the stability of AuNCs on solid-state devices, a key point for reliable nanotechnological applications such as heterogeneous catalysis and sensing.

INTRODUCTION

Understanding the physicochemical contributions that control nanocluster (NC) stability in different environments is crucial for using these attractive nanomaterials in technological applications.

There have been significant advances in the synthesis, structural and physicochemical characterization of thiolate (SR)-protected gold nanoclusters (AuNCs) in the last few years. Today, the AuNC structure and stability are well described by the 'divide and protect' theory\(^{1,2}\) that explains the crystallographic data showing a metallic gold core protected by a shell of thiol gold complexes, RS-(Au-SR)\(_x\), where \(x\) varies with the AuNC size.\(^{3-8}\)

Experimental and theoretical studies show that the shell structure plays a critical role in its stability and reactivity when AuNCs are part of colloidal systems. In fact, simple RS ligand exchange can induce changes in size or structure, for instance, the transformation of Ag\(_{25}\)(SR)\(_{18}\) into Ag\(_{28}\)(SR)\(_{20}\) or Ag\(_{144}\)(SR)\(_{60}\) into Ag\(_{133}\)(SR)\(_{52}\). Small clusters such as Au\(_{14}\)(SR)\(_{18}\) in solution can associate themselves to form dimers\(^{10}\) or form adducts with Ag\(_{25}\)(SR)\(_{19}\) resulting in NC alloys.\(^{11}\) These reactions involve opening the RS-Au-(SR)-Au-SR shell, close sulfur–metal interactions between adjacent clusters, and place exchange of metal atoms. The latter means a reactive Au\(_{15}\)(SR)\(_{18}\) NC able to interact dynamically with other thiol-covered metallic clusters.

However, the 'divide and protect' theory does not explain the origin of the magic size NC stability. In this case, the superatom theory is employed.\(^{12-14}\) AuNCs are stable when their valence electrons make up a closed-shell electronic system. This theory accounts for most of the AuNC physicochemical properties but it is unable to predict the stability of AuNCs universally.\(^{15}\) The thermodynamic stability theory proposed by Taylor and co-workers has recently addressed this point.\(^{16}\) The theory predicts that the AuNC stability in colloid systems increases with the nanoparticle size, resulting in a delicate energy balance between the core-cohesive energy and the shell-to-core binding energy. Moreover, the links between the structure, stability and physicochemical properties of AuNCs are predictive.\(^{17}\)

Despite considerable progress in understanding the stability and reactivity of AuNCs in colloid systems, relatively little attention has been paid to AuNCs on solid supports. It has been shown that Au\(_{20}\) deposited on ultrathin NaCl films undergoes sintering, which results in a highest occupied molecular orbital–lowest unoccupied molecular orbital gap reduction with increasing agglomerate size.\(^{18}\) Experimental studies show that the interaction of AuNCs with solid supports...
can destabilize the AuNCs leading, in the most extreme scenario, to the complete NC disintegration.19,20 Recently, it has been found that both the solid support and AuNC size have a strong influence on the heterogeneous catalysis of cyclohexane oxidation.21,22 The results show that, upon thermal air pretreatment, phenylmethanethiolate-capped \textit{Au}_{144} clusters are more stable than their analogues \textit{Au}_{25} NCs. The higher stability was suggested to be related to the different cluster core structures, although it was pointed out that the core is stabilized by different staple motifs; \textit{Au}_{144} NCs exhibit only short staples (SR-Au-SR), whereas \textit{Au}_{25} NCs have long ones (SR-Au-SR-Au-SR), which may also influence the ligand removal upon pretreatment. Therefore, a key point for these nanomaterials with fascinating technological applications is to understand their behavior in contact with solid substrates.

Herein, we present an experimental and theoretical study of the stability of AuNCs on solid surfaces. Two benchmark AuNCs were chosen, \textit{Au}_{144}(SR)_{60} and \textit{Au}_{25}(RS)_{18} NCs. Results obtained for \textit{Au}_{144}(SR)_{60} placed in contact with clean reconstructed Au(111) were compared with those reported for \textit{Au}_{25}(SR)_{18} at the same NC concentration and under the same experimental conditions.19,23 By looking up into the different energetic contributions, we found that the traditional picture where the capping agent is the only one dictating the stability of nanoparticles does not apply in these systems. Instead, the core-cohesive energy and core-shell interactions regulate the process. These two factors counterbalance the NC-substrate interaction hence, determining the degree of AuNC disintegration on the substrate.

\section*{EXPERIMENTAL SECTION}

\textbf{General.} The glassware employed in this work was cleaned by immersion in boiling aqueous 20\% HNO\textsubscript{3} solution for \textasciitilde 30 min. Then, the material was rinsed with ultrapure water and dried in an oven at 80 °C. For AuNC synthesis, an extra cleaning step with \textit{aqua regia} solution was carried out to remove any metal traces. All reagents and solvents were purchased from Sigma-Aldrich and were used as received (purity as stated in the text). For aqueous solutions, ultrapure water (H\textsubscript{2}O, 18.2 M\textsubscript{Ω}, Purite Select Fusion 160, UK) was employed.

\textbf{Au Substrates.} Two Au(111) substrates were employed. For scanning tunneling microscopy (STM) measurements, we used Au(111) single crystal disks (99.999\% purity, polished with roughness <0.01 μm, and orientation accuracy <0.1°, MaTeK GmbH, Germany). For electrochemical experiments, we employed preferentially oriented Au(111) substrates (Arrandee, Germany). Before use, the two substrates were cleaned by traditional methods, as stated in ref.19

\textbf{AuNC Synthesis and Characterization.} The hexanethiolate-capped \textit{Au}_{144} and \textit{Au}_{25} NCs were synthesized as previously reported,7,9,24 and a complete description of the method and characterization can be found in ref.19. In terms of unbonded thiolate species, the quality of purification was monitored by cyclic voltammetry and STM as follows. The AuNCs were dispersed in MeOH by vigorous shaking. After centrifugation (20 min and 13,400 rpm), the supernatant was collected. Then, Au(111) substrates were immersed for 24 h in the supernatant, rinsed with MeOH, and dried with N\textsubscript{2}. Finally, the samples were studied by either cyclic voltammetry and STM. Voltammograms and STM images do not show any of the characteristic features ascribed to thiolates on Au, indicating that the unbonded-thiolates were largely removed after the purification steps were performed.19

Multiple techniques confirmed the presence of the desired AuNCs as it was previously shown in ref.19, namely, atomic force microscopy, STM, differential pulse voltammetry, and UV-vis spectroscopy. UV-vis spectra agree with uncharged AuNCs in both cases (see Figure S1).

\textbf{Sample Preparation.} Au substrates were immersed in 2 μM AuNC dichloromethane (DCM) dispersion, in the dark, and at room temperature, for the lapse of time indicated in the main text. Finally, they were rinsed with DCM and dried with N\textsubscript{2}. For in situ STM experiments in mesitylene, the Au substrates were imaged in mesitylene (98\%) for about 10 min. Then, an aliquot of AuNC DCM dispersion was added to a final concentration of 3.4 μM.

\textbf{Electrochemistry.} Electrochemical experiments were performed with a CH7760C potentiostat (CH Instruments, United States) and a conventional three-electrode glass cell. Pt foil and a saturated calomel electrode served as the counter electrode and reference electrode, respectively. A Au substrate acted as the working electrode. Cyclic voltammograms were recorded in 0.1 M NaOH (99.99\%) aqueous electrolyte at room temperature (∼25 °C). The electrolyte was degassed with Ar before the measurements, while an Ar atmosphere was maintained throughout the experiments.

\textbf{Scanning Tunneling Microscopy.} STM measurements were performed using a Keysight S100 STM (Keysight Technologies, United States). STM tips were prepared by mechanically cutting a Pt/Ir wire (80:20\%, 0.25 mm diameter, Goodfellow, UK). All images were acquired in constant-current mode using the tunneling conditions listed in Table S1. All images are shown with line-wise flattening to remove tilt in the substrate plane and a Gaussian filter to remove the noise. STM calibration was performed for each experiment by analyzing both the HOPG surface (xy) and Au steps (z). STM images were analyzed with WSXM software (Nanotec Electronica S.L., Spain).25

\textbf{Calculations Based on Density Functional Theory (DFT).} The calculations were performed using the projector augmented wave method,30 as implemented in the Vienna ab initio simulation package.31–33 The valence electrons were described within a plane-wave basis set and an energy cutoff of 420 eV; the remaining electrons were kept frozen as core states. Electron exchange-correlation was represented by the functional of Perdew, Burke, and Ernzerhof of generalized gradient approximation.34 The weak van der Waals (vdW) forces were treated by the semiempirical method of Grimme (DFT-D) where the dispersion correction term is added to the conventional Kohn–Sham DFT energy35 with the parameterized DFT-D3.32 The energy except the calculation of \textit{Au}_{144}(SR)_{60} NCs because of the large numbers of atoms in the system (1344), the convergence process is slower than in the other calculations. The atomic positions were relaxed until the force on the unconstrained atoms was <0.03 eV Å-1. The calculated Au lattice constant is 4.099 Å, which compares reasonably well with the experimental value (4.078 Å).19 The \textit{Au}_{144}(SR)_{60} NC consists of a hollow icosahedral \textit{Au}_{133} kernel. The second layer is composed of 42 gold atoms exhibiting 30 triangular (111) faces. The third layer is formed by 60 gold atoms in which the polyhedron surface consists of 12 pentagons and 20 equilateral triangles. This surface is wrapped by 30 RS-Au-SR staples. For all NC structures calculated in this work, \textit{Au}_{144}(SR)_{60}, \textit{Au}_{144}, and \textit{Au}_{114} the same cubic cell used is 70 Å × 70 Å × 70 Å where the NC is separated by at least 35 Å of vacuum in all three directions. In these cases, the numerical integration was performed only in the Γ point. All atomic positions of the adsorbates, including the gold atom in the staple complex in the NC, were allowed to relax in the optimization. On the other hand, the \textit{Au}(111)-(1 × 1) substrate was represented by five atomic layers and a vacuum of ∼17 Å that separates two successive slabs in our calculation. Surface relaxation was allowed in the uppermost Au layers of the slab, while the atomic coordinates of the adsorbed species were allowed to relax without further constraints. Adsorbates were placed just on one side of the slab, and all calculations include a dipole correction. An optimal grid of Monkhorst–Pack36 k-points 3 × 7 × 1 was used for numerical integration in the reciprocal space of the (8 × 2 × 3) R30° unit cell. In the case of gas phase, the species employed an orthogonal cell of appropriate size. Spin polarization was considered in all gas-phase species.
Figure 1. Characterization of the Au(111) substrate upon immersion in a Au$_{144}$(SR)$_{60}$ dispersion in DCM. (a) STM images showing Au islands and thiol lying-down (LD) phases on the substrate surface. The scale bar corresponds to 60 nm. (b) Height profiles along the black line in image a. The profile shows that the Au islands are monoatomic in height (0.24 nm) and the bright spots forming each row are placed at 0.52 ± 0.01 nm (Figure 1d). This domain agrees with the head-to-head (H-H) lying down (LD) phase reported previously. The second domain comprises rows of single bright spots separated by 1.26 ± 0.02 and 0.51 ± 0.01 nm (Figure 1e). This phase agrees with the head-to-tail (H-T) LD phase.

On the other hand, the total number of thiol species determined by the charge of the thiolute-Au electroreduction peak (q_{SR}) results in a thiol coverage $\theta_{SR} = 0.11 ± 0.01$ (Figure 1c), also irrespective of the immersion time. The θ_{SR} value and its time evolution (Figure 1c) suggest that thiolated species are close-packed parallel to the Au(111) surface, reaching saturation in a relatively short time of immersion.

Before we move onto the system’s energetic aspects, we will comment on the lack of vacancy islands (pits, Figure 1a). These features are fingerprints of alkanethiolate monolayers at high coverage ($\theta_{SR} = 1/3 ≈ 0.33$). At that coverage, molecules arrange in a dense standing-up (SU) phase as part of RS-Au-SR moieties on the Au(111) substrate. Au vacancies are proposed to emerge by removing the Au adatoms needed to form the RS-Au-SR motif. By contrast, LD phases of hexanethiolate on Au(111) usually do not show Au vacancy islands. RS-Au-SR moieties can nevertheless still form, based on Au adatoms supplied through the lifting of the herringbone reconstruction, which provides a significant part of the required adatoms (0.043 out of 0.063).

For the LD phases observed here, two facts suggest the RS-Au-SR moieties’ presence at the interface: first, the absence of the herringbone reconstruction that is present before immersion in the NC dispersion (Figure S2), and second, the fact that the NC decomposition itself provides large amounts of Au adatoms. Indeed, by considering the experimental parameter θ_{SR}, we estimate that the expected Au island coverage would be 0.31 if AuNCs break apart into Au islands + SR and 0.25 if AuNCs break apart into Au islands + RS-Au-SR (cf. Supporting Information for further details). Comparison between experimental ($\theta_{Au\text{island}} = 0.23$) and predicted values for the Au island coverage suggests that the LD structures contain adatoms as a RS-Au-SR staple complex.

Thermodynamics of the Thiol Species on Au$_{144}$(SR)$_{60}$ and Au(111). To better understand the decomposition process of the Au$_{144}$(SR)$_{60}$ NC, the electronic and geometric structures of the thiol species on the Au$_{144}$(SR)$_{60}$ and the Au(111) substrate have been investigated by DFT calculations.

The cohesive gold energy has been calculated as:

$$E_c = E(Au_{gas}) - E(Au_{bulk})$$

where $E(Au_{gas})$ represents the energy of the Au atom in the gas phase and $E(Au_{bulk})$ represents the energy of the Au atom in the NC complete (Au$_{144}$) or without the outer shell (Au$_{114}$) as appropriate.

RESULTS AND DISCUSSION

Figure 1 shows results illustrating the decomposition of Au$_{144}$(SR)$_{60}$ on the Au(111) surface. STM images of the Au(111) substrate upon immersion in the NC dispersion (12 h, 2 μM in DCM) reveal Au islands, monoatomic in height (0.24 nm, Figure 1a,b) with a surface coverage $\theta_{Au\text{island}} = 0.23 ± 0.02$ (Figure 1c), irrespective of the immersion time.

The SR moieties arrange into two types of domains, as shown in Figure 1d,e. One domain corresponds to thiolated species organized into a well-ordered phase of paired-rows separated by 2.3 ± 0.1 nm. The distance between rows is 0.57 ± 0.04 nm, and the bright spots forming each row are placed at 0.52 ± 0.01 nm (Figure 1d). This domain agrees with the head-to-head (H-H) lying down (LD) phase reported previously. The second domain comprises rows of single bright spots separated by 1.26 ± 0.02 and 0.51 ± 0.01 nm (Figure 1e). This phase agrees with the head-to-tail (H-T) LD phase.

On the other hand, the total number of thiol species determined by the charge of the thiolute-Au electroreduction peak (q_{SR}) results in a thiol coverage $\theta_{SR} = 0.11 ± 0.01$ (Figure 1c), also irrespective of the immersion time. The θ_{SR} value and its time evolution (Figure 1c) suggest that thiolated species are close-packed parallel to the Au(111) surface, reaching saturation in a relatively short time of immersion.

Before we move onto the system’s energetic aspects, we will comment on the lack of vacancy islands (pits, Figure 1a). These features are fingerprints of alkanethiolate monolayers at high coverage ($\theta_{SR} = 1/3 ≈ 0.33$). At that coverage, molecules arrange in a dense standing-up (SU) phase as part of RS-Au-SR moieties on the Au(111) substrate. Au vacancies are proposed to emerge by removing the Au adatoms needed to form the RS-Au-SR motif. By contrast, LD phases of hexanethiolate on Au(111) usually do not show Au vacancy islands. RS-Au-SR moieties can nevertheless still form, based on Au adatoms supplied through the lifting of the herringbone reconstruction, which provides a significant part of the required adatoms (0.043 out of 0.063).

For the LD phases observed here, two facts suggest the RS-Au-SR moieties’ presence at the interface: first, the absence of the herringbone reconstruction that is present before immersion in the NC dispersion (Figure S2), and second, the fact that the NC decomposition itself provides large amounts of Au adatoms. Indeed, by considering the experimental parameter θ_{SR}, we estimate that the expected Au island coverage would be 0.31 if AuNCs break apart into Au islands + SR and 0.25 if AuNCs break apart into Au islands + RS-Au-SR (cf. Supporting Information for further details). Comparison between experimental ($\theta_{Au\text{island}} = 0.23$) and predicted values for the Au island coverage suggests that the LD structures contain adatoms as a RS-Au-SR staple complex.
Our experimental data indicate that the AuNCs protected by RS-Au-SR units decompose into Au islands and LD phases containing RS-Au-SR moieties upon interaction with the Au surface. We have recently shown that the most stable configurations for H-T and H-H phases are described, in both cases, by a \((8 \times 2\sqrt{3})_{\text{ext}}\) unit cell.\(^{41}\) The optimized structures are shown in Figure 2a,b, respectively.

![Figure 2](image)

Figure 2. (a and b) Optimized structures for different LD domains on Au(111): (a) RS-Au-SR in H-T and (b) RS-Au-SR on H-H. (c) Au\(_{144}(SR)_{60}\) NC structure, (d) Au\(_{144}(SR)_{60}\) NC without the alkyl chain, and (e) Au\(_{144}\) clean structure.

Table 1. SR Binding Energy (\(E_b\)) and Surface Free Energy (\(\gamma\)) values obtained after the optimization of each surface structure (Figure 2). The \(E_b\) values of both LD models on the Au(111) surface are higher than that for the NC because of the optimization of the alkyl chain–alkyl chain and alkyl chain–substrate interactions.

<table>
<thead>
<tr>
<th>LD phase</th>
<th>structures</th>
<th>unit cell</th>
<th>(\theta_{SR})</th>
<th>(E_b/\text{RS eV})</th>
<th>(\gamma) [meVÅ(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-T</td>
<td>[RS-Au-SR]@Au(111) ((8 \times 2\sqrt{3})_{\text{ext}})</td>
<td>1/8</td>
<td>–3.73</td>
<td>–64.08</td>
<td></td>
</tr>
<tr>
<td>H-H</td>
<td>[RS-Au-SR]@Au(111) ((8 \times 2\sqrt{3})_{\text{ext}})</td>
<td>1/8</td>
<td>–3.68</td>
<td>–63.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Au({144}(SR){60})NC] ((70 \times 70 \times 70))</td>
<td>1</td>
<td>–2.85</td>
<td>–192.85</td>
<td></td>
</tr>
</tbody>
</table>

However, the thermodynamic stability is given by \(\gamma\), as \(E_b\) is only an indication of how strong alkanethiolate species bond to the Au surface. Considering \(\gamma\) in the analysis, the SR radical on Au\(_{144}(SR)_{60}\) is much more stable, by a factor of 3 compared to SR in LD lattices (Table 1). The highest stability of the SR species on the AuNC, despite its lower \(E_b\), results from the more significant molecular density, and correspondingly, more considerable coverage (\(\theta_{SR} = 1\)) on the cluster than on the Au(111) surface (n/A term in eq 4). Thus, as with Au\(_{25}(SR)_{18}\),\(^{22}\) the thermodynamic stability of the gold-adatom complexes by itself cannot explain the decomposition of the Au\(_{144}(SR)_{60}\) NC.

Thermodynamics of the Degradation Process: Small Versus Large NCs. Au\(_{144}(SR)_{60}\) and Au\(_{25}(SR)_{18}\) degradation processes lead to the same products. The decomposition process results in Au islands and SR adsorbed on Au(111) as part of RS-Au-SR interfacial units for both NCs.

Despite the similarity, an intriguing observation is the different decomposition degrees observed between Au\(_{25}(SR)_{18}\) and Au\(_{144}(SR)_{60}\) NCs. Upon decomposition, Au\(_{25}(SR)_{18}\) leads to a SU lattice (\(\theta_{SR} = 1/3\)). In contrast, for the same experimental conditions, Au\(_{144}(SR)_{60}\) only leads to a LD lattice (\(\theta_{SR} = 1/8\)) – note that this is the case even for extended immersion times (Figure 1c). The latter reflects that the number of decomposed Au\(_{144}(SR)_{60}\) is lower than that of Au\(_{25}(SR)_{18}\). Our estimation, based on the experimental \(\theta_{SR}\) values, indicates that the number of decomposed Au\(_{144}(SR)_{60}\) is eight times lower than that of Au\(_{25}(SR)_{18}\) (cf. Supporting Information). This is unexpected considering that the initial AuNC number concentration is the same for both AuNCs, and more importantly, enough to fully saturate the Au(111) surface with the SR adopting the highest packing, that is, molecules arranged in a \(c(4 \times 2)\) lattice where SR adopts a SU configuration. Thus, it would be expected that both AuNCs decompose to the same degree.

Therefore, we evaluate the energetics of the complete decomposition process of the large single Au\(_{144}(SR)_{60}\) NC to form both H-T or H-H hexanethiolate LD phases according to reaction 6 and compare the result with that one obtained for the Au\(_{25}(SR)_{18}\) NC (eq 7).

\[
\begin{align*}
[Au_{144}(SR)_{60}]_{\text{NC}} + 15Au(111) & \rightarrow 15[R(S - Au - SR)] + 114Au_{\text{dend}} \text{TS} \\
& \text{SU lattice} \quad \text{at} \quad \theta_{SR} = 1/3
\end{align*}
\]

\[
\Delta E_{\text{H-T}} = -68.5 \text{ eV and } \Delta E_{\text{H-H}} = -65.8 \text{ eV}
\]

\[
\begin{align*}
[Au_{25}(SR)_{18}]_{\text{NC}} + 9/2Au(111) & \rightarrow 9/2[R(S - Au - SR)] + 32Au_{\text{dend}} \text{TS} \\
& \text{SU lattice} \quad \text{at} \quad \theta_{SR} = 1/8
\end{align*}
\]

\[
\Delta E = -21.9 \text{ eV}
\]

The \(\Delta E\) values show that the NC decomposition process is largely favored for a Au\(_{144}(SR)_{60}\) than for a Au\(_{25}(SR)_{18}\), irrespective of the LD lattice. In fact, by setting sight on the products, the Au\(_{144}(SR)_{60}\) decomposition process would be favored because of two factors. First, the stabilization provided by the Au island formation is higher for Au\(_{144}(SR)_{60}\) than for Au\(_{25}(SR)_{18}\), as the former has a more available number of Au atoms per unit cell, 114 versus 16. Second, the \(E_b\) value of SR species in the surface lattice is slightly higher for LD than for the SU configuration\(^{22}\) (\(\approx -3.7 \text{ vs } -3.5 \text{ eV}\), see Table 1).

The above argument is strictly valid at the zero-temperature limit. However, considering temperature through the entropic arguments would also favor the decomposition of the bigger AuNC. From the alkanethiolate point of view, the entropy arguments would also favor the decomposition of the bigger AuNC. Therefore, if entropy is considered in the energetic...
analysis, the conclusion would not change from that at T = 0 K.
To sum up, eqs 6 and 7 indicate that the AuNC decomposition is favored for a Au_{144}(SR)_{60} than for a Au_{114}(SR)_{18}. This conclusion contrasts the experimental data and points out that other factors should be considered in the stability analysis.

It is worth noting that reactions 6 and 7 only consider the initial and final states. In this sense, by looking into the difference within the AuNCs, we consider two potential factors that can hinder their decomposition: The Au cohesive energy and the outer shell composition.

The Au cohesive energy of the NCs is +3.00 eV for Au_{144} and +2.43 eV for Au_{114}. If we consider the Au cohesive energy of these NCs without the Au external shell, the results hardly change for Au_{114} +2.97 eV. In contrast, for the smallest NC, the Au_{13} cohesive energy drops considerably, +2.02 eV (eq 5). In this sense, it is important to remember that the Au_{13} NC has only one outer layer around the inner Au_{13} kernel whereas the Au_{144} NC is made up of a Au_{112} kernel surrounded by three layers of 42, 60, and 30 Au atoms, respectively.

The second factor to be considered is the outer shell composition. For Au_{144}(SR)_{60} NC, the shell is formed by 30 RS-Au-RS staple motifs that account for a total stabilization energy of −105.3 eV (each of the 30 complexes contributes with −3.51 eV, Table 2). In the case of Au_{125}(SR)_{18}, the stabilization energy imparted by the shell only accounts for −31.08 eV as the outer shell has only six RS-Au-(SR)-Au-SR edges (Figure 3a), those formed by the disintegration of Au_{125}(SR)_{18} NCs are randomly distributed on the Au(111) substrate (Figure 3b). It means that the Au_{144}(SR)_{60} shell, formed by RS-Au-SR moieties, only interacts upon contact with low-coordinated sites (more reactive) of the Au surface. On the other hand, the shell of the smaller Au_{25}(SR)_{18} NC formed by RS-Au-SR-NS-Au-SR can also interact with the defect-free terrace (less reactive), as shown in Figure 3b. The reactivity of these small clusters is not surprising as they can form either Au_{25}(SR)_{18} dimers or adducts with Au_{25}(SR)_{18} resulting in NC alloys. These transformations involve the RS-Au-(SR)-Au-SR shell’s spontaneous opening, close S-metal interactions between adjacent clusters, and place exchange of metal atoms. This means that a reactive Au_{25}(SR)_{18} NC is able to interact dynamically with thiol-covered metal surfaces. This conclusion agrees with simulations about the dynamics of the core—shell bonds in Au_{25} clusters that suggest a shell loosely bound to the core.

While the Au products originated from adsorption/decomposition of Au_{144}(SR)_{60} NCs are preferentially present at step edges (Figure 3a), those formed by the disintegration of Au_{25}(SR)_{18} NCs are randomly distributed on the Au(111) substrate (Figure 3b). It means that the Au_{144}(SR)_{60} shell, formed by RS-Au-SR moieties, only interacts upon contact with low-coordinated sites (more reactive) of the Au surface. On the other hand, the shell of the smaller Au_{25}(SR)_{18} NC formed by RS-Au-SR-NS-Au-SR can also interact with the defect-free terrace (less reactive), as shown in Figure 3b. The reactivity of these small clusters is not surprising as they can form either Au_{25}(SR)_{18} dimers or adducts with Au_{25}(SR)_{18} resulting in NC alloys. These transformations involve the RS-Au-(SR)-Au-SR shell’s spontaneous opening, close S-metal interactions between adjacent clusters, and place exchange of metal atoms. This means that a reactive Au_{25}(SR)_{18} NC is able to interact dynamically with thiol-covered metal surfaces. This conclusion agrees with simulations about the dynamics of the core—shell bonds in Au_{25} clusters that suggest a shell loosely bound to the core.

On the other hand, it has been shown that NC reactivity decreases with the cluster size. In this sense, a recent study on the chiral inversion of thiolated-protected gold NCs shows that the racemization mechanism and stability strongly depend on the size, core structure, and details of the metal—ligand structure. Thus, a more rigid and less reactive Au_{144}(SR)_{60} NC is expected.
At this stage, some discussion about the solvent’s role in opening the NC shell is needed. While gold island formation is a clearly surface-assisted process involving Au adatom surface diffusion, the formation of the alkanethiol phases could involve transferring SR species to the solvent and readesorption on the substrate surface. In this regard, it has been found that solvent-capping interaction can influence the ligand conformation50 or be even stronger enough to break the Au–S bonds.51 It has been shown that dodecanethiolate-capped gold nanoparticles of 3–4 nm in size lost their ligand-molecules from the nanoparticle faces when immersed in tetrahydrofuran (THF). This process involves a selective rupture of the Au–S bond induced by the solvent environment because this process is not observed in ethanolic solutions. In our case, we can discard the solvent-assisted desorption in solution, even though THF and DCM have similar polarities. In fact, at the same NC concentration, Au144(SR)60 should leave more thiolate species to the solution than the Au25(SR)18. Therefore, the larger NC should also produce dense SU phases rather than the diluted LD experimentally observed (Figure 1).

This observation confirms that NC decomposition occurs at the metal substrate surface as reported for AuNCs on polycrystalline Ag20 and Au(111).19 It can be argued, however, that the solvent would also play a key role in favoring the ‘opening’ of the RS-Au-SR or RS-Au-(SR)-Au-SR shell at the surface rather than breaking it in solution and, in this way, favoring transfer of Au-SR from the NC to the substrate. However, the effect of different solvents (ethanol, THF, and DCM) on the Au-S stretching vibration frequency in a Au-SR complex as shown by DFT calculations (not shown here) has no differences concerning the value in the gas phase. In fact, it has been reported that the thermodynamic stability of AuNCs is not affected by the solvents.19 Therefore, the S-Au breaking is a surface-assisted process where the NC shell’s stability plays a key role and determines the number of thiolated species transferred from the NC to the Au(111) surface.

Mechanism of NC Decomposition on Au(111). Based on the above observations, we propose the decomposition mechanism sketched in Figure 4. After adsorption on the Au(111) substrate, the NC shell is opened by interaction with Au surface atoms from the (111) substrate (Figure 4a).

For the Au144(SR)60 the ‘opening’ process occurs preferentially at step edges where the RS-Au-SR moieties can break into Au-SR and SR radicals that interact with the low-coordinated Au atoms (Figure 4a,b). In fact, recent in situ imaging of thiols adsorbed on Au(111) has shown that while RS-Au-SR moieties are present at terraces, SR radicals are present at step edges.32 The RS-Au-SR opening by AuNC interaction with the step edge leads to the NC shell’s weakness and exposes the Au core atoms to the environment. Thus, AuNCs’ components start to disintegrate, leading first to the Au-SR53 and Au adatoms on the surface (Figure 4b), and finally, to RS-Au-SR staples and Au islands. The fact that this process is restricted to the NC-step edge interaction besides with the high cohesive energy of this cluster results in a low population of RS-Au-SR, which accordingly accommodate in LD phases (θSR = 1/8) and a relatively small number of Au islands (Figure 4c).

In contrast, for Au25(SR)18 NC, the opening of the RS-Au-(SR)-Au-SR shell takes place after interaction with any Au surface atom because of the high reactivity and dynamics of the shell following the mechanism already proposed in refs.20,22 (Figure 4d). Also, the adsorption and decomposition are enhanced by the interaction between RS-Au-(SR)-Au-SR and the moieties already present at the substrate. (c–e) Thiolated monolayers obtained as a final product of the decomposition process: LD for Au144(SR)60 (c) and SU for Au25(SR)18 (e). For clarity, the Au islands are not included. Yellow: Au adatoms and light green: thyl radicals.

CONCLUSIONS

We have discussed the stability of thiolated AuNCs on solids supports based on the degree of AuNC disintegration. We show experimental and theoretical results about the decomposition of Au144(SR)60 NCs on clean reconstructed Au(111) surfaces and compare them to those reported for Au25(SR)18 under the same experimental conditions.

Considering individual particles, the Au144(SR)60 decomposition is thermodynamically favored concerning the Au25(SR)18. However, its higher cohesive energy and shell stability hamper the NC disintegration to some extent.

![Figure 4. Sketch of the proposed decomposition process for Au144(SR)60 (left panels) and Au25(SR)18 (right panels). (a) Picture highlights the preferential adsorption site on the substrate: steps for Au144(SR)60 and terraces for Au25(SR)18. The insets show the structure of the staples forming the ligand shell. Panels b and d illustrate the formation of a disordered phase resulting upon breaking of AuNCs apart into their constituent units. As stated in panel d, Au25(SR)18 desorption is enhanced by the interaction between RS-Au-(SR)-Au-SR and the moieties already present at the substrate. (c–e) Thiolated monolayers obtained as a final product of the decomposition process: LD for Au144(SR)60 (c) and SU for Au25(SR)18 (e). For clarity, the Au islands are not included. Yellow: Au adatoms and light green: thyl radicals.](https://doi.org/10.1021/acs.chemmater.1c00816)
Therefore, $\text{Au}_{25}(\text{SR})_{18}$ disintegration takes place preferentially at the high reactive site of the substrates where the stable shell can be opened, exemplified here with low-coordinated atoms of step edges. In contrast, $\text{Au}_{38}(\text{SR})_{24}$ disintegration occurs over the entire substrate surface, confirming the flexibility and reactivity of the shell and the more straightforward core decomposition. Interestingly, our results suggest that the decomposition cannot be understood in terms of the desorption of individual thiol-gold adatom complexes because the RS-Au-(SR)-Au-SR dimeric staple has larger E_b than the RS-Au-SR monomeric staple on their corresponding clusters but in terms of the rupture of the shell as a whole, where vdW forces play a significant role. Our experimental and DFT results confirm theoretical predictions about the ligand shell’s increased stability with the increase in the NC size proposed for colloid systems and the extent of its validity to solid supports.

Taken together, our results point out that the AuNC reactivity can be understood from the structure of the Au-SR complexes in the shell, but the AuNC stability requires considering the AuNC as a whole, where core and shell interactions play an essential role.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
E.P. and T.A. would like to thank the Leverhulme Trust (RPG2014-225). R.C.S. acknowledges the financial support from ANPCyT (PICT 2016-0679). L.M.A. thanks the KAUST Supercomputing Laboratory using the supercomputer Shaheen II for providing the computational resources.

REFERENCES

(2) Jung, J.; Kang, S.; Han, Y.-K. Ligand Effects on the Stability of Thiol-Stabilized Gold Nanoclusters: $\text{Au}_{25}(\text{SR})_{18}^+$, $\text{Au}_{38}(\text{SR})_{24}^+$, and $\text{Au}_{103}(\text{SR})_{34}^+$ Nanoscale 2012, 4, 4206−4210.

